初一上学期数学期末试卷带答案doc
数学试卷---五套七年级数学上册期末试卷(附答案)
数学期末考试卷一、选择题(每小题3分,共36分) 1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+B .22a a -=-C .33)(a a =-D .22)(a a -- 3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( ) A .13107.4⨯元 B .12107.4⨯ C .131071.4⨯元 D .131072.4⨯元5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 。
a b 图3B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4 。
D .多项式322++xy x 是三次三项式 6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
七年级上学期数学期末试卷及答案-百度文库
七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.912.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1113.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形4.下列四个选项中,不是正方体展开图形的是()A.B.C.D .5.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620156. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -8.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )A .2B .4C .6D .810.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9411.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度 C .8度 D .9度 12.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 13.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°14.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或315.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A.8-或2-B.8±或2±C.8-或2 D.8或216.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 17.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=( )A.9 B.11 C.13 D.1518.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( ) A.1985 B.-1985 C.2019 D.-201919.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .20.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7- 24.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -25.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量26.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条27.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.3.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.4.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=1111111 12233420152016 -+-+-++-=1 12016 -=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.6.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.10.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.11.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.12.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.13.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.15.A解析:A【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.18.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.19.D解析:D【解析】【分析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交与点M ,N ,则沿AM-MN-NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D .本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.解析:B 【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.25.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.26.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.27.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.。
成都市七年级(上)期末数学试卷含答案
七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.比-1小2的数是()A. 3B. 1C. -2D. -32.下列说法中错误的是()A. 0既不是正数,也不是负数B. 0是最小的整数C. 0的相反数是0D. 0的绝对值是03.下面的几何体中,主视图为圆的是()A. B. C. D.4.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A. 折线图B. 条形图C. 直方图D. 扇形图5.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1056.下列调查中,适合采用全面调查(普查)方式的是()A. 了解成都电视台“教育在线”栏目的收视率B. 了解某班同学数学成绩C. 了解全国快递包裹产生包装垃圾的数量D. 了解成都市七年级学生身高情况7.如图,AM为∠BAC的平分线,下列等式错误的是()A. ∠BAC=∠BAMB. ∠BAM=∠CAMC. ∠BAM=2∠CAMD. 2∠CAM=∠BAC8.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个9.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A. 80%x-20B. 80%(x-20)C. 20%x-20D. 20%(x-20)10.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A. 亏损20元B. 盈利30元C. 亏损50元D. 不盈不亏二、填空题(本大题共10小题,共45.0分)11.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.12.如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为______.13.关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是______.14.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=______.15.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是____,点B到点A的距离是____;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?16.已知a2+2a=1,则3a2+6a+2的值为______.17.如图,在∠AOB内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.若∠AOB=120°,则∠DOE的度数=______.18.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_______.19.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x=7+x,解方程,得x=,于是得0.=.将0.1写成分数的形式是______.20.观察下列算式:31=3,32=9,33=27,34=81,…,则3+32+33+34+35+…+32019的末位数字是______.三、计算题(本大题共4小题,共36.0分)21.计算:(1)(-6)2×(-)(2)-23÷8-×(-2)222.解方程(1)-2x+9=3(x-2)(2)x-2=23.小波准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.24.若“△”表示一种新运算,规定a△b=a×b-(a+b)(1)计算:-3△5(2)计算:2△[(-4)△(-5)](3)(-2)△(1+x)=-x+6,求x的值.四、解答题(本大题共4小题,共38.0分)25.“天府之国,宜居成都”,某校数学兴趣小组就“最想去的成都市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图,请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.26.2018年9月7日,财政部和国税总局发布了《关于2018年第四季度个人所得税减除费用和税率适用问题的通知》,通知规定:我国自2018年10月1日起,个人所得税起征点从3500元提高到5000元.月收入不超过5000元的部分不收税;月收入超过5000元但不超过8000元的部分征收3%的个人所得税……,例如:某人月收入6000元,他应缴纳个人所得税为(6000-5000)×3%=30(元).按此通知精神完成下面问题:(1)某人月收入为5860元,他应缴纳个人所得税多少元?(2)当月收入超过5000元而又不超过8000元时,写出应缴纳个人所得税y(元)与月收入x(元)之间的关系式;(3)如果某人2018年1月缴纳个人所得税81元,那么此人本月收入是多少元?27.2018年某市政府投入780万元资金进行社区道路硬化和道路拓宽改造.社区道路硬化和道路拓宽的里程数共50千米,其中道路硬化里程数是道路拓宽里程数的4倍,每千米的道路硬化和道路拓宽的经费之比为1:2.(1)道路硬化的里程数是多少千米?(2)每千米道路硬化和道路拓宽各需资金多少万元?(3)为加快建设,政府决定加大投入并提高道路改造质量.经测算:如果2019年政府投入资金在2018年的基础上增加10a%,每千米道路硬化、道路拓宽的费用也在2018年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在2018年的基础上分别增加50%,80%,按此测算,2019年政府将投入资金多少万元?28.观察下列等式:第1个等式:a1==×(-);第2个等式:a2==×(-);第3个等式:a3==×(-);第4个等式:a4==×(-);…请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;第n(n为正整数)个等式:a n=______=______;(2)求a1+a2+a3+a4+…+a2019的值;(3)数学符号f(x)=f(1)+f(2)+f(3)+…+f(n),试求的值.答案和解析1.【答案】D【解析】【分析】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.关键是根据题意可得算式,再计算即可.【解答】解:-1-2=-3,故选:D.2.【答案】B【解析】解:A、0既不是正数,也不是负数正确,故本选项错误;B、∵整数包括正整数、0和负整数,∴没有最小的整数,∴0最小的整数错误,故本选项正确;C、0的相反数是0正确,故本选项错误;D、0的绝对值是0正确,故本选项错误.故选:B.根据正数、负数、相反数、绝对值的定义,对选项依次判断即可得出答案.本题主要考查了正数、负数、相反数、绝对值的定义,比较简单.3.【答案】C【解析】解:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选:C.根据常见几何体的主视图,可得答案.本题考查了常见几何体的三视图,熟记常见几何体的三视图是解题关键.4.【答案】D【解析】解:由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:D.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图,理解各自的特点是解题的关键.5.【答案】A【解析】解:将数据2180000用科学记数法表示为2.18×106.故选:A.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6.【答案】B【解析】解:了解成都电视台“教育在线”栏目的收视率,适合采用抽样调查,A不合题意;了解某班同学数学成绩,适合采用全面调查,B符合题意;了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不符合题意;了解成都市七年级学生身高情况,适合采用抽样调查,D不合题意;故选:B.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】C【解析】解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.根据角平分线定义即可求解.此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.8.【答案】C【解析】解:①经过一点有无数条直线,这个说法正确;②两点之间线段最短,这个说法正确;③经过两点,有且只有一条直线,这个说法正确;④若线段AM等于线段BM,则点M不一定是线段AB的中点,因为A、M、B三点不一定在一条直线上,所以这个说法错误;所以正确的说法有三个.故选:C.分别利用直线的性质以及两点之间距离和线段的性质分别判断得出即可.本题考查了平行公理、直线的性质、两点间的距离以及垂线的性质,是基础知识要熟练掌握.9.【答案】A【解析】解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x-20(元),故选:A.根据题意可以用相应的代数式表示购买该商品实际付款的金额.本题考查列代数式,解答本题的关键明确题意,列出相应的代数式.10.【答案】A【解析】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150-x=25%x,150-y=-25%y,解得:x=120,y=200,∴150+150-120-200=-20(元).故选:A.设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入-进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入-成本=利润,即可得出商店卖这两件商品总的亏损20元.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.【答案】-2【解析】【分析】此题主要考查了在数轴上表示数的方法,以及相反数的含义和求法,要熟练掌握.点A 在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是-2.故答案为-2.12.【答案】150°42′【解析】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°-29°18′=150°42′.故答案为:150°42′.直接利用度分秒计算方法得出答案.此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.13.【答案】1【解析】解:解方程2x+2=0,得x=-1,由题意得,-2+5a=3,解得,a=1,故答案为:1.利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义解答.本题考查的是同解方程的定义,如果两个方程的解相同,那么这两个方程叫做同解方程.14.【答案】109【解析】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2-1.解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.15.【答案】解:(1)30 40(2)设经过t秒,原点O是线段MN的中点.则10-3t=2t,解得t=2,综上所述,经过2秒,原点O是线段MN的中点.(3)设经过x秒,点M、点N分别到点B的距离相等①点M、点N在点B的两侧,则3x-40=30-2x,解得x=14;②点M、点N重合,则3x-10=2x,解得x=10.所以经过14秒或10秒,点M、点N分别到原点O的距离相等.【解析】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.(1)因为点A表示的数为-10,OB=3OA,所以OB=3OA=30,30-(-10)=40.故B对应的数是30,点B到点A的距离是40,故答案为:30,40;(2)利用距离原点O相等列方程即可;(3)分①点M、点N在点B两侧;②点M、点N重合两种情况讨论求解.16.【答案】5【解析】解:当a2+2a=1时,原式=3(a2+2a)+2=3+2=5,故答案为:5将a2+2a=1整体代入原式即可求出答案.本题考查代数式求值,解题的关键是将a2+2a=1作为一个整体代入原式,本题属于基础题型.17.【答案】60°【解析】解:∵OD,OE分别是∠AOC,∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∴∠DOE=∠COD+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=×120°=60°.故答案为:60°.根据角的平分线的定义以及角的和差即可判断∠DOE的度数.本题考查了角的平分线的定义以及角的和差关系,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.18.【答案】15【解析】【分析】此题考查了解一元一次方程,根据程序正确列出方程是解本题的关键.根据题中的“数值转换机”程序列出方程即可求出所求.【解答】解:根据题意得:3x-2=127,解得:x=43,可得3x-2=43,解得:x=15,则输入的数是15,故答案为:1519.【答案】【解析】解:设0.1=x,则1000x=216.1,∴1000x-x=216,解得:x=.故答案为:设0.1=x,则1000x=216.1,二者做差后可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【答案】9【解析】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2019÷4=504…3,∴3+32+33+34…+32019的末位数字相当于:3+7+9+1+…+3+9+7的末尾数为9,故答案为:9.根据数字规律得出3+32+33+34…+32019的末位数字相当于:3+7+9+1+…+3+9+7进而得出末尾数字.此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.21.【答案】解:(1)原式=36×(-)=18-12=6;(2)原式=-8÷8-×4=-1-1=-2.【解析】(1)原式先计算乘方运算,再利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)去括号得:-2x+9=3x-6,移项合并得:-5x=-15,解得:x=3;(2)去分母得:3x-12=9x-2,移项合并得:-6x=10,解得:x=-.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)原式=3x2+6x+8-6x-5x2-2=-2x2+6;(2)设为a,原式=(a-5)x2+6当a=5时,此时原式的结果为常数.故为5.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【答案】解:(1)-3△5=(-3)×5-(-3+5)=-15-2=-17;(2)2△[(-4)△(-5)]=2△[(-4)×(-5)-(-4-5)]=2△29=2×29-(2+29)=27;(3)根据题意可得-2(1+x)-(-2+1+x)=-x+6,解得:x=-.【解析】(1)根据新运算的计算公式列出算式-3△5=(-3)×5-(-3+5),计算可得;(2)先计算中括号内的(-4)△(-5),得其结果为29,再计算2△29可得;(3)根据新运算的计算公式列出方程-2(1+x)-(-2+1+x)=-x+6,解方程可得.本题主要考查有理数的混合运算、解一元一次方程,解题的关键是根据新定义的计算公式列出算式和一元一次方程.25.【答案】解:(1)总人数=8÷20%=40(人)(2)最想去D景点的人数=8(人)补全条形统计图如图所示:“最想去景点D”的扇形圆心角的度数═360°×=72°.(3)估计“最想去景点B”的学生人数=800×=280(人)【解析】(1)根据A组人数以及百分比计算即可.(2)求出D组人数,画出统计图即可,根据圆心角=360°×百分比计算即可.(3)利用样本估计总体的思想解决问题.本题考查条形统计图,扇形统计图,样本估计总体的思想等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.【答案】解:(1)(5860-5000)×3%=25.8(元).应缴纳个人所得税=25.8(元);(2)y=(x-5000)×3%=0.03x-150,即y=0.03x-150(5000≤x≤8000);(3)把y=81代入y=0.03x-150,得0.03x-150=81,解答x=7700,此人本月收入是7700元.【解析】(1)根据题意列式计算即可;(2)根据所得税的计算方法,超过5000元的部分乘以3%,即可写出函数解析式;(3)把y=81代入函数解析式即可求得x的值即可.本题考查了一次函数的应用,正确理解所得税的计算方法,写出函数解析式是关键.27.【答案】解:(1)设道路拓宽的里程数是x千米,则道路硬化的里程数是4x千米;根据题意得:x+4x=50,解得:x=10,则4x=40;答:道路硬化的里程数是40千米;(2)设每千米道路硬化和道路拓宽分别需资金y万元、2y万元;根据题意得:40y+10×2y=780,解得:y=13,则2y=26,答:每千米道路硬化和道路拓宽分别需资金13万元、26万元;(3)根据题意得:13(1+a%)×40(1+50%)+26(1+5a%)×10(1+80%)=780(1+10a%),解得:a=10,∴780(1+10a%)=1560(万元);答:2019年政府将投入资金1560万元.【解析】(1)设道路拓宽的里程数是x千米,则道路硬化的里程数是4x千米;根据题意列出方程,解方程即可;(2)设每千米道路硬化和道路拓宽分别需资金y万元、2y万元;根据题意列出方程,解方程即可;(3)根据题意列出方程,解方程即可.本题考查了一元一次方程的应用以及一元一次方程的解法,找准等量关系,正确列出一元一次方程是解题的关键.28.【答案】×(-)×(-)【解析】解:(1)按以上规律知第5个等式为a5==×(-),第n个等式a n==×(-),故答案为:,×(-),,×(-).(2)a1+a2+a3+a4+…+a2019=+++…+=×(1-)+×(-)+×(-)+…+×(-)=×(1-+-+-+…+-)=×(1-)=×=;(3)==+++…+=3×(+++…+)=3×[×(1-)+×(-)+×(-)+…+×(-)]=1-+-+-+-+-+-+-+-+…+-+-+-+-=1++---=.(1)根据已知的四个等式可得答案;(2)a1+a2+a3+a4+…+a2019=+++…+,再利用以上所得规律展开求解可得;(3))==+++…+=3×(+++…+),利用所得规律求解可得.本题主要考查数字的变化规律,解题的关键是得到a n==×(-),并灵活加以运用.。
七年级数学(上)期末试卷(含答案)
七年级数学(上)期末试卷(含答案)一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣22.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×10103.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.45.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.109.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008二、填空题(共5小题,满分25分)11.比较大小:﹣﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.18.解方程(组):(1);(2).19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x乙45(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若P mn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.参考答案一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣2【分析】根据只有符号不同的两个数叫做互为相反数解答.解:的相反数是﹣.故选:A.2.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:141178万=1411780000=1.41178×109,故选:C.3.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 【分析】根据同类项的意义判断即可.解:A.﹣a2b与ab2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;B.7与2.1是同类项,故本选项不合题意;C.2xy与﹣5yx所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;D.mn2与3n2m所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;故选:A.4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.4【分析】由已知条件得出a﹣2b=2,将原式后两项提取﹣2,代入计算即可.解:根据题意,将x=1代入ax2﹣2bx+1=3,得:a﹣2b=2,则5﹣2a+4b=﹣2(a﹣2b)+5=﹣2×2+5=﹣4+5=1.故选:A.5.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:本题考查的是总体、个体和样本的概念.其中选项A、B、D都正确,而C中,样本容量是样本中包含的个体的数目,不能带单位,所以错误.故选:C.6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y【分析】根据等式的基本性质逐一判断即可.解:A.若4x=﹣5,则x=﹣,故A不符合题意;B.若ax=bx(x≠0),则a=b,故B不符合题意;C.若a2=b2,则a=±b,故C不符合题意;D.若,则x=y,故D符合题意;故选:D.7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个【分析】根据余角的和等于90°,结合图形找出构成直角的两个角,然后再计算对数.解:∵∠AOC=∠DOE=90°,∴∠AOD+∠BOE=90°,∠COE+∠BOE=90°.∴∠BOE的余角共有2个.故选:B.8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.10【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,继而即可得出答案.解:∵点M是线段AB的中点,点N是线段AC的中点,MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,∵MN=4,∴BC=8.故选:C.9.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【分析】根据图形和题意,可以得到这个“”形的图案的周长为4a+4(a﹣b),然后去括号,合并同类项即可.解:由图②可得,这个“”形的图案的周长可以表示为:4a+4(a﹣b)=4a+4a﹣4b=8a﹣4b,故选:B.10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,从而得到答案.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,则a2021=﹣+1=﹣1011+1=﹣1010,故选:B.二、填空题(共5小题,满分25分)11.比较大小:﹣<﹣.【分析】根据负有理数比较大小的方法比较(绝对值大的反而小).解:根据两个负数,绝对值大的反而小的规律得出:﹣<﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是﹣24.【分析】把两个方程相加即可求出x+y=,再根据x+y=﹣5,即可=﹣5,然后进行计算即可.解:,①+②得:5x+5y=m﹣1,∴x+y=,∵x+y=﹣5,∴=﹣5,∴m﹣1=﹣25,∴m=﹣24,故答案为:﹣24.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为62.5元.【分析】设该商品标价为x元,利用利润=售价﹣成本价,即可得出关于x的一元一次方程,解之即可得出该商品的标价.解:设该商品标价为x元,依题意得:80%x﹣40=40×25%,解得:x=62.5.故答案为:62.5.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为110°.【分析】根据角平分线的意义,设∠DOE=x,根据∠AOB=150°,∠COD=40°,分别表示出图中的各个角,然后再计算2∠BOE﹣∠BOD的值即可.解:如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,当角AOC小于80度时,OD在OE左侧,同法可得,2∠BOE﹣∠BOD=110°当OD和OE重合时,同法可得,2∠BOE﹣∠BOD=110°故答案为:110.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为或11.【分析】根据|a+5|+(b﹣3)2=0,可以先求出a、b的值,然后根据AP=2PB,利用分类讨论的方法,列出相应的方程,然后求解.解:∵|a+5|+(b﹣3)2=0,∴a+5=0,b﹣3=0,解得a=﹣5,b=3,∴点A表示的数为﹣5,点B表示的数为3,设点P表示的数为x,∵AP=2PB,∴当点P在点A和点B之间时,x﹣(﹣5)=2(3﹣x),解得x=;当点P在点B的右侧时,x﹣(﹣5)=2(x﹣3),解得x=11;当点P在点A的左侧时,(﹣5)﹣x=2(3﹣x),解得x=11(不合题意,舍去);由上可得,点P对应的数为或11,故答案为:或11.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).【分析】(1)先算乘法和去绝对值,然后算加减法即可;(2)先算乘方和去括号,然后算乘除法、最后算加减法.解:(1)5+2×(﹣6)﹣|﹣9|=5+(﹣12)﹣9=﹣7﹣9=﹣16;(2)=﹣1﹣4×()+3÷(﹣9)=﹣1﹣4×(﹣)+3×(﹣)=﹣1++(﹣)=﹣1.17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.【分析】先去括号、合并同类项化简原式,再将x和y的值代入计算可得.解:原式=2x2y﹣10x2+8y﹣3x2y+3x2﹣3y+7x2=﹣x2y+5y,当x=﹣,y=3时,原式=+5×3=﹣+15=.18.解方程(组):(1);(2).【分析】(1)方程去分母、去括号、移项、合并同类项、系数化为1即可;(2)方程组利用加减消元法解答即可.解:(1),去分母,得4(x+2)﹣3(2x﹣1)=12,去括号,得4x+8﹣6x+3=12,移项,得4x﹣6x=12﹣8﹣3,合并同类项,得﹣2x=1,系数化为1,得x=﹣;(2),①﹣②×2,得2y=3,解得y=,把y=代入②,得x=,故方程组的解为.19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.【分析】(1)根据画一个角等于已知角的方法即可在∠AOB内部作∠BOC=∠α;(2)结合(1)根据角平分线定义即可解决问题.解:(1)如图,∠BOC即为所求;(2)∵∠AOB=50°,∠BOC=30°,∴∠AOC=∠AOB﹣∠BOC=20°,∵OD平分∠AOC.∴∠COD=AOC=10°,∴∠BOD=∠BOC+∠COD=40°.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?【分析】设合伙人数为x,根据“若每人出五钱,还差四十五钱;若每人出七钱,还差三钱”,即可得出关于x的一元一次方程,解之即可求出合伙人数,再将其代入(5x+45)中即可求出羊价.解:设合伙人数为x,依题意得:5x+45=7x+3,解得:x=21,∴5x+45=5×21+45=150.答:合伙人数为21,羊价为150钱.21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有120人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出C类人数,进而得出D类人数,然后补全条形统计图;(3)利用样本估算总体即可.解:(1)此次调查的学生有:24÷20%=120(人);故答案为:120;(2)C类人数有:120×30%=36(人),D类人数有:120﹣24﹣36﹣48=12(人),补全统计图如下:(3)2600×=1560(人),答:估计该校2600名学生中,达到优良等级的学生共有1560人.22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x10x乙45(600﹣10x)(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?【分析】(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台;(2)根据购买甲型机器的数量是乙型机器数量的5倍还多3台,即可得出关于x的一元一次方程,解之即可得出结论.解:(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台.故答案为:10x,,(600﹣10x);(2)依题意得:x=5×+3,解得:x=33,=6(台),答:购入甲型机器33台,乙型机器6台.23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=45;(2)若P mn=2021,则m=169,n=3;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.解:(1)由题意可得,P45=2×(6×3+5)﹣1=45,故答案为:45;(2)∵P mn=2021,∴2[6(m﹣1)+n]﹣1=2021,∴12m+2n﹣13=2021,∵m为正整数,1≤n≤6,∴m=169,n=3,故答案为:169,3;(3)所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,由题意可得(2n﹣3)+(2n﹣1)+(2n+1)+(2n+11)=200,解得:n=24,∴所覆盖的4个数之和能等于200。
初一数学上册期末试卷及答案
初一数学上册期末试卷及答案一、选择题(共10小题,每小题3分,满分30分)1.﹣2的相反数是()A.1+B.1﹣C.2D.﹣2相反数.根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣2的相反数是2,故选:C.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱认识立体图形.几何图形问题.根据埃及金字塔的形状及棱锥的定义分析即可求解.解:埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥.故选C.本题主要考查棱锥的概念的掌握情况.棱锥的定义:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.3.用科学记数法表示9.06×105,则原数是()A.9060B.__C.__D.__科学记数法—原数.根据科学记数法的定义,由9.06×105的形式,可以得出原式等于9.06×__=__,即可得出答案.解:9.06×105=__,故选:C.本题主要考查科学记数法化为原数,得出原式等于9.06×__=__是解题关键.4.利用一副三角尺不能画出的角的度数是()A.15°B.80°C.105°D.135°角的计算.根据角的和差,可得答案.解:A、利用45°角与30°角,故A不符合题意;B、一副三角板无法画出80°角,故B符合题意;C、利用45°角与60°角,故C不符合题意;D、利用45°角与90°角,故C不符合题意;故选:B.本题考查了角的计算,利用了角的和差,熟悉一副三角板的各角是解题关键.5.下列调查,不适合抽样调查的是()A.想知道一大锅汤的味道B.要了解我市居民节约用电的情况C.香港市民对“非法占中”事件的看法D.要了解“神舟6号”运载火箭各零件的正常情况全面调查与抽样调查.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、想知道一大锅汤的味道必须进行抽样调查,选项错误;B、要了解我市居民节约用电的情况,人数太多,适合抽样调查,选项错误;C、香港市民对“非法占中”事件的看法,人数太多,适合抽样调查,选项错误;D、要了解“神舟6号”运载火箭各零件的正常情况,事关重大必须进行全面调查,不适合抽样调查.故选D.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列去括号或添括号正确的是()A.x+(y﹣2)=x+y+2B.x﹣(y﹣1)=x﹣y﹣1C.x﹣y+1=x﹣(y ﹣1)D.x+y﹣1=x+(y+1)去括号与添括号.根据去括号与添括号的法则,分别对每一项进行分析即可.A.x+(y﹣2)=x+y﹣2,故本选项错误,B.x﹣(y﹣1)=x﹣y+1,故本选项错误,标签:C.x﹣y+1=x﹣(y﹣1),故本选项正确,D.x+y﹣1=x+(y﹣1),故本选项错误,故选:C.此题考查了去括号与添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号,去括号也一样.7.如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短D.两点之间,线段最短线段的性质:两点之间线段最短.根据两点之间线段最短即可得出答案.解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:D.本题考查了线段的性质,属于基础题,关键是掌握两点之间线段最短.8.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2一元一次方程的解.计算题.虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=﹣2代入2x+m﹣4=0得:2×(﹣2)+m﹣4=0解得:m=8.故选A.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.9.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元一元一次方程的应用.销售问题.设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.10.下列变形:①如果a=b,则ac2=bc2;②如果ac2=bc2,则a=b;③如果a=b,则3a﹣1=3b﹣1;④如果,则a=b,其中正确的是() A.①②③④B.①③④C.①③D.②④等式的性质.分别利用等式的性质进而判断得出答案.解:①如果a=b,则ac2=bc2,正确;②如果ac2=bc2,则a=b(c≠0),故此选项错误;③如果a=b,则3a﹣1=3b﹣1,正确;④如果,则a=b,正确.故选:B.此题主要考查了等式的性质,正确把握等式基本性质是解题关键.二、填空题(共6小题,每小题4分,满分24分)11.若|x|=3,则x=±3.绝对值.根据绝对值的性质解答即可.解:∵|x|=3,∴x=±3.故答案为:±3.本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知a,b两数在数轴上的表示如图所示,则﹣a>b.(填“>”、“=”或“<”)有理数大小比较;数轴.推理填空题;实数.根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得a>0>b,而且|a|<|b|,所以﹣a>b,据此判断即可.解:根据数轴的特征,可得a>0>b,而且|a|<|b|,标签:∴﹣a>b.故答案为:>.(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.列代数式:a只鸡和b只兔同笼,鸡脚和兔脚共2a+4b只.列代数式.推理填空题.根据一只鸡有两只脚,一个兔子有四只脚,从而可以求出a只鸡和b 只兔一共有多少只脚.解:∵a只鸡和b只兔同笼,∴鸡脚和兔脚共有2a+4b只.故答案为:2a+4b.本题考查列代数式,解题的关键是明确题意,可以列出相应的代数式.14.若xmy2与﹣xyn是同类项,则mn等于1.同类项.根据同类项的定义中相同字母的指数也相同列出方程,解方程求得m 和n的值,代入代数式计算即可.解:∵xmy2与﹣xyn是同类项,∴m=1,n=2,则mn=1.故答案为:1.本题考查同类项的定义,掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键.15.按照下图所示的操作步骤,若输入x的值为3,则输出的值为7.代数式求值.图表型.根据图表的意思,列出代数式,将x=3代入求值即可.解:由图表可知,输出的算式为(x﹣5)2+3,当x=3时,(x﹣5)2+3=(3﹣5)2+3=7.故答案为:7.本题考查了代数式求值.解答本题的关键就是弄清楚题图给出的计算程序.16.观察下列一列数,探求其规律:﹣1,,﹣,,﹣,,。
七年级数学上册期末试卷(附含答案)
七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
初一上学期数学期末考试试卷与标准答案
初一上学期数学期末考试试卷与标准答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5标准答案:A. √22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26标准答案:C. 293. 下列等式中正确的是:A. √9 = 3B. √8 = 2√2C. √(√8) = 2D. √(√9) = 3标准答案:B. √8 = 2√24. 下列哪个数是负数:A. -3B. 2C. 0D. -2标准答案:A. -35. 若|x|=5,则x的值为:A. 5B. -5C. 5或-5D. 0标准答案:C. 5或-56. 下列哪个数是正数:A. -3B. -2C. 0D. 2标准答案:D. 27. 已知a=4,b=3,则a²-b²的值是:A. 7B. 13C. 25D. 16标准答案:C. 258. 下列哪个数是无理数:A. √3B. √4C. √9D. √16标准答案:A. √39. 下列哪个数是整数:A. -3/2B. 2.5C. -5/3D. 4标准答案:D. 410. 下列哪个数是负数:A. -2B. 3C. 0D. 2标准答案:A. -2二、填空题(每题4分,共40分)1. 若a=5,b=3,则a²+b²=______。
标准答案:342. 下列哪个数是正数:______。
标准答案:23. 下列哪个数是无理数:______。
标准答案:√34. 下列哪个数是整数:______。
标准答案:45. 若|x|=5,则x的值为______。
标准答案:5或-5三、解答题(每题10分,共20分)1. 解方程:2x-5=3标准答案:x=42. 已知a=4,b=3,求a²-b²的值。
标准答案:25四、应用题(每题10分,共20分)1. 小明的身高是1.6米,小华的身高是1.5米,求小明比小华高多少。
人教版七年级上学期数学《期末检测试卷》附答案解析
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 的倒数是[]
A. B. C. D.
2.x=-2是方程2a+3x=-16的解,则a的值是()
A.5B.-5C.-11D.11
3.有理数a,b,c在数轴上 位置如图所示,下列关系正确的是()
A.|a|>|b|B.a>﹣bC.b<﹣aD. ﹣a=b
4.下列说法错误的是()
A. 是二次三项式B. 不是单项式
C. 的系数是 D. 的次数是6
5.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):
城市
悉尼
纽约
时差/时
当北京6月15日23时,悉尼、纽约的时间分别是()
(3)点A. B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB−mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
答案与解析
一、选择题
1. 的倒数是[]
A. B. C. D.
[答案]C
[解析]
先化为假分数,再根据乘积是1的两个数互为倒数解答:
A.4个B.3个C.2个D.1个
[答案]B
[解析]
[分析]
根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.
[详解]解:∵∠A和∠B互补,
∴∠A+∠B=180°,
①∵∠B+(90°-∠B)=90°,
∴90°-∠B是∠B的余角,
【人教版】数学七年级上学期《期末检测试卷》带答案解析
人教版七年级上学期数学期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. ﹣3的相反数是()A.1 3 -B.13C. 3-D. 32. 十九大报告提到:我国的粮食生产能力达到12000亿斤.用科学记数法表示”12000亿”正确的是( )A. 1.2×1012B. 1.2×1013C. 1.2×1014D. 1.2×1043. 若a是有理数,则计算正确的是()A. (﹣a)+(﹣a)=2aB. ﹣a+(﹣a)=0C. (﹣a)﹣(﹣a)=2aD. ﹣a﹣(+a)=﹣2a4. 如图,是一个圆柱体模型,若从这个圆柱的左边向右看,则得到的平面图形是()A. B. C. D.5. 某校七年级共有女生x人,占七年级人数的48%,则该校七年级男生有()A. 0.48x人B. 0.52x人C.0.48x人 D. 0.520.48x⨯人6. 若m是有理数,则多项式﹣2mx﹣x+2的一次项系数是()A. ﹣2B. ﹣1C. 2D. ﹣(2m+1)7. 若a表示任意一个有理数,则下列说法中正确的是()A. ﹣a是负有理数B. |a|是正有理数C.1a是有理数 D. 2a是有理数8. 一个两位数的十位数是a,个位数字比十位数字的2倍少1.用含a的代数式表示这个两位数正确的是()A. 3a﹣1B. 12a﹣1C. 12a﹣2D. 30a﹣19. 如图所示,O是直线AB上一点,∠AOC=∠FOE=90°,则图中∠EOC与∠BOF的关系是()A. 相等B. 互余C. 互补D. 互邻补角10. 如图,将一副三角板按图中位置摆放,则∠BAD+∠DEC=()A. 165°B. 210°C. 220°D. 255°11. 在数轴上,点B表示﹣2,点C表示4,若点A到点B和点C的距离相等,则点A表示的数是()A. 0B. 1C. ﹣1D. 312. 小玲和小明值日打扫教室卫生,小玲单独打扫雪20min完成,小明单独打扫雪16min完成.因小明要将数学作业本交到老师办公室推迟一会儿,故先由小玲单独打扫4min,余下的再由两人一起完成,则两人一起打扫完教师卫生需要多长时间?设两人一起打扫完教室卫生需要x min,则根据题意可列方程()A. 120(x+4)+116x=1 B.120x+116(x+4)=1C 120(x﹣4)+116x=1 D.120x+116(x﹣4)=1二、填空题13. 化简﹣2b﹣2(a﹣b)的结果是_____.14. 如果关于x的方程﹣12(x﹣m)﹣1=2x的解为x=1,那么关于y的方程﹣m(2y﹣5)=2y+3m的解是_____.15. 有理数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|b+c|﹣|c+a|=_____.16. 观察按规律排列的一组数:﹣2,4,63,85,107,…其第n个数为_____.(n是正整数,用含n的代数式表示)三、解答题17. 计算:(1)(﹣2)×(﹣2.5)+(﹣2)×3÷1.5;(2)(﹣52)×(﹣2)2﹣(﹣3)3÷(﹣13﹣12)2÷(﹣0.25).18. 先化简,再求值:﹣x2﹣2(x﹣1)+2[x2+x﹣(x2﹣2x+1)],其中x=﹣23.19. 解方程:(1)﹣x﹣2=2x+1;(2)32(x﹣1)﹣85x=﹣05(x﹣1).20. 如图,点C为线段AB上一点,点C将AB分成2:3两部分,M是AC的中点,N是BC的中点,若AN=35cm.求AB的长.21. 如图,长方形纸片ABCD,点E,F分别在AB,CD上连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.已知∠A′EN=35°,求∠B′EM的度数.22. 已知长方形的周长为18cm,长方形的长比宽的3倍少1cm,求该长方形的面积.(结果精确到0.1cm2)23. 如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.24. 甲、乙两支”徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?答案与解析一、选择题1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2. 十九大报告提到:我国的粮食生产能力达到12000亿斤.用科学记数法表示”12000亿”正确的是( )A. 1.2×1012B. 1.2×1013C. 1.2×1014D. 1.2×104【答案】A【解析】【分析】用科学记数法的定义判断即可.【详解】解:12000亿=1.2×1012.故选:A.【点睛】用科学记数法表示较大的数时, 一般形式为10na⨯, 其中(1≤|a|<10,n为整数), 据此判断即可.3. 若a是有理数,则计算正确的是()A. (﹣a)+(﹣a)=2aB. ﹣a+(﹣a)=0C. (﹣a)﹣(﹣a)=2aD. ﹣a﹣(+a)=﹣2a【答案】D【解析】【分析】根据合并同类项法则:系数相加字母及指数不变,可得答案.【详解】.解:A、(﹣a)+(﹣a)=﹣2a,故A错误;B、(﹣a)+(﹣a)=﹣2a,故B错误;C 、(﹣a )﹣(﹣a )=0,故C 错误;D 、﹣a ﹣(+a )=﹣2a ,故D 正确;故选D .【点睛】本题考查合并同类项,解题关键是系数相加、字母及指数不变.4. 如图,是一个圆柱体模型,若从这个圆柱的左边向右看,则得到的平面图形是( )A. B. C. D.【答案】A【解析】【分析】根据不同方向观察物体和几何体可得到答案.【详解】解:从左边向右看这个几何体可看到长方形.故答案为:A.【点睛】本题主要考查从不同方向观察物体和几何体.5. 某校七年级共有女生x 人,占七年级人数的48%,则该校七年级男生有( )A. 0.48x 人B. 0.52x 人C. 0.48x 人D. 0.520.48x ⨯人 【答案】D【解析】【分析】由七年级共有女生x 人, 占七年级人数的48%得出七年级总人数为, 继而可得该校七年级男生数.【详解】解:七年级共有女生x 人,占七年级人数的48%, ∴七年级总人数为0.48x 则该校七年级男生有0.48x (1-48%)=0.48x ⨯0.52, 故选: D.【点睛】本题主要考查列代数式求解.6. 若m 是有理数,则多项式﹣2mx ﹣x+2的一次项系数是( )A. ﹣2B. ﹣1C. 2D. ﹣(2m+1) 【答案】D【解析】合并关于x的同类项后即可求出一次项的系数.【详解】∵﹣2mx﹣x+2=﹣(2m+1)x+2,∴﹣2mx﹣x+2的一次项系数是﹣(2m+1).故选D.【点睛】本题考查了多项式的项,多项式中的每个单项式都叫做这个多项式的项,每一项都包括前面的符号,解答本题时注意要先合并关于x的同类项.7. 若a表示任意一个有理数,则下列说法中正确的是()A. ﹣a是负有理数B. |a|是正有理数C. 1a是有理数 D. 2a是有理数【答案】D【解析】【分析】根据有理数的定义进行判断即可.【详解】解:若a表示任意一个有理数, 则当a=0时,-a不是负有理数, |a|不是正有理数, 1a无意义, 故1a不是有理数.故选项A、 B、 C错误.不论a取任何有理数, 2a总是有理数.故选项D正确故选: D.【点睛】本题主要考查有理数的定义.8. 一个两位数的十位数是a,个位数字比十位数字的2倍少1.用含a的代数式表示这个两位数正确的是()A. 3a﹣1B. 12a﹣1C. 12a﹣2D. 30a﹣1【答案】B【解析】【分析】首先表示出个位数字, 则这个数即可得到.【详解】解:十位数字是a则个位数字是:2a-1,则这个两位数是. 10a+2a-1=12a-1, 故选B.【点睛】本题主要考查列代数式及整式的运算.9. 如图所示,O是直线AB上的一点,∠AOC=∠FOE=90°,则图中∠EOC与∠BOF的关系是()A. 相等B. 互余C. 互补D. 互为邻补角【答案】C【解析】【分析】根据已知∠AOE=∠FOE=90o, 结合图形利用角运算不难推出∠AOF和∠EOC的大小关系;接下来根据∠AOF+∠BOF=180o,进一步分析便可得出∠EOC与∠BOF的关系.【详解】解:互补.∠AOC=∠FOE=90o,∴∠LAOF+∠COF=90o, ∠EOC+∠COF=90o,∠AOF=∠EOC.∠AOF+∠BOF=180o,∴∠EOC +∠BOF=180o即∠EOC与∠BOF的关系是互补.故选C.【点睛】分析题意, 结合角之间的加减运算, 可以得到解答本题.10. 如图,将一副三角板按图中位置摆放,则∠BAD+∠DEC=()A. 165°B. 210°C. 220°D. 255°【答案】D【解析】由三角形的外角和定理进行计算可得答案.【详解】解:由题意得:∠BAD=∠BAC+∠CAD=30o+90o=120o,由外角性质得:∠DEC=∠D+∠DAC=45o+90o=135o,∠BAD+∠DEC=120o+135o=255o.故答案选D.【点睛】本题主要考查三角形的外角和定理.11. 在数轴上,点B表示﹣2,点C表示4,若点A到点B和点C的距离相等,则点A表示的数是()A. 0B. 1C. ﹣1D. 3【答案】B【解析】【分析】点C到点A的距离与点C到点B的距离相等,则点C是线段AB的中点,据此即可求解.【详解】如图,,由数轴,得:点A表示的数是1.故选B.【点睛】本题主要考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把”数”和”形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12. 小玲和小明值日打扫教室卫生,小玲单独打扫雪20min完成,小明单独打扫雪16min完成.因小明要将数学作业本交到老师办公室推迟一会儿,故先由小玲单独打扫4min,余下的再由两人一起完成,则两人一起打扫完教师卫生需要多长时间?设两人一起打扫完教室卫生需要x min,则根据题意可列方程()A. 120(x+4)+116x=1 B.120x+116(x+4)=1C. 120(x﹣4)+116x=1 D.120x+116(x﹣4)=1【答案】A 【解析】由小玲单独打扫雪20min 完成, 小明单独打扫雪16min 完成知小玲打扫的效率为120, 小明打扫的效率116, 根据 "小玲的工作量+小明的工作量=1”,可得方程.【详解】解:小玲单独打扫雪20min 完成,小明单独打扫雪16min 完成, 小玲打扫的效率为120,小明打扫的效率为116根据题意,得:1 20(x+4)+116x=1, 故选: A.【点睛】本题主要考查一元一次方程的应用,由实际问题抽象列出方程式解题的关键.二、填空题13. 化简﹣2b ﹣2(a ﹣b )的结果是_____.【答案】﹣2a【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式=﹣2b -2a+2b=-2a ,故答案为: -2a ,【点睛】本题主要考查整式的加减运算.14. 如果关于x 的方程﹣12(x ﹣m )﹣1=2x 的解为x=1,那么关于y 的方程﹣m (2y ﹣5)=2y+3m 的解是_____.【答案】y=78 【解析】【分析】根据方程的解满足方程, 可得关于m 的方程, 可得m 的值, 代入关于y 的方程, 根据解方程, 可得答案.【详解】解:将x=1代入﹣12(x ﹣m )﹣1=2x,得, 1(1)1212m ---=⨯,解得m=7, 将m=7代入﹣m (2y ﹣5)=2y+3m,得,7(25)237y y --=+⨯,解得y=7 8 .故答案:y=7 8 .【点睛】本题主要考查一元一次方程的解.15. 有理数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|b+c|﹣|c+a|=_____.【答案】﹣2b【解析】【分析】先根据数轴判断出a、b、c的正负情况以及绝对值的大小, 然后判断出(a+b), (b+c), (c+a)的正负情况, 再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形,a<b<0<c,且|b|<|c|<|a|,∴a+b<0,b+c>0,c+a<o,原式=-(a+b)-(b+c)+(c+a)=-a-b-b-c+c+a,=-2b.故答案为-2b.【点睛】本题主要考查绝对值及数轴等知识.16. 观察按规律排列的一组数:﹣2,4,63,85,107,…其第n个数为_____.(n是正整数,用含n的代数式表示)【答案】2 23n n-【解析】【分析】观察此组数的规律,可得出第n个数的表达式.详解】解:221-=-,441=这组数为:21-,41,63,85,107…∴第n个数为2 23n n-故答案应填为:223nn-.【点睛】本题主要考查数字的变化的规律.三、解答题17. 计算:(1)(﹣2)×(﹣2.5)+(﹣2)×3÷1.5;(2)(﹣52)×(﹣2)2﹣(﹣3)3÷(﹣13﹣12)2÷(﹣0.25).【答案】(1)1;(2)413825 -【解析】【分析】(1) 先算乘法, 再算加减.(2) 先算乘方, 再算乘法, 最后算加减. 【详解】解:(1)原式=5﹣4=1;(2)原式=﹣10﹣27÷2536÷025,=﹣10﹣27×3625×4,=﹣10﹣3888 25=﹣4138 25.【点睛】本题主要考查有理数的运算.18. 先化简,再求值:﹣x2﹣2(x﹣1)+2[x2+x﹣(x2﹣2x+1)],其中x=﹣23.【答案】﹣x2+4x;28 9 -.【解析】【分析】先去括号, 再合并同类项化简原式, 再将x的值代入计算可得. 【详解】解:原式=﹣x2﹣2x+2+2(x2+x﹣x2+2x﹣1),=﹣x2﹣2x+2+2x2+2x﹣2x2+4x﹣2,=﹣x2+4x,当x=﹣时,原式=﹣(﹣)2+4×(﹣),=﹣﹣=﹣289.【点睛】本题主要考查整式的加减-化简求值.19. 解方程:(1)﹣x﹣2=2x+1;(2)32(x﹣1)﹣85x=﹣0.5(x﹣1).【答案】(1)x=﹣1;(2)x=5.【解析】【分析】根据解一元一次方程的步骤求解即可.【详解】解:(1)移项,得:﹣x﹣2x=1+2,合并同类项,得:﹣3x=3,系数化为1,得:x=﹣1;(2)去分母,得:15(x﹣1)﹣16x=﹣5(x﹣1),去括号,得:15x﹣15﹣16x=﹣5x+5,移项,得:15x﹣16x+5x=5+15,合并同类项,得:4x=20,系数化为1,得:x=5.【点睛】本题主要考查解一元一次方程的步骤:去分母、, 去括号, 移项、合并同类项未知数系数化为1.20. 如图,点C为线段AB上一点,点C将AB分成2:3两部分,M是AC的中点,N是BC的中点,若AN=35cm.求AB的长.【答案】50cm.【解析】【分析】设AC=2xcm, BC=3xcm, 根据中点定义可得CN=12BC=123x=1.5x,进而可列方程2x+1.5x=35, 解出x的值,可得AB的长.【详解】解:∵点C将AB分成2:3两部分,∴设AC=2xcm,BC=3xcm,∵N是BC的中点,∴CN=BC=×3x=1.5x,∵AN=35cm,∴2x+1.5x=35,解得:x=10,∴AB=5×10=50cm.【点睛】本题主要考查两点间的距离及一元一次方程的应用.21. 如图,长方形纸片ABCD,点E,F分别在AB,CD上连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.已知∠A′EN=35°,求∠B′EM的度数.【答案】∠B′EM=55°.【解析】【分析】先由翻折的性质得到∠AEN=∠A' EN, ∠BEM=∠B' EM, 从而可知∠NEM的值, 然后,根据余角的性质即可得到结论.【详解】解:由翻折的性质可知:∠AEN=∠A′EN=35°,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=∠AEA′+∠BEB′=×180°=90°.∴∠B′EM=90°﹣∠A′EN=55°.【点睛】本题主要考查角度间的计算.22. 已知长方形的周长为18cm,长方形的长比宽的3倍少1cm,求该长方形的面积.(结果精确到0.1cm2)【答案】16.3 cm2.【解析】【分析】设该长方形的宽为x cm,则长为(3x﹣1)cm,由长方形的周长为18cm可得x的值,可得长方形的面积.【详解】解:设该长方形的宽为x cm,则长为(3x﹣1)cm,依题意得:x+(3x﹣1)=解得x=,所以3x﹣1=所以长方形的面积=×≈16.3(cm2).答:该长方形的面积约为16.3cm2.【点睛】本题主要考查一元一次方程的应用. 23. 如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.【答案】(1)∠MON=90°;(2)∠MON=90°;(3)∠MON=90°.【解析】【分析】(1)由∠AOB=∠COD=90°,∠BOC=20°,可得∠MOC=∠BON的度数,可得∠MON的度数:(2)同理由∠AOB=∠COD=90°,∠BOC=α,可得∠MOC=∠BON的度数,可得∠MON的度数: (3)由∠AOB=∠COD=90°,∠BOC=α,可得∠AOC=∠BOD=90°+α,∠MOC=∠BON=45°+α可得∠MON的度数:【详解】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°; (2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α. ∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=∠BON=45°﹣α, ∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=∠BON=45°+α, ∴∠MON=∠MOC ﹣∠COB+∠BON=45°+α﹣α+45°+=90°. 【点睛】本题主要考查角平分线的性质及角度间的计算.24. 甲、乙两支”徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间? (2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?【答案】(1) 2小时;(2)253千米;(3)2.5小时或3.5小时或145.75小时两队间间隔的路程为1千米 【解析】 【详解】(1)设乙队追上甲队需要x 小时,根据题意得:()641x x ,=+ 解得:2x =,答:乙队追上甲队需要2小时.(2)联络员追上甲需要的时间:4×1÷(10-4)=23(小时), 返回到乙需要的的时间:[4-(6-4)×23]÷(10+6)=16(小时), (23+16)×10=253(千米).答:他跑步的总路程是253千米. (3)要分三种情况讨论:设t 小时两队间间隔的路程为1千米,则①当甲出发后,乙为出发前,甲乙相距1千米, t=14②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得()()6141411t t ---=⨯-, 解得: 2.5t =.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:()()6141411t t ,---=⨯+解得: 3.5t =.答:2.5小时或3.5小时或5.75小时两队间间隔的路程为1千米.。
初一上学期数学期末试卷带答案doc
初一上学期数学期末试卷带答案doc 一、选择题1.4 =( )A .1B .2C .3D .42.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 3.﹣3的相反数是( )A .13- B .13 C .3- D .34.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=-5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 6.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-=7.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a π D .94a π8.将图中的叶子平移后,可以得到的图案是()A .B .C .D .9.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4 a b c ﹣2 3 …A .4B .3C .0D .﹣2 10.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 11.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y 12.方程312x -=的解是( )A .1x =B .1x =-C .13x =- D .13x = 13.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 14.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A.0m B.0.8m C.0.8m-D.0.5m-15.把1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.2125二、填空题16.若|x|=3,|y|=2,则|x+y|=_____.17.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.18.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.19.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.209________21.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.22.单项式﹣22πa b的系数是_____,次数是_____.23.﹣30×(1223-+45)=_____.24.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___25.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.26.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东61°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是__________°.27.五边形从某一个顶点出发可以引_____条对角线.28.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______.29.-2的相反数是__.30.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.33.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.34.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?35.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.36.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.37.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数.(3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.38.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.4.D解析:D【解析】【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ).故选:D .【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.5.D解析:D【解析】【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D.【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.6.A解析:A【解析】【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x 人,∵共有学生30名,∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x 棵,男生植树3(30-x )棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.7.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.8.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.9.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c ,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b 、4、-2、b ,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.10.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.11.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A 、两边都加上3,等式仍成立,故本选项不符合题意.B 、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.12.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.13.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.14.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x =±3,y =±2,据此求出|x+y|的值是多少即可. 【详解】解:∵|x|=3,|y|=2,∴x =±3,y =±2,(1)x =3解析:1或5.【解析】【分析】根据|x |=3,|y |=2,可得:x =±3,y =±2,据此求出|x +y |的值是多少即可.【详解】解:∵|x |=3,|y |=2,∴x =±3,y =±2,(1)x =3,y =2时,|x +y |=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.17.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 18.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.19.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;20.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.21.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.22.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】 本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.23.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 24.【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据,列方程可得a 的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.25.【解析】【分析】设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.26.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.27.2【解析】【分析】从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.28.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.29.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.30.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.。
七年级上期末数学试卷(含答案)
七年级上期末数学试卷〖含答案〗一﹨选择题〖每小题3分,共36分〗:每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上1.﹣2的倒数是〖〗A.﹣B.C.﹣2 D.22.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为〖〗A.912×108B.91.2×109C.9.12×1010 D.0.912×10103.下列调查中,其中适合采用抽样调查的是〖〗①检测深圳的空气质量;②为了解某中东呼吸综合征〖MERS〗确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④4.下列几何体中,从正面看〖主视图〗是长方形的是〖〗A.B.C.D.5.下列运算中,正确的是〖〗A.﹣2﹣1=﹣1 B.﹣2〖x﹣3y〗=﹣2x+3yC.D.5x2﹣2x2=3x26.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为〖〗A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离7.已知2x3y2m和﹣x n y是同类项,则m n的值是〖〗A.1 B.C.D.8.如图,已知点C在线段AB上,点M﹨N分别是AC﹨BC的中点,且AB=8cm,则MN的长度为〖〗cm.A.2 B.3 C.4 D.69.下列说法中,正确的是〖〗A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大10.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是〖〗A.100元B.105元C.110元D.115元11.如图是一块长为a,宽为b〖a>b〗的长方形空地,要将阴影部分绿化,则阴影面积是〖〗A.a2b2B.ab﹣πa2C.D.12.有理数a﹨b在数轴上的位置如图所示,下列选项正确的是〖〗A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1二﹨填空题〖每小题3分,共12分〗:请把答案按要求填到答题卷相应位置上.13.单项式的系数是.14.对于有理数a﹨b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆〖﹣3〗= .15.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.三﹨解答题:17.计算〖1〗10﹣〖﹣5〗+〖﹣9〗+6〖2〗.18.化简〖1〗化简〖2m+1〗﹣3〖m2﹣m+3〗〖2〗化简〖2m+1〗﹣3〖m2﹣2a2b〗19.解方程〖1〗3〖2x﹣1〗=5x+2〖2〗.20.在“迎新年,庆元旦”期间,某商场推出A﹨B﹨C﹨D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:〖1〗商场中的D类礼盒有盒.〖2〗请在图1扇形统计图中,求出A部分所对应的圆心角等于度.〖3〗请将图2的统计图补充完整.〖4〗通过计算得出类礼盒销售情况最好.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?〖1〗如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.〖2〗在〖1〗条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.〖3〗如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么〖2〗中∠CBE的大小会不会改变?请说明.23.某工艺品生产厂为了按时完成订单,对员工采取生产奖励活动,奖励办法以下表计算奖励金额,但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量.改进工艺前一月生产A﹨B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共510件,其中A和B的生产量分别比改进工艺前一个月增长25%和20%.产量〖x件〗每件奖励金额〖元〗0<x≤10010100<x≤30020x>300 30〖1〗在工艺改进前一个月,员工共获得奖励金额多少元?〖2〗如果某车间员工想获得5500元奖金,需要生产多少件工艺品;〖3〗改进工艺前一个月,生产的A﹨B两种工艺品分别为多少件?七年级上学期期末数学试卷参考答案与试题解析一﹨选择题〖每小题3分,共36分〗:每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上1.﹣2的倒数是〖〗A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为〖〗A.912×108B.91.2×109C.9.12×1010 D.0.912×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于912亿有11位,所以可以确定n=11﹣1=10.【解答】解:912亿=912000 000 000=9.12×1010.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列调查中,其中适合采用抽样调查的是〖〗①检测深圳的空气质量;②为了解某中东呼吸综合征〖MERS〗确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力﹨物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①检测深圳的空气质量,应采用抽样调查;②为了解某中东呼吸综合征〖MERS〗确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;④调查某班50名同学的视力情况,人数较少,应采用全面调查,【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查﹨无法进行普查﹨普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列几何体中,从正面看〖主视图〗是长方形的是〖〗A.B.C.D.【考点】简单几何体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.下列运算中,正确的是〖〗A.﹣2﹣1=﹣1 B.﹣2〖x﹣3y〗=﹣2x+3yC.D.5x2﹣2x2=3x2【考点】有理数的混合运算;合并同类项;去括号与添括号.【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【解答】解:因为﹣2﹣1=﹣3,﹣2〖x﹣3y〗=﹣2x+6y,2÷6×=2×,5x2﹣2x2=3x2,故选D.【点评】本题考查有理数混合运﹨合并同类项﹨去括号与添括号,解题的关键是明确它们各自的计算方法.6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为〖〗A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离【考点】直线的性质:两点确定一条直线.【分析】依据两点确定一条直线来解答即可.【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.【点评】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.7.已知2x3y2m和﹣x n y是同类项,则m n的值是〖〗A.1 B.C.D.【考点】同类项.【分析】根据同类项的定义〖所含字母相同,相同字母的指数相同〗列出方程2m=1,n=3,求出n,m的值,再代入代数式计算即可.【解答】解:∵2x3y2m和﹣x n y是同类项,∴2m=1,n=3,∴m=,∴m n=〖〗3=.故选D.【点评】本题考查同类项的定义﹨方程思想及负整数指数的意义,是一道基础题,比较容易解答.8.如图,已知点C在线段AB上,点M﹨N分别是AC﹨BC的中点,且AB=8cm,则MN的长度为〖〗cm.A.2 B.3 C.4 D.6【考点】两点间的距离.【分析】根据MN=CM+CN=AC+CB=〖AC+BC〗=AB即可求解.【解答】解:∵M﹨N分别是AC﹨BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=〖AC+BC〗=AB=4.故选C.【点评】本题考查线段和差定义﹨中点的性质,利用线段和差关系是解决问题的关键.9.下列说法中,正确的是〖〗A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【考点】绝对值;两点间的距离;角的概念.【分析】根据绝对值﹨线段的中点和角的定义判断即可.【解答】解:A﹨绝对值等于它本身的数是非负数,错误;B﹨何有理数的绝对值都不是负数,正确;C﹨线段AC=BC,则线段上的点C是线段AB的中点,错误;D﹨角的大小与角两边的长度无关,错误;故选B.【点评】此题考查绝对值﹨线段的中点和角的定义问题,关键是根据定义判断.10.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是〖〗A.100元B.105元C.110元D.115元【考点】一元一次方程的应用.【分析】设这种服装每件的成本价为x元,根据题意列出一元一次方程〖1+20%〗•90%•x﹣x=8,求出x的值即可.【解答】解:设这种服装每件的成本价为x元,由题意得:〖1+20%〗•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.【点评】本题主要考查了一元一次方程的应用,解答本题的关键是根据题意正确地列出一元一次方程,此题难度不大.11.如图是一块长为a,宽为b〖a>b〗的长方形空地,要将阴影部分绿化,则阴影面积是〖〗A.a2b2B.ab﹣πa2C.D.【考点】列代数式.【专题】探究型.【分析】根据图形可以得到阴影部分面积的代数式,从而可以解答本题.【解答】解:由图可得,阴影部分的面积是:ab﹣=,故选C.【点评】本题考查列代数式,解题的关键是明确题意,利用数形结合的思想解答问题.12.有理数a﹨b在数轴上的位置如图所示,下列选项正确的是〖〗A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1【考点】数轴.【分析】根据数轴可以得到b<﹣1<0<a<1,从而可以判断各选项中式子是否正确.【解答】解:由数轴可得,b<﹣1<0<a<1,则a+b<a﹣b,ab<0,|b﹣1|>1,|a﹣b|>1,故选D.【点评】本题考查数轴,解题的关键是利用数形结合的思想解答问题.二﹨填空题〖每小题3分,共12分〗:请把答案按要求填到答题卷相应位置上.13.单项式的系数是﹣.【考点】单项式.【分析】根据单项式系数的概念求解.【解答】解:单项式的系数为﹣.故答案为:﹣.【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.14.对于有理数a﹨b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆〖﹣3〗= 1 .【考点】有理数的混合运算.【专题】新定义.【分析】根据给出的运算方法把式子转化为有理数的混合运算,进一步计算得出答案即可.【解答】解:2☆〖﹣3〗=22﹣|﹣3|=4﹣3=1.故答案为:1.【点评】此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.15.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOB的度数,再利用平角求出∠BOD的度数,利用OE平分∠DOB,即可解答.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=26°×2=52°,∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,∵OE平分∠DOB,∴∠BOE=BOD=64°.故答案为:64°.【点评】本题考查了角平分线的定义,解决本题的关键是熟记角平分线的定义.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要5n+1 根小棒.【考点】规律型:图形的变化类.【分析】由图案的变化,可以看出后面图案比前面一个图案多5根小棒,结合数据6,11,1 6可得出第n个图案需要的小棒数.【解答】解:图案〖2〗比图案〖1〗多了5根小棒,图案〖3〗比图案〖2〗多了5根小棒,根据图形的变换规律可知:每个图案比前一个图案多5根小棒,∵第一个图案需要6根小棒,6=5+1,∴第n个图案需要5n+1根小棒.故答案为:5n+1.【点评】本题考查的图形的变化,解题的关键是发现后面图案比前面一个图案多5根小棒,结合已有数据即可解决问题.三﹨解答题:17.计算〖1〗10﹣〖﹣5〗+〖﹣9〗+6〖2〗.【考点】有理数的混合运算.【分析】〖1〗先化简,再分类计算即可;〖2〗先算乘方,再算乘除,最后算加法.【解答】解:〖1〗原式=10+5﹣9+6=12;〖2〗原式=﹣1+10÷4×=﹣1+=﹣.【点评】此题考查有理数的混合运算,掌握运算方法与符号的判定是解决问题的关键.18.化简〖1〗化简〖2m+1〗﹣3〖m2﹣m+3〗〖2〗化简〖2m+1〗﹣3〖m2﹣2a2b〗【考点】整式的加减.【专题】计算题;整式.【分析】〖1〗原式去括号合并即可得到结果;〖2〗原式去括号合并即可得到结果.【解答】解:〖1〗原式=2m+1﹣3m2+3m﹣9=﹣3m2+5m﹣8;〖2〗原式=2m+1﹣3m2+6a2b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.解方程〖1〗3〖2x﹣1〗=5x+2〖2〗.【考点】解一元一次方程.【专题】计算题;一次方程〖组〗及应用.【分析】〖1〗方程去括号,移项合并,把x系数化为1,即可求出解;〖2〗方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:〖1〗去括号得:6x﹣3=5x+2,移项合并得:x=5;〖2〗去分母得:10x+15﹣3x+3=15,移项合并得:7x=﹣3,解得:x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.在“迎新年,庆元旦”期间,某商场推出A﹨B﹨C﹨D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:〖1〗商场中的D类礼盒有250 盒.〖2〗请在图1扇形统计图中,求出A部分所对应的圆心角等于126 度.〖3〗请将图2的统计图补充完整.〖4〗通过计算得出 A 类礼盒销售情况最好.【考点】条形统计图;扇形统计图.【专题】数形结合.【分析】〖1〗从扇形统计图中得到D类礼盒所占的百分比,然后用这个百分比乘以1000即可得到商场中的D类礼盒的数量;〖2〗从扇形统计图中得到A类礼盒所占的百分比,然后用这个百分比乘以360°即可得到A部分所对应的圆心角的度数;〖3〗用销售总量分别减去A﹨B﹨D类得销售量得到C类礼盒的数量,然后补全条形统计图;〖4〗由条形统计图得到礼盒销售量最大的类型,因此可判断礼盒销售情况最好的类型.【解答】解:〖1〗商场中的D类礼盒的数量为1000×25%=250〖盒〗;〖2〗A部分所对应的圆心角的度数为360°×35%=126°;〖3〗C部分礼盒的销售数量为500﹣168﹣80﹣150=102〖盒〗;如图,〖4〗A礼盒销售量最大,所以A礼盒销售情况最好.故答案为250,126,A.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【考点】一元一次方程的应用.【分析】设小明家到西湾公园距离x千米,根据“骑自行车比公交车多用1.6小时”列出方程求解即可.【解答】解:设小明家到西湾公园距离x千米,根据题意得:=+1.6,解得:x=16.答:小明家到西湾公园距离16千米.【点评】本题考查了一元一次方程的应用,解题的关键是能够找到题目的等量关系并根据等量关系列出方程.22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?〖1〗如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.〖2〗在〖1〗条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.〖3〗如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么〖2〗中∠CBE的大小会不会改变?请说明.【考点】角平分线的定义;角的计算;翻折变换〖折叠问题〗.【分析】〖1〗由折叠的性质可得∠A′BC=∠ABC=55°,由平角的定义可得∠A′BD=180°﹣∠ABC﹣∠A′B C,可得结果;〖2〗由〖1〗的结论可得∠DBD′=70°,由折叠的性质可得==35°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=×180°=90°;〖3〗由折叠的性质可得,,∠2=∠EBD=∠DBD′,可得结果.【解答】解:〖1〗∵∠ABC=55°,∴∠A′BC=∠ABC=55°,∴∠A′BD=180°﹣∠ABC﹣∠A′BC=180°﹣55﹣55°=70°;〖2〗由〖1〗的结论可得∠DBD′=70°,∴==35°,由折叠的性质可得,∴∠CBE=∠A′BC+∠D′BE=×180°=90°;〖3〗不变,由折叠的性质可得,,∠2=∠EBD=∠DBD′,∴∠1+∠2===90°,不变,永远是平角的一半.【点评】本题主要考查了角平分线的定义,根据角平分线的定义得出角的度数是解答此题的关键.23.某工艺品生产厂为了按时完成订单,对员工采取生产奖励活动,奖励办法以下表计算奖励金额,但是一个月后还是不能按时完成,厂家请工程师改进工艺流程,提高了产量.改进工艺前一月生产A﹨B两种工艺品共413件,改进工艺后的第一个月生产这两种工艺品共510件,其中A和B的生产量分别比改进工艺前一个月增长25%和20%.产量〖x件〗每件奖励金额〖元〗0<x≤10010100<x≤30020x>300 30〖1〗在工艺改进前一个月,员工共获得奖励金额多少元?〖2〗如果某车间员工想获得5500元奖金,需要生产多少件工艺品;〖3〗改进工艺前一个月,生产的A﹨B两种工艺品分别为多少件?【考点】一元一次方程的应用.【分析】〖1〗由于x>300,根据在新工艺出台前一个月,该经员工共获得奖励金额=每件奖励金额×件数,列式计算即可求解;〖2〗先确定产量的范围,进而确定奖励的金额,再列方程解答即可;〖3〗可设在新办法出台前一个月,生产A种工艺品y件,则生产B种工艺品〖413﹣y〗件,根据等量关系:改进工艺后的第一个月生产这两种工艺品共510件,列出方程求解即可.【解答】解:〖1〗413×30=12390〖元〗.答:在工艺改进前一个月,员工共获得奖励金额12390元;〖2〗∵100×20=2000〖元〗,300×20=6000〖元〗,∴2000<5500<6000,∴每件奖励金额为20元,设需要生产x件工艺品,20x=5500,解得:x=275,答:如果某车间员工想获得5500元奖金,需要生产275件工艺品;〖3〗设在新办法出台前一个月,生产A种工艺品y件,则生产B种工艺品〖413﹣y〗件,根据题意得:25%x+〖413﹣y〗20%=510﹣413,解得y=288,413﹣y=413﹣288=125.答:改进工艺前一个月,生产的A﹨B两种工艺品分别为288件﹨125件.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。
七年级上册数学期末考试卷及答案
七年级第一学期数学期末试卷(答案附后)一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( ) A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab< D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104 5.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6.如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( ) A .a <ab <2ab B .a <2ab <abbC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2 从正南方向看 从正西方向看第7题 第8题 10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题:(每小题3分,共24分)11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图的平面图都是同一平面图形的几何体mnnn有 、 .(写两种即可)13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.多项式223368x kxy y xy --+-不含xy 项,则k = ;15.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 .(用含m ,n 的式子表示)16.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是________________.17.一个角的余角比它的补角的32还少40°,则这个角为 度. 18.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品 三、解答题(共46分)19.计算:(1)(-10)÷551⨯⎪⎭⎫ ⎝⎛- (2)()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--.AB mnx20.解方程:(1)13421+=-x x (2)0.10.20.02x --10.5x += 3.21.先化简 (本题8分):-5a 2+(3a 2-2a)-(-3a 2-7),然后选择一个自己喜欢的数求值。
七年级数学上册期末考试卷及答案【完整版】
七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .46.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若13a +与273a -互为相反数,则a=________. 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
初一数学上学期期末考试卷(含答案)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.-2022的相反数是( )A .2022B .-2022C .12022D .-120222. 据报道,南通第一条地铁正在打造中,耗资约257.92亿元,将“257.92亿”用科学记数法表示( )A. 257.92×108B. 2.5792×1010C. 0.25792×1011D. 25.792×1083.下列运算结果正确的是( )A .3a 3﹣a 3=2a 3B .2a 2+a 2=2a 4C .2a +2b =4abD .3ab ﹣2ab =14.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .1cm 、2cm 、3cmC .5cm 、4cm 、3cmD .10cm 、5cm 、4cm5. 下列变形错误的是( )A. 由3x ﹣2=2x +1得x =3B. 由x +7=5得x +7﹣7=5﹣7C. 由﹣2x =3得x =23D. 由4﹣3x =4x ﹣3得4+3=4x +3x 6. 已知∠α=35°,那么∠α的余角等于( )A. 35°B. 55°C. 65°D. 145°7.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .初一数学上学期期末考试卷(含答案)(满分:150 分,时间:120 分钟)8.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .59. 已知一个多边形的每一个外角都为,则这个多边形的边数是( )A. B. C. D. 10. 如图,在中,,分别是,上的点,,,,则等于( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11. 如果“盈利10%”记作+10%,那么“亏损6%”记作 _____.12. 比较大小:﹣3______﹣2(填“>”或“<”或“=”).13.已知多项式222531510x kxy y xy -+--+中不含xy 项,则k =_________14.已知2231x y +=-,则代数式2463x y +-的值为___________.15.已知如图,直线AB 、CD 相交于点O ,OE 为射线,若∠AOE +∠DOE =110°,则∠AOC =____________°;16.如图,直线AB ∥CD ,∠C =45°,AE ⊥CE ,则∠1= .第15题图 第16题图 第17题图17.如图,在△ABC 中,点D 、E 分别是AC 、BD 的中点,S △ABC =12,则S △ADE = .18. 将一副直角三角板ABC ,ADE 按如图1叠加放置,其中B 与E 重合,∠BAC =45°,∠BAD =30°.将三角板ADE 从图1位置开始绕点A 顺时针旋转,AM ,AN 分别为∠BAE ,∠CAD 的平分线,当三角板ADE 旋转至如图2的位置时,∠MAN 的度数为_____°.OE DC BA三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题10分)计算:(1)2151()()32624+-÷-; (2)(﹣2)3×(﹣2+6)﹣|﹣4|.20.(本小题10分)解方程:(1)()2237x x -=-; (2)12326x x -+-=1.21.(本小题10分)化简求值:求代数式)4()32(2722222ab b a ab b a b a ---+的值, 其中a ,b 满足0)21(22=-++b a .22.(本小题10分)如图,是由一些棱长为2的相同的小正方体组合成的简单几何体.(1)请分别画出该几何体从正面看、从左面看、从上面看所得到的图形.(2)这个组合几何体的表面积为多少个平方单位(包括底面积);23.(本题8分)如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC的长度是多少?24.(本小题10分)原来从张家界到怀化坐普通列车需要3.5小时,当中国“最美扶贫高铁”之一的“张吉怀高铁”修通后,高铁运行里程比原来普通列车缩短了40千米,现在从张家界到怀化坐高铁只需要1小时.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.25.(本小题12分)如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G 在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.26.(本小题12分)如图,已知数轴上点A表示数6,A、B两点之间距离为10.(1)写出数轴上点B表示的数.(2)若数轴上有一点C到A、B两点的距离之和为18,则C对应数为.(3)动点R从B出发,以每秒5个单位速度向右运动,动点P从点A出发,以每秒3个单位速度向右运动,问R运动多少秒时,P、R两点之间相距2个单位长度?27.(本小题14分)【问题背景】同学们,我们一起观察小猪的猪蹄,你会发现一个我们熟悉的几何图形,我们就把这个图形形象的称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.(1)如图①,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.试探究∠BED 与∠B、∠D之间的数量关系,并说明理由.(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:【类比探究】如图②,AB∥CD,线段AD与线段BC相交于点E,∠BAD=36°,∠BCD =80°,EF平分∠BED交直线AB于点F,则∠BEF=°.【拓展延伸】如图③,AB∥CD,线段AD与线段BC相交于点E,∠BAD=36°,∠BCD =80°,过点D作DG∥CB交直线AB于点G,AH平分∠BAD,DH平分∠CDG,则∠AHD =°.参考答案1.A【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【详解】-2022的相反数是2022.故选:A .2.【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:257.92亿=25792000000=2.5792×1010,故选:B .3.A【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,合并同类项:把同类项的系数相加减,字母与字母的指数不变,根据定义与运算法则逐一分析即可.【详解】解:3a 3﹣a 3=2a 3,故A 符合题意;2a 2+a 2=3a 2,故B 不符合题意;2,2a b 不是同类项,不能合并,故C 不符合题意;3ab ﹣2ab =ab ,故D 不符合题意;故选A【点睛】本题考查的是合并同类项,掌握“同类项的判断与合并同类项的法则”是解本题的关键.4.解:根据三角形的三边关系,得,A .2+2=4,不能组成三角形,不符合题意;B .1+2=3,不能够组成三角形,不符合题意;C .3+4=7>5,能够组成三角形,符合题意;D .4+5=9<10,不能组成三角形,不符合题意.故选:C .5.【答案】C【解析】【分析】根据等式的性质逐个判断即可.【详解】解:A 、由3221x x =+﹣得x =3,正确,故本选项不符合题意; B 、由x +7=5得x +7﹣7=5﹣7,正确,故本选项不符合题意;C 、由﹣2x =3得x =32-,原变形错误,故本选项符合题意;D 、由4﹣3x =4x ﹣3得4+3=4x +3x ,正确,故本选项不符合题意;故选:C .6.【答案】B【解析】【分析】根据余角的定义:如果两个角的和等于90°(直角),就说这两个角互为余角计算.【详解】解:∵∠α=35°,∴它的余角等于90°﹣35°=55°.故选B .7.C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C .【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.8.B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项,∴n+1=4,解得,n=3,故选:B.9. D10. C11. -6%12. <13. 314. -515. 7016. 13517. 318. 37.519.(1)原式=215()(24)326+-⨯-=﹣16﹣12+20=﹣8(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.20.(1)x=3 (2)x=1221.化简结果7a 2b-5ab 2代入结果16.522.23.8cm24.296千米每小时25.解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.26.(1)-4(2)-8或10(3)4或627.解:(1)∠BED=∠B+∠D,理由如下:过E作ET∥AB,如图:∵AB∥CD,∴ET∥AB∥CD,∴∠B=∠BET,∠D=∠DET,∴∠B+∠D=∠BET+∠DET,即∠BED=∠B+∠D;(2)【类比探究】同(1)方法可知:∠AEC=∠BAD+∠BCD,∵∠BAD=36°,∠BCD=80°,∴∠AEC=116°,∴∠BED=116°,∵EF平分∠BED,∴∠BEF∠BED=58°,故答案为:58;【拓展延伸】延长DH交AG于K,如图:∵DG∥CB,∴∠BCD+∠CDG=180°,∵∠BCD=80°,∴∠CDG=100°,∵DH平分∠CDG,∴∠CDH∠CDG=50°,∵AB∥CD,∴∠CDH+∠AKD=180°,∴∠AKD=130°,∵∠BAD=36°,AH平分∠BAD,∴∠KAH∠BAD=18°,∴∠AHK=180°﹣∠KAH﹣∠AKH=32°,∴∠AHD=180°﹣∠AHK=148°,故答案为:148.第11 页共11 页。
数学初一上学期数学期末试卷带答案
数学初一上学期数学期末试卷带答案一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2062.9327-,3-,(3)--,化简后结果为3-的是( ) A 9B 327- C .3- D .(3)-- 3.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃ 4.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个5.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4 a b c ﹣2 3 …A .4B .3C .0D .﹣27.21(2)0x y -+=,则2015()x y +等于( )A .-1B .1C .20143D .20143-8.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 29.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A.48°B.42°C.36°D.33°10.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)11.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a-b>0 D.b-c<012.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1二、填空题13.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.14.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.15.多项式2x3﹣x2y2﹣1是_____次_____项式.16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期交易明细-10.16乘坐公交¥ 4.00+10.17转帐收入¥200.00-10.18体育用品¥64.0010.19零食¥82.00- 10.20餐费¥100.00-17.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.18.计算:()222a -=____;()2323x x ⋅-=_____.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.21.4是_____的算术平方根.22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.3.6=_____________________′24.若4a +9与3a +5互为相反数,则a 的值为_____.三、解答题25.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.26.(1)已知∠AOB =25°42′,则∠AOB 的余角为 ,∠AOB 的补角为 ;(2)已知∠AOB =α,∠BOC =β,OM 平分∠AOB ,ON 平分∠BOC ,用含α,β的代数式表示∠MON 的大小;(3)如图,若线段OA 与OB 分别为同一钟表上某一时刻的时针与分针,且∠AOB =25°,则经过多少时间后,△AOB 的面积第一次达到最大值.27.已知x ay b=⎧⎨=⎩是方程组2025x yx y-=⎧⎨+=⎩的解,则3a b-=_____.28.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为-200,B点对应的数为-20,C点对应的数为40.甲从C点出发,以6单位/秒的速度向左运动.(1)当甲在B点、C点之间运动时,设运时间为x秒,请用x的代数式表示:甲到A点的距离:;甲到B点的距离:;甲到C点的距离:.(2)当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向右运动,设两人在数轴上的D点相遇,求D点对应的数;(3)若当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向左运动,设两人在数轴上的E点相遇,求E点对应的数.29.直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.30.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级上册数学期末测试卷(含答案)
七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。
1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上学期数学期末试卷带答案doc一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70C .182D .2064.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .5.对于方程12132x x+-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+6.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-27.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠8.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 10.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣211.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠412.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .13.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm14.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A.AB上B.BC上C.CD上D.AD上二、填空题16.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.17.计算:11(2019)5-⎛⎫+-⎪⎝⎭=_________18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.19.若关于x的方程2x3a4+=的解为最大负整数,则a的值为______.20.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.21.如果一个数的平方根等于这个数本身,那么这个数是_____.22.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,则∠AOB的度数是_____.23.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n个图案用_____根火柴棒.24.若∠1=35°21′,则∠1的余角是__.25.如图,点C,D在线段AB上,CB=5cm,DB=8cm,点D为线段AC的中点,则线段AB的长为_____.26.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是_____.27.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.28.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.29.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.32.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.33.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.34.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.35.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.36.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.38.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.C解析:C 【解析】 【分析】根据余角与补角的性质进行一一判断可得答案. . 【详解】解:A,根据角的和差关系可得∠α=∠β=45o ; B,根据同角的余角相等可得∠α=∠β; C,由图可得∠α不一定与∠β相等; D,根据等角的补角相等可得∠α=∠β. 故选C. 【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.5.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D.本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.6.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.7.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.8.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.9.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.10.D解析:D 【解析】 【分析】根据等式的基本性质对各选项进行逐一分析即可. 【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C 、∵a =b ,∴3a =3b ,故本选项正确;D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误. 故选:D . 【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.12.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 13.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.14.C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.15.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.5【解析】【分析】把x=2代入方程求出a的值即可.解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.17.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考18.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 19.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.20.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.21.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.23.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n 个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.24.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.25.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC ,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.26.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P 的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P 的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.27.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.28.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.29.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.30.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.33.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.34.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.35.(1)13;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】。