章前引言及随机事件
概率论与数理统计 第一章1.1随机事件
事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:
完
随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象
概率第一章
第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。
2024年秋学期人教版初中数学九年级上册教学计划教学进度表
2024年秋学期人教版初中数学九年级上册教学计划教学进度表一、学情分析本学期由我担任九年级(1)班初中数学教育教学工作。
本班共47人,其中男生23人,女生24人。
学生学习兴趣高,有强烈的探究欲,对数学世界充满好奇,喜欢动手动作,有一定数学基础,善于发现新知。
但对数学知识、理论的理解不深入,要弄清数学现象真正的涵义难度较大。
在本学期的教育教学工作中教师要注意抓住学生的好奇心,采用多种教学方法激发学趣。
注重学法指导。
在实验课要及时指导、提醒学生。
注重通过资料分析、画思维导图和问题讨论等方式深化概念教学。
注重以一些感性认识为依托,借助灵活适用的教学方法深化认知、提升数学素养。
二、教学内容与教材分析本册教学内容包括:一元二次方程、二次函数、旋转、圆、概率初步、总复习,共6章。
一元二次方程单元要求掌握建立起比较完善的代数方程的知识结构,进一步体会数学建模和符号化思想,感受数学的应用价值,体现整体观念。
同时,也为二次函数、二次不等式等内容的学习奠定基础。
因此,本单元的学习重点是:一元二次方程的解法、根的性质及其应用。
二次函数单元要求掌握二次函数的概念及性质,掌握二次函数的图象和性质,会用待定系数法求二次函数的解析式。
让学生认识二次函数,掌握二次函数的图象和性质,让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图象求一元二次方程的根的方法,最后让学生运用二次函数的图象和性质解决一些简单的实际问题。
旋转单元要求掌握加强旋转与平移、轴对称之间的联系的应用练习,强化运用三种变换认识、设计图形以及解决问题,架通学生思维的“桥梁”,提升学生的数学思维能力。
那么本单元的学习难点是:灵活运用旋转、中心对称的性质,掌握关于原点对称的点的坐标的特征,能够利用旋转、平移、轴对称等知识进行图形变换。
圆单元要求掌握圆及圆的相关元素的概念,知道圆与其他学过图形之间的特征、共性与区别,形成和发展抽象能力;在直观理解和掌握圆的相关性质与判定定理的基础上,经历得到和验证数学结论的过程,感悟具有传递性的数学逻辑,形成几何直观和推理能力;经历尺规作图的过程,增强动手能力,能想象出通过尺规作图的操作所形成的图形,理解尺规作图的基本原理与方法,发展空间观念和空间想象能力。
第一章 随机事件与概率
1.2.1 事件域( σ - 域)
一个以集合为元素的集合称为集合类或集类,常用符号 A , B , C , D , F 等表示。特别 地,用 P (Ω ) 表示由 Ω 的全体子集组成的集类。集类的概念在概率论中也常用。 所谓“事件域”从直观上讲就是一个样本空间中某些子集组成的集合类,记为 F . 当样本空间是实数轴上的一个区间时, 可以人为的构造出无法测量其长度的子集, 这样 的子集被称为不可测集,如果将这些不可测集也看成是事件,那么这些事件将无概率可言, 为了避免这种现象,我们没必要将连续样本空间的所有子集都看成事件。
1.1.3 随机事件
随机现象的某些样本点组成的集合称为随机事件 ,简称事件 ,常用 A, B, C ,… 表示. 事件既可以用集合表示,也可以用明白无误地语言描述。任一事件是相应样本空间的一 个子集。在概率论中常用一个长方形来表示样本空间 Ω ,用其他几何图形来表示事件 A , 这类图形称为 venn 图。 例 1.1.2 掷一颗骰子的样本空间为 Ω = {1, 2,3, 4, 5, 6} 出现 1 点, 事件 A = , “出现偶数点” 事件 B = “出现不大于 3 的偶数点” ,则 A = {2, 4, 6}, B = {2}. 今后,我们都是把事件当作样本空间 Ω 的子集来考虑,由样本空间 Ω 中的单个元素组 成的子集称为基本事件, 而样本空间 Ω 的最大子集 (即 Ω 本身) 称为必然事件, 样本空间 Ω 的最小子集(即空集 ∅ )称为不可能事件。
3
ω i 表示出现 i 点。
(3)电视机寿命的样本空间为: Ω3 = {t , t ≥ 0}. (4)测量误差的样本空间为: Ω 4 = {x, −∞ < x < +∞}. 样本空间的元素可以是数也可以不是数。 此外样本空间可分为有限和无限两类, 在数学 处理上,将样本点的个数为有限个或可列个的情况归为一类,称为离散样本空间。将样本点 的个数为不可列无限个的情况归为另一类,称为连续样本空间。
《概率论与数理统计》电子教案第一章随机事件与概率
《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。
引言 及1.1随机事件(课件)
i
(6)
A B A AB AB
B
A A A A A A A A A A A A A A A A
2、事件的和(并) 设A、B为两个事件, 则事件 “A发生或者B发生”
即事件“A与B至少一个发生” 称为事件A与B的和 (并) 记为 A B 或 A B 它是由A,B中一切样本点 共同组成的集合. 例 掷骰子 A 1,2= “点数小于3”
B 2,4,6 = “掷出偶数点”
A
n
同时发生. 可列个事件A1,A2,A3, … 的积(交) 记为 An 表示这可列个事件同时发生.
n
4、事件的差 则事件 “A发生但B不发生” 设A、B为பைடு நூலகம்个事件,
称为事件A与B的差. 记为 A B 它是由属于A 但不属于B 的样本点构成的集合. 例 掷骰子 A 2,4,6 =“掷出偶数点”
B 1,2 = “点数小于3” A B 4, 6 = “不小于3的偶数点”
两事件的差具有性质: A B A AB
A A-B
B
5、互斥(互不相容) 事件 即 若事件A与B 不能同时发生, AB 则称A与B互不相容 或互斥 这时A与B没有公共的样本点. 例 掷骰子.
3.掷两枚硬币,记录正反面出现的情况. 此随机试验的样本空间为:
(正,正),(正,反),(反,正),(反,反)
(正,正), (正,反),(反,正), 共有4个样本点: (反,反)
4.一天中任取一时刻, 记录下某一地点当时的气温. 设此地当天的最低气温为a, 最高气温为b,则此 随机试验的样本空间为: [ a, b ] [a,b]中每个 [ ] 数 均为样本点.
概率论与数理统计第一章教案-知识归纳整理
教 师 备 课 纸1第一节 随机事件一、随机现象在自然界和人类社会日子中普遍存在着两类现象:一类是在一定条件下必然闪现的现象,称为确定性现象。
例如:(1) 一物体从高度为h (米)处垂直下落,则经过t (秒)后必然落到地面,且当高度h 一定时,可由公式221gt h =得到,g h t /2=(秒)。
(2) 异性电荷相互吸引,同性电荷相互排斥。
…另一类则是在一定条件下我们事先无法准确预知其结果的现象,称为随机现象。
例如:(1) 在相同条件下抛掷同一枚硬币,我们无法事先预知将闪现正面还是反面。
(2) 未来某日某种股票的价格是多少。
…概率论算是以数量化想法来研究随机现象及其规律性的一门数学学科。
二、 随机试验为了对随机现象的统计规律性举行研究,就需要对随机现象举行重复观察, 我们把对随机现象的观察称为随机试验,并简称为试验,记为E 。
例如,观察某射手对固定目标举行射击; 抛一枚硬币三次,观察闪现正面的次数;记录某市120急救电话一昼夜接到的呼叫次数等均为随机试验。
随机试验具有下列特点:(1) 可重复性;试验可以在相同的条件下重复举行; (2) 可观察性;试验结果可观察,所有可能的结果是明确的; (3) 不确定性: 每次试验闪现的结果事先不能准确预知。
三、样本空间虽然一具随机试验将要闪现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一具样本点, 记为e (或ω);它们的全体称为样本空间, 记为S (或Ω).知识归纳整理教 师 备 课 纸2反面. 样本空间为S ={正面,反面}或==121}(,{e e e S 正面,=2e 反面)。
(2) 在将一枚硬币抛掷三次,观察正面H 、反面T 闪现事情的试验中,有8个样本点,样本空间:=S },,,,,,,{TTT TTH THT HTT THH HTH HHT HHH 。
(3) 在抛掷一枚骰子,观察其闪现的点数的试验中,有6个样本点:1点,2点,3点,4点,5点,6点,样本空间可简记为=S {1,2,3,4,5,6}。
概率论与数理统计课程标准
《概率论与数理统计》课程标准1.课程说明《概率论与数理统计》课程标准课程编码(37012)承担单位(师范学院)制定(张琦)制定日期(2018-11)审核O审核日期O批准O批准日期O(1)课程性质:本门课程是高等职业类数学教育专业必修的专业基础课。
概率论与数理统计是一门研究大量性随机现象的统计规律的一门数学学科,概率论是数理统计的基础,数理统计是概率论的一种应用。
随着科学技术的发展,概率论与数理统计在国民经济和所有科学技术领域都有广泛的应用,因此,概率论与数理统计已成为高等院校学生的必修课程。
本课程包括概率论与数理统计两部分,概率论部分是从数量关系角度研究自然界和社会生活中普遍存在的不确定现象,即随机现象的规律性,并为后续内容提供理论基础, 概率论的特点是根据问题提出相应的数学模型,然后去研究它们的性质、特征和规律性。
数理统计部分以概率论的理论为基础,利用对随机现象的观察或者试验所取得的数据资料,来研究数学模型,并对所研究对象的客观规律性作出合理的估计与判断。
(2)课程任务:主要针对中小学教师或者教学辅导机构老师等岗位开设,主要任务是培养学生在教学工作或者其他工作岗位的实际工作能力,通过对本课程的学习,使学生掌握概率论与数理统计的基本概念、基本理论及基本方法,使学生初步掌握处理随机现象的基本思想和方法,培养他们运用概率论与数理统计的方法去分析和解决有关实际问题的能力,并为今后学习后继课程打下必需的基础。
同时培养学生爱岗敬业思想,和团结协作精神。
(3)课程衔接:在课程设置上,前导课程有数学分析和高等代数。
2 .学习目标(一)总目标:通过对本课程的学习,使学生掌握概率论与数理统计的基本概念、基本理论及基本方法,使学生初步掌握处理随机现象的基本思想和方法,培养他们运用概率论与数理统计的方法去分析和解决有关实际问题的能力。
(二)分目标:(1)知识和技能目标通过本课程的学习,使学生了解和掌握概率论的基本概念、基本理论及基本方法,增进对数学的理解和兴趣,并能运用其理论与方法解决实际生活中的简单课题。
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。
人教版初中数学九年级上册 章前引言及随机事件 省赛
《随机事件》教学设计潜江市刘岭中学刘家军一、内容及内容解析1.教学内容人民教育出版社义务教育教科书《数学》九年级上册第二十五章第一节第一课时《随机事件》2.内容解析本节课采用列举、试验、讨论等方法,提出了必然事件、不可能事件、随机事件的概念,探索了随机事件的可能性有大有小.从本节课开始学生将接触结果不确定的情况——随机现象.随机事件是概率论中的一个基本概念,是概率问题研究的主要对象,又是生活中存在的大量现象的一个反映.学好本课,既能解决生活中的一些问题,也为今后的学习打下良好的基础.本课掌握得如何,直接关系“概率”整个知识体系的坚实性,因此本课在教材中占有非常重要的地位.基于以上分析,本节课的教学重点是:随机事件的概念.二、目标及目标解析1.目标(1)了解必然事件、不可能事件、随机事件的概念,并能列举生活中的实例.(2)体会随机事件发生的可能性有大有小.2.目标解析达成目标(1)的标志是:根据必然事件、不可能事件、随机事件的特点,对具体事件作出准确判断;联系实际准确举例.达成目标(2)的标志是:知道随机事件发生的可能性有大有小.三、教学问题诊断分析学生在小学阶段已经感性认识了随机现象的可能性.本节课要在学生已有生活经验的基础上,给出随机事件的概念.随机事件是概率的切入点,从定义的表面看好像很容易理解,可是由于这些问题设计的太宽泛,要真正理解并掌握随机事件的定义对学生来说很困难.教师要通过丰富生动的例子,让学生在充分感知的基础上,准确理解和把握随机事件的特点.基于以上分析,本节课的难点是:辨别随机事件.四、教学支持条件分析学习本节课的知识,学生在前一学段对随机现象发生的可能性要有初步认识.为激发学生的学习兴趣,本节课将用到、4cm、7cm的三条线段首尾顺次连结,构成一个三角形.(4)掷一枚均匀的硬币,正面朝上.(5)在标准大气压下,温度在0摄氏度以下,水会结成冰.设计意图:从生活实际出发,巩固基本概念,加深对概念的理解,体会数学知识无处不在,同时提醒学生注意“在一定条件下”,注重常态下事件的发生.2.下列成语反映的是什么事件(1)一箭双雕(2)刻舟求剑(3)水涨船高设计意图:利用学生熟悉的成语,让学生感受数学无处不在,加深对概念的理解.。
第一章随机事件及其概率
(1)A-B={x|x∈A且x∈B} (2)当且仅当A发生,而B不发生时,事件A-B发生.
•例:抛一粒骰子,事件A=“出现点数不超过3”, B=“出现偶数点” .
则A={1,2,3}, B={2,4,6} . 所以,A-B={1,3} 问:B-A=?
• 事件B:“寿命小于1000小时”,则 B={t|0≤t<1000}
• 例:对于试验E7:记录某地一昼夜的最高 温度和最低温度.
• 事件C:“最高温度与最低温度相差10 度”,则
C={(x,y)|y-x=10, T0≤x≤y≤T1}
§1.3 事件的关系 (Relation of events )
这个例子表明:试验的样本点与样本空间是根据 试验的内容而确定的.
例:抛二粒骰子的样本空间为:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
A={1,3,5},B={1,2,3},C={3,4,5,6},D={5}
A B {1,2,3,5}, B C Ω ,AB={1,3},BD=φ A {2,4,6}, AC {4,6},A-B={5},B-A={2}
则A={1,2,3}, B={2,4,6} .
所以,A∩B={2}
类似地 n 个事件 A1,A2,…,An 同时发生这一
事件称为事件 A1,A2,…,An 的积事件(交事件),
记作 A1A2…An 或
n
n
概率论 第一章随机事件与概率
27 January 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第29页
27 January 2020
华东师范大学
第一章 随机事件与概率
第一章 随机事件与概率
第28页
注意
抛一枚硬币三次 抛三枚硬币一次 Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)} 此样本空间中的样本点等可能. Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
华东师范大学
第一章 随机事件与概率
第2页
1.1.1 随机现象
随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
特点:1. 结果不止一个; 2. 事先不知道哪一个会出现.
随机现象的统计规律性:随机现象的各种结果
会表现出一定的规律性,这种规律性称之为 统计规律性.
27 January 2020
27 January 2020
华东师范大学
第一章 随机事件与概率
第26页
1.2.3 确定概率的频率方法
随机试验可大量重复进行.
进行n次重复试验,记 n(A) 为事件A的频数,
称
n( A) fn ( A) n
为事件A的频率.
频率fn(A)会稳定于某一常数(稳定值).
用频率的稳定值作为该事件的概率.
常用大写字母 X、Y、Z …表示.
27 January 2020
初中数学人教版九年级上册章前引言及随机事件
你是如何认识:必然事件; 不可能事件; 随机事件?
在在一一定定条条件件下下
必然会发生的事件
必然事件
不可能发生的事件
不可能事件
可能发生也有可 能不发生的事件
随机事件
2012年10月17日 晴
早上,我迟到了。于是就急忙去学校上学, 可是在楼梯上遇到了班主任,她批评了我一顿。 我想我真不走运,她经常在办公室的啊,今天我 真倒霉。我明天不能再迟到了,不然明天早上我 将在楼梯上遇到班主任。
白球是必然事件。如果看着摸,摸到白球也必然事 件。
★盒中有4个黄球,2个白球,这些球的形 状、大小、质地等完全相同。在看不到球 的条件下,随意摸出一个球是白球,这一 事件是随机事件吗?
是
判断下列事件中哪些是必 然事件,哪些是不可能事件,哪些是随机 事件。
1、在地球上,太阳每天从东方升起。必然事件 2、有一匹马奔跑的速度是70千米/秒。不可能事件 3、明天,我买一注体育彩票,得500万大奖。
人教版九年级数学(上册)
第二十五章随机事件与概率 25.1.1随机事件
吉林省公主岭市第六中学 王桂华
25.1. 随机事件与概率
25.1.1随机事件
同学们听过“天有不测风云” 这句话吧!它的原意是指刮风、下雨、 阴天、晴天这些天气状况很难预料, 后来它被引申为:世界上很多事情 具有偶然性,人们不能事先判定这 些事情是否会发生。
人们果真对这 类偶然事件完全无 降水概率90%法把握、束手无策 吗?不是!随着对 事件发生的可能性 正是在研究这的些深规入律研中究产,生人的们。 现人在们概用率它的描应叙用发事日现件益许发广多生泛偶的。然可本事能章件 中性,的我大们小将。学例习的如一发,些生天概也气率具预初有报步规说知律 识明,天从的而降提水高概对可率偶循为然的9事。0%件概,发率就生这意规个味 律着的明认天识有。很大重可要能的下数雨学(概雪念),。
人教版数学九年级上册章前引言及随机事件ppt课件
关键:指针所对区域面积相等。
●请你把这节课你学到的知识告诉你的同
桌,然后告诉老师?
在
一定会发生
一事
定
不可能会发生
条
件 件 可能会发生
下
必然事件 不可能事件 随机事件
一般地,随机事件发生的可能性是 有大小的。
●欲知答案如何,请看下节内容:概率
作业
• P134页 复习巩固 第1、2题
透明的袋子里,从中摸出8个球,恰好红球、白球、
黑球都摸到,这件事情是( D )
A.随机事件
B.不可能事件
C.很可能事件
D.必然事件
3、下列事件中是必然事件的是( A ). A.早晨的太阳一定从东方升起 B.华蓥市的中秋节晚上一定能看到月亮 C.打开电视机,正在播少儿节目 D.张琴今年14岁了,她一定是初中学生
4、下列说法中,正确的是( D )
A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀硬币,正面朝上 C.三条任意长的线段可以组成一个三角形 D.从1,2,3,4,5这五个数字中任取一个数,
取得奇数的可能性大
5、下列事件中是必然事件的是( B
)
A. 打开电视机,正在播广告.
B. 从一个只装有白球的缸里摸出一个球,摸出的
可能发生也有可 能不发生的事件
随机事件
比如“李强射击一次,中十环”,“掷一枚硬币,出现反面向 上”都是随机事件.
说一说
3.盒中有4个黑球,2个白球,这些球的形状、 大小、质地等完全相同。在看不到球的条 件下,随意摸出一个球是白球,这一事件 是随机事件吗?
是随机事件
要判断事件是不是随 机事件还应注意:必 须在一定的条件下进
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1.1 随机事件教学设计(第1课时)
教学目标:
1、理解必然事件、不可能事件、随机事件的概念。
2、经历猜测、试验、收集、分析试验和归纳、总结的过程,使学生能够从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
3、能根据随机事件的特点,辨别哪些是随机事件。
4、引领学生感受随机事件就在身边,增强学生珍惜机会、把握机会的意识。
教学重点:理解必然事件、不可能事件、随机事件的概念。
教学难点:辨别某个事件是否是随机事件。
教学方法:学生自主探究、合作交流与教师启发引导相结合。
教学准备:
1、一份精美的礼物。
2、一个质地均匀的六个面上分别刻有1到6点数的正方形
骰子。
师生活动设计意图
一、创设情意探究学习
活动一:教师准备了一份礼物,要送给班里的一位同学,让同学们提出公平的办法。
1、通过送礼物的活动,激发学生的学习兴趣,引出本节课的知识点。
师生一起动手,实践操作,加深印象,化解难度。
活动二:教师举出生活中常见的事件,让学生猜测事件发生的情况。
用生活中通俗易懂的事件,让学生有些事件发生与否是可以事先确定的,而有些事件发生与否,但是不能事先确定的。
活动三:(分小组,每个同学掷15次)掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,
教师提供给学生一个开放的空间,放手让学生去探索、去发挥,通过学生合作交流来深刻地理解生活中的事件发生的三种结
师生活动设计意图
请考虑以下问题:掷一次骰子,骰子向上的面
①可能出现哪些点数?(1、2、3、
4、5、6)
②出现的点数大于0吗?(必然)
③出现的点数会是7吗?(不可能)
④出现的点数会是4吗?(可能是、也可能不是)果,进一步体会到有些事件发生与否是可以事先确定的,而有些事件发生与否,则是不能事先确定的。
二、观看视频引出新知
1、在一堆花色全是红的扑克牌中抽出红牌的可能?
2、在一堆花色全是黑色的扑克牌中抽出红牌的可能?
3、在一堆有红有黑的扑克牌中抽出红牌的可能?请学生举手回答。
最后由学生得出:
1、必然抽出红牌。
2、不可能抽出红牌。
3、有可能是,也有可能不是。
教师引导学生得出:必然事件、不可能事件、随机事件的概念。
必然事件
确定性事件
事件不可能事件
随机事件/不确定事件
三、互动学习
1师生互动:师生举出生活中用到这些知识的事情。
教师先举例:演讲比赛时,用抽签的方式来决定出场的顺序。
分别请三位同学代表发言………..
2.生生互动:两人一小组,一位同学说出一个事件,另一个同学判断事件的类型。
通过师生互动,促进教师与学生之间的交流,达到学以致用,能理解本节课的知识。
通过生生互动,学生与学生之间的交流,以自己出题,自己判断,灵活运用所学的知识。
学生可以举出生活中的事例,物理科、化学科、生物等科目的事例,充分体现各学科之间的交叉与融合。
进一步体现了生活中处处有数学。
四、课堂练习
1、连线,下来事件属于什么事件?2|、下列成语属于什么事件?
3、课堂小测验。
(10分钟)
练习一、二与考试题目结合,进一步强化了本节课的关键知识。
课堂小测验衔接了中考考试题型,增强的考试能力。
五、归纳小结
1、这节课我们学习了什么?
2、你有什么收获?
发挥学生的主体意识,培养学生的归纳能力。
六、课后作业:课本134页第1题加深学生对知识的理解。