高中高二下册数学期末考试题练习
高二年级下学期期末考试数学试题与答案解析(共三套)
高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。
全卷满分150分。
考试用时120分钟。
2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。
高二下学期期末数学试题及答案
第1页(共4页) 第2页(共4页)密 封 线 内 不 要 答 题XXX 学年下学期期末考试高二数学试卷一、选择题(每题2分,共30分)1、sin450cos150-cos450sin150的值是 ( ) A.-23 B.21 C.-21 D.23 2、若cos α=-21,sin β=23,且α和β在第二象限,则sin(α+β)的值( )A.213-B.23C.-23D.213、x y 212-=的准线方程( )A. 21=yB. 81=xC. 41=xD. 161=x 4、由1,2,3可以组成多少个没有重复数字的三位数 ( )A. 6个 B . 3个 C. 2个 D. 1个5、(nx )6-的展开式中第三项的系数等于6,那么n 的值( )A . 2B .3C . 4D .56、从放有7个黑球,5个白球的袋中,同时取出3个,那么3个球是同色的概率( ) A. 221 B. 447 C. 449 D. 221或447 7、x y 2=与抛物线2x y =的交点有( )A .1个B .2个C .3个D .4个8、化简x y x x y x cos )cos(sin )sin(+++的结果是( )A .)2cos(y x + B .y cos C .)2sin(y x + D .y sin 9、已知△ABC 的三边分别为a=7, b=10, c=6,则△ABC 为( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.无法确定 10、函数y x y 的图象可由函数)6sin(2π+==的图象x sin 2 而得到( ) A. 向右平移6π个单位 B. 向左平移6π个单位 C. 向右平移3π个单位 D. 向左平移3π个单位11、椭圆155322=+y x 的焦点坐标为 ( ) A.)0,8(),0,8(- B.)8,0(),8,0(- C.)0,2(),0,2(- D.)2,0(),2,0(- 12、 61⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是 ( ) A.C 36 B.C 46 C.C 06 D.C 56专业 班级 考场 座号第3页(共4页) 第4页(共4页)13、100件产品中,有10件一等品,20件二等品,任取一件是二等品的概率( ) A. 51 B. 101 C. 301 D. 50114、下列点在1234+-=x x y 的曲线上的是( )A .(1,0)B .(—1,—6)C .(—5,1)D .(2,1)15、从8名男生和1名女生中选4人组成一个小组,必须要有女生参加的选法种数为( ) A. 70 B. 56 C. 336 D. 126 二、填空题(每题2分,共30分) 1、长轴和短轴之和为18,焦距为6,且焦点在x 轴上的椭圆标准方程 2、双曲线1361622=-y x 的渐近线方程 3、过点M(-1,-2)的抛物线标准方程4、用1克,2克,4克的砝码在天平上能称出 种不同的物体的质量.5、长轴在y 轴,离心率为36,且过点(3,0)的椭圆的标准方程是 。
云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷
云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷一、单选题1.已知集合S ={1,2}集合T ={1,2,3}则S T I 等于( ) A .{}1B .{}2C .{}1,2D .{}1,2,32.已知i 为虚数单位,设复数121i,3i z z =-=+,则12z z +=( ) A .1B .4C .iD .4i3.已知,,a b c 都是实数.若a b >,则( ) A .c c a b > B .ac bc > C .a b c c> D .a c b c ->-4.函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .4πB .2πC .πD .π25.已知函数()f x x =,则()2f x =( ) A .2xB .xC .2D .16.函数2x y =的最小值为( ) A .0B .1C .2D .37.下列函数中,在()0,∞+上单调递增的是( ) A .2y x =-B .1y x=C .3x y =D .1,11,1x x y x x -≥⎧=⎨-<⎩8.不等式()60x x -…的解集为( )A .{0}x x <∣B .{6}x x >∣C .{0xx ∣…或6}x … D .{}06xx ∣剟 9.PM MN +=u u u u r u u u u r( )A .0rB .NP u u u rC .NM u u u u rD .PN u u u r10.在ABC V 中,内角,,A B C 的对边分别是,,a b c .若2,3,4a b c ===,则cos B =( )A .1116B .712 C .25-D .59-11.已知i 为虚数单位,则复数26i z =--在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.在ABC V 中,内角,,A B C 的对边分别是,,a b c ,若111,sin ,sin 63a A B ===,则b =( )A .6B .4C .3D .213.已知平面向量()()1,2,2,a b x ==r r .若a b r r ∥,则实数x 的值是( )A .4B .1C .1-D .4-14.下列函数中,是偶函数的为( )A .()ln f x x =B .()3f x x =C .()sin f x x =D .()e e x xf x -=+15.已知sin 5cos αα=,则tan α=( )A .3B .5C .7D .916.cos cos sin sin αβαβ+=( )A .()cos αβ-B .()cos αβ+C .()sin αβ-D .()sin αβ+17.如图,在正方体1111ABCD A B C D -中,异面直线1BC 与11B D 所成的角等于( )A .π6B .π4C .π3D .π218.设1cos sin 2αα-=,则sin2α=( )A .38B .34C .12D .1819.某单位有职工500人,其中女职工300人,男职工200人.现按男女比例,采用分层随机抽样的方法,从该单位职工中抽取25人进行相关调查研究,则应抽取该单位女职工( )A .10人B .12人C .13人D .15人20.已知0,0a b >>.若1ab =,则lg lg a b +=( )A .0B .1C .2D .321.某同学通过摸球的方式选择参加学校组织的社会实践活动.摸球规则如下:在一个不透明的袋子中有10个大小质地完全相同的球,其中2个红球,8个黄球.该同学从这个袋子中随机摸出1个球.若摸出的球是红球,则参加社区植树;若摸出的球是黄球,则参加社区卫生大扫除.该同学参加社区植树的概率为( )A .15B .14C .13D .1222.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、填空题23.已知()1,2P 是角α终边上的一点,则角α的正切值是.24.一商场门口有个球形装饰品.若该球的半径为1米,则该球的表面积为平方米. 25.已知0a >,则9a a+的最小值是. 26.某校为了解今年春季学期开学第一周,高二年级学生参加学校社团活动的时长,有关部门随机抽查了该校高二年级100名同学,统计他们今年春季学期开学第一周参加学校社团活动的时长,并绘制成如图所示的频率分布直方图.其中这100名同学今年春季学期开学第一周参加学校社团活动的时长(单位:小时)范围是[]2,12,数据分组为[)[)[)[)[]2,4,4,6,6,8,8,10,10,12.这100名同学中,今年春季学期开学第一周参加学校社团活动的时长不少于6小时的人数为人.三、解答题27.甲、乙两名同学进行投篮练习,已知甲命中的概率为0.7,乙命中的概率为0.8,且甲、乙两人投篮的结果互不影响,相互独立.甲、乙两人各投篮一次,求下列事件的概率: (1)甲、乙两人都命中; (2)甲、乙两人至少有一人命中.28.如图,在四棱锥P ABCD -中,四边形ABCD 是矩形,,PD DA PD AB ⊥⊥.(1)证明:PD BD ⊥;(2)若π2,3AD DAP ∠==,三棱锥D PBC -PA 与平面PBD 所成角的正弦值.29.已知常数,,a b c 满足a b c >>,且()20,a b c f x ax bx c ++==++.(1)证明:0a >且ca是()f x 的一个零点;(2)若(),m ∞∞∃∈-+,使得()f m a =-,记()1136c T f f m a ⎛⎫=+⋅+ ⎪⎝⎭,下列结论:0,0,0T T T <=>,你认为哪个正确?请说明理由.。
高二第二学期数学期末测试卷
高二第二学期数学期末测试卷查字典数学网站小编为各位同窗预备了高二第二学期数学期末测试卷2021年的资料。
希望大家仔细阅读。
一、选择题(每题5分)1、定义集合A*B= ,设,,那么集合A*B中元素的个数为A.1B.2C.3D.42、为了失掉函数的图像,只需把函数的图像上一切的点A. 向右平移3个单位长度,再向上平移2个单位长度B. 向左平移3个单位长度,再向下平移2个单位长度C. 向右平移3个单位长度,再向下平移2个单位长度D. 向左平移3个单位长度,再向上平移2个单位长度3、命题的否认是A.不存在B.C. D.4、以下选项中,p是q的必要不充沛条件的是A.p: q:B. p: q:C. p: q:的图像不过第二象限D. p: q:上为增函数5、设,那么A. B. C. D.6、函数的定义域是A. B. C. D.7、函数,那么不等式的解集为A. B. C. D.8、设假定,那么的最大值为A. 2 B . C. 1 D.9、映射:,其中,对应法那么:,关于实数,在集合A中存在原象,那么的取值范围是A. B. C. D.10、设为定义在上的奇函数,当时, ( 为常数),那么A -3B -1C 1D 311、假定,且当时有,那么以下关系式正确的选项是A. B. C. D.12、偶函数在上单调添加,那么满足的的取值范围是A. B. C. D.二、填空题:(每题4分)13、假定函数y=f (x)的定义域是[-1,1],那么函数y=f (log2x)的定义域是_________________14、集合,假定,那么实数a的值为______________________本文导航 1、首页2、高二第二学期数学期末测试卷-2 15.定义在R上的函数f (x)满足 ,那么f (3)=_________________16、给出以下命题:①假定a②假定ab,且k ,那么;③假定ac2bc2,那么a④假定cb0,那么 .其中真命题是_____________.(只需填写序号).三、解答题:17、(12分)化简以下各式:(1)、(2)、18、(12分) ,对是方程的两个根,不等式对恣意实数恒成立; 函数有两个不同的零点.P或为真命题,p且q为假命题,务实数的取值范围.19、(12分)函数 ( 是奇函数,又,求的值20、(12分)某公园要建造空中面积为12m2的反面靠墙的矩形围墙,由于天文位置的限制,围墙正面的长度不得超越m.,围墙正面的造价为400元/m2,正面的造价为150元/m2, 假设墙高为3m,且不计围墙反面的费用,当正面的长度为多少时,围墙总造价最低?21、(13分)假定实数、、满足,那么称比接近 .(1)假定比3接近0,求的取值范围;(2)对恣意两个不相等的正数、,证明:比接近22、(13分)f (x)的定义域为(0,+),且对一切x0,y0都有,当x1时,有f (x)0.⑴求f (1)的值;⑵判别f (x)的单调性并证明;⑶假定f (6)=1,解不等式f (x+3)-f ( )2.以上就是由查字典数学网为您提供的高二第二学期数学期末测试卷2021年,祝学习提高。
2023-2024学年重庆市高二(下)期末数学试卷(含答案)
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
高二下学期期末数学考试试卷含答案(共5套)
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
高二下学期期末考试数学试卷(含参考答案)
高中二年级学业水平考试数学(测试时间120分钟,满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2-(B )1- (C )1 (D )2(2)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则AB =(A ){}20≤≤x x(B ){}22≤≤-x x (C ){0,1,2} (D ){1,2}(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为(A )9-(B )9-(C )9(D )9(5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A )23 (B )15 (C )52 (D )14(6)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )37(B )13(C )14 (D )17(7)以下函数,在区间[3,5]内存在零点的是(A )3()35f x x x =--+ (B )()24x f x =-图2俯视图侧视图主视图(C )()2ln(2)3f x x x =-- (D )1()2f x x=-+ (8)已知(2,1),(1,1)a b ==,a 与b 的夹角为θ,则cos θ=(A)10 (B)10 (C)5 (D)5(9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )1- (D )32- (10)某几何体的三视图如图2所示,则该几何体的侧面积是(A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)xf x eg x x =-=+,则不等式(())(())11f g x g f x -≤的解集为(A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]-(12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)函数()cos f x x x =+的最小正周期为 .(14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为 .(16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2,b =3B π=,且△ABC 的面DC 1B 1CBA积S =a c += .三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列{}n a 满足141,4a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S . (18)(本小题满分12分)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租X 型车的概率.(19)(本小题满分12分)如图3,已知四棱锥11A CBB C -的底面为矩形,D 为1AC 的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 1(1)求BD 的长;(2)求三棱锥C-DB 1C 1的体积. 图3 (20)(本小题满分12分)已知过点(0,1)A 的动直线l 与圆C :224230x y x y +---=交于M ,N 两点. (Ⅰ)设线段MN 的中点为P ,求点P 的轨迹方程; (Ⅱ)若2OM ON ⋅=-,求直线l 的方程. (21)(本小题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值;(Ⅱ)若对任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()213022f x x ax +++≤成立,求实数a 的取值范围. 请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程. (23)(本小题满分10分)选修4-5:不等式选讲设函数()|2|||f x x x a =-+-. (Ⅰ)若2a =-,解不等式5)(≥x f ;(Ⅱ)如果当x R ∈时,()3f x a ≥-,求a 的取值范围.数学参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:部分解析:(10)依题意知,该几何体是底面为直角梯形的直棱柱,故其侧面积为42+44+245=64⨯⨯⨯⨯.(11)(())(())11f g x g f x -≤即22(3)3211450x x x x +--≤⇒+-≤51x ⇒-≤≤,注意到30x +>,即3x >-,故31x -<≤.(12)当0a =时,函数2()31f x x =-+有两个零点,不符合题意,故0a ≠,2'()363(2)f x ax x x ax =-=-,令'()0f x =得0x =或2x a =,由题意知,0a >,且2()0f a>,解得2a >.二、填空题:(15)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得a -≤.(16)由余弦定理得2222cos 4b a c ac B =+-=,即224a c ac +-=,1sin 24S ac B ac ===得4ac =,故2()164a c a c +=⇒+= 三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,4a a ==∴公差4113a a d -==, ------------------------------------------------------------------------------1分 ∴1(1)n a a n d n =+-=,------------------------------------------------------------------------------3分 ∵12b a ==2,25b a ==5,∴11221,3,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,-----------------------------------------------------------5分∴1111()3n n n n b a b a q ---=-=,∴13n n b n -=+;-------------------------------------------------------------------------------------------7分 (Ⅱ)由13n n b n -=+得21(12)(1333)n n S n -=++++++++--------------------------------------------------------9分(1)31231n n n +-=+- 3(1)12n n n ++-=------------------------------------------------------------------------------------ 12分 (18)解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为56=29+6⨯, ------2分 高二学生的人数为:59=39+6⨯; -------------------------------------------------------------------4分 (Ⅱ)解法1:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,(a 2,b 1), (a 2,b 2), (a 2,b 3), (b 1,b 2), (b 1,b 3), (b 2,b 3),共10种可能; ----------------------------------------------------------8分 其中至少有1人在市场体验过程中租X 型车的有:111213(,),(,),(,)a b a b a b ,212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共9种,------------------------------------------10分故所求的概率910P =.-----------------------------------------------------------------------------------------12分 【解法:2:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,EABCB 1C 1D212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共10种可能;--------------------------------------8分其中所抽的2人都不租X 型车的有:12(,)a a 一种,-------------------------------------------------9分 故所求的概率1911010P =-=. ---------------------------------------------------------------------------12分 (19)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE , ------------------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------- --------------------2分 又∵DE ⊂平面1CDB ,AB ⊄平面1CDB ,∴AB//平面CDB 1;---------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥, 又∵1BC CC ⊥,1ACCC C =,∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,----------------------------------------------------------------------------------------------------6分 在Rt BCD ∆,∵BC=1,1112CD AC ===, ∴BD =分【注:以上加灰色底纹的条件不写不扣分!】 (2)解法1:∵BC ⊥平面1ACC ,BC//B 1C 1∴11B C ⊥平面1CC A ,-----------------------------------------------------------------------------------------10分 ∴111111113C DB C B CDC CDC V V S B C --∆==⋅111134=⨯⨯=. ---------------------------------12分 【解法2:取1CC 中点F,连结DF ,∵DF 为△1ACC 的中位线,∴DF//AC,-------------------------------------------------------------------9分 ∵AC ⊥平面11CBB C ,从而可得DF ⊥平面11CBB C ,----------------------------------------------10分∴11111113C DB C D CB C CB C V V S DF --∆==⋅1111322=⨯⨯=. --------------------------------12分 (20)解法(Ⅰ)将224230x y x y +---=化为标准方程得:222(2)(1)x y -+-=, ----------------------------------------------------------------------------1分可知圆心C 的坐标为(2,1),半径r =设点P 的坐标为(,)x y ,则(2,1),(,1)CP x y AP x y =--=-,---------------------------------------2分 依题意知CP AP ⊥,∴0CP AP ⋅=(2)(1)(1)0x x y y ⇒-+--=整理得:222210x y x y +--+=, ------------------------------------------------------------------------4分∵点A 在圆C 内部, ∴直线l 始终与圆C 相交,∴点P 的轨迹方程为222210x y x y +--+=.----------------------------------------------------------6分 (Ⅱ)设1122(,),(,)M x y N x y ,若直线l 与x 轴垂直,则l 的方程为0x =,代入224230x y x y +---=得2230y y --=,解得1y =-或3y =,不妨设121,3y y =-=,则3OM ON ⋅=-,不符合题设, ------------------------------------------------7分 设直线l 的斜率为k ,则l 的方程为1y kx =+,由224230,1.x y x y y kx ⎧+---=⎨=+⎩消去y 得:22(1)440k x x +--=, --------------------------------8分 216(2)0k ∆=+>,则12122244,11x x x x k k+==-++,------------------------------------------------------------------------9分 由2OM ON ⋅=-得212121212(1)()12x x y y k x x k x x +=++++=-,∴22244(1)1211kk k k-+++=-++2410k k ⇒-+=,解得:2k =±分∴当2OM ON ⋅=-时,直线l 的方程为(21y x =++或(21y x =-+. --------------12分 (21)解:(Ⅰ)函数()f x 的定义域为(0,)+∞, ∵()ln 1f x x '=+,令'()0f x =得1x e=,-------------------------------------------------------------2分 当10x e <<时'()0f x <,当1x e>时,'()0f x >, ∴函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,----------------------------------------4分∴函数()f x 无极大值, 当1x e =时,函数()f x 在(0,)+∞有极小值,11()()f x f e e==-极小,--------------------------5分 (Ⅱ)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,由()213022f x x ax +++≤,得3ln 22x a x x ≤---,--------------6分 记()3ln 22x g x x x =---,1,x e e ⎡⎤∈⎢⎥⎣⎦, 则()()()2231113222x x g x x x x +-'=--+=-, 当∈x 1,1e ⎛⎫ ⎪⎝⎭时,得'()0g x >,当∈x ()1,e 时, '()0g x <∴()g x 在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,e 上单调递减,---------------------------------------------------9分又113122e g e e ⎛⎫=-- ⎪⎝⎭,()3122e g e e=---, ∵012)()1(<-+=-e e e g e g ,∴()1g g e e ⎛⎫< ⎪⎝⎭,-------------------------------------------------10分故()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为1g e ⎛⎫ ⎪⎝⎭,故只需1a g e ⎛⎫≤ ⎪⎝⎭,即实数a 的取值范围是13,122e e ⎛⎤-∞-- ⎥⎝⎦.------------------------------------------------------------12分 选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==-------------------------------------2分 代入221x y +=中得2216''1x y +=,--------------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);----------------------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,--------------------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------------------------7分∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+------------------------------------------------------8分即832150x y --=,将cos ,sin x y ρθρθ==代入得其极坐标方程为8cos 32sin 150ρθρθ--=----------------------------------------------------------10分 (23)解:(Ⅰ)当a =-2时,f (x )=|x -2|+|x +2|, ①当2x ≤-时,原不等式化为:25,x -≥解得52x ≤-,从而52x ≤-;-------------------------1分 ②当22x -<≤时,原不等式化为:45≥,无解;---------------------------------------------------2分 ③当2x >时,原不等式化为:25,x ≥解得52x ≥,从而52x ≥;----------------------------------3分 综上得不等式的解集为⎭⎬⎫⎩⎨⎧≥-≤2525x x x 或.----------------------------------------------------------------5分(Ⅱ)当x R ∈时,|2||||2()||2|x x a x x a a -+-≥---=- ---------------------------------------7分 所以当x R ∈时,()3f x a ≥-等价于|2|3a a -≥------(*) 当2a ≥时,(*)等价于23,a a -≥-解得52a ≥,从而52a ≥;----------------------------------8分 当2a <时,(*)等价于23,a a -≥-无解;------------------------------------------------------------9分 故所求a 的取值范围为5[,+2∞). --------------------------------------------------------------------------10分。
高二下学期期末考试数学试卷和答案
高二下学期期末考试数学试卷和答案一、 选择题:(每题4分,共48分) 将答案填图在答题卡上.1.复数31ii--等于( ) A .i 21+ B.12i - C.2i + D.2i - 2.=-⎰π20)sin (dx x ( )A .0 C.-23.若复数i i z -=1,则=|z |( )A .21B .22C .1D .24.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( )A .100 B .90 C .81 D .725.若函数3()33f x x bx b =-+在(0,1)内有极小值,则( ) A .01b <<B .1b <C .0b >D .12b <6.在二项式5)1(xx -的展开式中,含x 3的项的系数是( )7.若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( ).A .B .C .D .8.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数),则直线与圆的位置关系是( )。
A. 相交过圆心B.相交而不过圆心C.相切D.相离9.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A . B . C . D .y y y10.设31(3)n x x+的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P +S =272,则n 为( )A .4B .5C .6D .811.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( )A.p B.2(1)p p -C.(1)p p -- D.(1)p p -天津市大港一中08—09学年高二下学期期末考试(数学理)12.参数方程⎪⎩⎪⎨⎧-==1112t t y t x (t 为参数)所表示的曲线是( )。
高二下学期期末数学试卷及答案
高二下学期期末数学试卷一、单项选择1、设,若直线与线段相交,则的取值范围是( )A .B .C .D .2、已知点A (2,-3),B (-3,-2),直线l 方程为kx+y-k-1=0,且与线段AB 相交,求直线l的斜率k 的取值范围为( )A或 B C D 3、直线与曲线有两个不同的交点,则实数的k 的取值范围是( ) A .B .C .D .4、已知圆,直线l :,若圆上恰有4个点到直线l 的距离都等于1,则b 的取值范围为 A .B .C .D .5、若直线被圆截得弦长为,则) A . B . C6、设△ABC 的一个顶点是A (3,-1),∠B,∠C 的平分线方程分别是x=0,y=x ,则直线BC 的方程是( ) A .B .C .D .7、已知圆:,则过点(1,2)作该圆的切线方程为( )A .x+4y-4=0B .2x+y-5=0C .x=2D .x+y-3=0 8、阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间4k ≤-220(0,0)ax by a b -+=>>222410x y x y ++-+=494(0,1)k k k >≠的距离为,动点P、A、B不共线时,三角形PAB面积的最大值是()ABD9、若圆上有个点到直线的距离为1,则等于()A.2 B.1 C.4 D.310、圆的一条切线与圆相交于,两点,为坐标原点,则()AB.C.2 D11、已知直线与圆相交,则的取值范围是()A. B. C.D.12、古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点、距离之比是常数的点的轨迹是圆.若两定点、的距离为3,动点满足,则点的轨迹围成区域的面积为().A.B.C.D.13、已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5 C.3或5 D.1或214、我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的尺数为( )A.B C D15、在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.16、设数列满足,记数列的前项之积为,则2P22:(5)(1)4C x y-++=n4320x y+-=n 221x y+=224x y+=()11,A x y()22,B x y O1212x x y y+=2-:cos sin1()l x yααα+=∈R222:(0)C x y r r+=>r 01r<≤01r<<1r≥1r>)0(>>ba{}na21=a n n S{}1na+nS 122n+-3n2n31n-( ) A .B .C .D .17、已知公比不为的等比数列满足,若,则( )A .9B .10C .11D .12 18、设等差数列的前项和为,已知,,则( )A .B .C .D .19、在等差数列中,若,是方程的两根,则的前11项的和为( )A .22B .-33C .-11D .1120、已知数列满足,数列前项和为,则( )ABCD21、已知数列满足,,是数列的前项和,则( )A .B .C .数列是等差数列 D .数列是等比数列22、已知等数差数列中,是它的前项和,若且,则当最大时的值为( )A .9B .10 C .11 D .1823、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12 )1{}n a 15514620a a a a +=210m a =m ={}n a nnS ()()201920212017201720171201912000a a a -++-=()()20192021202020202020-1+201912038a a a +-=4036S =2019202020214036{}n a 2*1222...2()n n a a a n n N +++=∈n nS 12310...S S S S ⋅⋅⋅⋅={}n a n S n 180S >190S <n S nABCD .不存在24、的内角,,所对的边分别是,,.已知,则的最小值为( ) A . B .C .D .25、已知,,为的三个内角,,的对边,向量,,若,且,则角( )A .B .C .D .二、填空题26、点到直线的距离的最大值为________.27、已知点和圆,过点 作圆的切线有两条,则实数的取值范围是______28、已知直线l :x+y-6=0,过直线上一点P 作圆x 2+y 2=4的切线,切点分别为A ,B ,则四边形PAOB 面积的最小值为______,此时四边形PAOB 外接圆的方程为______. 29、已知实数满足,则的取值范围为________.30、已知实数x ,y 满足6x+8y-1=0,则的最小值为______.31、等比数列的前n 项和为32、若等差数列满足,则数列的前项和取得最大值时_________ 33、已知数列满足,则数列的最大值为________.34、已知数列中,,是数列的前项和,且对任意的,都有,则=_____35、已知首项与公比相等的等比数列中,若,,满足,则()1,2P 222:20C x y kx y k ++++=P C k {}n a n S {}n a 7897100,a a a a a ++>+<{}n a n n S =n {}n a 11a =n S {}n a n *,r t N ∈n a的最小值为_____.36、在锐角三角形中,角的对边分别为,若,则的最小值是_______.37、在锐角中,角,,所对应的边分别为,,.则________;若,则的最小值为________. 38、若△ABC 的内角,则的最小值是 . 39、已知分别是的内角的对边,,,则周长的最小值为_____。
高二数学下学期期末考试试卷含答案(共3套)
B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
高二(下)期末数学试卷
高二(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)复数z 在复平面内对应点的坐标为(3,6),则|2|(z i -= ) A .3B .4C .5D .62.(5分)5人排成一行,其中甲、乙两人相邻的不同排法共有( ) A .24种B .48种C .72种D .120种3.(5分)52()x x-的展开式中3x 的系数为( )66666666666666A .10B .10-C .5D .5-4.(5分)某铁球在0C ︒时,半径为1dm .当温度在很小的范围内变化时,由于热胀冷缩,铁球的半径会发生变化,且当温度为C t ︒时铁球的半径为(1)at dm +,其中a 为常数,则在0t =时,铁球体积对温度的瞬时变化率为( )(参考公式:34)3V R π=球A .0B .a πC .43a πD .4a π5.(5分)长时间玩手机可能影响视力.据调查,某校学生大约有40%的人近视,而该校大约有20%的学生每天玩手机超过1小时,这些人的近视率约为50%.现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率约为( ) A .0.125B .0.25C .0.375D .0.46.(5分)正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( ) A .33B .63C .22D .237.(5分)如图,一个质点在随机外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位.若质点移动6次,则回到原点O 的概率为( )A .0B .14C .516 D .588.(5分)已知函数()f x xlnx =,()24g x x =-,若12()()f x g x =,则21x x -的最小值为()A .22e -B .3e -C .2e -D .1二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)随机变量~(2,4)X N ,则( ) A .()2E X =B .()2D X =C .(4)(1)P X P X >><D .(1)(3)1P X P X >+>=10.(5分)已知函数()y f x =的导函数()y f x '=的图象如图所示,则(A .12()()f x f x <B .32()()f x f x <C .()f x 在(,)a b 内有2个极值点D .()f x 的图象在点0x =处的切线斜率小于011.(5分)把4个编号为1,2,3,4的球放入4个编号为1,2,3,4的盒子中,则()A .不同的放法有64种B .每个盒子放一个球的不同放法有24种C .每个盒子放一个球,且球的编号和盒子的编号都不相同的不同放法有9种D .恰有一个盒子不放球的不同放法有72种12.(5分)在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,BF BC μ=,其中[0λ=,1],[0μ∈,1],则( )A .当1μ=时,三棱锥11AB EF -的体积为定值 B .当12λ=时,点A ,B 到平面1B EF 的距离相等C .当12μ=时,存在λ使得1BD ⊥平面1B EF D .当λμ=时,11A F C E ⊥三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)若31iz i-=+,则z z += . 14.(5分)已知(1A ,0,0),(0B ,1,0),(0C ,0,1),若点(P x ,1,1)在平面ABC 内,则x = .15.(5分)由0,1,2,3,4,5组成没有重复数字的三位数,其中偶数有 个.(用数字作答)16.(5分)函数,(),x xe x a f x x x a⎧=⎨>⎩,当0a =时,()f x 零点的个数是 ;若存在实数0x ,使得对于任意x R ∈,都有0()()f x f x ,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(10分)已知函数32()f x x ax b =++在2x =处有极值2-. (1)求()f x 的解析式;(2)求()f x 在[2-,3]上的最值.18.(12分)在国家政策扶持下,近几年我国新能源汽车产业迅速发展.某公司为了解职工购买新能源汽车的意愿,随机调查了30名职工,得到的部分数据如表所示:(1)请将上述22⨯列联表补充完整,并判断能否有99%的把握认为“该公司职工购买新能源汽车的意愿与性别有关”;(2)为进一步了解职工不愿意购买新能源汽车的原因,从不愿意购买新能源汽车的被调查职工中随机抽取3人进行问卷调查,求至少抽到2名女职工的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k0.100 0.050 0.010 0.001 0k2.7063.8416.63510.82819.(12分)如图,在三棱锥P ABC -中,PBC ∆是正三角形,AC BC ⊥,D 是AB 的中点. (1)证明:BC PD ⊥;(2)若2AC BC ==,22PA =,求二面角D PA C --的余弦值.20.(12分)为了解某地区未成年男性身高与体重的关系,对该地区12组不同身高i x (单位:)cm 的未成年男性体重的平均值i y (单位:)(1kg i =,2,,12)数据作了初步处理,得到下面的散点图和一些统计量的值.xyω1221()ii xx =-∑121()()ii i xx y y =--∑121()()ii i xx ωω=--∑11524.3582.95814300 6300 286表中(1i i lny i ω==,2,,12),112i i ωω==∑.(1)根据散点图判断y ax b =+和cx d y e +=哪一个适宜作为该地区未成年男性体重的平均值y 与身高x 的回归方程类型?(给出判断即可,不必说明理由). (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)如果体重高于相同身高的未成年男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区的一位未成年男性身高为175cm ,体重为78kg ,他的体重是否正常?附:对于一组数据1(u ,1)v ,2(u ,2)v ,⋯⋯,(n u ,)n v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()nii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-,20.693ln ≈. 21.(12分)一个袋子中有10个大小相同的球,其中有4个白球,6个黄球,从中随机地摸4个球作为样本,用X 表示样本中黄球的个数,Y 表示样本中黄球的比例. (1)若有放回摸球,求X 的分布列及数学期望;(2)(ⅰ)分别就有放回摸球和不放回摸球,求Y 与总体中黄球的比例之差的绝对值不超过0.2的概率.(ⅱ)比较(ⅰ)中所求概率的大小,说明其实际含义. 22.(12分)已知函数()(1)()f x ln x ax a a R =++-∈. (1)讨论()f x 的单调性;(2)若()x a f x xe ax -+,求a 的取值范围.高二(下)期末数学试卷一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)复数212iz i=-的实部与虚部之和为( ) A .25-B .25C .45D .652.(5分)已知函数32()2f x x x =+,()f x '是()f x 的导函数,则f '(2)(= ) A .24B .26C .32D .283.(5分)函数()23x f x x =-在[0,2]上的平均变化率为( ) A .32 B .32-C .1D .2-4.(5分)4(23)x -展开式中的第3项为( ) A .216-B .216x -C .216D .2216x5.(5分)某学校高三年级总共有800名学生,学校对高三年级的学生进行一次体能测试.这次体能测试满分为100分,已知测试结果ξ服从正态分布2(70,)N σ.若ξ在[60,70]内取值的概率为0.2,则估计该学校高三年级体能测试成绩在80分以上的人数为( ) A .160B .200C .240D .3206.(5分)从1,2,3,4,5,6,7,8中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是偶数”,则(|)(P B A = ) A .12B .25 C .37D .387.(5分)已知复数1cos sin ()z i R θθθ=+∈,2z i =,且12z z 在复平面内对应的点在第一,三象限的角平分线上,则tan (θ= )A .2-B .2-+CD .8.(5分)某学校安排甲、乙,丙、丁、戊五位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲不参加数学竞赛,则不同的安排方法有()A .86种B .100种C .112种D .134种二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)已知复数(2)(1)z i i =+-,则( ) A .1z i =+B .||z =C .z 在复平面内对应的点在第四象限D .13zi i=- 10.(5分)已知~(4X B ,)(01)p p <<,则下列结论正确的有( )A .若13p =,则8()9E X =B .若13p =,则16(0)81P X ==C .()1maxD X =D .若(1)()3P x P X =>=,则102p <<11.(5分)下面四个结论中正确的有( )A .43)+展开式中各项的二项式系数之和为16B .用4个0和3个1可以组成35个不同的七位数C .0.290.251()x x+的展开式中不存在有理项D .方程10x y z ++=有36组正整数解12.(5分)已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值可以是( ) A .52B .3C .4D .92三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)若随机变量ξ的分布列为.ξ0 1 2 Pa0.2a +0.3则a = .14.(5分)写出一个恰有1个极值点,且其图象经过坐标原点的函数()f x = . 15.(5分)某电影院的一个放映室前3排的位置如图所示,甲和乙各自买了1张同一个场次的电影票,已知他们买的票的座位都在前3排,则他们观影时座位相邻(相邻包括左右相邻和前后相邻)的概率为 .16.(5分)若221a lna c b d--==,则22()()a c b d -+-的最小值是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)马拉松赛事是当下一项非常火爆的运动项目,受到越来越多人的喜爱.现随机在“马拉松跑友群”中选取100人,记录他们在某一天马拉松训练中的跑步公里数,并将数据整理如下: 跑步公里数 性别 [5,10) [10,15) [15,20) [20,25) [25,30) [30,35]男 4 6 10 25 10 5 女2581762(1)分别估计“马拉松跑友群”中的人在一天的马拉松训练中的跑步公里数为[5,15),[15,25),[25,35]的概率;(2)已知一天的跑步公里数不少于20公里的跑友被“跑友群”评定为“高级”,否则为“初级”,根据题意完成给出的22⨯列联表,并据此判断能否有95%的把握认为“评定级别”与“性别”有关.附:2K =,n a b c d =+++.2)k18.(12分)已知函数()f x 的导函数是()f x ',且21()(1)24f x f x f '=+(1)4x -. (1)求()f x 的解析式;(2)求经过点(0,6)-且与曲线()y f x =相切的直线方程. 19.(12分)已知6621201212(1)(1)x x a a x a x a x -+=+++⋯+.(1)求2221311a a a ++⋅⋅⋅+的值;(2)求2412a a a ++⋯+的值; (3)求46a a +的值.20.(12分)某小型企业在开春后前半年的利润情况如表所示:设第i 个月的利润为y 万元.(1)根据表中数据,求y 关于i 的回归方程ˆˆˆ(22)i yb i a =-+(系数精确到0.01); (2)由(1)中的回归方程预测该企业第7个月的利润是多少万元?(结果精确到整数部分,如98.1万元~98万元)(3)已知y 关于i 的线性相关系数为0.8834.从相关系数的角度看,y 与i 的拟合关系式更适合用ˆˆˆypi q =+还是ˆˆˆ(22)i y b i a =-+,说明你的理由. 参考数据:62221()1933.5,22523188,1418.5259ii yy =-=+=⨯=∑,1140.96109.44⨯=,取2005.4=.附:样本(i x ,)(1i y i =,2,⋯,)n的相关系数()()nii xx y y r --=∑线性回归方程ˆˆˆybx a =+中的系数1122211()()ˆ()nnii i ii i nniii i xx y y x ynxy b xx xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(12分)在一个不透明的盒中,装有大小、质地相同的两个小球,其中1个是黑色,1个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多3分或取满9次时游戏结束,并且只有当一人比另一人多3分时,得分高者才能获得游戏奖品.已知前3次取球后,甲得2分,乙得1分. (1)求甲获得游戏奖品的概率;(2)设X 表示游戏结束时所进行的取球次数,求X 的分布列及数学期望.22.(12分)已知函数234()sin 3f x x sin x m =-+.(1)求()f x 在[0,]π上的单调区间;(2)设函数4()2(2)(16)x g x x e ln x =--,若(0,)α∀∈+∞,[0β∀∈,]π,()()f g βα,求m 的取值范围.。
高二下学期数学期末考试试卷含答案(共3套)
第二学期期末考试试卷高二数学试题注意事项:1.本试题满分150分,考试时间为120分钟。
2.答卷前务必将姓名和准考证号填涂在答题卡上。
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰。
超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。
一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分. 1.设集合{}0,1,2,3,4,5U =,{}2,3,4A =,{3,4,5}B =,则U A B =U ð A .{}2 B .{}0,1 C .{}0,1,2,3,4 D .{}0,1,3,4,52.命题“320,0x x x ∀>+>”的否定是A .320000,0x x x ∃>+≤B .320000,0x x x ∃≤+≤C.320,0x x x ∀>+≤ D .320,0x x x ∀≤+≤3.已知,a b ∈R ,则“a b >”是“2()0a a b ->”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.若函数2log 3,0()20xx x x f x x -+->⎧=⎨<⎩,,则((3))f f = A .13B .32C .52D .35.当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的3.1%,则该生物生存的年代距今约A .1.7万年B .2.3万年C .2.9万年D .3.5万年6.若幂函数的图象经过点1(2,)4,则其解析式为A .1()2xy = B .2x y = C .2y x -= D .2y x =7.已知偶函数()f x 在[0,)+∞单调递减,则不等式(21)(3)f x f ->的解集为 A .()2,1-B .()1,2-C .(,2)(1,)U -∞-+∞D .(,1)(2,)-∞-+∞U8.若直线1=y 是曲线x x ay ln +=的一条切线,则实数a 的值为 A .1B .2C .3D .49.已知定义在R 上的函数()f x 在(2,)+∞上单调递增且(0)0f =,若(2)f x +为奇函数,则不等式()0f x <的解集为A .(,2)(0,4)-∞-UB .0,4()C .(,2(02-∞-U ),)D .(,0)(2,4)-∞U 10.若函数()ln f x x =与2()(4)24()g x x a x a a R =-+-+-∈图象上存在关于点(1,0)M 对称的点,则实数a 的取值范围是A .[0,.[1,)+∞ D .[e,)+∞11.1)2+(0a >且1a ≠)的图象可能是12.A .函数f B .函数()f x 既存在极大值又存在极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若[,)x t ∈+∞时,max 25()ef x =,则t 的最小值为2 13. 对于定义域为D 的函数()f x ,若存在区间[,]m n D ⊆,同时满足下列条件:①()f x 在[,]m n 上是单调的;②当定义域是[,]m n 时,()f x 的值域也是[,]m n ,则称[,]m n 为该函数的“和谐区间”.下列函数存在“和谐区间”的是A .3()f x x = B .2()3f x x=-C .()e 1xf x =- D .()ln 2f x x =+ 二、填空题:本大题共有4个小题,每小题4分,共16分.14.函数21()log (1)f x x =+的定义域为(结果用区间表示)15.已知函数()|lg |f x x =,实数,a b ()a b ≠满足()()f a f b =,则ab 的值为 16.若“[2,8]x $?,2log 4log 2x m x?”为真命题,则实数m 的最大值为17.设函数()f x 的定义域为R ,满足(1)3()f x f x +=,且当(0,1]x ∈时,32()f x x x =-.(1)当(0,1]x ∈时,()f x 的最小值为 ;(2)若对任意(,]x m ∈-∞,都有 27()8f x ≥-成立,则实数m 的取值范围是 .三、解答题:本大题共6个小题,共82分.解答应写出文字说明、证明过程或演算步骤.18.(13分)已知二次函数()f x 的图象过原点,满足(2)()()f x f x x R -=-∈,其导函数的图象经过点(0,2)-.(1)求函数)(x f 的解析式;(2)设函数()5(01)xg x a a a a =+->≠且,若存在1[3,0]x ∈-,使得对任意2[1,2]x ∈,都有12()()f x g x ≥,求实数a 的取值范围.19.(13分)已知函数2()log ()+1nf x m x =+为奇函数,其中,,0m n m ?R .(1)求,m n 的值;(2)求使不等式()1f x ³成立的x 的取值范围.20.(13分)已知:p 实数m 使得函数21()ln (2)2f x x m x x =---在定义域内为增函数;:q 实数m 使得函数2()(1)5g x mx m x =++-在R 上存在两个零点12,x x ,且121x x <<. (1)分别求出条件,p q 中的实数m 的取值范围;(2)甲同学认为“p 是q 的充分条件”,乙同学认为“p 是q 的必要条件”,请判断两位同学的说法是否正确,并说明理由.21.(13分)已知函数()(1)e xf x x a =--()a ∈R .(1)当0a =时,求函数()f x 在1x =处的切线方程; (2)当[0,1]x Î时,求函数()f x 的最大值.22.(15分)中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔t (单位:分钟)满足525t #,t *∈N .经测算,高铁的载客量与发车时间间隔t 相关:当2025t#时高铁为满载状态,载客量为1000人;当520t?时,载客量会在满载基础上减少,减少的人数与2(20)t -成正比,且发车时间间隔为5分钟时的载客量为100人.记发车间隔为t 分钟时,高铁载客量为()P t . (1)求()P t 的表达式;(2)若该线路发车时间间隔为t 分钟时的净收益2()()4065020004tQ t P t t t =-+-(元),当发车时间间隔为多少时,单位时间的净收益tt Q )(最大? 23.(15分)已知函数()ln (2)e xf x a x x =--,a ∈R .(1)当0a ³时,讨论)(x f 的导函数)(x f '在区间),1(+∞上零点的个数;(2)当1-=a ,(0,1]x ∈时,函数()f x 的图象恒在y x m =-+图象上方,求正整数m 的最大值.第二学期期末学业水平诊断高二数学试题参考答案一、选择题1.C2.A3.B4.A5.C6.C7.B8.A9.D 10.C 11.AC 12.ABC 13.ABD 二、填空题14.(1,0)- 15.1 16.517.427- , 7(,]2-∞(可写为72m ≤)三、解答题18.解:(1)设2()f x ax bx =+,∵(2)()f x f x -=-,所以()f x 的对称轴方程为12bx a=-=-, ……………………………………2分 又()2f x ax b ¢=+,则(0)2f b ¢==-, ……………………………………4分两式联立,解得1-=a ,2b =-.所以2()2f x x x =--. ……………………………………5分 (2)由已知max max ()()f x g x ≥. ……………………………………6分因为2()2f x x x =--,[]3,0x ∈-所以()f x 在(3,1)--单增,(1,0)-单减,当1x =-时,max ()1f x =…………8分 法一:当01a <<时, ()5xg x a a =+-在[]2,1上为减函数,max ()(1)25g x g a ==-,此时125a ?,解得01a <<. ………………10分当1a >时, ()5xg x a a =+-在[]2,1上为增函数,2max ()(2)5g x g a a ==+-,此时215aa ?-,解得12a <?. ……………………………………12分综上,实数a 的取值范围是{|01a a <<或}12a <?.……………………………13分(法二:因为0a >且1a ≠,所以()5xg x a a =+-为单调函数,所以{}max ()max (1),(2)g x g g =,又(1)25g a =-,2(2)5g a a =+-, ……………10分于是由212515a a a ≥-⎧⎨≥+-⎩,解得32a -≤≤. ……………………………………12分又0a >且1a ≠,所以实数a 的取值范围是{|01a a <<或}12a <?.………13分) 19. 解:(1)因为()f x 为奇函数,所以()()0f x f x -+=对定义域内任意的x 恒成立.即22log ()log ()0+1+1n nm m x x +++=-, ……………………………………2分 化简得 2222()1m x m n x -+=-, ……………………………………4分 故21m =,2()1m n +=,解得1m =-,2n =. ……………………………7分 (2)由(1)知,21()log 1xf x x-=+,……………………………………………………9分 由21()log 11x f x x -=?+,得121xx-³+, ………………………………………11分 解得113x -<?, 综上,满足题意的x 的取值范围是 1(1,]3--. …………………………………13分20.解:(1)()f x 的定义域为(0,)+?,1()(2)1f x m x x '=---,…………………2分因为()f x 在定义域内为增函数,所以对0x ∀>,恒有()0f x '≥,整理得 22111172()24m x x x ≤-+=-+恒成立,于是74m ≤. 因此满足条件p 的实数m 的取值范围是7(,]4-?. ………………………6分因为()g x 的存在两个零点且121x x <<,所以(1)0m g ?. ………………………8分即(24)0m m -<,解得02m <<.因此满足条件q 的实数m 的取值范围是(0,2). ………………………10分 (2)甲、乙两同学的判断均不正确, ………………………………………………11分因为p q ⇒/,所以p 不是q 的充分条件, ………………………………………12分 因为q p ⇒/,所以p 不是q 的必要条件. ………………………………………13分21.解:(1)当0a =时,(1)0f =,(1)e f ¢=, ……………………………………2分 所以切线方程为0e(1)y x -=-,即e e 0x y --=.……………………………4分(2)()()e x f x x a ¢=-, 当0a £时,当[0,1]x Î,()0f x ¢³,()f x 单调递增,此时max ()(1)e f x f a ==-,………………………………………………………6分当01a <<时,当(0,)x a Î,()0f x ¢<,()f x 单调递减,当(,1)x a Î,()0f x ¢>,()f x 单调递增,此时{}max ()max (0),(1)f x f f =, ………………………8分 又(1)(0)(e 1)+1f f a -=--,所以当10e 1a <?-时,max ()(1)e f x f a ==- 当11e 1a <<-时,max ()(0)1f x f a ==--. ………………………10分 当1a ³时,当[0,1]x Î,()0f x ¢£,()f x 单调递减, 此时max ()(0)1f x f a ==--………………………………………………………12分 综上,当1e 1a £-时,max ()(1)e f x f a ==-, 当1e 1a >-时,max ()(0)1f x f a ==--. ………………………………13分 22.解:(1)当520t?时,不妨设2()1000(20)P t k t =--,因为(5)100P =,所以解得4k =. ………………………………3分因此 2**10004(20),520,,()1000,2025,t t t P t t t ìï--??ï=íï#?ïîN N . ……………………5分 (2)① 当520t?时,23()()40650200050020004tQ t P t t t t t =-+-=-+- 因此2()2000()500Q t y t t t t==--+,520t ?. ……………………7分因为()y t ¢=32220002(1000)2t t t t ---+=,当510t?时,()0y t ¢>,()y t 单增; 当1020t <<时,()0y t ¢<,()y t 单减.所以max ()(10)200y t y ==.…………10分 ② 当2025t#时,2()409002000Q t t t =-+-因此()50()90040()Q t y t t t t==-+,2025t #. ……………………12分因为()y t ¢=2240(50)0t t --<,此时()y t 单减.所以max ()(20)0y t y ==,…14分 综上,发车时间间隔为10分钟时,tt Q )(最大. ……………………15分 23.解:(1)()()e (1)e (1)e x x x a af x x x x x¢=-+-=--. ……………………1分令()(1)e xa g x x x=--,[1,)x ∈+∞,则322e ()e x x a a x g x x x x +¢=--=-,…2分 ①当0a =时,当(1,)x ∈+∞,()0g x ¢<, ()g x 单调递减,又(1)0g a ==,所以对"1x >时,()(1)0g x g <=,此时()g x 在(1,)+?不存在零点. ………………4分②当0a >时,当(1,)x ∈+∞,()0g x ¢<, ()g x 单调递减. 又因为(1)0g a =>,取}0max x a =,则02000000()(1)e (1)(1)20x a ag x x x x x x a=--<--+=-?,即0()0g x <. 根据零点存在定理,此时()g x 在(1,+∞)存在唯一零点. ………………6分综上,当0a >时,()f x ¢在(1,)+∞存在唯一零点;当0a =时, ()f x ¢在(1,)+∞没有零点. ………………………………………………7分 (2)由已知得ln (2)e xm x x x <---在(]1,0上恒成立. ………………………………8分设()ln (2)e xh x x x x =---,(0,1]x ∈,则1()(1)(e )xh x x x'=--……………9分因为01x <<时,所以10x ->, 设1()e xu x x =-,21()e 0x u x x¢=+>,所以)(x u 在(0,1) 上单调递增,………10分又1()202u =<,(1)e 10u =->,由零点存在定理)1,21(0∈∃x ,使得0)(0=x u ,即001e x x =, 00ln x x =-, ………………………………………………12分且当),0(0x x ∈时,()0u x <,()0h x '<,()h x 单调递减;当(]1,0x x ∈时,()0u x >,()0h x '>,)(x h 单调递增.所以0min 0000002()()ln (2)e 21xh x h x x x x x x ==---=-+,…………………14分 又x x y 221++-=在)1,0(上单调递减,而)1,21(0∈x ,所以)4,3()(0∈x h , 因此,正整数m 的最大值为3.………………………………………………………15分高二第二学期期末考试数学试题试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S I 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数11(1)y x x =-+≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是 16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。
高二数学下学期高二期末考试数学(附答案)
下学期期末考试高二数学(A 卷)一、选择题(12×5分)1.若nx x ⎪⎪⎭⎫⎝⎛+32展开式中存在常数项 :则n 的值可以是( ) A .8 B .9 C .10 D .122.集合P={x :1} :Q={y :1 :2} :其中x :y ∈{1 :2 :3 :4 :5 :6} :且P ⊆Q :把满足上述条件的一对整数(x :y )作为一个点的坐标 :则这样的点的个数是( ) A .7 B .8 C .9 D .10 3.m 、n 表示直线 :α、β、γ表示平面 :给出下列四个命题:①α∩β=m :n ⊂α :n ⊥m :则α⊥β : ②α⊥β :α∩γ=m :β∩γ=n :则m ⊥n : ③α⊥β :α⊥γ :β∩γ=m :则m ⊥α : ④m ⊥α :n ⊥β :m ⊥n :则α⊥β。
其中正确的命题是( )A .①与②B .②与③C .②与④D .③与④4.如图是一个正方体纸盒的展开图 :若把1、2、3、4、5、6分别填入正方形后 :按虚线折成正方体 :则所得正方体相对面上两个数的和相等的概率是( )A .61B .151 C .601D .1201 5.已知二面角βα--l 的平面角为θ :PA ⊥α :PB ⊥β :A 、B 为垂足 :且PA=4 :PB=5 :设A 、B 到二面角的棱l 的距离分别为x 、y :当θ变化时 :点(x :y )的轨迹是下列图形中的( )A .B .C .D .6.三棱锥V —ABC 中 :V A=BC :AB=AC :VC=AB :侧面与底面ABC 所成的二面角(锐角)分别为α、β、γ :则cos α+cos β+cos γ的值为( )A .31B .21C .1D .27.已知ξ~(0 :2σ) :且P (-2≤ξ≤0)=0.4 :则P (ξ>2)等于( )A .0.1B .0.2 C8.在如图1×6的矩形 中 :涂上红、黄、蓝三种颜色 :每种颜MMNN PP色取胜余两格 :且相邻两格不同色 :则不同的余色方法有( ) A .36 种 B .720种 C .48种 D .30种9.如果球的表面积为π20 :球面上有A 、B 、C 三点 :如果AB=AC=2 :BC=3 :则球心到平面ABC 的距离为( )A .1B .2C .3D .2 10.定义n i i n i k ka a a a+++=+=∑ 1 :其中i :n ∈N :且i ≤n :若∑=--=20052005)3()1()(k k kkx C x f=∑=-20052005i iixa :则∑=20051k ka的值为( )A .2B .0C .-1D .-211.在抽查产品的尺寸过程中 :将其尺寸分成若干组 :[a :b]是其中的一组 :所查出的个体在该组上的频率为m :该组上的直方图的高为h :则|a-b|等于( )A .hmB .h m C .mhD .h+m 12.过正方体A 1B 1C 1D 1—ABCD 的对角线AC 1的截面是平行四边形AMC 1N :其中M ∈A 1B 1 :N ∈DC :AB=3 :BC=1 :CC 1=2 :当平行四边形AMC 1N 的周长最小时 :异面直线MC 1与AB 所成的角为( ) A . 75 B . 60 C . 45D . 30 二、填空题(4×4分)13.若在二项式10)1(+x 的展开式中任取一项 :则该项的系数为奇数的概率是 。
吉林省长春市十一高中2023-2024学年高二下学期7月第三学程考试(期末)数学试题
吉林省长春市十一高中2023-2024学年高二下学期7月第三学程考试(期末)数学试题一、单选题1.已知集合()(){}2|10x x ax --=的元素之和为1,则实数a 所有取值的集合为( )A .{0}B .{1}C .{-1,1}D .{0,-1,1}2.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()sin f x x x =+,当0x <时,()f x 的表达式为( ). A .sin x x +B .sin x x --C .sin x x -+D .sin x x -3.如图所对应的函数的解析式可能是( )A .()()1ln f x x x =-B .()ln f x x x =C .()()1ln f x x x =-D .()()()1e 0xf x x x =-≠4.若角α的终边经过点()1,2sin A α-,且()0,πα∈,则α=( )A .π6B .π3C .5π6D .2π35.若0.302a =.,0.20.3b =,0.5log 0.3c =,则a ,b ,c 的大小关系为( ) A .c a b <<B .b a c <<C .a b c <<D .a c b <<6.已知函数()1ln e xg x x ⎛⎫=- ⎪⎝⎭(e 2.718≈)有两个零点1x ,2x ,则有( )A .120x x <B .121=x xC .121x x >D .1201x x <<7.定义域和值域均为[],a a -(常数0a >)的函数()y f x =和()y g x =图象如图所示.给出下列四个命题,那么,其中正确命题是( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有九个解D .方程()0g g x =⎡⎤⎣⎦有且仅有九个解8.已知函数()()()2112e e x x f x x x --=-⋅+,则满足不等式()()24f x f <的x 取值范围为( )A .(),2-∞B .()1,2-C .()2,+∞D .()1,2二、多选题9.下列选项中正确的有( ) A .若a b >,则22ac bc >B .若集合{}{}20|1,2,A B x ax =-=+=,且B A ⊆,则实数a 的取值所组成的集合是{}1,2-.C .若不等式20ax bx c ++>的解集为{}3|1x x <<,则不等式20cx bx a ++<的解集为1{3x x <或1}x >D .已知函数()1y f x =+的定义域是[]2,3-,则()1y f x =-的定义域是[]0,5. 10.下列式子成立的有( )A .ππsin sin 1810⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B .23π17πcos cos 54⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .11sin 22>D .cos1sin 2<11.已知函数()2ln 11f x x x =---,则下列结论正确的是( ) A .()f x 的单调递增区间是()()0,11,∞+U B .()f x 的值域为RC .()()20232024log 2024log 20231f f +=D .若()e 1e 1b b f a b +=--,()0,1a ∈,()0,b ∈+∞,则e 1b a =三、填空题 12.若0x >,使4232x x ++取得最小值时x 的值为. 13.命题“任意[]1,3x ∈,22x x a -≤+”为假命题,则实数a 的取值范围是.14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=-,且[0,2]x ∈时,2()log (1)=+f x x ,给出下列结论:①(3)1f =;②函数()f x 在[]6,2--上是增函数;③函数()f x 的图象关于直线1x =对称;④若(0,1)m ∈,则关于x 的方程()0f x m -=在[8,16]-上的所有根之和为12.则其中正确命题为.四、解答题15.在平面直角坐标系xOy 中,点P 到点的距离与到直线x =点P 的轨迹为C . (1)求C 的方程;(2)直线l 与C 相切于点M ,若点M 的纵坐标为2,求直线l 的方程. 16.已知函数2)()(e x f x x ax =-.(1)若曲线()y f x =在=1x -处的切线与y 轴垂直,求()y f x =的极值. (2)若()f x 在(0,)+∞只有一个零点,求a .17.ABC V 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin sin 2A Ca b A +=. (1)求B 的大小;(2)若ABC V 为锐角三角形,且4c =,求ABC V 面积的取值范围.18.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,菱形ABCD 的边长2,60BAD ∠=o ,3PD =.(1)求直线PB 与平面PDC 所成角的正弦值;(2)若点F ,E 分别在线段PB ,PC 上,且平面DEF PB ⊥,求线段DE 的长度. 19.学校举行数学知识竞赛,分为个人赛和团体赛.个人赛规则:每位参赛选手只有一次挑战机会.电脑同时给出2道判断题12,A A (判断对错)和4道连线题(由电脑随机打乱给出的四个数学定理1234,,,B B B B 和与其相关的数学家1234,,,b b b b ,要求参赛者将它们连线配对,配对正确一对数学定理和与其相关的数学家记为答对一道连线题),要求参赛者全都作答,若有4道或4道以上答对,则该选手挑战成功. 团体赛规则:以班级为单位,每班参赛人数不少于20人,且参赛人数为偶数,参赛方式有如下两种可自主选择其中之一参赛:方式一:将班级选派的2n 个人平均分成n 组,每组2人,电脑随机分配给同组两个人一道相同试题,两人同时独立答题,若这两人中至少有一人回答正确,则该小组闯关成功.若这n 个小组都闯关成功,则该班级挑战成功.方式二:将班级选派的2n 个人平均分成2组,每组n 人,电脑随机分配给同组n 个人一道相同试题,各人同时独立答题,若这n 个人都回答正确,则该小组闯关成功.若这两个小组至少有一个小组闯关成功则该班级挑战成功.(1)在个人赛中若一名参赛选手全部随机作答,求这名选手恰好答对一道判断题并且配对正确两道连线题的概率.(2)甲同学参加个人赛,他能够答对判断题1A 并且配对正确1B 与1b ,其余题目只能随机作答,求甲同学挑战成功的概率.(3)在团体赛中,假设某班每位参赛同学对给出的试题回答正确的概率均为常数(01)p p <<,为使本班团队挑战成功的可能性更大,应选择哪种参赛方式?说明理由.。
(必考题)数学高二下期末经典测试题(含答案解析)(1)
一、选择题1.函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图象如图所示,若将()f x 图象向左平移4π个单位后得到()g x 图象,则()g x 的解析式为( )A .2()2sin(2)3g x x π=+ B .5()2sin(2)6g x x π=- C .()2sin(2)6g x x π=+D .()2sin(2)3g x x π=-2.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( ) A .66B .66±C .62D .62±3.已知sin cos 1sin cos 2αααα-=+,则cos2α的值为( )A .45-B .35C .35D .45 4.在边长为3的等边ABC ∆中,点M 满足BM 2MA =,则CM CA ⋅=( ) A 3B .3C .6 D .1525.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60° D .45°6.函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .37.设奇函数()()()()sin 3cos 0f x x x ωφωφω=+-+>在[]1,1x ∈-内有9个零点,则ω的取值范围为( )A .[)4,5ππB .[]4,5ππC .11,54ππ⎡⎤⎢⎥⎣⎦D .11,54ππ⎛⎤ ⎥⎝⎦8.已知函数()()sin 0,0,2f x A x A πωϕωϕ=+>>≤⎛⎫⎪⎝⎭的部分图象如图所示,则函数()y f x =的表达式是( )A .()2sin 12f x x π⎛⎫=+⎪⎝⎭B .()2sin 23f x x π⎛⎫=+⎪⎝⎭C .()22sin 23f x x π⎛⎫=- ⎪⎝⎭D .()2sin 23f x x π⎛⎫=- ⎪⎝⎭9.已知函数()sin 3cos f x x x =+,将函数()f x 的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 10.若()2sin sinsin777n n S n N πππ︒=+++∈,则在中,正数的个数是( ) A .16B .72C .86D .10011.已知函数2()3cos cos f x x x x =+,则( ) A .()f x 的图象关于直线6x π=对称B .()f x 的最大值为2C .()f x 的最小值为1-D .()f x 的图象关于点(,0)12π-对称12.已知向量(2,0)OB =,向量(2,2)OC =,向量(2cos ,2sin )CA αα=,则向量OA 与向量OB 的夹角的取值范围是( ).A .π0,4⎡⎤⎢⎥⎣⎦B .π5π,412⎡⎤⎢⎥⎣⎦C .5ππ,122⎡⎤⎢⎥⎣⎦ D .π5π,1212⎡⎤⎢⎥⎣⎦ 13.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈()2A x f x ⎧⎫=⎨⎬⎩⎭,且|x 1-x 2|min =π,则f (x )的最小正周期是( ) A .3πB .2πC .πD .π214.若向量a ,b 满足2a b ==,a 与b 的夹角为60,则a b +等于( ) A .223+B .23C .4D .1215.已知tan 24πα⎛⎫+=- ⎪⎝⎭,则sin 2α=( )A .310B .35 C .65-D .125-二、填空题16.已知θ为钝角,1sin()43πθ+=,则cos2θ=______. 17.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则2sin sin()cos()απαπα--+的值为__________. 18.实数x ,y 满足223412x y +=,则23x y +的最大值______. 19.如图在ABC 中,AC BC =,2C π∠=,点O 是ABC 外一点,4OA =,2OB =则平面四边形OACB 面积的最大值是___________.20.已知角α的终边上一点)3,1A-,则()sin tan 2παπα⎛⎫-++= ⎪⎝⎭__________.21.已知ABC ∆中角,,A B C 满足2sin sin sin B A C =且2sin cos cos 1242C Cπ+=,则sin A =__________.22.仔细阅读下面三个函数性质:(1)对任意实数x ∈R ,存在常数(0)p p ≠,使得1()2f x p f x p ⎛⎫-=+ ⎪⎝⎭. (2)对任意实数x ∈R ,存在常数(0)M M >,使得|()|f x M ≤. (3)对任意实数x ∈R ,存在常数,使得()()0f a x f a x -++=.请写出能同时满足以上三个性质的函数(不能为常函数)的解析式__________.(写出一个即可)23.将函数e x y =的图像上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为__________. 24.已知1tan 43πα⎛⎫-= ⎪⎝⎭,则()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭的值为__________. 25.若()1sin 3πα-=,且2παπ≤≤,则cos α的值为__________. 三、解答题26.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=. (1)求cos B 的值; (2)求sin 24B π⎛⎫+⎪⎝⎭的值. 27.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )C a B b A c +=.(1)求C ;(2)若c =,ABC 的面积为ABC 的周长.28.在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭. (1)求()f x 的解析式; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 29.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭在一个周期内的图像经过点,412π⎛⎫ ⎪⎝⎭和点5,412π⎛⎫- ⎪⎝⎭,且()f x 的图像有一条对称轴为12x π=. (1)求()f x 的解析式及最小正周期; (2)求()f x 的单调递增区间.30.已知定义在R 上的函数()()()sin 0,0f x A x x A ωϕ=+>>的图象如图所示(1)求函数()f x 的解析式; (2)写出函数()f x 的单调递增区间(3)设不相等的实数,()12,0,x x π∈,且()()122f x f x ==-,求12x x +的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.A 4.D 5.A 6.A 7.A 8.D 9.A 10.C11.A12.D13.A14.B15.B二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy19.【解析】分析:利用余弦定理设设AC=BC=m则由余弦定理把m表示出来利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:△ABC为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m则由余20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题25.【解析】由题意得三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】根据函数的图象求出函数()f x 的解析式,再根据图象的平移变换得到()g x 的解析式即可. 【详解】 由图象可知,A =2,541264T πππ=-=, 2T ππω∴==,2ω∴=,又当512x π=时,52sin(2)212πφ⨯+=, 即5sin()16πφ+=, 2πφ<, 3πφ∴=-,故()sin()f x x π=-223,将()f x 图象向左平移4π个单位后得到()g x , ∴ ()2sin[2()]2sin(2)436g x x x πππ=+-=+,故选:C 【点睛】本题主要考查了正弦型函数的图象与性质,图象的变换,属于中档题.2.C解析:C 【解析】 【分析】运用向量的坐标运算及夹角公式直接求解即可. 【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-,∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴cos302λ︒=, ∴4λ=,则0λ>,∴2λ=. 故选:C . 【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.3.A解析:A 【解析】 ∵sin cos 1sin cos 2αααα-=+,∴tan α11tan α3tan α12-==+,.∴cos2α=222222cos sin 1tan 4cos sin 1tan 5αααααα--==-++ 故选A4.D解析:D 【解析】 【分析】结合题意线性表示向量CM ,然后计算出结果 【详解】 依题意得:121211215)333333333232CM CA CB CA CA CB CA CA CA ⋅=+⋅=⋅+⋅=⨯⨯⨯+⨯⨯=(,故选D .【点睛】本题考查了向量之间的线性表示,然后求向量点乘的结果,较为简单5.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.A解析:A【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.7.A解析:A 【解析】f (x )=sin (ωx+φ(ωx+φ)=2[12sin (ωx+φ(ωx+φ)] =2[cos3πsin (ωx+φ)﹣sin 3πcos (ωx+φ)]=2sin (ωx+φ﹣3π) ∵函数f (x )为奇函数,∴f (0)=2sin (φ﹣3π)=0,∴φ=3π+kπ,k ∈Z ∴f (x )=2sin (ωx+kπ),f (x )=0即sin (ωx+kπ)=0,ωx+kπ=mπ,m ∈Z ,解得,x=()m k πω-,设n=m ﹣k ,则n ∈Z ,∵A ∈[﹣1,1],∴﹣1≤x≤1,[]1,1n πω∈-,∴n ωωππ-≤≤, ∵A ∈[﹣1,1]中有9个元素,4545.ωπωππ∴≤<⇒≤< 故答案为A.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e 为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.8.D解析:D 【解析】 【分析】根据函数的最值求得A ,根据函数的周期求得ω,根据函数图像上一点的坐标求得ϕ,由此求得函数的解析式.由题图可知2A =,且11522122T πππ=-=即T π=,所以222T ππωπ===, 将点5,212π⎛⎫⎪⎝⎭的坐标代入函数()()2sin 2x x f ϕ=+, 得()5262k k ππϕπ+=+∈Z ,即()23k k πϕπ=-∈Z , 因为2πϕ≤,所以3πϕ=-,所以函数()f x 的表达式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9.A解析:A 【解析】 【分析】利用函数的平移变换得π2sin 3y x m ⎛⎫=++ ⎪⎝⎭,再根所图象关于y 轴对称,得到角的终边落在y 轴上,即π2π3πm k +=+,k Z ∈,即可得答案. 【详解】()sin 2s πin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭,将函数()f x 的图象向左平移m 个单位长度后,得到函数π2sin 3y x m ⎛⎫=++⎪⎝⎭的图象, 又所得到的图象关于y 轴对称,所以π2π3πm k +=+,k Z ∈, 即ππ6m k =+,k Z ∈, 又0m >,所以当0k =时,m 的最小值为π6. 故选:A. 【点睛】本题考查三角函图象的变换、偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.10.C【解析】 【分析】 【详解】 令7πα=,则7n n πα=,当1≤n≤14时,画出角序列n α终边如图,其终边两两关于x 轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k 时,Sn>0, 而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.11.A解析:A 【解析】 【分析】利用三角函数恒等变换的公式,化简求得函数的解析式,再根据三角函数的图象与性质,逐项判定,即可求解. 【详解】 由题意,函数23111()3cos cos 2cos 2sin(2)2262f x x x x x x x π=+=++=++, 当6x π=时,113()sin(2)sin 6662222f ππππ=⨯++=+=,所以6x π=函数()f x 的对称轴,故A 正确;由sin(2)[1,1]6x π+∈-,所以函数()f x 的最大值为32,最小值为12-,所以B 、C 不正确; 又由12x π=时,131()sin(2)612622f πππ=⨯++=+,所以(,0)12π-不是函数()f x 的对称中心,故D 不正确, 故选A . 【点睛】本题主要考查了三角恒等变换的公式的应用,以及函数sin()y A wx b ϕ=++的图象与性质的应用,着重考查了推理与运算能力,属于基础题.12.D解析:D 【解析】 不妨设(0,0)O∵(2,2)OC =,(2cos ,2sin )CA αα=. ∴(2,2)C 、(22,22sin )A cos αα++. ∴点A 在以(2,2)为圆心半径为2的圆上. ∴OA 与OB 的夹角为直线OA 的倾斜角. 设:OA l y kx = ∴22121k d r k -=≤=+.即2410k k -+≤,则[23,23]k ∈-+. 又∵π23tan12-=,523tanπ12+=. ∴OA 、OB 夹角[23,23]θ∈-+.故选D .13.A解析:A 【解析】 【分析】 由题意可得123ππω⨯=,求得ω的值,可得()f x 的最小正周期是2πω的值 【详解】由题意可得()1sin 2x ωθ+=的解为两个不等的实数1x ,2x 且123ππω⨯=,求得23ω= 故()f x 的最小正周期是23ππω=故选A 【点睛】本题主要考查了的是三角函数的周期性及其图象,解题的关键根据正弦函数的图象求出ω的值,属于基础题14.B解析:B 【解析】 【分析】将a b +平方后再开方去计算模长,注意使用数量积公式. 【详解】因为2222cos 6044412a b a a b b +=+︒+=++=,所以23a b +=, 故选:B. 【点睛】本题考查向量的模长计算,难度一般.对于计算xa yb +这种形式的模长,可通过先平方再开方的方法去计算模长.15.B解析:B 【解析】 【分析】 根据tan 24πα⎛⎫+=- ⎪⎝⎭求得tan 3α=,2222sin cos 2tan sin 2sin cos tan 1ααααααα==++即可求解. 【详解】 由题:tan 24πα⎛⎫+=- ⎪⎝⎭, tan 121tan αα+=--,解得tan 3α=,2222sin cos 2tan 63sin 2sin cos tan 1105ααααααα====++. 故选:B 【点睛】此题考查三角恒等变换,涉及二倍角公式与同角三角函数的关系,合理构造齐次式可以降低解题难度.二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;解析:9-【解析】 【分析】将2θ改写成2()42ππθ+-的形式,利用二倍角公式计算cos2θ的值,代入相关数值.【详解】因为cos2cos[2()]sin[2()]424πππθθθ=+-=+,所以cos 22sin()cos()44ππθθθ=++; 因为1sin()043πθ+=>且θ为钝角,所以()4πθ+是第二象限角,则cos()43πθ+==-,故cos 22sin()cos()449ππθθθ=++=-. 【点睛】(1)常见的二倍角公式:sin 22sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=- ;(2)常用的角的配凑:()ααββ=-+,()ααββ=+-;2()()ααβαβ=++- ,2()()βαβαβ=+--.17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力解析:35【解析】 【分析】先根据已知求出tan α,最后化简2sin sin()cos()απαπα--+,代入tan α的值得解. 【详解】 由题得tan 111,tan 1+tan 32ααα-=-∴=.由题得22222sin +sin cos sin sin()cos()=sin +sin cos =sin +cos ααααπαπαααααα--+ =2211tan tan 3421tan 1514ααα++==++. 故答案为35【点睛】本题主要考查差角的正切和同角的商数关系平方关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy 满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy解析:【解析】分析:根据题意,设2cos x θ=,y θ=,则有24cos 3sin x θθ+=+,进而分析可得()25sin x θα+=+,由三角函数的性质分析可得答案.详解:根据题意,实数x ,y 满足223412x y +=,即22143x y +=,设2cos x θ=,y θ=,则()24cos 3sin 5sin x θθθα=+=+,3tan 4α⎛⎫= ⎪⎝⎭, 又由()15sin 1θα-≤+≤,则525x -≤≤,即2x +的最大值5; 故答案为:5.点睛:本题考查三角函数的化简求值,关键是用三角函数表示x 、y .19.【解析】分析:利用余弦定理设设AC=BC=m 则由余弦定理把m 表示出来利用四边形OACB 面积为S=转化为三角形函数问题求解最值详解:△ABC 为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m 则由余解析:5+ 【解析】分析:利用余弦定理,设AOB α∠=,设AC=BC=m ,则AB =.由余弦定理把m 表示出来,利用四边形OACB 面积为S=24sin 4sin 2OACB ABC m S S αα∆∆=+=+.转化为三角形函数问题求解最值.详解:△ABC 为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m ,则AB =.由余弦定理,42+22﹣2m 2=16cos α,∴2108cos m α∴=-.108cos 4sin 4sin 4sin 4cos 52OACB ABC S S ααααα∆∆-∴=+=+=-+)554πα=-+≤.当34απ=时取到最大值5+.故答案为5+点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设AOB α∠=,再建立三角函数的模型.20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力【解析】分析:先根据三角函数定义得cos ,tan αα,再根据诱导公式化简求值.详解:因为角α的终边上一点)1A -,,所以cos tanαα===, 因此()sin tan 2παπα⎛⎫-++⎪⎝⎭cos tanαα=+== 点睛:本题考查三角函数定义以及诱导公式,考查基本求解能力.21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力解析:12【解析】 分析:先化简2sincos cos 1242C C π+=得到2C π=,再化简2sin sin sin B A C =得到sin A =详解:因为2sincos cos 1242C C π+=,所以1-2cos 1222C C +=,所以cos(cos 0,cos 0(cos =222222C C C C -=∴=舍)或, 因为0C π<<,所以2C π=,所以A+B=2π.2sin sin sin B A C =因为,所以22cos sin ,sin sin 10,sin A A A A A =∴+-=∴=因为sinA>0,所以1sin 2A =.. 点睛:本题主要考查三角化简和诱导公式,意在考查学生对这些知识的掌握水平和基本的计算能力.22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:解析:4()sin π3f x ⎛⎫= ⎪⎝⎭【解析】分析:由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数. 详解:由题目约束条件可得到()f x 的不同解析式.由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数()4sin π3f x ⎛⎫=⎪⎝⎭. 点睛:正余弦函数是周期有界函数,既有对称轴也有对称中心,是一类有特色得函数.23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言 解析:24e x y -=【解析】分析:根据图像平移规律确定函数解析式. 详解:222(2)24e ee e xxx x y y y --=→=→==横坐标变为一半右移个单位点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言.24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题 解析:65【解析】 分析:由1tan 43πα⎛⎫-= ⎪⎝⎭可得tan 2α=,化简()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭,即可求得其值.详解:tan tantan 114tan ,tan 2,4tan 13tan tan 4παπαααπαα--⎛⎫-===∴= ⎪+⎝⎭+ 由()()22cos sin cos sin sin cos 2παπαπαααα⎛⎫+--+=+⎪⎝⎭22222sin sin cos tan tan 6.sin cos tan 15αααααααα++===++ 即答案为65. 点睛:本题考查三角函数的化简求值,考查了诱导公式及同角三角函数基本关系式的应用,是基础题.25.【解析】由题意得解析:3-【解析】由题意得()1sin sin ,[,],cos 32ππαααπα-==∈∴==三、解答题 26. (1)34-(2)16【解析】试题分析:(1)利用余弦定理表示出cosB ,将已知等式代入即可求出cosB 的值;(2)由cosB 可求出sin 2,cos 2B B 的值,然后利用两角和的余弦公式可得结果. 试题解析:(1)由22222230a c b ac +-+=,得22232a cb ac +-=-, 根据余弦定理得222332cos 224aca cb Bac ac -+-===-; (2)由3cos 4B =-,得sin B = ∴sin22sin cos BB B ==21cos22cos 18B B =-=,∴1sin 2sin2cos cos2sin 44428816B B B πππ⎫⎛⎫+=+=-+=⎪ ⎪⎪⎝⎭⎝⎭. 27.(1)3C π=(2)7+【解析】 【分析】(1)利用正弦定理,将2cos (cos cos )C a B b A c +=,转化为2cos (sin cos sin cos )sin C A B B A C +=,再利用两角和与差的三角的三角函数得到sin (2cos 1)0C C -=求解.(2)根据ABC 的面积为1sin 2ab C =12ab =,再利用余弦定理得()23a b ab =+-,求得+a b 即可. 【详解】(1)因为2cos (cos cos )C a B b A c +=, 所以2cos (sin cos sin cos )sin C A B B A C +=, 所以()2cos sin sin C A B C +=, 所以sin (2cos 1)0C C -=, 所以1cos 2C =, 又因为()0,C π∈, 所以3C π=.(2)因为ABC 的面积为所以1sin 2ab C = 所以12ab =.由余弦定理得:若2222cos c a b ab C =+-,()23a b ab =+- 所以7a b +=所以ABC 的周长7【点睛】本题主要考查正弦定理、余弦定理和两角和与差的三角函数的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.28.(1)()2sin(2)6f x x π=+ (2)[-1,2] 【解析】试题分析:根据正弦型函数图象特点,先分析出函数的振幅和周期,最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,周期T π=,则2==2T πω,又函数图象过2,23M π⎛⎫- ⎪⎝⎭,代入得42sin 23πϕ⎛⎫+=- ⎪⎝⎭,故1126k k Z πϕπ=-+∈,,又0,2πϕ⎛⎫∈ ⎪⎝⎭,从而确定6πϕ=,得到()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,再求其单调增区间. (2)分析72,636x πππ⎡⎤+∈⎢⎥⎣⎦,结合正弦函数图象,可知当262x ππ+=,即6x π=时,()f x 取得最大值2;当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 试题解析:(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 点睛:本题考查了三角函数的图象和性质,重点对求函数解析式,单调性,最值进行考查,属于中档题.解决正弦型函数解析式的问题,一定要熟练掌握求函数周期,半周期的方法及特殊值的应用,特别是求函数的初相时,要注意特殊点的应用及初相的条件,求函数值域要结合正弦函数图象,不要只求两个端点的函数值.29.(1)()4sin 34f x x π⎛⎫=+ ⎪⎝⎭,23π;(2)22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .【解析】【分析】(1)由函数的图象经过点412,π⎛⎫ ⎪⎝⎭且f (x )的图象有一条对称轴为直线12x π=, 可得最大值A ,且能得周期并求得ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)利用正弦函数的单调性求得f (x )的单调递增区间.【详解】(1)函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,2πϕ<)在一个周期内的图象经过点412,π⎛⎫ ⎪⎝⎭,5412π⎛⎫- ⎪⎝⎭,,且f (x )的图象有一条对称轴为直线12x π=, 故最大值A =4,且5212123T πππ=-=, ∴2T 3π=, ∴ω2Tπ==3. 所以()4sin(3)f x x ϕ=+.因为()f x 的图象经过点,412π⎛⎫⎪⎝⎭,所以44sin 312πϕ⎛⎫=⨯+ ⎪⎝⎭, 所以24k ϕπ=+π,k Z ∈. 因为||2ϕπ<,所以4πϕ=, 所以()4sin 34f x x π⎛⎫=+ ⎪⎝⎭. (2)因为()4sin 34f x x π⎛⎫=+⎪⎝⎭,所以232242k x k πππππ-+≤+≤+,k Z ∈, 所以2243123k k x ππππ-+≤≤+,k Z ∈, 即()f x 的单调递增区间为22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 【点睛】本题主要考查由函数y =A sin (ωx +ϕ)的性质求解析式,通常由函数的最大值求出A ,由周期求出ω,由五点法作图求出ϕ的值,考查了正弦型函数的单调性问题,属于基础题.30.(1)()=4sin 23f x x π⎛⎫+ ⎪⎝⎭;(2)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(3)76π; 【解析】【分析】(1)根据函数的最值可得A ,周期可得ω,代入最高点的坐标可得ϕ,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用()2f x =-在(0,)x π∈内的解就是1x 和2x ,即可得到结果.【详解】(1)由函数()f x 的图象可得4A =, 又因为函数的周期72()1212T πππ=-=,所以22πωπ==, 因为函数的图象经过点(,4)12P π,即4sin(2)412πϕ⨯+=, 所以2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈, 所以()4sin(22)4sin(2)33f x x k x πππ=++=+. (2)由222,232k x k k Z πππππ-≤+≤+∈, 可得5,1212k x k k Z ππππ-≤≤+∈, 可得函数()f x 的单调递增区间为:5[,],1212k k k Z ππππ-+∈, (3)因为(0,)x π∈,所以72(,)333x πππ+∈, 又因为()2f x =-可得1sin(2)32x π+=-, 所以7236x ππ+=或11236x ππ+=, 解得512x π=或34x π=,、 因为12x x ≠且()12,0,x x π∈,12()()2f x f x ==-, 所以1253147124126x x ππππ+=+==. 【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中2019年高二下册数学期末考试题练习
一、选择题(本大题共12小题,每小题5分,共60分;每小题所给的四个选项中只有一个选项符合题意)
1.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为( )
A. B. C. D.
2. 等于( )
A.990
B.165
C.120
D.55
3.二项式的展开式的常数项为第( )项
A. 17
B.18
C.19
D.20
4.设,则
的值为( )
A. B. C.1 D.2
5.从6名学生中,选出4人分别从事A、B、C、D四项不同的工作,若其中,甲、乙两人不能从事工作A,则不同的选派方案共有( )
A.96种
B.180种
C.240种
D.280种
6.设随机变量服从B(6,),则P( =3)的值是( )
A. B. C. D.
7.在某一试验中事件A出现的概率为,则在次试验中出现次的概率为( )
A.1-
B.
C.1-
D.
8.从1,2,,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )
A. B. C. D.
9.随机变量服从二项分布~,且则等于( )
A. B. C. 1 D. 0
10.某考察团对全国10大城市进行职工人均平均工资与居民人均消费进行统计调查,与具有相关关系,回归方程(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比为( )
A. 66%
B. 72.3%
C. 67.3%
D. 83%
11.设随机变量X ~N(2,4),则D( X)的值等于( )
A.1
B.2
C.
D.4
12.设回归直线方程为,则变量增加一个单位时,( )
A. 平均增加1.5个单位
B. 平均增加2个单位
C. 平均减少1.5个单位
D. 平均减少2个单位
二、填空题(本大题共6小题,每小题5分,共30分。
把最佳的答案填在该题的横线上)
13.已知,则__________.
14. A、B、C、D、E五人并排站成一排,若A,B必须相邻,且B在A的左边,那么不同的排法共有种
15.已知二项分布满足,则P(X=2)=_________,EX=
_________.
16.有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为.(用小数作答)
17.若p为非负实数,随机变量的分布为
0 1 2
P -p
p
则E的最大值为,D的最大值为.
18.从1,2,3,,9九个数字中选出三个不同的数字a,b,c,且a
条(用数字作答).
三、解答题:(本大题共4小题,共60分。
写出详细的解答或证明过程)
19 .(本小题满分14分)
已知,且(1-2x)n=a0+a1x+a2x2+a3x3++anxn.
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3++an的值.
20. (本小题满分14分)
已知的展开式中,第5项的系数与第3项的系数之比是56:3,求展开式中的常数项。
21.(本小题满分16分)
某射击运动员射击一次所得环数X的分布列如下:
X 0~6 7 8 9 10
P 0 0.2 0.3 0.3 0.2
现进行两次射击,以该运动员两次射击所得的最高环数作为他的成绩,记为.
(1)求该运动员两次都命中7环的概率.
(2)求的分布列及数学期望E .
22.(本小题满分16分)
已知某类型的高射炮在它们控制的区域内击中具有某种速
度敌机的概率为.
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;
(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据,)
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也
是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
以上就是高中2019年高二下册数学期末考试题练习的全部内容,更多高中学习资讯请继续关注查字典数学网!。