仪器分析 第3章原子发射光谱

合集下载

大学《仪器分析》课件:第3章 原子光谱

大学《仪器分析》课件:第3章 原子光谱
10
例:钠原子,一个外层电子, S =1/2;因此: 2S +1 = 2;双重线; 碱土金属:两个外层电子, 自旋方向相同时, S =1/2 + 1/2 =1, M = 3;三重线; 自旋方向相反时, S =1/2 - 1/2 =0, M = 1;单重线;
11
一条谱线是原子的外层电子在两个能级之间的跃迁产生的, 可用两个光谱项符号表示这种跃迁或跃迁谱线:
第3章 原子光谱法基础
原子发射光谱法--依据每种化学元素的 原子或离子在热激发或电激发下,发射 特征的电磁辐射,进行元素定性、定量 分析的方法。 它是光学分析中产生与发展最早的一种 分析方法
1
❖ 原子发射光谱法包括三个主要的过程: 1.由光源提供能量使试样蒸发,形成气态原子,并进一步
使气态原子激发而产生光辐射;
14
四、谱线的自吸与自蚀
❖ 自吸:中心发射的辐射被 边缘的同种基态原子吸收, 使辐射强度降低的现象。
❖ 元素浓度低时,不出现自 吸。随浓度增加,自吸越 严重,当达到一定值时, 谱线中心完全吸收,如同 出现两条线,这种现象称 为自蚀。
❖ 基态原子对共振线的吸收 最严重。
15
第三节 原子发射光谱仪
❖ 光源、分光仪和检测器
的谱线,III表示二次电离离子发射的谱线。
3
二、能级与能级图
➢ 能级:电子在稳定状态所具有的能量称为能级。 ➢ 能级图:把原子系统内所有可能存在的能量为
零,高于基态的所有能量状态为激发态。
➢ 原子的能级通常用光谱项符号表示:n2S+1Lj n:主量子数;M(2S+1):谱线多重性符号; L:总角量子数; j:内量子数
例 钠原子的双重线 Na 588.996nm ; 32S1/ 2 — 32P3/ 2; Na 589.593nm ; 32S1/ 2 — 32P1/ 2;

原子发射光谱分析基本原理

原子发射光谱分析基本原理

原子发射光谱分析基本原理原子发射光谱分析是一种常用的分析技术,用于确定物质中不同元素的存在和浓度。

基本原理是通过激发原子使其跃迁到高能级,然后原子从高能级退回到低能级时会发射出一系列特定的频率光线,这些光线就被称为发射光谱。

本文将详细介绍原子发射光谱分析的基本原理。

当原子处于高能级时,由于能量不稳定,原子会自发地退回到低能级。

在这个过程中,原子会发射出一定频率的光线。

这是因为原子的能级结构是离散的,每个能级对应不同的能量差和光频率。

各元素拥有独特的能级结构,因此每个元素会发射出特定的频率光线,形成一种独特的光谱指纹。

发射光谱的特点是谱线的亮度与元素浓度成正比。

因此,通过测量谱线的强度可以确定样品中该元素的浓度。

发射光谱分析可以在可见光、紫外光和红外光范围内进行。

原子发射光谱分析有两种主要的测量方式:线源测量和离散源测量。

线源测量是指使用等离子体火焰或火花放电等产生连续谱的激发源。

这种方法适用于多元素分析和测量大样品数量。

离散源测量是指使用电弧放电或激光脉冲等产生谱线的激发源。

这种方法适用于单元素测量和对样品数量要求不高的分析。

然而,原子发射光谱分析也存在一些局限性。

由于发射光谱需要样品激发和发射,对样品形式和形状要求较高。

此外,元素之间的相互作用和基体效应也会对分析结果产生影响,需要进行校正和修正。

总结起来,原子发射光谱分析是一种常用的化学分析技术,适用于多元素同时分析和不同浓度的测量。

通过测量发射光谱的强度可以确定元素的浓度。

然而,这项技术也有一定的局限性,需要对样品的形态和基体进行处理和修正。

尽管如此,原子发射光谱分析仍然是一种重要的化学分析方法,广泛应用于环境监测、食品检测和地质勘探等领域。

仪器分析-原子发射光谱

仪器分析-原子发射光谱

来自分子转动能级及电子自旋能级跃迁
来自原子核自旋能级的跃迁

二、光学分析法及其分类
光学分析法可分为:Spectrometric method
和non-spectrometric method两大类。
光谱法是基于物质与辐射能作用时,测量由物质 内部发生量子化的能级之间的跃迁而产生的发射、吸 收或散射辐射的波长和强度进行分析的方法。AE、AA
离子也可能被激发,其外层电子跃迁也发射光谱。由于离 子和原子具有不同的能级,所以离子发射的光谱与原子发射的光 谱不一样。每一条离子线都有其激发电位。这些离子线的激发电 位大小与电离电位高低无关
在原子谱线表中,罗马数Ⅰ表示中性原子发射光谱的
谱线,Ⅱ表示一次电离离子发射的谱线,Ⅲ表示二次
电离离子发射的谱线例如Mg Ⅰ285.21nm为原子线, MgⅡ280.27nm为一次电光谱分析仪器
用来研究吸收、发射或荧光的电磁辐射 强度和波长关系的仪器叫做光谱仪或分光光度 计。
光谱仪或分光光度计一般包括五个基本 单元:光源、单色器、样品容器、检测器和读 出器件。
发射光谱仪结构示意图
一、光源(Light source):
光源是提供足够的能量使试样蒸发、原子 化、激发,产生光谱。
一般情况下,原子处于基态,在激发光源作用下,原子获 得能量,外层电子从基态跃迁到较高能态变为激发态 ,约经 10-8 s,外层电子就从高能级向较低能级或基态跃迁,多余的能 量的发射可得到一条光谱线。
原子中某一外层电子由基态激发到高能级所需要的能 量称为激发电位(Excitation potential)。 原子光谱中每一条谱线的产生各有其相应的激发电位。由激发态 向基态跃迁所发射的谱线称为共振线(resonance line)。共振线 具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。

仪器分析原子发射光谱法

仪器分析原子发射光谱法
等离子体与一般气体不同,能够导电。当电流通过时, 可以达到很高温度(10000 K)。具有类似火焰的外形, 实质是一个放电过程,而不是一个燃烧过程。具有和火 焰一样或比火焰更好的在空间和时间上的稳定性,而温 度要比火焰高得多,会增加更多的激发态原子数。等离 子体光源包括电感耦合等离子体(ICP)、直流等离子 体(DCP)和微波等离子体(MIP)。
ICP的焰炬一般具有环状结构,环状结构是ICP具有 优良分析性能的根本保证。
ICP光源分析特点

检出限低:由于ICP温度高,样品在中央通道受热而激发, 谱线强度大。检出限10-7 ~10-9g。(ICP-MS可达10-9 ~10-12g) 准确度好:温度高,基体效应小,可得到低干扰水平和高准 确度的分析结果。
7.3 分析方法
一、定性分析
不同元素的原子由于结构不同而发射各自不同的特征光谱, 根据元素的特征谱线可以确定该元素是否存在于样品中。
⒈ 灵敏线:信号强的谱线。 ⒉ 共振线:电子由高能态跃迁至基态所发射谱线。 ⒊ 第一(主)共振线:电子从最低高能态至基态所发射的 谱线。 ⒋ 最后线:被测元素含量逐渐降低时最后出现的谱线,即 最灵敏线。

各种激发光源的比较:
直流电弧 差 高 4000~7000 固体 定性 交流电弧 较好 中 4000~7000 固体 定量 火花 好 低 10000 固体 定量 ICP 良好 很高 6000~10000 溶液 定量
稳定性 蒸发温度 激发温度
分析应用
二、光谱仪
⒈ 光谱仪的基本结构
平行光管、色散元件、暗箱
2. 内标法:
按分析线与内标线强度比进行光谱定量分析的方法。 分析线对:分析线与内标线的强度比。
设分析线和内标线的强度分别为I1和I2,则 I1 = a1 C1b1, I2 = a2 C2b2, I1/ I2= a1 C1b1 /a2 C2b2

仪器分析原理3原子荧光光谱与X射线荧光光谱分析

仪器分析原理3原子荧光光谱与X射线荧光光谱分析

§3.2.3 X射线散射 X射线通过物质时的衰减现象部分是由散射引起的。根据 X射线的能量大小和原子内电子结合能的不同,散射可分 为弹性散射(瑞利散射)和非弹性散射(康普顿散射)。
1. 弹性散射(瑞利散射) 由相对能量较小(波长较长)的X射线与原子中束缚较紧 的电子(原子序数大的内层电子)发生弹性碰撞。
If =φIo A(1 – e–KlN)
括号内展开为级数,并忽略高次项,得到:
If =φIo AKlN
If =kC
在实验条件保持一定时,上式除了N之外,均可视 为常数。而且N和试样中被测元素的浓度C成正比。
此式为原子荧光定量分析的基础。
§3.1.3 量子效率和荧光猝灭
1. 量子效率 处于激发态的原子跃迁回到低能级时,可能发射共振 荧光,也可能发射非共振荧光,或者无辐射弛豫。 量子效率表示这些过程可能性的大小:
L层又产生一空穴。 因此,L→K的回落和Auger电子的逐出,使L层 出现两 空穴,即双重电离。
当出现双重电离时,会出现M→L跃迁,此跃迁放出的hυ 是卫星线。卫星线一般较弱,且随Auger增大而增大。对 重元素来说,卫星线的强度一般很低,因此,在X射线荧 光分析中没有什么重要意义。然而对轻元素来说,卫星线 可能相当强。
直跃荧光:激发态原子直接回到基态或高于基态的亚稳态 阶跃荧光: (1) 正常阶跃荧光为激发态原子先以非辐射方式失去部 分能量降到较低能级的激发态,然后去激发产生荧光。(2) 热助阶 跃荧光为被光照射激发的原子,跃迁至中间能级,又发生热激发
至高能级,然后返回至低能级发射的荧光。
3. 敏化荧光:激发态的原子D*不直接产生荧光,而是通 过碰撞原子A去激发,同时形成激发态A*,然后A*去 激发产生荧光。 D* + A → D + A*

清华大学化学系2 仪器分析-发射光谱

清华大学化学系2 仪器分析-发射光谱

1、火焰光源
2、电弧光源 分为直流光源和交流光源两种
(1)直流光源 L 阳极
220V E DC < 30A
V R A
G
阴极
分析特性 •电极温度高,弧焰中心温度为 5000-7000, 有利于试 样的蒸发 •除石墨电极产生的氰带光谱外,背景比较浅 •电弧在电极表面无常游动,且有分馏效应,重现性比 较差 •谱线容易发生自吸收现象
4、基体效应 基体效应指试样组成对谱线强度的影响。这种影 响主要发生在试样的蒸发和激发过程中。 (1)光源蒸发温度与试样成分有关 基体含大量低沸点物质——电极由低沸点物质控制, 蒸发温度低 基体含大量高沸点物质——电极由高沸点物质控制, 蒸发温度高 基体含不同沸点物质—— 出现不同的蒸发顺序,影 响谱线强度 (2)光源激发温度与试样主体成分的电离电位有关 电离电位越高,光源激发温度越高,影响谱线 强度。
S为总自旋量子数,多个价电子的总自旋量 子数是单个价电子自旋量子数的矢量和,取值为:
1 3 0, , 1, , 2,......... 2 2
J为内量子数,是原子的各价电子总轨道角动量L与 总自旋角动量S相耦合得出的,取值为:
J ( L S ), ( L S 1), ( L S 2),...... L S
冷却气(10-19 l/min) 辅助气(0-1 l/min) 气溶胶 载气(0.5-3.5 l/min)
ICP的工作原理:
当有高频电流通过线圈时,产生轴向磁场, 这时若用高频点火装置产生火花,形成的载流子( 离子与电子)在电磁场作用下,与原子碰撞并使之 电离,形成更多的载流子,当载流子多到足以使气 体有足够的导电率时,在垂直于磁场方向的截面上 就会感生出流经闭合圆形路径的涡流,强大的电流 产生高热又将气体加热,瞬间使气体形成最高温度 可达10000K的稳定的等离子炬。感应线圈将能量耦 合给等离子体,并维持等离子炬。当载气载带试样 气溶胶通过等离子体时,被后者加热至6000-7000K ,并被原子化和激发产生发射光谱。

仪器分析笔记 《原子发射光谱分析》

仪器分析笔记 《原子发射光谱分析》

第三章原子发射光谱分析§3.1 光化学分析法概述3.1.1 光化学分析法概述1、光学分析法的分类光学分析法分为光谱法和非光谱法两类。

✓光谱法:基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。

✓非光谱法:不涉及物质内部能级的跃迁,是基于物质与辐射相互作用时,电磁辐射只改变了传播方向、速度或某些物理性质,如折射、散射、干涉、衍射、偏振等变化的分析方法(即测量辐射的这些性质)。

属于这类分析方法的有折射法、偏振法、光散射法、干涉法、衍射法、旋光法和圆二向色性法等。

2、电磁波谱电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。

表3-1-1 各光谱区的光谱分析方法3、各种光分析法简介A、发射光谱法∙γ射线光谱法∙x射线荧光分析法∙ 原子发射光谱分析 ∙ 原子荧光分析法 ∙ 分子荧光分析法 ∙ 分子磷光分析法 ∙ 化学发光分析 B 、吸收光谱法 ∙ 莫斯堡谱法∙ 紫外可见分光光度法 ∙ 原子吸收光谱法 ∙ 红外光谱法∙ 顺磁共振波谱法 ∙ 核磁共振波谱法 C 、散射∙ Roman 散射4、原子发射光谱分析法的特点①可多元素同时检测:各元素同时发射各自的特征光谱;②分析速度快:试样不需处理,同时对几十种元素进行定量分析(光电直读仪); ③选择性高:各元素具有不同的特征光谱;④检出限较低:10~0.1μg ⋅g -1(一般光源);ng ⋅g -1(ICP ) ⑤准确度较高:5%~10% (一般光源); <1% (ICP);⑥ICP-AES 性能优越:线性范围4~6数量级,可测高、中、低不同含量试样; ⑦非金属元素不能检测或灵敏度低。

3.1.2 原子光谱与原子光谱分析法直接相关的原子光谱理论,主要指原子光谱的产生和谱线强度理论,这就是光谱定性、定量分析的理论依据。

1、原子光谱的产生量子力学认为,原子光谱的产生,是原子发生能级跃迁的结果,而跃迁几率的大小则影响谱线的强度,并决定了跃迁规则。

分析化学仪器分析第三版答案

分析化学仪器分析第三版答案

分析化学仪器分析第三版答案【篇一:仪器分析第五版习题及答案】/p> 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。

2、共同点:都是进行组分测量的手段,是分析化学的组成部分。

1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。

分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。

仪器分析与分析仪器的发展相互促进。

1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。

因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。

第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。

各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。

信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。

2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。

各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;出射狭缝:采集色散后具有特定波长的光入射样品或检测器2-3棱镜的分光原理是光的折射。

仪器分析-原子光谱法

仪器分析-原子光谱法

吸收光谱法
紫外可见分光光度法 原子吸收光谱法 红外光谱法 顺磁共振波谱法 核磁共振波谱法
散射
Roman 散射
迁 能 级 波长λ 类型 核能级 <0.005nm
KL层电 0.005~10nm 子跃迁 10~200nm
外 层 电 200~400nm 子跃迁
400~800nm
分子振 动能级
(2)检测元件
摄谱法之感光板
光电法之光电管,光电倍增管
固体成像器件 电荷注入检测器(CID) 电荷耦合检测器(CCD)
262000个点阵
(3)光谱仪(分光元件和检测元件的组合) 平面光栅(棱镜)+摄谱
凹面光栅+光电倍增管(二极管)阵列
全谱直读光谱仪- 中阶梯光栅+CID/CCD
化合物离解(气态、基态原子)—激发 (激发态原子)—基态(发射光谱)
摄谱 分析(包括定性和定量)
二、光谱分析仪器
光源与样品→单色器→检测器→读出器件
1. 光源
(1)概述
光源的作用: 蒸发、解离、原子化、激发、 跃迁。光源是决定分析的灵敏度和准确度 的重要因素。
光源的要求:比较稳定,>5000K,重现性 好,背景小,谱线简单,安全
(2)常用光源
直流电弧 交流电弧 电火花 电感耦合等离子体
ห้องสมุดไป่ตู้
直流电弧
电路结构及工作原理: 优点:分析绝对灵敏度高 缺点:重现性差、不宜定量 应用范围
试样引入激发光源的方法: 固体试样 溶液试样 气体试样:放电管
交流电弧
电路结构及工作原理: 优点:稳定性较好,适合定量。操作安全简便,
2.基本原理

仪器分析原理3原子荧光光谱与X射线荧光光谱分析

仪器分析原理3原子荧光光谱与X射线荧光光谱分析

仪器分析原理3原子荧光光谱与X射线荧光光谱分析原子荧光光谱和X射线荧光光谱是常用的仪器分析原理之一、这两种分析方法可以快速准确地确定样品中元素的种类和含量。

下面将分别介绍原子荧光光谱和X射线荧光光谱的工作原理及其在仪器分析中的应用。

1.原子荧光光谱原子荧光光谱(Atomic Fluorescence Spectroscopy, AFS)是利用物质吸收射入能量后,再辐射能量的特性来分析物质中元素的种类和含量。

工作原理:原子荧光光谱的工作原理分为两个步骤:原子化和荧光辐射。

首先,样品通过加热、火焰、电磁辐射等方式使其原子化。

原子化是将样品中的元素由化合物或离子状态转变为单体原子的过程。

常用的原子化方式有火焰原子吸收光谱(Flame Atomic Absorption Spectroscopy, FAAS)和电感耦合等离子体发射光谱(Inductively Coupled Plasma Emission Spectroscopy, ICP-OES)等。

然后,通过激发原子辐射的方式,使其产生特定的荧光辐射。

荧光辐射的能量和波长是特定的,因此可以通过测量样品的荧光辐射来确定元素的种类和含量。

应用:原子荧光光谱广泛应用于环境、食品、农产品等领域的元素分析。

它具有分析速度快、准确度高、灵敏度高的特点。

可以用于分析痕量元素,如水中的重金属等。

2.X射线荧光光谱X射线荧光光谱(X-ray Fluorescence Spectroscopy, XRF)是利用物质受到X射线激发后发生荧光辐射的特性来分析样品中元素的种类和含量。

工作原理:X射线荧光光谱是利用样品中的元素受到高能X射线激发后产生特定能量的荧光X射线。

当样品被照射时,元素中的电子会被激发到较高能级,并在回到基态时发出荧光X射线。

每个元素的荧光X射线的能量和强度是特定的,通过测量荧光X射线的能量和强度可以确定样品中元素的种类和含量。

应用:X射线荧光光谱广泛应用于材料分析、岩石矿产分析、金属合金分析等领域。

《现代仪器分析教学》3.原子发射光谱分析法

《现代仪器分析教学》3.原子发射光谱分析法
整理课件
2、光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱 中存在着自吸现象,需要引入自吸常数 b ,则:
I acb
(自吸:原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的 辐射,这种现象称为自吸现象整理)课件
3.激发电位:原子中的电子从基态跃迁至激发态所需的 能量称为激发电位。
整理课件
4、原子发射光谱的产生:气态原子或离子的核外层电 子当获取足够的能量后,就会从基态跃迁到各种激发 态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回 到低能态时,就要释放出能量,若以电磁辐射的形式
释放能量,即得到原子发射光谱。
(quantitative spectrometric analysis)
1.光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范 围;
谱线强度比较法:将被测元素配制成质量分数分别 为1%,0.1%,0.01%,0.001%四个标准。将配好的标样 与试样同时摄谱,并控制相同条件。在摄得的谱线 上查出试样中被测元素的灵敏线,根据被测元素的 灵敏线的黑度和标准试样中该谱线的黑度,用目视 进行比较。
2)光栅摄谱仪
光栅摄谱仪采用衍射光栅代替棱镜作为色散元件。 特点:适用波长范围广,色散和分辨能力大
整理课件
3.4 发射光谱分析的应用
3.4.1 光谱定性分析
1、定性依据:元素不同→电子结构不同→光谱不同 →特征光谱 2、定性分析基本概念 分析线:复杂元素的谱线可能多至数千条,只选择其 中几条特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的 谱线;

仪器分析第三章发射光谱

仪器分析第三章发射光谱
试样蒸发、激发产生辐射→色散分光形成 光谱→检测、记录光谱→根据光谱进行定性 或定量分析
发射光谱的分析基础:
定性分析:特征谱线的波长 定量分析:特征谱线的强度(黑度),主要的
26
二、原子发射光谱的分析仪器
光源 分光系统 检测器 信号显示系统
27
光源
作用:提供稳定,重现性好的能量,使试样中的被 测元素蒸发、解离、原子化和激发,产生电子跃迁, 发生光辐射
19
4、原子发射光谱图
元素标准光谱图
20
21
5、谱线的自吸和自蚀
自吸和自蚀
影响自吸和自蚀的因素 谱线的固有强度 弧层厚度 溶液浓度
22
自吸和自蚀
发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。在一般光 源中,是在弧焰中产生的,弧焰具有 一定的厚度,如下图:
a b
23
a
自吸和自蚀
发射光谱的分析过程 发射线的波长 发射谱线的强度 原子发射光谱图 谱线的自吸和自蚀
3
1、发射光谱的分析过程
激发态原子
外 层 电 子 跃 迁
基态原子
光电法 摄谱法
原子化
热或电
光电倍增管 感光板
气态分子
气 化
样品分子
4
原子发射光谱示意图
5
一般情况下,原子处于基态, 在激发光源作用下,原子获得能 量,外层电子从基态跃迁到较高 能态变为激发态 ,约经10-8 s,外 层电子就从高能级向较低能级或 基态跃迁,多余的能量的发射可 得到一条光谱线。
第三章 原子发射光谱法
Atomic Emission Spectrometry,AES
1
特点: 优点——灵敏度高、简便快速、可靠性高、

仪器分析第三章AES

仪器分析第三章AES
粒子束增强AES技术
将样品离子束引入电离室,通过测量离子能量和电荷态来分析元素 组成。
AES分析方法
定量分析
通过测量特征X射线的强度,确定样品中元素的含 量。
半定量分析
利用特征X射线确定样品中是否存在某种元素,但 不给出具体含量。
表面成分分析
利用AES分析样品表面的元素组成,适用于表面污 染、镀层等研究。
02
AES仪器设备
AES仪器的基本结构
激发源
真空系统
用于产生高能电子束或X 射线束,激发样品中的
原子或分子。
保持分析区域的超高真 空,减少背景干扰。
检测器
用于捕捉和分析被激发 的原子或分子的特征辐
射。
数据处理系统
用于处理和显示实验数 据,提供最终的分析结
果。
AES仪器的工作原理
样品激发
辐射的检测与数据分析
样品处理过程
干燥
去除样品中的水分,以免影响 AES分析结果。
研磨
将样品研磨成细粉末,以提高AES 信号的强度。
过滤
去除样品中的杂质和颗粒物,以提 高AES分析的纯度和分辨率。
样品制备与处理中的注意事项
防止污染
在整个样品制备与处理过程中, 要确保使用的工具、容器和实验
室环境清洁无污染。
保持干燥
对于某些样品,干燥是非常重要 的步骤,要确保使用适当的干燥
AES实验操作流程
实验设置
根据实验需求选择合适的电子 束能量、扫描速率等参数。
数据处理
对采集的数据进行背景校正、 校正标定等处理,提取元素含 量信息。
样品准备
选择适当的样品制备方法,如 研磨、抛光等,以暴露出干净 的表面。
数据采集

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

《仪器分析》原子发射光谱法

《仪器分析》原子发射光谱法

ms =±1/2,±3/2,∙∙∙,±S (当S为半整数时)
共有2S+1个值。
总角动量量子数(也称总内量子数)J等于L和S的矢量和, 即J=L+S。J的取值为: J=L+S,L+S-1,L+S-2,∙∙∙,| L-S | 若L≥S ,数值从J=L+S到L-S,共有(2S+1)个; 若L<S,数值从J=L+S到S-L,共有(2L+1)个。 例如,L=2,S=1,即2S+1=3, 则J=3,2,1,有 3个J值。
n是主量子数。 L是原子总角量子数,用大写英文字母S,P,D,F ∙∙∙ 表示。 L = 0 , 1 , 2 , 3 , ∙∙∙ ,( 2S + 1 )的数值写在 L 符号的左上角, (2S+1)为光谱项的多项性,也可以用符号M表示。 因每一个光谱项有(2S+1)个不同的J值,把J值注在L的右 下角表示光谱支项,每一个光谱项有(2S+1)个光谱支项。 由于 L 与 S 的相互作用,光谱支项的能级略有不同,这( 2S +1)个略有不同的能级在光谱中形成(2S+1)条距离很短的 线,称为多重线。若2S+1等于2或者3,分别称为二重线和三重 线。 当 L<S 时,每一个光谱支项只有( 2L + 1 )个支项,但( 2S +1)还称为多重性,所以“多重性”的定义是(2S+1),不 一定代表光谱支项的数目。
原子发射光谱法(AES)
原子发射光谱是基于当原子或离子受激发的外 层电子从较高的激发态跃迁到较低的能级或者基态 能级,多余的能量以光的形式辐射出来,从而产生 发射光谱。这样产生的光谱是线光谱。
原子的线光谱是元素的特征,不同的元素具有 不同的特征光谱,是定性定量分析的基础。原子发 射光谱法是元素分析的重要方法之一。
跃迁的谱线称为第一共振线或主共振线。

仪器分析重点

仪器分析重点

仪器分析重点绪论一.现代仪器分析的作用和发展二.仪器分析的应用第三章、原子发射光谱法原子荧光,1.原子荧光光谱的产生气态自由原子吸收特征辐射后跃迂到较高能级,然后又跃迁回到基态或较低能级。

同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。

原子荧光为光致发光,二次发光,激发光源停止时,再发射过程立即停止。

2.原子荧光的类型原子荧光分为共振荧光,非共振荧光与敏化荧光等三种类型。

一、原子荧光的特点:(1)高灵敏度、低检出限。

特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng.cm-3、Zn为0.04ng.cm-3。

由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。

(2)谱线简单、干扰少。

可以制成非色散原子荧光分析仪。

这种仪器结构简单,价格便宜。

(3)标准曲线线性范围宽,可达3-5个数量级。

(4)多元素同时测定。

因为原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。

一、为什么要采用高强度的光源:光源强可使灵敏度增高,达到低检出限二、氩气的作用:载气等第四章、原子吸收光谱法一、光源:采用待测元素制成的锐线光源及其原因,用普通连续光源进行测量时吸收值仅相当于总入射光强度的0.5%,信号变化小,难于检测,测定灵敏度极差,而锐线光源可以解决上述问题。

二、谱线变宽的因素:1.、自然宽度,无外界因素影响时谱线具有的宽度。

其大小与激发态原子的寿命有关,寿命越短,谱线越宽。

2、多普勒宽度(热变宽),ΔνD原子在空间作无规则的热运动所引起的,故又称为热变宽。

一个运动着的原子发出的光,如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。

3、压力变宽,由于原子相互碰撞使能级发生稍微变化。

10-3nm~10-2nm劳伦兹(Lorentz)变宽ΔνL待测原子和其他原子碰撞。

随蒸汽压力增加而增大。

赫鲁兹马克(Holtmark)变宽(共振变宽)同种原子碰撞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
气体试样的引入
反应生成的砷化氢被惰过吸收或发 射光谱测定它的浓度。
精品课件
固体试样的引入
将固体以粉末、金属或微粒形式直接引入 等离子体和火焰原子化器中测定的分析方法。
不需要加入化学试剂,省去试样溶解、分 离或富集等化学处理,减少污染的来源和试样 的损失,测定灵敏度高。
精品课件
交流电弧
高频高压引火、低频低压燃弧的装置。 没有明显的负电阻特性,使其燃烧稳定; 有低的电极头温度,不利于难挥发元素的挥 发,检出限逊于直流电弧; 放电的电流密度大,使其弧温较高,有利于 元素的激发; 弧层较厚,易产生自吸现象。 常用于金属、合金中低含量元素的定量分析
精品课件
电火花
电极间不连续的气体放电叫火花放电。 高压火花使用高电压(8 000~15 000 V)使 电容器充电后放电释放的能量来激发试样光谱。
精品课件
谱线强度
影响谱线强度的因素 统计权重:成正比 跃迁概率:成正比 激发能:成负指数关系 激发温度:温度升高,强度增大 基态原子数:成正比
精品课件
温度对原子发射光谱的影响
以测定发射线为基础的分析方法应严格控 制原子化的温度。
升高温度,激发态原子数增加,谱线强度 增强;
温度太高,又会使电离原子数增加,不利 于以原子线为测量基础的测定。
精品课件
超声雾化进样
超声雾化器进样是根据超声波 振动的空化作用把溶液雾化成气溶 胶以后,由载气传输到火焰或等离 子体的进样方法。
精品课件
电热蒸发进样
将蒸发器放在一个有惰性气体(氩气)流 过的密闭室内。当有少量的液体或固体试样放 在碳棒或钽丝制成的导体上后,电流迅速地将 试样蒸发并被惰性气体携带进入原子化器。
第三章 原子发射光谱法
概论 基本原理 原子发射光谱仪器 干扰及消除方法 光谱分析方法 分析性能 分析应用
精品课件
概论
原子发射光谱法: 依据每种化学元素的原子或离子在
热激发或电激发下,发射特征的电磁辐 射,进行元素定性、半定量和定量分析 的方法。
精品课件
概论
三个主要过程: 光源提供能量使试样蒸发,形成气态原
精品课件
固体试样的引入
试样直接插入进样 电热蒸发进样 电弧和火花熔融法 激光熔融法
精品课件
试样直接插入进样
该技术是将试样磨成粉体,放 在探针上直接插进原子化器。
精品课件
电热蒸发进样
将固体试样放在用导体加热的 石墨或钽棒等中蒸发,再随惰性气 体带入原子化器。
精品课件
电弧和火花熔融法
通过固体试样的表面放电,产生 由微粒和蒸气组成的烟雾,再由惰性 气体转入到原子化器中。
激发态原子的寿命很短,在返回基态时 伴随发射一个辐射光子,产生发射光谱线。
精品课件
原子发射光谱的产生
激发能:原子中某一外层电子由基态激 发到高能级所需要的能量。
共振线:电子从激发态向基态跃迁所产 生的谱线。
第一共振线:电子从第一激发态向基态 跃迁产生的谱线。
精品课件
原子能级与能级图
原子光谱分析中,常用光谱项符号
精品课件
n:主量子数; L:总角量子数,外层价电子角量子数 l 的矢
量和,可取 0, 1, 2, … , 相应谱项符号S, P, D, F, …
S:总自旋量子数,是单个价电子自旋量子数 ms 矢量和,可取0, ±1/2, ±1, ±3/2, … J:内量子数,是轨道运动与自旋运动之间的相
互作用即轨道磁矩与自旋量子数的相互影响而得 出的,是原子中各个价电子组合得到的总角量子
精品课件
基本原理
原子发射光谱的产生 原子能级与能级图 谱线强度 谱线的自吸与自蚀
精品课件
原子发射光谱的产生
原子的外层电子由高能级向 低能级跃迁,能量以电磁辐射形式发射 出去,得到原子发射光谱。
原子发射光谱是线光谱。
精品课件
原子发射光谱的产生
在室温下,物质所有的原子都是处在基 态。基态原子通过电、热或光致激发等激发光 源作用获得能量,外层电子从基态跃迁至较高 能态变为激发态。
精品课件
6000~8000 4000~7000
检测器
目视法 摄谱法 光电法
精品课件
目视法
适用于可见光波段。 常用仪器看谱镜
精品课件
摄谱法
将色散后的辐射用感光板记录下来供分析 按使用的色散元件可将摄谱仪分为
棱镜摄谱仪 光栅摄谱仪 干涉分光摄谱仪
精品课件
原子能级与能级图
多个价电子的原子,它的每一个价电子 都可能跃迁产生光谱。这些核外电子之间存 在着相互作用,包括电子轨道之间的相互作 用,电子自旋运动之间的相互作用,轨道运 动与自旋运动之间的相互作用。
精品课件
原子能级与能级图
原子的能量状态需要用以 n, L, S, J 等四个量子数为参数的光谱项来表征
n2S+1LJ
表示原子中电子特定的能级。 核外电子在原子中存在运动状态,
可用四个量子数n、l、m、ms来规定。
精品课件
n :主量子数,决定电子的能量和电子离核的
远近; n = 1, 2, 3, …, n
l :角量子数,决定电子角动量的大小及电子
轨道的形状,在多电子原子中也影响电子的能
量; l = 0, 1, 2, …, n-1, 相应符号s, p,
精品课件
试样的蒸发与光谱的激发
分馏:试样中不同组分的蒸发有先后 次序的现象。
影响试样蒸发速率的因素: 试样成分、试样装入量、电极形状、 电极温度、试样在电极内产生的化学反应、 电极周围的气氛和添加剂。
精品课件
试样的蒸发与光谱的激发
物质蒸发到等离子区,发生原子化和电离 气态原子或离子在等离子体内与高速运动 的粒子碰撞而被激发,发射特征的电磁辐射。 与粒子高速运动碰撞而引起的激发为热激 发。 与电子的碰撞所引起的激发为电激发。
精品课件
激光熔融法
将激光光束聚焦形成足够的能量 直接射在固体试样表面,在被激光照 射的部分试样转变成蒸气和微粒组成 的烟雾,再被带入原子化器。
精品课件
试样的蒸发与光谱的激发
试样在激发光源的作用下,蒸发进 入等离子区内,随着试样蒸发的进行,各 元素的蒸发速率不断发生变化,以致谱线 强度也不断变化,各元素以谱线强度或黑 度对蒸发时间作图,称为蒸发曲线。
等离子体:含有一定浓度阴、阳离子能导 电的气体混合物。
在等离子体中,阴和阳离子的浓度相等, 净电荷为零。
精品课件
高温等离子体主要类型
电感耦合等离子体(ICP) 直流等离子体(DCP) 电容耦合微波等离子体(CMP) 微波诱导等离子体(MIP)
精品课件
电感耦合等离子体(ICP)
形成稳定的 ICP 焰炬,应有三个条件: 高频电磁场
谱线强度
若激发处于热力学平衡状态下,分
配在各激发态和基态的原子数目 Ni , N0,
比例的大小可用波尔兹曼方程表示。
精品课件
谱线强度
Ni = N0 gi / g0 e(-E/kT) Ni 和N0 :分别是激发态和基态的原子数; k:波尔兹曼常数(1.38×10-23J·K-1); T:激发温度; E:激发态和基态之间的能级差,激发能; gi , g0:分别是激发态和基态的统计权重。
在原子光谱分析中,常常用光谱项符
号nMLJ表示原子中电子特定的能级。
精品课件
谱线强度
设i, j 两能级之间的跃迁所产生的谱 线强度 Iij 表示,则
Iij = NiAijhvij Ni 为单位体积内处于高能级 i 原
子数;
Aij 为i, j 两能级间的跃迁概率; vij 为发射谱线的频率。
精品课件
精品课件
光源
直流电弧 交流电弧 电火花 等离子体光源
精品课件
直流电弧
电弧放电时是以气体为导体,直流电弧具有 负电阻特性,即:电流增大而电弧电压反而下降。
直流电弧的温度约在4000~7000 K之间。 电弧的电极温度比电弧温度低,一般为3000 ~4000 K。 直流电弧电极头温度高、试样蒸发快、检测 限低。 常用作熔点较高物质(如岩石、矿物试样) 中痕量元素的定性和定量分析
工作气பைடு நூலகம் 能维持气体稳定放电的石英炬管
精品课件
氩辅助气
精品课件
尾焰区
内焰区 (测光区)
焰心区 (预热区)
试样引入激发光源方式
溶液试样 气体试样 固体试样
精品课件
溶液试样的引入
气动雾化进样 超声雾化进样 电热蒸发进样
精品课件
气动雾化进样
气动雾化器进样是利用动力学 原理将液体试样变成气溶胶并传输 到原子化器的进样方法。
与一般雾化器不同,电热系统产生的是不 连续的信号。
精品课件
气体试样的引入
氢化物发生法:将含砷、锑、锡、硒和铋 等的试样转变成气体后进入原子化器的一种方法。
将待测物转变成挥发性氢化物,普遍应用 的是硼氢化钠(钾)- 酸还原体系,典型反应:
3BH4-+3H++4H3AsO3=3H3BO3+4AsH3↑+3H2O
共振变宽:由于同类原子的相互碰 撞引起的谱线变宽现象。
精品课件
1.无自吸; 2.自吸; 3.自蚀
原子发射光谱仪器
光源 试样引入激发光源方式 试样的蒸发与光谱的激发
分光 仪
检测器 光谱仪类型
精品课件
精品课件
光源
使试样蒸发、解离、原子化、激发、 跃迁产生光辐射的作用。 常用光源:直流电弧、交流电弧、电火 花及电感耦合等离子体。 自持放电、击穿电压、燃烧电压
精品课件
火花放电是一种间歇性的快速放电,放电 时间短,停熄时间长。在电极隙间击穿的瞬间,形 成很细的导电通道。可以达到很大的瞬时电流和电 流密度。使通道具有很高的温度,因此火花的激发 能力很强,可以激发一些具有高激发电位的元素和 谱线。
相关文档
最新文档