上海市七宝中学2018-2019学年高一上学期分班考试数学试题

合集下载

【推荐】最新上海市七宝中学2018-2019学年高一上学期数学期中考试(解析版)

【推荐】最新上海市七宝中学2018-2019学年高一上学期数学期中考试(解析版)

上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__ 【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x <a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当 n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项, f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明. 【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。

上海市七宝中学2018-2019学年高一上学期12月月考数学试题(解析版)

上海市七宝中学2018-2019学年高一上学期12月月考数学试题(解析版)
【详解】对于 ,定义分段函数,当 时, ,当 时, ;此时,对任意 ,都有 ,但函数在 上不是增函数,不符合题意;
对于 ,对任意 ,都有 ,不满足函数单调性定义中的任意性,不符合题意;
对于 ,当 为常数函数时,对任意 ,都有 ,不是增函数,不符合题意;
对于 ,对任意 ,设 ,若 ,必有 ,则函数在 上为增函数,符合题意;
【答案】
【解析】
【分析】
函数 有四个不同的零点等价于 与 的图象有四个交点,将两个函数的图象在同一坐标系画出,即可观察出 的取值范围.
【详解】函数 有四个不同的零点等价于 与 的图象有四个交点,
的图象如图所示:
由图可知: .
故答案为 .
【点睛】本题考查函数的零点与方程的根之间的等价关系,考查利用数形结合思想解决问题,注意作图过程中利用偶函数的性质,画出关于 轴对称的函数的图象.
A.28B.100C.34D.36
【答案】D
【解析】
分析】
取x∈(2m,2m+1),则 ∈(1,2];f( )=2﹣ ,从而f(x)=2m+1﹣x,根据f(2020)=f(a)进行化简,设a∈(2m,2m+1)则f(a)=2m+1﹣a=28求出a的取值范围.
【详解】取x∈(2m,2m+1),则 ∈(1Байду номын сангаас2];f( )=2﹣ ,从而
(1)指出 在 上的单调性,并证明你的结论;
(2)求 的反函数 .
【答案】(1)单调递减,证明见解析;(2) , .
【解析】
【分析】
(1)利用分子分离法把函数化成 ,从而得到函数 在 上单调递减,再利用定义证明;
(2)反解出 ,再对调 与 ,同时标上反函数的定义域.

【市级联考】上海市七宝中学2018-2019学年高一上学期数学期中考试

【市级联考】上海市七宝中学2018-2019学年高一上学期数学期中考试

【市级联考】上海市七宝中学2018-2019学年高一上学期数学期中考试学校_________ 班级__________ 姓名__________ 学号__________一、填空题1. 函数的定义域为________2. 已知集合,,则________3. 不等式的解集是________4. “若且,则”的否命题是__________________.5. 已知,则的取值范围是________6. 若,,且,则的取值范围是_7. 若关于的不等式对一切实数都成立,则实数a 的取值范围是_________________.8. 若函数,则________9. 若关于的不等式在上恒成立,则实数的最小值是__10. 已知函数,(),若不存在实数使得和同时成立,则的取值范围是________11. 当时,可以得到不等式,,,由此可以推广为,则________12. 已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)二、单选题13. 如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A.B.C.D.14. 下列各组函数中,表示同一函数的是()A.与B.与C.与D.()与()15. “若a,b∈R+,a2+b2<1”是“ab+1>a+b”的( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油三、解答题17. 设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.18. 练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.19. 某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.20. 设数集由实数构成,且满足:若(且),则. (1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.21. 已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.。

2018-2019学年上海市七宝中学高一上学期分班考试数学试题

2018-2019学年上海市七宝中学高一上学期分班考试数学试题

2018-2019学年上海市七宝中学高一上学期分班考试数学试题一选择题1.已知a>b>0则下列不等式不一定成立的是()A.ab>bcB. a+c>b+cC. 1a<1bD. ac>bc2.若不等式组2113xx a-⎧⎪⎨⎪⎩ff的解为x>2,则a的取值范围是()A. a>2B. a≥2C. a<2 D a≤23.若M(-12,y1)、N(-14,y2)、P(12,y3)三点都在函数(0)ky kx=p的图像上,则y1、y2、y3大小关系为A. y2> y1> y3B. y2> y3> y1C. y3> y1> y2D. y3> y2> y14.已知y= 2x2的图像是抛物线,若抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式为()A. y=2(x-2)2+2B. y=2(x+2)2-2C. y=2(x-2)2-2D. y=2(x+2)2+25.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖,参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率为()A.14B.16C.15D.3206.将水匀速注入一个容器,时间(t)与容器水位(h)的关系如图,则容器形状是() 二、填空题7.2(3)0n-=,则2009(3)m n+-=8.已知a:b:c=4:5:7,a + b + c = 240,则2b-a+c =9.将一张坐标纸折叠一次,使得点(0,2)与(-2,0)重合,则点(-12,0)与点_重合10.对于整数a、b、c、d,符号a bd c表示运算ac bd-,已知1134bdp p,则b+d的值为11.定义“*”:A *B (1)(1)X Y A B A B =++++,若1*2=3,2*3= 4,则3*4= 12.分式方程133x m x x +=--有增根,则m= 13.如图是一个有规律排列的数表,请用含n 的代数式 (n 为正整数)表示数表中第n 行第n 列的数:14.已知a-b=b-c=35,a 2+b 2+c 2=1,则ab+bc+ca=15.若2610x x -+=,则2211x x +-= 16.如图,AB//CD, ∠BAP=600-α, ∠APC=45+α, ∠PCD=300-α,则α=17.关于x 的一元二次方程mx 2-x +1=0有实根,则m 的取值范围是_18.如图,点A. B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程长度是 .19.二次函数y = x 2- 2x -3与二轴两交点之间的距离为_20.已知α、β是方程x 2- x -1=0的两个实数根,则代数式22(2)ααβ+-==_ 21.如图,在三角形纸片ABC 中,∠C=900, ∠A=300, AC=3,折叠该纸片,使点A 与点B 重合,折痕与AB 、 AC 分别相交于点E 和点D ,则折痕DE 的长为22.已知x 、y 、z 为实数,满足2623x y z x y z +-=⎧⎨-+=⎩,那么x 2+y 2+z 2的最小值是三 解答题23.一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.24.如图,线段AB=5,点E在线段AB上,且AE=3, GB与以AE为半径的GA相交于点C,CE 的延长线交GB于点F.(1)当直线AC是GB的切线时,求证,BF⊥AB;(2)求EF:CE的值;(3)设EF = y,BF=x,求y关于x的函数解析式,并写出它的定义域.25.如图,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1, OB=万,矩形ABOC绕点。

上海市七宝中学2018_2019学年高一数学上学期期中试题(含解析) (1)

上海市七宝中学2018_2019学年高一数学上学期期中试题(含解析) (1)

祝您成绩进步,生活愉快!12018-2019学年上海市七宝中学高一上学期数学期中考试注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题 1.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是A .B .C .D .2.下列各组函数中,表示同一函数的是 A .与B .与C .与D .()与()3.已知,则“”是“”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油二、填空题5.函数的定义域为________6.已知集合,,则________7.不等式的解集是________8.“若且,则”的否命题是__________________. 9.已知,则的取值范围是________10.若,,且,则的取值范围是_11.若关于的不等式的解集是,则实数的取值范围是____12.若函数,则________此卷只装订不密封 班级 姓名 准考证号 考场号 座位号13.若关于的不等式在上恒成立,则实数的最小值是__14.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________15.当时,可以得到不等式,,,由此可以推广为,则________16.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)三、解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:①与和的乘积成正比;②当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.2祝您成绩进步,生活愉快!2018-2019学年上海市七宝中学高一上学期数学期中考试数学答案参考答案1.C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S ,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.2.D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项, f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.3.A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b )2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.4.D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.5.【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域. 【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.6.【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题7.【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.8.若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.9.【解析】【分析】作出可行域,目标函数z=a-b 可化为b=a-z ,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.10.【解析】【分析】祝您成绩进步,生活愉快!对a进行分类讨论,根据A与B 的交集为空集确定出a 的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11.【解析】略12.【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.13.【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a 的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.14.【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a 的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.15.【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p 位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向16.②③④【解析】【分析】利用a i +a j 与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当 n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a 4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.17.(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;祝您成绩进步,生活愉快!(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m 的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B 中只有一个整数,则-3≤2m<-2,得②当m 当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x ∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。

2018-2019学年上海市七宝中学第一学期高一12月月考试卷(解析版)

2018-2019学年上海市七宝中学第一学期高一12月月考试卷(解析版)

上海市七宝中学2018-2019学年第一学期高一12月月考试卷一、选择题(本大题共4小题)1.已知是定义在上的函数,根据下列条件,可以断定是增函数的是A. 对任意,都有B. 对任意,都有C. 对任意,,且,都有D. 对任意,,且,都有【答案】D【解析】解:根据题意,依次分析选项:对于A,有函数,,对任意,都有,但函数为减函数,不符合题意;对于B,对任意,都有,不满足函数单调性的定义,不符合题意,对于C,当为常数函数时,对任意,,都有,不是增函数,不符合题意;对于D,对任意,,设,若,必有,则函数在上为增函数,符合题意;故选:D.根据题意,结合函数单调性的定义,依次分析选项,综合即可得答案.本题考查函数单调性的定义以及判断,关键是掌握函数单调性的定义,属于基础题.2.如果函数的反函数是,则函数反函数是A. B.C. D.【答案】A【解析】解:由得,,故选:A.由得,,本题考查了反函数,属基础题.3.对于函数,下列命题:时,为奇函数;的图象关于中心对称;,时,方程只有一个实根;方程至多有两个实根,其中正确的个数有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:当时,,,为奇函数,即正确,由函数的图象是将上下平移个单位,又由得的图象关于点对称,则函数的图象关于点中心对称,即正确,,时,,为奇函数,且为单调增函数,当时,,即方程只有一个实根正确,即正确,方程至多有两个实根,错误,例:,,则方程的根为:0、1、,即错误.故选:C.时,,,为奇函数,由函数的图象是将上下平移个单位,又由得的图象关于点对称,则函数的图象关于点中心对称,,时,,为奇函数,且为单调增函数,当时,,即方程只有一个实根正确,例:,,则方程的根为:0、1、,本题考查了函数图象的平移,及函数的奇偶性,属中档题.4.已知函数满足:对任意,恒有成立;当时,若,则满足条件的最小的正实数a的值为A. 28B. 34C. 36D. 100【答案】C【解析】解:取,则;,从而,其中,,1,2,,,设则,,即,,满足条件的最小的正实数a是36.故选:C.取,则;,从而,根据进行化简,设则求出a的取值范围.本题主要考查了抽象函数及其应用,同时考查了计算能力,分析问题解决问题的能力,转化与划归的思想,属于中档题.二、填空题(本大题共12小题)5.若幂函数是奇函数,则实数m的最小值是______.【答案】1【解析】解:幂函数是奇函数,是奇数,,实数m的最小值是1.故答案为:1.由幂函数是奇函数,得到m是奇数,再由,能求出实数m的最小值.本题考查实数值的求法,考查幂函数的性质、运算法则等基础知识,考查运算求解能力,是基础题.6.设,,则______.【答案】【解析】解:,;.故答案为:.可求出集合A,B,然后进行交集的运算即可.考查描述法的定义,指数函数的单调性,以及交集的运算.7.已知函数是奇函数,当时,,,则______.【答案】5【解析】解:函数是奇函数,而则将代入小于0的解析式得解得故答案为5先根据函数的奇偶性求出的值,然后将代入小于0的解析式,建立等量关系,解之即可.本题主要考查了函数奇偶性的应用,以及待定系数法求函数解析式,属于基础题.8.已知为常数,,,则的最小值是______.【答案】【解析】解:,,则,当且仅当时,取最小值,故答案为:.由已知可得,,从而有利用基本不等式即可求解.本题主要考查了对数的运算性质及基本不等式的简单应用,属于基础试题9.若函数有四个不同的零点,则实数a的取值范围是______.【答案】【解析】解:函数有四个不同的零点等价于与的图象有四个交点,的图象如右:由图可知:故答案为函数有四个不同的零点等价于与的图象有四个交点,本题考查了函数的零点与方程的根的关系属中档题.10.如果对于任意实数x,表示不超过x的最大整数例如,,那么“”是“”的______条件.【答案】充分不必要【解析】解:令,,,,即,,推不出;;是的充分不必要条件.故答案为:充分不必要.根据充分条件和必要条件的定义分别进行判断即可.本题以简易逻辑为载体,考查了取整的性质,考查了推理能力,属中档题.11.若是定义域为R,周期为4的偶函数,在上单调递增,且,则在上的解集是______.【答案】【解析】解:根据题意,在上单调递增,且,则在上,,在上,,又由为偶函数,则在上,,在上,,又由函数是周期为4的周期函数,也是函数的对称轴,则在上,,在,,在区间和上,,在上,,且,则有;故答案为:.根据题意,由函数的单调性分析可得在上,,在上,,结合函数的奇偶性可得上,,在上,,结合函数的周期性可得在上,,在,,进而可得在区间和上,,在上,,又由且,分析可得答案.本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,关键是分析的符号.12.设为,的反函数,则的最大值为______.【答案】4【解析】解:由在上为增函数,得其值域为,可得在上为增函数,因此在上为增函数,的最大值为.故答案为:4.由在上为增函数可得其值域,得到在上为增函数,由函数的单调性求得的最大值.本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.13.已知函数在R上是增函数,则实数a的取值范围是______.【答案】【解析】解:根据题意,函数在R上是增函数,则有,解可得:,即实数a的取值范围为;故答案为:.根据题意,由函数单调性的定义可得,解可得a的取值范围,即可得答案.本题考查分段函数的单调性,关键是理解函数单调性的定义.14.设常数,则方程的解的个数组成的集合是______.【答案】【解析】解:由|x+a|•2x=2018,得:|x+a|=,设:f(x)=,g(x)=|x+a|,在直角坐标系中分别画f(x),g(x)的图象由图①②③可得解.故答案为:由|x+a|•2x=2018,得:|x+a|=,设:f(x)=,g(x)=|x+a|,在直角坐标系中分别画f(x),g(x)的图象观察可得解.本题考查了数形结合的思想方法和作图能力,属中档题15.知函数,,若恰有两个不同的实根,则实数k的取值范围是______.【答案】(,【解析】解:设t=+x(x>0)则此函数在区间(0,1)为减函数,在区间(1,+∞)为增函数,值域为[2,+∞),g(t)=t2+kt+9(t≥2)f(x)=0恰有两个不同的实根,即t2+kt+9=0在[2,+∞)只有一个解,即△=0(k<0)或g(2)<0,即k2-36=0(k<0)或2k+13<0,即k=-6或k<-故答案为:(,设t=+x(x>0),结合该函数性质可得:f(x)=0恰有两个不同的实根,即t2+kt+9=0在[2,+∞)只有一个解,即△=0(k<0)或g(2)<0,可得解.本题考查了函数零点与方程根的关系,属中档题16.已知函数对函数,定义关于的“对称函数”为,满足:对任意,两个点,关于点对称,若是关于的“对称函数”且恒成立,则实数b的取值范围是______.【答案】【解析】解:由题意可得,由恒成立,可得在恒成立,设,由,均在递减,可得函数在递减,可得的最小值为,即有,即,可得b的范围是.故答案为:.由题意求得,即有在恒成立,设,判断单调性可得最小值,即可得到所求范围.本题考查新定义的理解和运用,考查不等式恒成立问题解法,注意运用参数分离和函数的单调性,考查运算能力和推理能力,属于中档题.三、解答题(本大题共5小题,共60.0分)17.设函数.指出在上的单调性,并证明你的结论;求的反函数.【答案】解:在上单调递减,证明:任取,,,,,,,在上单调递减,,,.【解析】减函数,用定义证明;反解出x,再对调x与,注意定义域.本题考查了反函数、函数单调性得定义属基础题.18.上海自贸区某种进口产品的关税税率为t,其市场价格单位:千元,与市场供应量单位:万件之间近似满足关系式:.请将p表示为关于x的函数,并根据下列条件计算:若市场价格为7千元,则市场供应量约为2万件试确定t的值;当时,经调查,市场需求量单位:万件与市场价格x近似满足关系式:为保证市场供应量不低于市场需求量,试求市场价格x的取值范围.【答案】解:由,得,,则,即;由,得,由,得,由指数函数的单调性可得,即.解得:.市场价格x的取值范围为不低于3千元,不超过9千元.【解析】由已知求得p,再由已知求得t;化对数式为指数式求得q,由可得关于x的指数不等式,求解得答案.本题考查根据实际问题选择函数模型,考查对数式与指数式的互化,训练了指数不等式的解法,是中档题.19.己知定义域为R的函数是奇函数.求函数的解析式,并判断函数的单调性无需证明;若对任意的,恒成立求实数k的取值范围.【答案】解:是奇函数,,解得.又由知,解得,.,,在上为减函数;是奇函数,不等式等价于,函数在上为减函数,由上式推得,即对一切有,从而判别式△ ,解得.【解析】由已知得,,由此能求出a,b,可得函数的解析式;利用导数判断、证明函数的单调性;根据函数的单调性,结合奇函数的性质把不等式转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.20.已知函数.若,求的解析式;求的值域,设,为实数,求在时的最大值;对中,若对的所有实数a及恒成立,求实数m的取值范围.【答案】解:由且,得,所以函数的定义域为,又;,由,由,得,令,则 ,, , 由题意知 即为函数 , 的最大值.注意到直线 是抛物线 的对称轴,因为 时,函数 , 的图象是开口向下的抛物线的一段,若 ,即,则 ; 若 ,即 ,则 ; 若 ,即 ,则 ,综上有; 由 的解析式可得 时, ;时, ; 可得 ,由 对 对 恒成立,即要使 恒成立,,令 ,对所有的 , 成立,只需 ,即有 或或 , 解得m 的取值范围是 ,或 .【解析】 由 且 可求得定义域,可得 的解析式; ,令 ,则 ,由此可转化为关于t 的二次函数,按照对称轴 与t 的范围 的位置关系分三种情况讨论,借助单调性即可求得其最大值;先由 求出函数 的最小值, 对 对 恒成立,即要使 恒成立,从而转化为关于t 的一次不等式,再根据一次函数的单调性可得不等式组,解出即可.本题考查函数恒成立问题,考查函数定义域、值域的求法,考查对问题的转化能力,恒成立问题往往转化为函数最值问题解决.21. 已知函数 在区间 上的最大值为4,最小值为1.求实数a 、b 的值;记,若在上是单调函数,求实数k的取值范围;对于函数,用1,2,,n,将区间任意划分成n个小区间,若存在常数,使得和式对任意的划分恒成立,则称函数为上的有界变差函数记,试判断函数是否为在上的有界变差函数?若是,求M的最小值;若不是,请说明理由.参考公式:【答案】解:函数,因为,所以在区间上是增函数,又函数故在区间上的最大值为4,最小值为1,,即,解得,;由已知可得,,,若在上是单调函数,若,即,在递增;当,即,若在递增,只需在恒成立,可得的最小值,即有即;若在递减,只需在恒成立,可得的最大值,即有即.解得或;函数为上的有界变差函数.因为函数为递增,递减,上的单调递增函数,且对任意划分T:,有恒成立,且对任意划分T:,有恒成立,且对任意划分T:,有,恒成立,由可得,存在常数M,使得恒成立,M的最小值为6.【解析】由已知中在区间的最大值为4,最小值为1,结合函数的单调性及最值,我们易构造出关于a,b的方程组,解得a,b的值;由的解析式可得的解析式,求得导数,讨论的符号,结合参数分离和单调性可得k的范围;根据有界变差函数的定义,我们先将区间进行划分,进而判断是否恒成立,进而得到结论.本题考查的知识点是函数恒成立问题,二次函数在闭区间上的最值,新定义,其中的关键是分析出函数的单调性,要用转化思想将其转化为恒成立问题,的关键是真正理解新定义的含义.。

【精品推荐】最新上海市七宝中学2018-2019学年高一上学期数学期中考试(精品解析)

【精品推荐】最新上海市七宝中学2018-2019学年高一上学期数学期中考试(精品解析)

上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当 n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项, f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。

2018-2019学年上海市七宝中学高一上学期10月月考数学试题(解析版)

2018-2019学年上海市七宝中学高一上学期10月月考数学试题(解析版)

2018-2019学年上海市七宝中学高一上学期10月月考数学试题一、单选题1.已知,a b 为非零实数,且a b <,则下列命题成立的是 A .22a b < B .22ab a b <C .2211ab a b< D .b aa b< 【答案】C 【解析】【详解】若a <b <0,则a 2>b 2,A 不成立;若220{,ab a b ab a b>⇒<<B 不成立;若a =1,b=2,则12,2b a b aa b a b==⇒>,所以D 不成立 ,故选C. 2.设集合A={}{}|1,,2,.x x a x R B x x b x R -<∈=-∈若A ⊆B,则实数a,b 必满足A .3a b +≤B .3a b +≥C .3a b -≤D .3a b -≥【答案】D【解析】试题分析:{}{}|1,|11A x x a x R x a x a =-<∈=-<<+,{}{}222B x x b x x b x b =-=+<-或,若A ⊆B ,则有21b a +≤-或21b a -≥+3a b ∴-≥【考点】1.绝对值不等式解法;2.集合的子集关系3.已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A x f x =<,则下列结论中正确的是( ) A .任意x A ∈,都有(3)0f x +> B .任意x A ∈,都有(3)0f x +< C .存在x A ∈,都有(3)0f x += D .存在x A ∈,都有(3)0f x +<【答案】A【解析】由题意可得 0a >,且0c <,122c a -<<-,1x =为()f x 的一个零点,再由根与系数的关系可得,另一零点为c a.可得{|1}cA x x a =<<,31x +>,有(3)0f x +>恒成立,从而得出结论.【详解】解:Q 函数2()f x ax bx c =++,且a b c >>,0a b c ++=,故有0a >,且0c <, 02a a c a c ∴<++=+,即2ca>-,且02a c c a c >++=+, 即12c a <-,因此有122c a -<<-, 又(1)0f a b c =++=,故1x =为()f x 的一个零点, 由根与系数的关系可得,另一零点为0c a<,所以有:{|1}cA x x a =<<,所以,331cx a+>+>,所以有(3)0f x +>恒成立, 故选:A . 【点睛】本题主要考查二次函数的性质,一元二次方程根的分布与系数的关系,体现了转化的数学思想,属于中档题.4.设,,,a b c d R ∈,32()()()f x x a x bx cx d =++++,32()(1)(1)g x ax dx cx bx =++++.记集合{|()0,}Sx f x x R ==∈,{|()0,}T x g x x R ==∈,若Card()S 、Card()T 分别表示集合S ,T 的元素个数,则下列结论不可能的是( ) A .Card()1S =,Card()0T = B .Card()1S =,Card()1T = C .Card()2S =,Card()2T = D .Card()2S =,Card()3T =【答案】D【解析】给a ,b ,c ,d 取特值,可排除A ,B ,C ,再根据()()f x g x ,解析式关系,确定对应根的关系,即可判断D . 【详解】当a =b =c =d =0时,f (x )=x 3,g (x )=1,此时Crad (S )=1,Card (T )=0,排除A ;当a =b =c =d =1时,f (x )=(x +1)(x 3+x 2+x +1)=(x +1)2(x 2+1),g (x )=x 3+x 2+x +1=(x +1)(x 2+1),此时Card (S )=1,Card (T )=1,排除B ; 当a =2,b =c =d =1时,f (x )(x +2)(x +1)(x 2+1),此时Card (S )=2,g (x )=(2x +1)(x +1)(x 2+1),此时Card (T )=2,排除C ;当0x ≠时32411()(1)(1)()a d c b g f x x x x x x x=++++=又当0ad =时(0)0f ad ==,而(0)1g =,所以Card()S Card()T ≥,因此结论不可能的是D . 故选:D . 【点睛】本题考查函数解析式以及函数零点,考查综合分析判断能力,属中档题.二、填空题5.不等式||1x >的解集为________; 【答案】(,1)(1,)-∞-+∞U 【解析】根据绝对值定义化简求解 【详解】||111x x x >∴><-Q 或故答案为:(,1)(1,)-∞-+∞U 【点睛】本题考查解含绝对值不等式,考查基本求解能力,属基础题.6.已知集合{}02A x x =<<,{}11B x x =-<<,则A B =I _________. 【答案】()0,1【解析】根据交集的定义即可写出答案。

【100所名校】上海市七宝中学2018--2019学年高一上学期数学期中考试+Word版含解析

【100所名校】上海市七宝中学2018--2019学年高一上学期数学期中考试+Word版含解析

析式,∴是同一函数 . 故选 D.
【点睛】 本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.
3. A 【解析】 【分析】
本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论
分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题
号 位
封座



场 考
2018-2019 学年上海市七宝中学
高一上学期数学期中考试
数学
注意事项:
1 .答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘
贴在答题卡上的指定位置。
2 .选择题的作答:每小题选出答案后,用
2B 铅笔把答题卡上对应题目的答案标号涂黑,
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
,且
,则 的取值范围是 _
的解集是 ,则实数 的取值范围是 ____
,则
________

上恒成立,则实数 的最小值是 __
14 .已知函数


),若不存在实数 使得

同时成立,则 的取值范围是 ________
15 .当
时,可以得到不等式

, ,由此可以推广为
,则 ________
16 .已知数集
二、填空题
5.函数 6.已知集合 7.不等式
的定义域为 ________ ,
的解集是 ________
,则
________
8. “若

,则
9.已知
,则
10 .若

11.若关于 的不等式

2018-2019学年七宝中学高一(上)期中数学试卷好题详解

2018-2019学年七宝中学高一(上)期中数学试卷好题详解

2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷一.填空题9.(3分)已知关于x 的不等式2x7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为 .10.(3分)已知函数,g (x )=x 2﹣3ax +2a 2(a <0),若不存在实数x 使得f (x )>1和g (x )<0同时成立,则a 的取值范围是11.(3分)当x ∈R +时,可以得到不等式 ,,…,由此可以推广为n xPx n ≥+,则P = n n12.(3分)已知数集A ={a 1,a 2,…,a n }(0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i 、j (1≤i ≤j ≤n ),a j +a i 与a j ﹣a i 两数中至少有一个属于集合A ,现给出以下四个命题:①数集{0,1,3,5,7}具有性质P ;②数集{0,2,4,6,8}具有性质P ;③若数集A 具有性质P ,则a 1=0;④若数集A ={a 1,a 2,…,a 5}(0≤a 1<a 2<…<a 5)具有性质P ,则a 1+a 3=2a 2;其中真命题有 (填写序号)二.选择题14.(3分)下列各组函数中,表示同一函数的是( ) A .f (x )=x 与B . 与C .>与 <D .f (x )=2x (x ∈{1})与g (x )=2x 2(x ∈{1})15.(3分)已知a ,b ∈R +,那么“a 2+b 2<1”是“ab +1>a +b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件16.(3分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油三.解答题18.练习册第21页的题“a>0,b>0,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当a=b时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若a>0,b>0,c>0,则,并指出等号成立的条件;(2)试将上述不等式推广到n(n≥2)个正数a1、a2、…、a n﹣1、a n的情形,并证明.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值y万元与技术改造投入x万元之间的关系满足:①y 与10﹣x和x的乘积成正比;②当x=5时,y=100;③ ,其中t为常数,且∈,.(1)设y=f(x),求出f(x)的表达式,并求出y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入的x的值.【变式】某公司有价值a 万元的一条生产流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入资金,相应就要提高生产产品的售价。

2018-2019年上海市七宝中学高一上10月月考数学试卷

2018-2019年上海市七宝中学高一上10月月考数学试卷

2018学年七宝中学高一上10月月考一. 填空题1. 不等式||1x >的解集为2. 设集合{|02}A x x =<<,{|11}B x x =-<<,则A B =3. 设,,,a b c d ∈R ,则()()0c d a b c a d b +>+⎧⎨-->⎩是c a d b >⎧⎨>⎩成立的 条件 4. 不等式204x x -≥+的解集为 5. 已知集合{|}A x x a =<,{|2}B x x =>,若A B =∅,则实数a 的取值范围是6. 命题“若,m n ∈R 满足6m n +≤,则2m ≤或4n ≤”是 命题(填“真”或“假”)7. 关于x 的不等式2320kx kx k ++-≤的解集为R ,则实数k 的取值范围是8. 已知{||1|2}A x x =-<,{|()(4)0}B x x m x =-->,若A B ,则实数m 的取值范围是9. 已知关于x 的不等式|1||2|x x t +-->有解,则实数t 的取值范围是10. 已知关于x 的方程22320x ax a -+-=的两个根为1x 、2x ,且在区间12(,)x x 上恰好有两个正整数,则实数a 的取值范围是11. 定义区间(,)a b 、[,)a b 、(,]a b 、[,]a b 的长度均为d b a =-,多个区间并集的长度为各区间长度之和,例如:(1,2)[3,5)的长度(21)(53)3d =-+-=,设()[]{}f x x x =⋅,()1g x x =-,其中[]x 表示不超过x 的最大整数,{}[]x x x =-,若用d 表示不等式()()f x g x ≥解集区间的长度,则当[2018,2018]x ∈-时,d =12. 对于集合M ,定义函数1()1M x M f x x M -∉⎧=⎨∈⎩,对于两个集合M 、N ,定义集合 {|()()1}M N M N x f x f x ∆=⋅=-,已知{2,4,6,8,10}A =,{1,2,4,8,16}B =,用||M 表示有限集合M 中的元素个数,则对于任意集合M ,||||M A M B ∆+∆的最小值为二. 选择题13. 已知a 、b 为非零实数,且a b <,则下列不等式恒成立的是( )A. 22a b <B. 22ab a b <C. 2211ab a b <D. b a a b< 14. 设集合{|||1,}A x x a x =-<∈R ,{|||2,}B x x b x =->∈R ,若A B ⊆,则实数a 、b 必满足( )A. ||3a b +≤B. ||3a b +≥C. ||3a b -≤D. ||3a b -≥15. 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A x f x =<,则下列结论中正确的是( )A. 任意x A ∈,都有(3)0f x +>B. 任意x A ∈,都有(3)0f x +<C. 存在x A ∈,都有(3)0f x +=D. 存在x A ∈,都有(3)0f x +<16. 设,,,a b c d ∈R ,32()()()f x x a x bx cx d =++++,32()(1)(1)g x ax dx cx bx =++++,记集合{|()0,}S x f x x ==∈R ,{|()0,}T x g x x ==∈R ,若()Card S 、()Card T 分别表示集合S 、T 的元素个数,则下列结论不可能的是( )A. ()1Card S =,()0Card T =B. ()1Card S =,()1Card T =C. ()2Card S =,()2Card T =D. ()2Card S =,()3Card T =三. 解答题17. 已知关于x 的不等式:(1)12a x x ->-(a ∈R ). (1)当1a =时,求此不等式的解集;(2)当1a <时,求此不等式的解集.18. 命题甲:关于x 的方程20x x m ++=有两个相异负根;命题乙:不等式243m pm m p +>+-对[0,1]p ∈恒成立.(1)若这两个命题至少有一个成立,求实数m 的取值范围;(2)若这两个命题有且仅有一个成立,求实数m 的取值范围.19. 若存在满足下列三个条件的集合A 、B 、C ,则称偶数n 为“萌数”,① 集合A 、B 、C 为集合{1,2,3,4,,}M n =⋅⋅⋅的3个非空子集,A 、B 、C 两两之间的交 集为空集,且A B C M =;② 集合A 中的所有数均为奇数,集合B 中的所有数均为偶数,所有3的倍数都在集合C 中; ③ 集合A 、B 、C 所有元素的和分别为1S 、2S 、3S ,且123S S S ==; 注:(1)1232n n n ++++⋅⋅⋅+= (1)判断:8n =是否为“萌数”?若为“萌数”,写出符合条件的集合A 、B 、C ,若不是“萌数”,说明理由;(2)证明:“62n k =+,k ∈N ”是“偶数n 为萌数”成立的必要条件.20. 已知集合2{|540}A x x x =-+≤,2{|220,}B x x ax a a =-++≤∈R .(1)求集合A ;(2)若A B ⊆,求实数a 的取值范围;(3)若B A ⊆,求实数a 的取值范围.21. 已知M 是满足下列条件的集合:① 0M ∈,1M ∈;② 若,x y M ∈,则x y M -∈; ③ 若x M ∈且0x ≠,则1M x∈. (1)判断12M ∈是否正确,说明理由; (2)证明:“x ∈Z ”是“x M ∈”的充分条件;(3)证明:若,x y M ∈,则xy M ∈.参考答案一. 填空题1. (,1)(1,)-∞-+∞2. (0,1)3. 充要4. (4,2]-5. (,2]-∞6. 真7. 8[,0]5-,0k =符合,当0k ≠,需满足0k <且0∆≤,综上解得8[,0]5k ∈-8. [3,)+∞,(1,3)A =-,结合数轴分析讨论,当4m ≤时,[3,4]m ∈;当4m >均符合,综上解得[3,)m ∈+∞9. 3t <,当2x =时,|1||2|x x +--取得最大值3,∴3t <10. 73(,)(,)22-∞-+∞,由0∆>且21(2,3)x x -=可求得范围 11. 2019,2(){}{}1f x x x x x =-≥-,∴({}1)({}1)({}1)x x x x -≥+-,即{}1x x ≤+,∴1x ≤,∴20181x -≤≤,即2019d =12. 4,由题意,{|M N x x M N ∆=∈且}x M N ∉,∴||||M A M B ∆+∆要取得最小值,需满足A B M A B ⊆⊆,此时||||M A M B ∆+∆为4二. 选择题13. C ,作差通分可得C 选项正确14. D ,用绝对值的几何意义即可观察得结果15. A16. D ,0a d ==,1b c ==时,A 选项成立;1a b c d ====时,B 选项成立;2b =,1a c d ===时,C 选项成立;故选D三. 解答题17.(1)(2,)+∞;(2)当(,0)a ∈-∞,解集为2(,2)1a a --;当0a =,解集为空集; 当(0,1)a ∈,解集为2(2,)1a a --. 18. 命题甲:104m <<,命题乙:3m >或1m <; (1)(,1)(3,)-∞+∞;(2)1(,0][,1)(3,)4-∞+∞. 19.(1)是,{5,7}A =,{4,8}B =,{1,2,3,6}C =;(2)由题意可得123(1)6n n S S S +===,且(1)6n n +为偶数,即(1)12n n m +=,m ∈*N , 讨论12n k =、122k +、124k +、126k +、128k +、1210k +()k ∈N 共六种情况, 排除其他五种情况,可得128n k =+,可推出62n k =+,k ∈N ,反之则不行,故为必要条件20.(1)[1,4];(2)[3,)+∞;(3)18(1,]7-. 21.(1)正确;(2)略;(3)略.。

2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷(解析版)

2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷(解析版)

2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷一、选择题(本大题共4小题,共12.0分)1.如图,I为全集,M、P、S是I的三个子集,则阴影部分所表示的集合是()A. B. C. D.2.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. 与3.已知a,b R+,那么“a2+b2<1”是“ab+1>a+b”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、填空题(本大题共12小题,共36.0分)4.函数的定义域为______5.已知集合,B={y|y=x2},则A∩B=______6.不等式>的解集是______7.“若a>1且b>2,则a+b>3”的否命题是______8.已知-1<a<b<1,则a-b的取值范围是______9.若A={x||x|<a},B={x|x<-2},且A∩B=∅,则a的取值范围是______10.若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则实数a的取值范围是______.11.若函数f(x-2)=x2-x+1,则f(2x+1)=______12.已知关于x的不等式2x+≥7在x(a,+∞)上恒成立,则实数a的最小值为______.13.已知函数,g(x)=x2-3ax+2a2(a<0),若不存在实数x使得f(x)>1和g(x)<0同时成立,则a的取值范围是______14.当x R+时,可以得到不等式,,…,由此可以推广为,则P=______15.已知数集A={a1,a2,…,a n}(0≤a1<a2<…<a n,n≥3)具有性质P:对任意i、j(1≤i≤j≤n),a j+a i与a j-a i两数中至少有一个属于集合A,现给出以下四个命题:①数集{0,1,3,5,7}具有性质P;②数集{0,2,4,6,8}具有性质P;③若数集A具有性质P,则a1=0;④若数集A={a1,a2,…,a5}(0≤a1<a2<…<a5)具有性质P,则a1+a3=2a2;其中真命题有______(填写序号)三、解答题(本大题共5小题,共72.0分)16.练习册第21页的题“a>0,b>0,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当a=b时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若a>0,b>0,c>0,则,并指出等号成立的条件;(2)试将上述不等式推广到n(n≥2)个正数a1、a2、…、a n-1、a n的情形,并证明.17.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值y万元与技术改造投入x万元之间的关系满足:①y与10-x和x的乘积成正比;②当x=5时,y=100;③,其中t为常数,且,.(1)设y=f(x),求出f(x)的表达式,并求出y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入的x的值.18.已知x>0,设a=x2+2x+1,b=x2+7x+1,c=mx(m>0,m为常数).(1)求的最小值及相应的x的值;(2)设A={x|a-c=0},若A∩R+=∅,求m的取值范围;(3)若对任意x>0,以、、为三边长总能构成三角形,求m的取值范围.答案和解析1.【答案】C【解析】解:图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集即是C I S的子集则阴影部分所表示的集合是(M∩P)∩∁I S故选:C.先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.2.【答案】D【解析】解:A.f(x)=x的定义域为R,g(x)=的定义域为[0,+∞),定义域不同,不是同一函数;B.的定义域为{x|x≤-2,或x≥2},的定义域为{x|x≥2},定义域不同,不是同一函数;C.,f(0)=-1,,g(0)=1;(0,-1)是f(x)图象上的点,不在g(x)的图象上,不是同一函数;D.f(x)=2x(x{1})表示点(1,2),g(x)=2x2(x{1})表示点(1,2),函数图象相同,是同一函数.故选:D.通过求函数定义域,可判断出选项A,B都错误,根据f(x),g(x)的解析式看出,点(0,-1)在f(x)图象上,而不在g(x)的图象上,从而这两函数不是同一函数,只能选D.考查函数的定义,判断两函数是否为同一函数的方法:看定义域和解析式是否都相同.3.【答案】A【解析】解:由题意可知:a,b R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论并分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.值得同学们体会反思.4.【答案】[0,1)(1,2]【解析】解:由,解得0≤x≤2且x≠1.∴函数的定义域为[0,1)(1,2].故答案为:[0,1)(1,2].由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.【答案】[0,1]【解析】解:解1-x2≥0得,-1≤x≤1;∴A=[-1,1];又x2≥0;∴B=[0,+∞);∴A∩B=[0,1].故答案为:[0,1].可解出集合A,B,然后进行交集的运算即可.考查描述法的定义,一元二次不等式的解法,以及交集的运算.6.【答案】,【解析】解:∵,∴>0,即<0,解得:-<x<0,故不等式的解集是(-,0),故答案为:(-,0)移项,求出不等式的解集即可.本题考查了解分式不等式,考查转化思想,是一道基础题.7.【答案】若a≤1或b≤2,则a+b≤3【解析】解:命题“若a>1且b>2,则a+b>3”的否命题是“若a≤1或b≤2,则a+b≤3”,故答案为:若a≤1或b≤2,则a+b≤3根据四种命题的定义,结合原命题,可得其否命题.本题考查的知识点是四种命题,正确理解四种命题的定义,是解答的关键.8.【答案】(-2,0)【解析】解:∵-1<a<1,-1<b<1∴-1<-b<1,∴-1-1<a-b<1+1∴-2<a-b<2,又a<b,∴a-b<0故答案为:(-2,0)由b的范围得-b的范围,然后两个不等式同向相加.本题考查了不等关系与不等式.属基础题.9.【答案】(-∞,2]【解析】解:根据题意得,A={x|-a<x<a};B={x|x<-2},且A∩B=∅,∴-a≥2,∴a≤-2,故答案为(-∞,2].运用交集的定义可求得参数的取值范围.本题考查集合的交集和参数的取值范围.10.【答案】(-2,2]【解析】解:由题意,a=2时,不等式为-4<0恒成立,满足题意,所以a=2成立;a≠2时,不等式(a-2)x2+2(a-2)x-4<0的解集为R,等价于,解得-2<a<2;综上得到a的范围是(-2,2];故答案为:(-2,2].观察不等式,二次项系数为a-2,故讨论系数,得到不等式解集为R的a的范围.本题考查了不等式恒成立问题的加法;关键是注意讨论的二次项系数.11.【答案】4x2+10x+7【解析】解:令x-2=t,则x=t+2,∴f(t)=(t+2)2-(t+2)+1=t2+3t+3,∴f(2x+1)=(2x+1)2+3(2x+1)+3=4x2+10x+7,故答案为:4x2+10x+7.先换元令x-2=t,得x=t+2,求出f(t)后,将t换成2x+1即可.本题考查了函数解析的求解及换元法.属基础题.12.【答案】【解析】解:∵x>a,∴x-a>0,∴2x+=2(x-a)++2a≥2+2a=2a+4,即2a+4≥7,所以a≥,即a的最小值为当且仅当x=a+1时取等号.故答案为.将不等式配凑成基本不等的形式,利用基本不等式求最小值,注意等号成立的条件即可.本题考查不等式恒成立问题,合理利用基本不等式给解题带来“便捷”,关键要注意等号成立的条件,属于基础题.13.【答案】 ,,【解析】解:由f(x)>1,得>1,化简整理得<0,解得-2<x<-1或2<x<3,即f(x)>1的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为:B={x|2a<x<a,a<0},由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0},故答案为:(-∞,-2][-,0).通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.14.【答案】n n【解析】解:∵x R+时可得到不等式,,…,∴在p位置出现的数恰好是分母的指数的指数次方∴p=n n故答案为:n n本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值.本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向.15.【答案】②③④【解析】解:①数集A={0,1,3,5,7},由于7-5=2,7+5=12,2,12∉A,故不具有性质P;②数集A={0,2,4,6,8},由于0,2,4,6,8构成等差数列,首项为0,公差为2,具有性质P;③若数集A具有性质P,可令i=j可得2a i与0两数中至少有一个属于集合A,当i=n时,2a n∉A,即有0A则a1=0正确;④若数集A={a1,a2,…,a5}(0≤a1<a2<…<a5)具有性质P,由③可得a1=0,令j=n,i>1,则∵“a i+a j与a j-a i两数中至少有一个属于A”,∴a i+a j不属于A,∴a n-a i属于A.令i=n-1,那么a n-a n-1是集合A中某项,a1不行,是0,a2可以.如果是a3或者a4,那么可知a n-a3=a n-1,那么a n-a2>a n-a3=a n-1,只能是等于a n 了,矛盾.所以令i=n-1可以得到a n=a2+a n-1,即有a3=2a2,则a1+a3=2a2,故④正确.故答案为:②③④.由新定义考虑7-5=2,7+5=12不在数集中,可判断①;考虑A中的数构成等差数列,结合新定义可判断②;由i=j,结合新定义可判断③;j=n,i>1,结合a1=0,以及新定义,推理可判断④.本题考查命题的真假判断,考查等差数列的定义通项公式、新定义,考查推理能力与计算能力,属于中档题.16.【答案】证明:(1)∵,∴,当且仅当a=b=c时等号成立;(2)∵+a2++a3+…++a1≥2a1+2a2+…+2a n-1+2a n,∴.当且仅当a1=a2=…=a n-1=a n时取等号【解析】(1)根据题设例题证明过程,类比b++c++a+可得证明,(2)根据题设例题证明过程,类比b++c++a+可得证明本题考查了基本不等式的应用,考查了不等式的证明和类比的思想,属于中档题17.【答案】解:(1)由题意可设y=k(10-x)x,∵当x=5时,y=100,∴k(10-5)×5=100,∴k=4,∴y=f(x)=4x(10-x),∵,t[,1],∴x[0,],(2)由(1)可知y=4x(10-x)=-4(x-5)2+100,∵x[0,],t[,1],令f(t)=,则f(t)=10•=10()=10(1-),显然f(t)在[,1]上是单调递增,∵f()=5,∴≥5,∴y=-(x-5)2+25,x(0,],当x=5时,y max=25,因此售价y的最大值为25万元,此时的技术改造投入的资金为5万元【解析】(1)可设y=k(10-x)x,代值计算即可,再根据函数的性质求出定义域,(2)由(1)可知y=4x(10-x)=-4(x-5)2+100,即可求出附加值y的最大值,并求出此时的技术改造投入的x的值本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,属于中档题.18.【答案】解:(1)由已知得==(2x++9),∵x>0,∴x+≥2,∴的最小值为,当x=1时取等号;(2)A={x|a-c=0},即有A={x|x2+2x+1=mx},由m>0,x2+2x+1=(x+1)2≥0,可得x>0,由m=x++2≥2+2=4,当且仅当x=1时,取得等号,又A∩R+=∅,可得m<4,即m的范围是(-∞,4);(3)∵b>a>0,∴>>0.∴ >>,即>>对x>0恒成立.∴><对x>0恒成立,∵+≥+=5(x=1取得等号),∴5>,即m<25.又∵-=≤=1,∴>1,即m>1.综上得1<m<25.【解析】(1)化简所求式子,运用基本不等式即可得到所求最小值和x的值;(2)由题意可得x>0,运用基本不等式和A中无正数解,可得m的范围;(3)运用三角形的三边的关系和基本不等式,以及不等式恒成立问题解法,即可得到所求范围.本题考查了基本不等式、三角形的三边大小关系、恒成立问题等基础知识与基本技能方法,属于难题.第11页,共11页。

上海市七宝中学2018-2019学年高一上学期期中考试数学试题 Word版含解析

上海市七宝中学2018-2019学年高一上学期期中考试数学试题 Word版含解析

上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当 n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项, f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.【此处有视频,请去附件查看】三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。

【精编】最新上海市七宝中学2018-2019学年高一上学期数学期中考试(精品解析)

【精编】最新上海市七宝中学2018-2019学年高一上学期数学期中考试(精品解析)

上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m 的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。

上海市七宝中学2018-2019学年高一上学期12月月考数学试题(练习版)

上海市七宝中学2018-2019学年高一上学期12月月考数学试题(练习版)
(参考公式:
上海市七宝中学2018-2019学年第一学期高一12月月考试卷
一、选择题(本大题共4小题)
1.已知 是定义在 上的函数,根据下列条件,可以断定 是增函数的是
A.对任意 ,都有
B.对任意 ,都有
C.对任意 ,且 ,都有
D.对任意 ,且 ,都有
2.如果函数 的反函数是 ,则函数 的反函数是
A. B.
C. D.
(2)当 时,经调查,市场需求量 (单位:万件)与市场价格 近似满足关系式: .为保证市场供应量不低于市场需求量,试求市场价格 的取值范围.
19.已知定义域为 函数 是奇函数.
(1)求函数 解析式,并判断函数的单调性(无需证明);
(2)若对任意的 , 恒成立求实数 的取值范围.
20.已知函数 .
(1)若 ,求 解析式;
三、解答题(本大题共5小题,共60.0分)
17.设函数 .
(1)指出 在 上的单调性,并证明你的结论;
(2)求 的反函数 .
18.上海自贸区某种进口产品的关税税率为 ,其市场价格 (单位:千元, 与市场供应量 (单位:万件)之间近似满足关系式: .
(1)请将 表示为关于 的函数,并根据下列条件计算:若市场价格为7千元,则市场供应量约为2万件.试确定 的值;
10.如果对于任意实数 , 表示不超过 的最大整数,例如 , ,那么“ ”是“ ”的______条件.
11.若 是定义域为 ,周期为4的偶函数,在 上单调递增,且 ,则 在 上的解集是______.
12.设 为 , 的反函数,则 的最大值为________.
13.已知函数 在 上是增函数,则实数 的取值范围是______.
14.设常数 ,则方程 的解的个数组成的集合是 ______.

2018-2019学年上海市七宝中学第一学期高一12月月考试卷(解析版)

2018-2019学年上海市七宝中学第一学期高一12月月考试卷(解析版)

方程 ꪬ꧈ 至多有两个实根,其中正确的个数有ꪬ ꧈
A. 1 个
B. 2 个
C. 3 个
D. 4 个
【答案】C 【解析】解:当 耀 时, ꪬ꧈ 䁪䁪 䁪, ꪬt꧈ t 䁪䁪 t 䁪 t ꪬ꧈, ꪬ꧈为 奇函数,即 正确,
由函数 ꪬ꧈ 䁪䁪 䁪 耀 的图象是将 ꪬ꧈ 䁪䁪 䁪 上下平移䁪耀䁪个单位, 又由 得 ꪬ꧈ 䁪䁪 䁪 的图象关于点ꪬ ꧈对称,则函数 ꪬ꧈ 䁪䁪 䁪 耀 的图 象
【答案】(t , t 13 ꧈
꧈,若 ꪬ꧈ 恰有两个不同
【解析】解:设 t=1+x(x>0)则此函数在区间(0,1)为减函数,在区间(1,+∞)

为增函数,值域为[2,+∞), g(t)=t2+kt+9(t≥2)
f(x)=0 恰有两个不同的实根, 即 t2+kt+9=0 在[2,+∞)只有一个解, 即△=0(k<0)或 g(2)<0, 即 k2-36=0(k<0)或 2k+13<0,
Hale Waihona Puke 【解析】解:꧈, 1 ꧈;
1 ꧈.
故答案为: 1 ꧈.
可求出集合 A,B,然后进行交集的运算即可.
考查描述法的定义,指数函数的单调性,以及交集的运算.
7. 已知函数
ꪬ꧈是奇函数,当 ‸ 时, ꪬ꧈ 㔠ꪬ㔠 ꧈, ꪬ ꧈ t,则
㔠 ______.
【答案】5
【解析】解: 函数
ꪬ꧈是奇函数
4. 已知函数 ꪬ꧈满足: 对任意 ꪬ
ꪬ1 时, ꪬ꧈ t .若 ꪬ㔠꧈ ꪬ
ꪬ꧈
A. 28
B. 34
꧈,恒有 ꪬ ꧈ ꪬ꧈成立; 当 ꧈,则满足条件的最小的正实数 a 的值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七宝中学高一分班考数学试卷
2018.07
一选择题
1.已知a>b>0则下列不等式不一定成立的是()
A.ab>bc
B. a+c>b+c
C. 1
a
<
1
b
D. ac>bc
2.若不等式组
21
1
3
x
x a
-



⎪⎩
的解为x>2,则a的取值范围是()
A. a>2
B. a≥2
C. a<2 D a≤2
3.若M(-1
2
,y1)、N(-
1
4
,y2)、P(
1
2
,y3)三点都在函数(0)
k
y k
x
=的
图像上,则y1、y2、y3大小关系为
A. y2> y1> y3
B. y2> y3> y1
C. y3> y1> y2
D. y3> y2> y1
4.已知y = 2x2的图像是抛物线,若抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式为()
A. y=2(x-2)2+2
B. y=2(x+2)2-2
C. y=2(x-2)2-2
D. y=2(x+2)2+2
5.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖,参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率为()
A.1
4
B.
1
6
C.
1
5
D.
3
20
6.将水匀速注入一个容器,时间(t)与容器水位(h)的关系如图,则容器形状是()
二、填空题
7.
2
(3)0
n-=,则2009
(3)
m n
+-=
8.已知a:b:c=4:5:7,a + b + c = 240,则2b-a+c =
9.将一张坐标纸折叠一次,使得点(0,2)与(-2,0)重合,则点(-1
2
,0)与点_重

10.对于整数a、b、c、d,符号a b
d c
表示运算ac bd
-,已知
1
13
4
b
d
,则
b+d 的值为 11.定义“*”:A *B (1)(1)X Y A B A B =
++++,若1*2=3,2*3= 4,则3*4= 12.分式方程133
x m x x +=--有增根,则m= 13.如图是一个有规律排列的数表,请用含n 的代数式 (n 为正整数)表示数表中第n 行第n 列的数:
14.已知a-b=b-c=35
,a 2+b 2+c 2=1,则ab+bc+ca= 15.若2610x x -+=,则2211x x
+-= 16.如图,AB//CD, ∠BAP=600-α, ∠APC=45+α, ∠PCD=300-α,则α=
17.关于x 的一元二次方程mx 2-x +1=0有实根,则m 的取值范围是_
18.如图,点A. B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程长度是 .
19.二次函数y = x 2- 2x -3与二轴两交点之间的距离为_
20.已知α、β是方程x 2- x -1=0的两个实数根,则代数式22(2)ααβ+-==_
21.如图,在三角形纸片ABC 中,∠C=900, ∠A=300, AC=3,折叠该纸片,使点A 与点B 重合,折痕与AB 、 AC 分别相交于点E 和点D ,则折痕DE 的长为
22.已知x 、y 、z 为实数,满足2623
x y z x y z +-=⎧⎨-+=⎩,那么x 2+y 2+z 2的最小值是
三解答题
23.一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.
24.如图,线段AB=5,点E在线段AB上,且AE=3, GB与以AE为半径的GA相交于点C,CE的延长线交GB于点F.
(1)当直线AC是GB的切线时,求证,BF⊥AB;
(2)求EF:CE的值;
(3)设EF = y,BF=x,求y关于x的函数解析式,并写出它的定义域.
25.如图,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1, OB=万,矩形ABOC绕点。

按顺时针方向旋转600后得到矩形EFOD,点A的对应点为点E,点B的对应点为点F,点C 的对应点为点D,抛物线y=ax2+bx + c过点A. E. D.
(1)判断点E是否在y轴上,并说明理由;
(2)求抛物线夕=ax2 + bx + c的函数表达式;
(3)在x轴的上方是否存在点P、Q,使以点O、B、P、Q为顶点的平行四边形OBPQ的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P、Q的坐标;若不存在,请说明理由.。

相关文档
最新文档