控制系统的根轨迹分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________
实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
实验十一 控制系统的根轨迹分析
一、实验目的
1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。
2、熟练掌握 Simulink 仿真环境。
二、实验原理
1、根轨迹分析方法
所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特
征方程的根就是闭环传递函数的极点。
根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性
当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K
值就是临界稳定开环增益。 (2) 稳态性能
开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能
当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。
同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数
在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。
专业:_____________________
姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________
(2) rlocus:求系统根轨迹。例如rlocus(a,b,c,d)、rlocus(num,den)或rlocus(a,b,c,d,k)、rlocus(num,den,k),为根据开环系统的状态空间模型或传递函数模型,直接在屏幕上绘制出系统的根轨迹图,其中开环增益的值从零到无穷大变化或指定其变化范围。
(3) rlocfind:计算给定一组根的根轨迹增益。例如[k,p]=rlocfind(num,den),其要求在屏
幕上先已经绘制好有关的根轨迹图。然后,此命令将产生一个光标以用来选择希望的闭环极点。命令执行结果:k 为对应选择点处根轨迹开环增益;p 为此点处的系统闭环特征根。
三、实验内容
一开环系统的传递函数为
绘制出此闭环系统的根轨迹,并分析系统的稳定性。
四、实验要求
1、编制MATLAB 程序,画出实验所要求的根轨迹,求出系统的临界开环增益,并用
闭环系统的冲激响应证明之。
2、在Simulink 仿真环境中,组成系统的仿真框图,观察临界开环增益时系统的单位阶
跃响应曲线并记录之。
五、实验记录
1、MATLAB 的文件编程和仿真
(1) 实验程序
num=[1,2];
den=[conv([1,4,3],[1,4,3])];
rlocus(num,den) % 使用传递函数模型表征开环系统
[k,p]=rlocfind(num,den) % 在根轨迹图中使用光标获得相应的极点p与增益k
z=[-2];
p=[-1,-1,-3,-3];
k=32*sqrt(3); % k=55.4256为临界开环增益
[num,den]=zp2tf(z,p,k); % 使用零极点模型表征开环系统, 并转换为传递函数
[num1,den1]=cloop(num,den); % 闭环传递函数
subplot(211);
step(num1,den1);
xlim([0,20]);
grid; % 单位阶跃响应
subplot(212);
impulse(num1,den1);
xlim([0,20]);
grid; % 单位冲激响应
(2) 运行结果selected_point =
-0.8341 + 1.3665i
k =
6.9178
p =
-4.2173
-2.1390
-0.8218 + 1.3624i -0.8218 - 1.3624i
(根轨迹曲线)
(响应曲线)
2、MATLAB 的Simulink 仿真
(1) 系统框图
分析使用的系统为传递函数(Transfer Function)模型,在输入框赋予指定的一维向量。
(2) 仿真结果
七、结果分析
1、理论分析
对于开环传递函数为的控制系统,其特征方程为
(1) 根轨迹的起讫点与条数
系统具有二阶开环极点p i = -1, -3,开环零点z i = -2,即P = 4,Z = 1。因此系统共有四条根轨迹分支,始于四个开环极点,其一终于开环零点,其余三条将沿渐近线趋向于s 平面的无穷远处。
(2) 实轴上的根轨迹
由判定规则易知,实轴上-2 至-3 和-3 至无穷小间的线段均为根轨迹(但其走向不同)。(3) 根轨迹的渐近线
渐近线与实轴的夹角与交点由下面二式确定
即渐近线过零点-2,且与实轴的夹角为60°。
(4) 分离点
由系统特征方程可得
因而分离点为-1,其出射角为90°。
(5)根轨迹与虚轴的交点
令特征方程中s=jw,可得