复旦大学生化课件脂肪代谢详解演示文稿
合集下载
生物化学 第08章 脂代谢(共68张PPT)
合成一分子软脂酸的总反应式
4、脂肪酸的延伸反应
NADPH
5、脂肪酸的去饱和反应
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位
胞液
酰基载体
ACP-SH
二碳单位参与或断裂形式 丙二酸单酰ACP
电子供体或受体
NADPH+H+
-羟酰基中间物的立体构型不同
D型
对HCO3-和柠檬酸的需求 所需酶
甘油
R1COOH R2COOH R3COOH
脂肪酸
场所: 细胞质内(主要是脂肪组织) 关键酶:脂肪酶(限速酶) 调控: 激素 功能: 水解产物可进一步氧化分解
二、甘油的氧化分解与转化
CH 2OH ATP ADP CH 2OH NAD + NADH+H +
CHOH
CHOH
甘油激酶
CH 2OH (肝 、 肾 、 肠 ) CH 2O
α–lipoprotein (high density 脂酰-CoA的跨线粒体内膜的转运
第十章
FAD+2ATP+3H20
(2)脂酰CoA转运入线粒体
脂类的脂消类化代、谢吸收、 CH3(CH2)nCOOH
(hormone-sensitive lipase , HSL) 这对于某些生活在干燥缺水环境的生物十分重要,像骆驼已将β-氧化作为获取水的一种特殊手段。
5~10 50~70 10~15 10~15
20~25 10 40~50 5
45~50 20 20~22 30
生理功能
转运外源性 TG
转运内源性 TG 转运 Ch 转运PL、Ch
第二节 第十章
生化ppt有关脂肪代谢
2.脂酸活化成脂酰CoA
总反应式
3.脂酰CoA转运至线粒体
*β-氧化循环结果 氧化循环结果: 氧化循环结果 原脂酰CoA的α、β碳原子间被断开,释放出一分子乙 碳原子间被断开, 原脂酰 的 、 碳原子间被断开 和原来少2 酰CoA和原来少2个碳原子的脂酰 和原来少 个碳原子的脂酰CoA。 。 过程 -脂酰 脂酰CoA(线粒体基质)在脂酸氧化酶系催化下,进 脂酰 (线粒体基质)在脂酸氧化酶系催化下, 行脱氢(FADH2)、加水、再脱氢 行脱氢 、加水、再脱氢(NADH+H+ )及硫解四 步连续反应, 步连续反应, 脂酰基断裂生成1分子比原来少2 脂酰基断裂生成1分子比原来少2个碳原子的脂酰 CoA和1分子乙酰 和 分子乙酰CoA。 。
脂肪酸β-氧化反应过程
3. 脂酸的 氧化 脂酸的β-氧化
产物---生成大量的乙酰 产物 生成大量的乙酰CoA 生成大量的乙酰 在线粒体中通过三羧酸循环彻底氧 化;
脂酸氧化的能量生成 软脂酸( ),进行 氧化, 软脂酸(C16),进行7次β-氧化,生成: ),进行7 氧化 生成: 分子FADH2 7分子 2 7×2ATP 分子NADH+H+ 7×3ATP 7分子 +H+ 分子乙酰CoA 12ATP 8分子乙酰 8×12 共生成 131ATP-活化消耗2ATP -活化消耗2 净生成 129 ATP
叙述甘油三酯分解产能的主要过程(包括 脂肪动员、脂酸活化成脂酰CoA、转运至 线粒体的载体及限速酶、脂酸的β氧化)
组员:何培辉 组员 何培辉 李海:激素敏感性甘油三酯脂肪酶 分解限速酶: (hormone(hormone-sensitive triglyceride lipase HSL) 脂解激素—促进脂肪动员的激素、肾上腺素、 脂解激素—促进脂肪动员的激素、肾上腺素、胰高血糖 促肾上腺皮质激素、 素、促肾上腺皮质激素、促甲状腺素 抗脂解激素--抑制脂肪动员的激素、胰岛素、 --抑制脂肪动员的激素 抗脂解激素--抑制脂肪动员的激素、胰岛素、前列腺素 及尼克酸
生化-第07章 脂质代谢共176页PPT资料
33 目录
(二)磷脂是重要的结构成分和信号分子
1. 磷脂是构成生物膜的重要成分
磷脂分子具有亲水端和疏水端,在水溶液中可聚集 成脂质双层,是生物膜的基础结构。 细胞膜中能发现几乎所有的磷脂,甘油磷脂中以磷 脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸含量最高, 而鞘磷酯中以神经鞘磷酯为主。 各种磷脂在不同生物膜中所占比例不同。磷脂酰胆 碱(卵磷脂)存在于细胞膜中,心磷脂是线粒体膜 的主要脂质。
14
目录
甘油磷脂的基本结构:
甘油
脂肪酸
C| H2-O-CO-R' R"-CO-O-CH
| CH2-O-PO3H-X
磷酸 含氮化合物
15 目录
机 体 内 几 类 重 要 的 甘 油 磷 脂
16 目录
磷脂酰肌醇 (phosphatidyl inositol) 磷脂酰丝氨酸 (phosphatidyl serine)
动物胆固醇(27碳)
23 目录
植物(29碳)
酵母(28碳)
24 目录
二、脂质具有多种复杂的生物学功能
(一)甘油三酯是机体重要的能源物质
首先,甘油三酯氧化分解产能多。 第二,甘油三酯疏水,储存时不带水分子,占体积小。 第三,机体有专门的储存组织——脂肪组织。 甘油三酯是脂肪酸的重要储存库。 甘油二酯还是重要的细胞信号分子。
-9
油酸
9-18:1
-6
亚油酸
9,12-18:2
-3
亚麻酸
9,12,15-18:3
同簇的不饱和脂酸可由其母体代谢产生,如花 生四烯酸可由-6簇母体亚油酸产生。但-3、-6 和-9簇多不饱和脂酸在体内彼此不能相互转化。 动物只能合成ω-9及ω-7系的多不饱和脂酸,不能 合成ω-6及ω-3系多不饱和脂酸。
(二)磷脂是重要的结构成分和信号分子
1. 磷脂是构成生物膜的重要成分
磷脂分子具有亲水端和疏水端,在水溶液中可聚集 成脂质双层,是生物膜的基础结构。 细胞膜中能发现几乎所有的磷脂,甘油磷脂中以磷 脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸含量最高, 而鞘磷酯中以神经鞘磷酯为主。 各种磷脂在不同生物膜中所占比例不同。磷脂酰胆 碱(卵磷脂)存在于细胞膜中,心磷脂是线粒体膜 的主要脂质。
14
目录
甘油磷脂的基本结构:
甘油
脂肪酸
C| H2-O-CO-R' R"-CO-O-CH
| CH2-O-PO3H-X
磷酸 含氮化合物
15 目录
机 体 内 几 类 重 要 的 甘 油 磷 脂
16 目录
磷脂酰肌醇 (phosphatidyl inositol) 磷脂酰丝氨酸 (phosphatidyl serine)
动物胆固醇(27碳)
23 目录
植物(29碳)
酵母(28碳)
24 目录
二、脂质具有多种复杂的生物学功能
(一)甘油三酯是机体重要的能源物质
首先,甘油三酯氧化分解产能多。 第二,甘油三酯疏水,储存时不带水分子,占体积小。 第三,机体有专门的储存组织——脂肪组织。 甘油三酯是脂肪酸的重要储存库。 甘油二酯还是重要的细胞信号分子。
-9
油酸
9-18:1
-6
亚油酸
9,12-18:2
-3
亚麻酸
9,12,15-18:3
同簇的不饱和脂酸可由其母体代谢产生,如花 生四烯酸可由-6簇母体亚油酸产生。但-3、-6 和-9簇多不饱和脂酸在体内彼此不能相互转化。 动物只能合成ω-9及ω-7系的多不饱和脂酸,不能 合成ω-6及ω-3系多不饱和脂酸。
复旦大学生化课件教材-脂肪代谢
脂类代谢(Lipid Metabolism)
脂类代谢[Lipid Metabolism]
一、脂肪的消化与 五、脂肪酸合成
吸收
六、脂肪的合成
二、脂肪的分解 七、磷脂的代谢
三、脂肪酸的氧化 八、鞘脂的代谢
(分解代谢)
九、胆固醇代谢
四、酮体的合成与 十、脂蛋白 分解
脂肪代谢[Fat Metabolism]
运输的脂肪酸解离进入细胞氧化供能。
甘脂 油肪 三组 酯织 的贮 动存 员的
肾上腺素
脂
肪肪
动细
员胞
的中
信激
号素
传诱
导导
脂
脂 肪 动 用 的 激 素 调 节
(+)
胰高血糖素,甲状腺 素,肾上腺皮质激素
甘油代谢
(Glycerol Metabolism)
脂肪细胞缺乏甘油激酶,不能利用甘油, 随血液回到肝脏,可以发生:
顺 3-顺-2-反异构化 时
氧 化
单 不 饱
顺 反 异 构
和 脂 肪 酸 的
不
—+
-
饱
遇
还和
到 4
顺 时
原脂
顺 反
肪 酸
异的
构氧
化
多 酸不 的饱 氧和 化脂
肪
亚油酸
Complete Oxidation of Odd-
Number Fatty Acids
天然脂中的脂肪酸多为偶数碳脂肪酸,奇数 碳脂肪酸在植物和海洋生物中常见。少量的三 碳丙酸被添加到面包和谷类食品中作为霉菌抑 制剂,因此丙酸也随食物进入人体。
左旋肉碱为公认安全、无毒物质。 • 1996年我国第16次全国食品、添加剂标准化技术员
脂类代谢[Lipid Metabolism]
一、脂肪的消化与 五、脂肪酸合成
吸收
六、脂肪的合成
二、脂肪的分解 七、磷脂的代谢
三、脂肪酸的氧化 八、鞘脂的代谢
(分解代谢)
九、胆固醇代谢
四、酮体的合成与 十、脂蛋白 分解
脂肪代谢[Fat Metabolism]
运输的脂肪酸解离进入细胞氧化供能。
甘脂 油肪 三组 酯织 的贮 动存 员的
肾上腺素
脂
肪肪
动细
员胞
的中
信激
号素
传诱
导导
脂
脂 肪 动 用 的 激 素 调 节
(+)
胰高血糖素,甲状腺 素,肾上腺皮质激素
甘油代谢
(Glycerol Metabolism)
脂肪细胞缺乏甘油激酶,不能利用甘油, 随血液回到肝脏,可以发生:
顺 3-顺-2-反异构化 时
氧 化
单 不 饱
顺 反 异 构
和 脂 肪 酸 的
不
—+
-
饱
遇
还和
到 4
顺 时
原脂
顺 反
肪 酸
异的
构氧
化
多 酸不 的饱 氧和 化脂
肪
亚油酸
Complete Oxidation of Odd-
Number Fatty Acids
天然脂中的脂肪酸多为偶数碳脂肪酸,奇数 碳脂肪酸在植物和海洋生物中常见。少量的三 碳丙酸被添加到面包和谷类食品中作为霉菌抑 制剂,因此丙酸也随食物进入人体。
左旋肉碱为公认安全、无毒物质。 • 1996年我国第16次全国食品、添加剂标准化技术员
生物化学第八章 脂代谢讲课文档
需从植物中摄取
Why?
第十二页,共119页。
不饱和脂酸的分类:
单不饱和脂酸
多不饱和脂酸:含2个或2个以上双键的不
饱和脂酸
不饱和脂酸的自身合成:
饱和脂肪酸 去饱和酶 单不饱和脂肪酸 单不饱和脂肪酸 去饱和酶 多不饱和脂肪酸
第十三页,共119页。
不饱和脂酸的命名:
系统命名法: 标示脂酸的碳原子数即碳链长度和双
(
Δ9,12,15)
花生四烯酸(20:4,ω6,9,12,15)
(
Δ5,8,11,14)
人体内有Δ4,Δ5,Δ8及Δ9去饱和酶
第十五页,共119页。
人体内有Δ4,Δ5,Δ8及Δ9去饱和酶
软脂酸 Δ9去饱和酶软油酸(不依赖食物摄入) 硬脂酸 Δ9去饱和酶 油酸(不依赖食物摄入)
自身不能合成
亚油酸(18:2, Δ9,12 ) 亚麻酸(18:3, Δ9,12,15)
H 反△ 2-烯酰CoA水化酶 H2O
OH RCH2 CH CH2 CO~SCoA
L(+)β-羟脂酰CoA
第二十七页,共119页。
(3) 再脱氢
OH RCH2 CH CH2 CO~SCoA
L(+)β-羟脂酰CoA
L(+)β-羟脂酰CoA脱氢酶
NAD+
2.5ATP
(4) 硫解
O
NADH+H+
H2O
呼吸链
乙酰CoA
CO2
苹果酸
草酰乙酸
柠檬酸合酶
H2O
柠檬酸 CoA
柠檬酸─丙酮酸循环 第四十一页,共119页。
3. 脂酸合成酶系及反应过程
(1) 丙二酰CoA的合成
生物化学脂类代谢文稿演示
* 必需脂酸(essential fatty acid, EFA)—— 亚油酸、亚麻酸、花生四烯酸等多不饱和
脂酸是人体不可缺乏的营养素,不能自身合成, 需从植物油摄取,故称必需脂酸。
第一节 不饱和脂酸的分类及命名
Classification and Naming of Unsaturated Fatty Acids
常见的饱和脂酸
习惯名
系统名
碳原子数和 双键数
簇
分子式
饱和脂酸
月桂酸 (lauric acid)
n-十二烷酸
12:0
CH3(CH2)10COOH
豆寇酸(myristic acid) n-十四烷酸
14:0
CH3(CH2)12COOH
软脂酸(palmitic acid) n-十六烷酸
16:0
CH3(CH2)14COOH
中链脂酸:碳链长度介于10和20之间的脂酸 如:油酸(碳链长度为18)
长链脂酸:碳链长度大于或等于20的脂酸 如:DHA(碳链长度为22)
脂酸根据其碳链是否存在双键分为饱和脂酸 和不饱和脂酸
➢ 饱和脂酸的碳链不含双键
饱和脂酸(saturated fatty acid)以乙酸 (CH3-COOH) 为 基 本 结 构 , 不 同 的 饱 和 脂 酸 的差别在于这两基团间亚甲基(-CH2-)的数目 不同 。
从脂酸的羧基碳起计算碳原子的顺序 ω或n编码体系
从脂酸的甲基碳起计算其碳原子顺序
例如:
油酸含18个碳原子,在第9-10位间有一个双 键,被称为9-十八碳单烯酸,写成18:1(9)或 18:1Δ9 。
哺乳动物不饱和脂酸按ω(或n)编码体系分类
人体内的不饱和脂肪酸按ω体系可分为四族,各族的 名称根据各族母体脂肪酸从甲基碳原子数起的第一个双键位 置数命名。
脂酸是人体不可缺乏的营养素,不能自身合成, 需从植物油摄取,故称必需脂酸。
第一节 不饱和脂酸的分类及命名
Classification and Naming of Unsaturated Fatty Acids
常见的饱和脂酸
习惯名
系统名
碳原子数和 双键数
簇
分子式
饱和脂酸
月桂酸 (lauric acid)
n-十二烷酸
12:0
CH3(CH2)10COOH
豆寇酸(myristic acid) n-十四烷酸
14:0
CH3(CH2)12COOH
软脂酸(palmitic acid) n-十六烷酸
16:0
CH3(CH2)14COOH
中链脂酸:碳链长度介于10和20之间的脂酸 如:油酸(碳链长度为18)
长链脂酸:碳链长度大于或等于20的脂酸 如:DHA(碳链长度为22)
脂酸根据其碳链是否存在双键分为饱和脂酸 和不饱和脂酸
➢ 饱和脂酸的碳链不含双键
饱和脂酸(saturated fatty acid)以乙酸 (CH3-COOH) 为 基 本 结 构 , 不 同 的 饱 和 脂 酸 的差别在于这两基团间亚甲基(-CH2-)的数目 不同 。
从脂酸的羧基碳起计算碳原子的顺序 ω或n编码体系
从脂酸的甲基碳起计算其碳原子顺序
例如:
油酸含18个碳原子,在第9-10位间有一个双 键,被称为9-十八碳单烯酸,写成18:1(9)或 18:1Δ9 。
哺乳动物不饱和脂酸按ω(或n)编码体系分类
人体内的不饱和脂肪酸按ω体系可分为四族,各族的 名称根据各族母体脂肪酸从甲基碳原子数起的第一个双键位 置数命名。
复旦脂类代谢PPT课件
膳食纤维有助于降低胆固醇和 调节血糖,建议多吃蔬菜、水 果、全谷类等富含膳食纤维的 食物。
运动锻炼
有氧运动
如快走、跑步、游泳等有氧运动 可以提高心肺功能,促进脂肪燃 烧,降低体脂率。建议每周进行 至少150分钟的中等强度有氧运
动。
力量训练
力量训练可以增加肌肉量,提高 基础代谢率,进一步促进脂肪燃 烧。建议每周进行至少2次全身
个人收获与体会
1 2 3
对脂类代谢有了更深入的了解
通过本课程的学习,我深入了解了脂类代谢的各 个方面,对脂类的合成、分解、运输和功能有了 更清晰的认识。
提高了解决问题的能力
通过案例分析和实际问题的解决,我学会了如何 运用所学知识解决实际问题,提高了自己的解决 问题的能力。
激发了对脂类代谢的兴趣
本课程让我对脂类代谢产生了浓厚的兴趣,我会 继续深入学习和研究相关领域的知识。
对未来研究的期望
01
深入研究脂类代谢与疾病的关系
希望未来能够深入研究脂类代谢与肥胖、心血管疾病、糖尿病等慢性疾
病的关系,为疾病的预防和治疗提供更多有价值的思路和方法。
02
探索脂类代谢调控机制
希望未来能够深入研究脂类代谢的调控机制,发现新的调控靶点,为脂
类代谢相关疾病的药物治疗提供新的思路和方向。
03
复旦脂类代谢ppt课件
• 引言 • 脂类代谢基础知识 • 复旦大学脂类代谢研究 • 脂类代谢相关疾病 • 脂类代谢干预措施 • 总结与展望
01
引言
课程背景
介绍脂类在人体内的代谢过程及其重要性,说明脂类代谢紊乱与多种疾病的关系。 阐述当前脂类代谢研究的热点和难点问题,以及本课程在解决这些问题中的作用。
06
总结与展望
运动锻炼
有氧运动
如快走、跑步、游泳等有氧运动 可以提高心肺功能,促进脂肪燃 烧,降低体脂率。建议每周进行 至少150分钟的中等强度有氧运
动。
力量训练
力量训练可以增加肌肉量,提高 基础代谢率,进一步促进脂肪燃 烧。建议每周进行至少2次全身
个人收获与体会
1 2 3
对脂类代谢有了更深入的了解
通过本课程的学习,我深入了解了脂类代谢的各 个方面,对脂类的合成、分解、运输和功能有了 更清晰的认识。
提高了解决问题的能力
通过案例分析和实际问题的解决,我学会了如何 运用所学知识解决实际问题,提高了自己的解决 问题的能力。
激发了对脂类代谢的兴趣
本课程让我对脂类代谢产生了浓厚的兴趣,我会 继续深入学习和研究相关领域的知识。
对未来研究的期望
01
深入研究脂类代谢与疾病的关系
希望未来能够深入研究脂类代谢与肥胖、心血管疾病、糖尿病等慢性疾
病的关系,为疾病的预防和治疗提供更多有价值的思路和方法。
02
探索脂类代谢调控机制
希望未来能够深入研究脂类代谢的调控机制,发现新的调控靶点,为脂
类代谢相关疾病的药物治疗提供新的思路和方向。
03
复旦脂类代谢ppt课件
• 引言 • 脂类代谢基础知识 • 复旦大学脂类代谢研究 • 脂类代谢相关疾病 • 脂类代谢干预措施 • 总结与展望
01
引言
课程背景
介绍脂类在人体内的代谢过程及其重要性,说明脂类代谢紊乱与多种疾病的关系。 阐述当前脂类代谢研究的热点和难点问题,以及本课程在解决这些问题中的作用。
06
总结与展望
生物化学——脂代谢 ppt课件
Although the details of enzyme structure differ in prokaryotes such as Escherichia coli and in eukaryotes, the four-step process of fatty acid synthesis is the same in all organisms.
ppt课件
36
(3)诱导调节 调节乙酰CoA羧化酶的合成
高糖膳食:乙酰CoA羧化酶合成 胰岛素:乙酰CoA羧化酶合成
ppt课件
37
4、碳链的延长和去饱和
(1)脂肪酸碳链的延长:肝细胞 脂酸碳链延长酶系
1)内质网(18C,24C): 二碳供体:丙二酰CoA, 还原氢:NADPH+H+ 酰基载体:辅酶A
脂肪细胞及骨骼肌等组织因甘油激酶活性很低, 故不能很好利用甘油。
CH2 OH ATP ADP
CH2 OH
NAD+
NADH+H +
磷酸二
HO
CH
HO
甘油激酶
CH2 OH (肝、肾、肠)
CH CH2 O
P
α
-磷酸甘油 脱氢酶
羟丙酮 肝
甘油
α -磷酸甘油
糖酵解 糖异生
ppt课件
44
脂肪酸在血中由清 蛋白运输。主要由 心、肝、骨骼肌等 摄取利用。 大脑不能摄取
磷脂酸
1,2-甘油二酯
磷脂酸磷酸酶
1,2-甘油二酯+脂酰CoA
甘油三酯
酶:脂酰CoA转移酶 磷脂酸磷酸酶
ppt课件
14
ppt课件
15
四、脂肪酸的合成(P116)
ppt课件
36
(3)诱导调节 调节乙酰CoA羧化酶的合成
高糖膳食:乙酰CoA羧化酶合成 胰岛素:乙酰CoA羧化酶合成
ppt课件
37
4、碳链的延长和去饱和
(1)脂肪酸碳链的延长:肝细胞 脂酸碳链延长酶系
1)内质网(18C,24C): 二碳供体:丙二酰CoA, 还原氢:NADPH+H+ 酰基载体:辅酶A
脂肪细胞及骨骼肌等组织因甘油激酶活性很低, 故不能很好利用甘油。
CH2 OH ATP ADP
CH2 OH
NAD+
NADH+H +
磷酸二
HO
CH
HO
甘油激酶
CH2 OH (肝、肾、肠)
CH CH2 O
P
α
-磷酸甘油 脱氢酶
羟丙酮 肝
甘油
α -磷酸甘油
糖酵解 糖异生
ppt课件
44
脂肪酸在血中由清 蛋白运输。主要由 心、肝、骨骼肌等 摄取利用。 大脑不能摄取
磷脂酸
1,2-甘油二酯
磷脂酸磷酸酶
1,2-甘油二酯+脂酰CoA
甘油三酯
酶:脂酰CoA转移酶 磷脂酸磷酸酶
ppt课件
14
ppt课件
15
四、脂肪酸的合成(P116)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脂肪酸通过脂酰肉碱/肉碱 运输体进入线粒体
脂肪酸的-oxidation
包括四个反复的氧化过程:
1. Acyl CoA的、脱氢,生成反式烯脂酰CoA (enoyl CoA),线粒体基质中发现有3种acyl CoA dHE,都以FAD为辅基; 2. 2-enoyl CoA的水化,形成L(+)-羟脂酰CoA, 由水化酶催化,底物只能为2-不饱和脂酰CoA;
6.ApoC-II激活lipoprotein lipase重新水 解fat为FA和glycerol;
7.FA进入细胞;
8.FA被氧化释放能量,或在肌细胞及脂 肪组织中酯化储存。
的脊 消椎 化动 与物 吸食 收物 过脂 程类
脂肪的分解代谢
脂肪的动员
(Adipokinetic Action)
脂肪组织中的脂肪在激素敏感的脂酶 的作用下水解为脂肪酸和甘油并释放 入血液供其他组织利用的过程。激素 敏感的脂酶受多种激素调控,胰岛素 下调,肾上腺素与胰高血糖素上调激 素敏感脂酶的活性。
运输的脂肪酸解离进入细胞氧化供能。
甘脂 油肪 三组 酯织 的贮 动存 员的
肾上腺素
脂
肪肪
动细
员胞
的中
信激
号素
传诱
导导
脂
脂 肪 动 用 的 激 素 调 节
(+)
胰高血糖素,甲状腺 素,肾上腺皮质激素
甘油代谢
(Glycerol Metabolism)
脂肪细胞缺乏甘油激酶,不能利用甘油, 随血液回到肝脏,可以发生:
脂肪的酶解
脂肪组织中的脂肪酶
激素激发贮存脂肪的动员
激素接受“能量需要的”信号,脂肪被动员, 被运输到可以氧化脂肪酸产能的组织(骨骼肌、 心脏和肾上腺皮质)。
低血糖引发分泌的肾上腺素和胰高血糖素与 脂肪细胞表面的受体结合活化产生cAMP,蛋 白激酶磷酸化并活化激素敏感的甘油三酯酯酶, 水解甘油三酯。产生的脂肪酸由脂肪细胞释放 进入血液,血清白蛋白[serum albumin][Mr 62,000]非共价结合脂肪酸(1:10),运输至 骨骼肌、心脏和肾上腺皮质。
复旦大学生化课件脂肪代谢详解演示文稿
脂类代谢[Lipid Metabolism]
一、脂肪的消化与 五、脂肪酸合成
吸收
六、脂肪的合成
二、脂肪的分解 七、磷脂的代谢
三、脂肪酸的氧化 八、鞘脂的代谢
(分解代谢)
九ห้องสมุดไป่ตู้胆固醇代谢
四、酮体的合成与 十、脂蛋白 分解
脂肪代谢[Fat Metabolism]
1 g 脂肪在体内彻底氧化可释放9.3 Kcal的能量,而1 g糖和蛋白质在体内 彻底氧化只释放4.1 Kcal的能量。脂肪 是储存能量很高的物质。
R-COO- + ATP + HS-CoA
Mg2+
R-CO-SCoA + AMP + PPi(2Pi) 活化为脂酰CoA,水溶性增加,有利于反应进 行;-氧化的酶对脂酰CoA有专一性。
脂肪酸转变为脂酰-CoA
脂肪酸跨线粒体膜的运输
FA的-oxidation发生在肝脏及 其他组织的线粒体内,中、短链 FA可直接穿过线粒体内膜,长链 FA须经特殊的转运机制才可进入 线粒体内被氧化,即肉碱 (Lcarnitine)转运。
氧化主要发生在肝脏内。
苯 基 标 记
脂肪酸的活化
FA进入肝脏细胞,首先被活化成acyl CoA。 细胞内有两类活化FA的酶:
内 质 网 acyl CoA synthetase , 也 称 硫 激 酶 (thiokinase),活化12个碳原子以上的FA;线 粒体acyl CoA synthetase,活化4-10碳原子的FA。 反应需ATP。
1. 变 为 -p-glycerol , 与 活 化 的 FA 合 成 FAT;
2. 变为-p-glycerol,生成DHAP,参与 酵解,氧化供能;
3. 变为-p-glycerol,生成DHAP,参与 糖元异生 。
甘
油
进
入
酵
解
途
糖异生
径
甘油代谢
脂肪酸的氧化
Franz Knoop(1904) 通过苯基标 记喂养试验,发现脂肪酸的氧化是从 羧基端的位碳原子开始,每次分解 出一个二碳片段(乙酰CoA) ,提出 了FA的 -oxidation假说 。
左旋肉碱为公认安全、无毒物质。 • 1996年我国第16次全国食品、添加剂标准化技术员
会上通过允许在饮料、乳制品、饼干、固体饮料、 乳粉中使用左旋肉碱。 • 1999年,中华人民共和国农业部公告105号,肉碱盐 酸盐列入“允许使用的饲料添加剂品种目录”。
肉碱 -羟基--三甲基氨基丁酸
脂酰肉碱
肉 碱 与 脂 酰 肉 碱
3.肠粘膜吸收分解产物甘油和脂 肪酸,在肠粘膜中再转化为fat。
胆汁酸盐 甘油三酯
脂肪酶
胆
肪汁
酶盐
形、
成甘
的油
乳三
糜酯
微和
滴胰
脂
脂肪的消化和吸收(续)
4.Fat 与 cholesterol 、 apoproteins 结 合 形 成乳糜微粒(chylomicrons);
5.乳糜微粒通过淋巴系统和血液进入组 织;
血脂的来源与去路
食物中脂类 体内合成脂类 脂库动员释放
血脂
500 mg/dl
氧化供能 进入脂库储存 构成生物膜 转变成其他物质
波动范围较大
脂肪的消化和吸收
食物中的脂肪在口腔和胃中都不 发生化学作用,消化发生在小肠:
1.胆汁酸盐乳化脂肪形成混合微 团(mixed micelles);
2. 肠 lipases 分 解 fat 为 glycerol 和 fatty acids;
• 1959年Fritz发现肉碱能促进脂肪代谢速率(促 进β-氧化)
• 1973年Engle报道首例肉碱缺乏症,并开始用肉 碱进行治疗。
History of L-Canitine [cont.]
• 1985年芝加哥召开国际营养学术会议,将左旋肉碱 列为特定条件下的必需营养物质。
• 1990年收入美国药典22版。 • 1993年获得FDA和WHO认可,美国专家委员会确认
History of L-Canitine
• 1905年俄国科学家(Culewitsch and Kimberg) 从肉浸汁中发现肉碱。
• 1927年确定左旋肉碱的化学结构。
• 1952年美国伊利诺斯州大学的研究人员Carter 等人才确证了维生素BT即肉碱。
• 1953年开始,肉碱列在美国化学文摘中Vitamin BT索引栏目下。