【优化方案】2014-2015学年高中数学 第一章 导数及其应用(第5课时)课时作业 新人教A版选修2-2
高中数学第1章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2
1.4 生活中的优化问题举例1.优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. 2.用导数解决优化问题的基本思路思考:解决生活中优化问题应注意什么?[提示] (1)在建立函数模型时,应根据实际问题确定出函数的定义域.(2)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的应舍去,如:长度、宽度应大于0,销售价为正数等.1.已知某生产厂家的年利润y (单位: 万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .7万件B .9万件C .11万件D .13万件B [设y =f (x ),即f (x )=-13x 3+81x -234.故f ′(x )=-x 2+81.令f ′(x )=0,即-x 2+81=0, 解得x =9或x =-9(舍去).当0<x <9时,f ′(x )>0,函数y =f (x )单调递增; 当x >9时,f ′(x )<0,函数y =f (x )单调递减. 因此,当x =9时,y =f (x )取最大值.故使该生产厂家获取最大年利润的年产量为9万件.]2.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8B .203C .-1D .-8C [由题意,f ′(x )=x 2-2x =(x -1)2-1, ∵0≤x ≤5,∴x =1时,f ′(x )的最小值为-1, 即原油温度的瞬时变化率的最小值是-1.]3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 mD .2 mC [设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8,因此h =25664=4(m).] 4.某一件商品的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为______元时,利润最大.115 [利润为S (x )=(x -30)(200-x ) =-x 2+230x -6 000,S ′(x )=-2x +230, 由S ′(x )=0,得x =115,这时利润达到最大.]去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[解] 设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12,即包装盒的高与底面边长的比值为12.1.立体几何中的最值问题往往涉及空间图形的表面积、体积,在此基础上解决与实际相关的问题.2.解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.1.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3. 4 00027π [设矩形的长为x cm , 则宽为(10-x )cm(0<x <10). 由题意可知圆柱体积为V =πx 2(10-x )=10πx 2-πx 3.∴V ′=20πx -3πx 2,令V ′(x )=0,得x =0(舍去)或x =203,且当x ∈⎝⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝⎛⎭⎪⎫203,10时,V ′(x )<0, ∴当x =203时,V (x )max =4 00027π cm 3.]层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. 思路探究:(1)由C (0)=8可求k 的值从而求出f (x )的表达式. (2)求函数式f (x )的最小值.[解] (1)由题设,每年能源消耗费用为C (x )=k3x +5(0≤x ≤10),再由C (0)=8,得k=40,因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10).(2)f ′(x )=6-2 400(3x +5)2,令f ′(x )=0,即2 400(3x +5)2=6,解得x =5或x =-253(舍去).当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值70万元.1.用料最省、成本(费用)最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.2.利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v ,(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值. [解] (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v=⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0;当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).1.在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗? [提示] 根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.2.你能列举几个有关利润的等量关系吗? [提示] (1)利润=收入-成本. (2)利润=每件产品的利润×销售件数.【例3】 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思路探究:(1)根据x =5时,y =11求a 的值.(2)把每日的利润表示为销售价格x 的函数,用导数求最大值.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6,从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)·(x -6),于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”建立函数关系式,再利用导数求最大值.解此类问题需注意两点:①价格要大于或等于成本,否则就会亏本;②销量要大于0,否则不会获利.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.1.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的体积最大时,箱子底面边长为( )A .30B .40C .50D .60B [V ′(x )=-32x 2+60x =-32x (x -40),因为0<x <60,所以当0<x <40时,V ′(x )>0, 此时V (x )单调递增;当40<x <60时,V ′(x )<0,此时V (x )单调递减,所以V (40)是V (x )的极大值,即当箱子的体积最大时,箱子底面边长为40.]2.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q 与零售价p 有如下关系:Q =8 300-170p -p 2.则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元D [设毛利润为L (p ),由题意知L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23 000元.]3.做一个无盖的圆柱形水桶,若要使水桶的体积是27π,且用料最省,则水桶的底面半径为________.3 [设圆柱形水桶的表面积为S ,底面半径为r (r >0),则水桶的高为27r2,所以S =πr2+2πr ×27r 2=πr 2+54πr (r >0),求导数,得S ′=2πr -54πr2,令S ′=0,解得r =3.当0<r <3时,S ′<0;当r >3时,S ′>0,所以当r =3时,圆柱形水桶的表面积最小,即用料最省.]4.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),为使银行获得最大收益,则存款利率应定为________.0.032 [存款利率为x ,依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,x ∈(0,0.048).所以银行的收益是y =0.048kx 2-kx 3(0<x <0.048),由于y ′=0.096kx -3kx 2,令y ′=0得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值.]5.用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?[解] 设长方体的宽为x m ,则长为2x m , 高为h =18-12x 4=(4.5-3x )m(0<x <32).故长方体的体积为V (x )=2x 2(4.5-3x )=(9x 2-6x 3)m 3⎝⎛⎭⎪⎫0<x <32.从而V ′(x )=18x -18x 2=18x (1-x ). 令V ′(x )=0,解得x =0(舍去)或x =1, 因此x =1.当0<x <1时,V ′(x )>0; 当1<x <32时,V ′(x )<0,故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值.从而最大体积V =V (1)=9×12-6×13=3(m)3,此时长方体的长为2 m ,高为1.5 m. 故当长方体的长为2 m ,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3.。
高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题
第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。
2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)
第一章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·天津红桥区高二段测)二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限[答案] A[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b 2a >0,4ac -b 24a =-b 24a >0,故选A.2.(2013·华池一中高二期中)曲线y =-1x 在点(12,-2)处的切线方程为( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x -4[答案] B[解析] ∵y ′=1x 2,∴y ′|x =12=4,∴k =4,∴切线方程为y +2=4(x -12),即y =4x -4.3.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -x D .f (x )=1x[答案] B[解析] 对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x在x =0没有定义,所以x =0不可能成为极值点,综上可知,答案选B. 4.(2013·北师大附中高二期中)已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3),∪(3,+∞)B .(-3,3)C .(-∞,-3]∪[3,+∞)D .[-3,3][答案] D[解析] f ′(x )=-3x 2+2ax -1,∵f (x )在(-∞,+∞)上是单调函数,且f ′(x )的图象是开口向下的抛物线,∴f ′(x )≤0恒成立,∴Δ=4a 2-12≤0,∴-3≤a ≤3,故选D.5.(2013·武汉实验中学高二期末)设函数f (x )在定义域内可导,y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是( )[答案] A[解析] f (x )在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f ′(x )的图象在(-∞,0)上,f ′(x )>0,在(0,+∞)上f ′(x )的符号变化规律是负→正→负,故选A.6.(2012·陕西文,9)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时 f ′(x )>0,f (x )单调递增.所以x =2为极小值点.7.(2014·天门市调研)已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π4-x )是( )A .偶函数且图象关于点(π,0)对称B .偶函数且图象关于点(3π2,0)对称C .奇函数且图象关于点(3π2,0)对称D .奇函数且图象关于点(π,0)对称 [答案] D[解析] ∵f (x )的图象关于x =π4对称,∴f (0)=f (π2),∴-b =a ,∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π4),∴f (3π4-x )=2a sin(3π4-x +π4)=2a sin(π-x )=2a sin x .显然f (3π4-x )是奇函数且关于点(π,0)对称,故选D.8.(2013·武汉实验中学高二期末)定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}[答案] B[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0, ∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1<x <1时,f ′(x )<0,f (x )单调递减,∴在x =-1时,f (x )取极大值f (-1)=m +2,在x =1时,f (x )取极小值f (1)=m -2.∵f (x )=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2. 10.(2013·河南安阳中学高二期末)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] 令F (x )=xf (x ),(x >0),则F ′(x )=xf ′(x )+f (x )≤0,∴F (x )在(0,+∞)上为减函数,∵0<a <b ,∴F (a )>f (b ),即af (a )>bf (b ),与选项不符; 由于xf ′(x )+f (x )≤0且x >0,f (x )≥0,∴f ′(x )≤-f (x )x≤0,∴f (x )在(0,+∞)上为减函数,∵0<a <b ,∴f (a )>f (b ), ∴bf (a )>af (b ),结合选项知选A.11.(2014·天门市调研)已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )[答案] D[解析] 由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2013·泰安一中高二段测)已知函数f (x )的导函数的图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (cos A )<f (cos B )[答案] A[解析] 由导函数图象可知,x >0时,f ′(x )>0,即f (x )单调递增,又△ABC 为锐角三角形,则A +B >π2,即π2>A >π2-B >0,故sin A >sin(π2-B )>0,即sin A >cos B >0,故f (sin A )> f (cos B ),选A.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2013·华池一中高二期中)已知f (x )=x 3+3x 2+a (a 为常数),在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.[答案] 57[解析] f ′(x )=3x 2+6x =3x (x +2),当x ∈[-3,-2)和x ∈(0,3]时,f ′(x )>0,f (x )单调递增,当x ∈(-2,0)时,f ′(x )<0,f (x )单调递减,∴极大值为f (-2)=a +4,极小值为f (0)=a ,又f (-3)=a ,f (3)=54+a ,由条件知a =3,∴最大值为f (3)=54+3=57.14.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧ f (-2)>0,f (1)<0,此时无解;若a <0,则⎩⎪⎨⎪⎧f (-2)<0,f (1)>0, ∴-65<a <-316,综上知,-65<a <-316.15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).16.如图阴影部分是由曲线y =1x、y 2=x 与直线x =2、y =0围成,则其面积为______.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x 得交点B ⎝⎛⎭⎫2,12. 故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),∴当x ∈(0,2)时,f ′(x )>0,当x ∈(2,2)时,f ′(x )<0,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)(2014·韶关市曲江一中月考)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. [解析] (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧ f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧ a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3. ∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间[-1,1]上单调递减,且f (x )在区间[-1,1]上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.19.(本题满分12分)(2014·北京海淀期中)已知函数f (x )=x 2-2(a +1)x +2a ln x (a >0). (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间;(3)若f (x )≤0在区间[1,e]上恒成立,求实数a 的取值范围. [解析] (1)∵a =1,∴f (x )=x 2-4x +2ln x , ∴f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0, 所以切线方程为y =-3.(2)f ′(x )=2x 2-2(a +1)x +2a x =2(x -1)(x -a )x (x >0),令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a,1);当a =1时,f ′(x )=2(x -1)2x ≥0,∴f (x )的单调增区间为(0,+∞);当a >1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e2e -2.20.设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.21.(本题满分12分)(2014·荆州中学、龙泉中学、宜昌一中、襄阳四中期中联考)已知函数f (x )=ln x +a x +1,a 为常数.(1)若a =92,求函数f (x )在[1,e ]上的值域;(e 为自然对数的底数,e ≈2.72)(2)若函数g (x )=f (x )+x 在[1,2]上为单调减函数,求实数a 的取值范围. [解析] (1)由题意f ′(x )=1x -a(x +1)2,当a =92时,f ′(x )=1x -92(x +1)2=(x -2)(2x -1)2x (x +1)2.∵x ∈[1,e ],∴f (x )在[1,2)上为减函数,[2,e ]上为增函数, 又f (2)=ln2+32,f (1)=94,f (e )=1+92e +2,比较可得f (1)>f (e ),∴f (x )的值域为[ln2+32,94].(2)由题意得g ′(x )=1x -a(x +1)2+1≤0在x ∈[1,2]上恒成立,∴a ≥(x +1)2x +(x +1)2=x 2+3x +1x +3恒成立,设h (x )=x 2+3x +1x+3(1≤x ≤2),∴当1≤x ≤2时,h ′(x )=2x +3-1x 2>0恒成立,∴h (x )max =h (2)=272,∴a ≥272, 即实数a 的取值范围是[272,+∞).22.(本题满分14分)(2014·北京海淀期中)如图,已知点A (11,0),直线x =t (-1<t <11)与函数y =x +1的图象交于点P ,与x 轴交于点H ,记△APH 的面积为f (t ).(1)求函数f (t )的解析式; (2)求函数f (t )的最大值.[解析] (1)由已知AH =11-t ,PH =t +1,所以△APH 的面积为f (t )=12(11-t )t +1,(-1<t <11).(2)解法1:f ′(t )=3(3-t )4t +1,由f ′(t )=0得t =3,函数f (t )与f ′(t )在定义域上的情况如下表:所以当t =解法2.由f (t )=12(11-t )t +1=12(11-t )2(t +1),-1<t <11,设g (t )=(11-t )2(t +1),-1<t <11,则g ′(t )=-2(11-t )(t +1)+(11-t )2=(t -11)(t -11+2t +2)=3(t -3)(t -11). g (t )与g ′(t )在定义域上的情况见下表:所以当t =3所以当t =3时,函数f (t )取得最大值12g (3)=8.一、选择题1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1, 将(0,b )代入切线方程得b =1.2.(2014·浙江杜桥中学期中)已知函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是方程f ′(x )=0的实数根,∴a =5. 3.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16[答案] A[解析] ∵y ′=6x 2-6x -12=0,得x =-1(舍去)或x =2,故函数y =f (x )=2x 3-3x 2-12x +5在[0,3]上的最值可能是x 取0,2,3时的函数值,而f (0)=5,f (2)=-15,f (3)=-4,故最大值为5,最小值为-15,故选A.4.⎠⎛241xd x 等于( ) A .-2ln2B .2ln2C .-ln2D .ln2[答案] D[解析] 因为(ln x )′=1x ,所以 ⎠⎛241xd x =ln x |42=ln4-ln2=ln2.5.(2013·吉林白山一中高二期末)已知定义在R 上的函数f (x )的导函数f ′(x )的大致图象如图所示,则下列结论一定正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e)C .f (c )>f (b )>f (a )D .f (c )>f (e)>f (d )[答案] C[解析] 由图可知f ′(x )在(-∞,c )和(e ,+∞)上取正值,在(c ,e)上取负值,故f (x )在(-∞,c )和(e ,+∞)上单调递增,在(c ,e)上单调递减,∵a <b <c ,∴f (a )<f (b )<f (c ),故选C.6.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞) [答案] B[解析] ∵f (x )=4x +3sin x ,x ∈(-1,1), ∴f ′(x )=4+3cos x >0在x ∈(-1,1)上恒成立,∴f (x )在(-1,1)上是增函数,又f (x )=4x +3sin x ,x ∈(-1,1)是奇函数,∴不等式f (1-a )+f (1-a 2)<0可化为f (1-a )<f (a 2-1),从而可知,a 须满足⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1.解得1<a < 2.7.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.8.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )[答案] D[解析] 由f (x )的图象知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.9.如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为( ) A .0.18J B .0.26J C .0.12J D .0.28J[答案] A[解析] 设F (x )=kx ,当F (x )=1时,x =0.01m ,则k =100,∴W =∫0.060100x d x =50x 2|0.06=0.18.10.(2014·甘肃省金昌市二中、临夏中学期中)已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 由题可知g (x )=ln x -1x ,∵g (1)=-1<0,g (2)=ln2-12=ln2-ln e>0,∴选B.11.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确[答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.12.(2014·浙江省五校联考)已知函数f (x )=13x 3+12mx 2+m +n 2x 的两个极值点分别为x 1、x 2,且0<x 1<1<x 2,点P (m ,n )表示的平面区域内存在点(x 0,y 0)满足y 0=log a (x 0+4),则实数a 的取值范围是( )A .(0,12)∪(1,3)B .(0,1)∪(1,3)C .(12,1)∪(1,3]D .(0,1)∪[3,+∞)[答案] B[解析] f ′(x )=x 2+mx +m +n2,由条件知,方程f ′(x )=0的两实根为x 1、x 2且0<x 1<1<x 2,∴⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,∴⎩⎨⎧m +n2>0,1+m +m +n2<0,∴⎩⎪⎨⎪⎧m +n >0,3m +n <-2, 由⎩⎪⎨⎪⎧ m +n =0,3m +n =-2,得⎩⎪⎨⎪⎧ m =-1,n =1,∴⎩⎪⎨⎪⎧x 0<-1,y 0>1.由y 0=log a (x 0+4)知,当a >1时,1<y 0<log a 3,∴1<a <3;当0<a <1时,y 0=log a (x 0+4)>log a 3,由于y 0>1,log a 3<0,∴对∀a ∈(0,1),此式都成立,从而0<a <1,综上知0<a <1或1<a <3,故选B.二、填空题13.(2014·杭州七校联考)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极值,则实数b 的取值范围是________.[答案] (0,1)[解析] f ′(x )=3x 2-3b ,∵f (x )在(0,1)内有极值, ∴f ′(x )=0在(0,1)内有解,∴0<b <1.14.(2013·泰州二中高二期中)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.[答案] 5[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是f ′(x )=0的根,即f ′(-3)=0, ∴27-6a +3=0,∴a =5.15.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是__________________. [答案] 2n +1-2[解析] ∵y =x n (1-x ),∴y ′=(x n )′(1-x )+(1-x )′·x n =n ·x n -1(1-x )-x n .f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1.在点x =2处点的纵坐标为y =-2n . ∴切线方程为y +2n =(-n -2)·2n -1(x -2).令x =0得,y =(n +1)·2n , ∴a n =(n +1)·2n ,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为2(2n-1)2-1=2n +1-2.16.(2014·哈六中期中)已知函数f (x +2)是偶函数,x >2时f ′(x )>0恒成立(其中f ′(x )是函数f (x )的导函数),且f (4)=0,则不等式(x +2)f (x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f (x +2)是偶函数,∴其图象关于y 轴对称,∵y =f (x +2)的图象向右平移两个单位得到y =f (x )的图象,∴函数y =f (x )的图象关于直线x =2对称,∵x >2时,f ′(x )>0,∴f (x )在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f (4)=0,∴f (0)=0,∴0<x <4时,f (x )<0,x <0或x >4时,f (x )>0,由(x +2)f (x +3)<0得⎩⎪⎨⎪⎧x +2<0,f (x +3)>0,(1)或⎩⎪⎨⎪⎧x +2>0,f (x +3)<0.(2) 由(1)得⎩⎪⎨⎪⎧x <-2,x +3<0或x +3>4,∴x <-3;由(2)得⎩⎪⎨⎪⎧x >-2,0<x +3<4.∴-2<x <1,综上知,不等式的解集为(-∞,-3)∪(-2,1) 三、解答题17.(2013·四川达州诊断)已知函数f (x )=x 3+ax 2-3bx +c (b >0),且g (x )=f (x )-2是奇函数.(1)求a 、c 的值;(2)若函数f (x )有三个零点,求b 的取值范围. [解析] (1)∵g (x )=f (x )-2是奇函数, ∴g (-x )=-g (x )对x ∈R 成立, ∴f (-x )-2=-f (x )+2对x ∈R 成立, ∴ax 2+c -2=0对x ∈R 成立, ∴a =0且c =2.(2)由(1)知f (x )=x 3-3bx +2(b >0), ∴f ′(x )=3x 2-3b =3(x -b )(x +b ), 令f ′(x )=0得x =±b ,依题意有⎩⎨⎧f (-b )>0,f (b )<0,∴b >1,故正数b 的取值范围是(1,+∞).18.在曲线y =x 3(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴围成图形的面积为112,试求过切点A 的切线方程.[解析] 设切点A (x 0,x 30),切线斜率k =y ′|x =x 0=3x 20.∴切线的方程为y -x 30=3x 20(x -x 0).令y =0,得x =2x 03.依题意S =∫x 00x 3d x -12×(x 0-2x 03)·x 3=14x 40-16x 40=112x 40=112, ∵x 0≥0,∴x 0=1.∴切线方程为y -1=3(x -1),即3x -y -2=0.19.(2014·福建安溪一中、养正中学联考)已知函数f (x )=x 3+ax 2+bx +5,若曲线f (x )在点(1,f (1))处的切线斜率为3,且x =23时,y =f (x )有极值.(1)求函数f (x )的解析式;(2)求函数f (x )在[-4,1]上的最大值和最小值. [解析] f ′(x )=3x 2+2ax +b ,(1)由题意得,⎩⎪⎨⎪⎧f ′(23)=3×(23)2+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.经检验得x =23时,y =f (x )有极小值,所以f (x )=x 3+2x 2-4x +5.(2)由(1)知,f ′(x )=3x 2+4x -4=(x +2)(3x -2). 令f ′(x )=0,得x 1=-2,x 2=23,f ′(x ),f (x )的值随x 的变化情况如下表: ∵f (23)=9527,f (-2)=13,f (-4)=-11,f (1)=4,∴f (x )在[-4,1]上的最大值为13,最小值为-11.20.(2013·海淀区高二期中)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解析](1)f′(x)=a2x2-4ax+b,由题意f′(0)=b=3.(2)∵函数f(x)在x=1处取得极大值,∴f′(1)=a2-4a+3=0,解得a=1或a=3.①当a=1时,f′(x)=x2-4x+3=(x-1)(x-3),x、f′(x)、f(x)的变化情况如下表:②当a=3时,f′(x)=9x2-12x+3=3(3x-1)(x-1),x、f′(x)、f(x)的变化情况如下表:综上所述,若函数f(x)在x=1处取得极大值,a的值为1.21.(2013·武汉实验中学高二期末)已知曲线f(x)=ax2+2在x=1处的切线与直线2x-y +1=0平行.(1)求f(x)的解析式;(2)求由曲线y=f(x)与y=3x、x=0、x=1、x=2所围成的平面图形的面积.[解析](1)由已知得:f′(1)=2,求得a=1,∴f(x)=x2+2.(2)由题意知阴影部分的面积是: S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=(13x 3+2x -32x 2)|10+(32x 2-13x 3-2x )|21=1. 22.(2013·福州文博中学高二期末)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x ,则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减. 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x),当x >1时,h (x )<h (1)=0,即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a ,即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).。
高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_220181022346
§1.4生活中的优化问题举例学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)利用导数解决优化问题的实质是求函数最值.(3)解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.( √) 2.解决应用问题的关键是建立数学模型.( √)类型一几何中的最值问题例1 请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点利用导数求几何模型的最值问题题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍去)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验. 跟踪训练1 (1)已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题(2)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题答案 (1)6πS 3π (2)100π4+π解析 (1)设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh .∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S6π=6πS3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS3π. (2)设弯成圆的一段铁丝长为x (0<x <100),则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100).因此S ′=x2π-252+x 8=x 2π-100-x 8, 令S ′=0,则x =100π4+π.由于在(0,100)内,函数只有一个导数为0的点,则问题中面积之和的最小值显然存在,故当x =100π4+πcm 时,面积之和最小. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6),令f ′(x )=0,得x =4或x =6. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝ ⎛⎭⎪⎫1 0003x +2.7x≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38,综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m2x2(32x -512). 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. (2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2.令f ′(x )=0,即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cm B.2033 cm C.1633cm D.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝ ⎛⎭⎪⎫0,2033时,V ′>0,当h ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,故当h =2033时,体积最大.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700=-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍去). 又P ∈[20,+∞),故f (P )max =f (P )极大值, 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x+10×1×⎝ ⎛⎭⎪⎫2x +2×4x ,即y =20x +80x+80,y ′=20-80x2,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大? 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则多卖出的商品件数为kx 2. 若记商品一个星期的获利为f (x ),则有f (x )=(30-x -9)(432+kx 2)=(21-x )(432+kx 2).由已知条件,得24=k ×22,于是有k =6.所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,21]. (2)由(1)得,f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =12时,f (x )取得极大值. 因为f (0)=9 072,f (12)=11 664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值. 2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意(1)合理选择变量,正确写出函数解析式,给出函数定义域; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、选择题1若底面为等边三角形的直棱柱的体积为V ,则当其表面积最小时底面边长为( ) A.3V B.32V C.34VD .23V考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案 C解析 设底面边长为x , 则表面积S =32x 2+43xV (x >0), ∴S ′=3x2(x 3-4V ).令S ′=0,得x =34V ,可判断当x =34V 时,S 取得最小值.2.如果圆柱轴截面的周长l 为定值,则体积的最大值为( ) A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 A解析 设圆柱的底面半径为r ,高为h ,体积为V , 则4r +2h =l ,∴h =l -4r2.∴V =πr 2h =l2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4,则V ′=l πr -6πr 2.令V ′=0,得r =0或r =l6,而r >0, ∴r =l6是其唯一的极值点.∴当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润P (x )最大时,每年生产产品的单位数是( ) A .150 B .200 C .250D .300考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 由题意得,总利润P (x )=⎩⎪⎨⎪⎧-x 3900+300x -20 000,0≤x ≤390,70 090-100x ,x >390,当0≤x ≤390时,令P ′(x )=0,得x =300, 又当x >390时,P (x )=70 090-100x 为减函数, 所以当每年生产300单位的产品时,总利润最大,故选D. 4.若方底无盖水箱的容积为256,则最省材料时,它的高为( ) A .4B .6C .4.5D .8考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x, ∴S ′(x )=2x -4×256x2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值. ∴h =25682=4.5.某超市中秋前30天,月饼销售总量f (t )与时间t (0<t ≤30,t ∈Z )的关系大致满足f (t )=t 2+10t +12,则该超市前t 天平均售出⎝⎛⎭⎪⎫如前10天平均售出为f (10)10的月饼最少为( ) A .14个 B .15个 C .16个D .17个考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题 答案 D 解析 记g (t )=f (t )t =t +12t+10, 令g ′(t )=1-12t2=0,得t =23(负值舍去),则g (t )在区间(0,23)上单调递减,在区间(23,30]上单调递增, 由于t ∈Z ,且g (3)=g (4)=17,∴g (t )min =17.6.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.048 6),若使银行获得最大收益,则x 的取值为( ) A .0.016 2 B .0.032 4 C .0.024 3D .0.048 6考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 依题意,得存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6), 则y ′=0.097 2kx -3kx 2.令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0; 当0.032 4<x <0.048 6时,y ′<0.所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( ) A .2∶1 B .1∶2 C .1∶4D .4∶1考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设其体积为V ,高与底面半径分别为h ,r , 则V =πr 2h ,即h =V πr2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πrV πr 2=2πr 2+2V r. 令S ′=4πr -2Vr2=0,得r =3V2π,当r =3V2π时,h =Vπ⎝⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小. 二、填空题8.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案439解析 设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0,点B 坐标为⎝ ⎛⎭⎪⎫x2,1-x 24,∴矩形ABCD 的面积S =f (x )=x ·⎝ ⎛⎭⎪⎫1-x 24=-x 34+x ,x ∈(0,2).令f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴当x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是单调递增的,当x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是单调递减的, ∴当x =233时,f (x )取最大值439.9.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=1 1 280x 2+800x -154(0<x ≤120). 则y ′=x640-800x 2=x 3-803640x 2(0<x ≤120).令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数递减;当x ∈(80,120]时,y ′>0,该函数递增,所以当x =80时,y 取得最小值.10.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 20解析 设该公司一年内总共购买n 次货物,则n =400x,∴总运费与总存储费之和f (x )=4n +4x =1 600x+4x ,令f ′(x )=4-1 600x2=0,解得x =20,x =-20(舍去),x =20是函数f (x )的最小值点,故当x =20时,f (x )最小.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为____件时总利润最大. 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 25解析 由题意知502=k100,解得k =25×104.∴产品的单价P =25×104x=500x.∴总利润L (x )=x 500x -1 200-275x 3=500x -1 200-275x 3,L ′(x )=250x -12-225x 2,令L ′(x )=0,得x =25, ∴当x =25时,总利润最大.12.一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为________ m 时,帐篷的体积最大. 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 2解析 设OO 1=x ,则1<x <4. 由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2. 于是底面正六边形的面积为 6·34·(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V (x )=332(8+2x -x 2)⎣⎢⎡⎦⎥⎤13(x -1)+1=32(16+12x -x 3). 则V ′(x )=32(12-3x 2). 令V ′(x )=0,解得x =-2(不合题意,舍去)或x =2. 当1<x <2时,V ′(x )>0,V (x )为增函数; 当2<x <4时,V ′(x )<0,V (x )为减函数. 综上,当x =2时,V (x )最大. 三、解答题13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米,所以4πr 33+πr 2l =643π,解得l =643r 2-43r ,所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫643r 2-43r =128π3r -8πr 23, 两端两个半球的表面积之和为4πr 2,所以y =⎝ ⎛⎭⎪⎫128π3r -8πr 23×3+4πr 2×4=128πr +8πr 2.又l =643r 2-43r >0,即r <432,所以定义域为(0, 432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r2, 令y ′>0得2<r <243;令y ′<0得0<r <2,所以当r =2时,该容器的建造费用最小为96π千元,此时l =83.四、探究与拓展14.某民营企业生产甲、乙两种产品,根据以往经验和市场调查,甲产品的利润与投入资金成正比,乙产品的利润与投入资金的算术平方根成正比,已知甲、乙产品分别投入资金4万元时,所获得利润(万元)情况如下:该企业计划投入资金10万元生产甲、乙两种产品,那么可获得的最大利润(万元)是( ) A.92 B.6516 C.358D.174 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 ∵甲产品的利润与投入资金成正比, ∴设y 1=k 1x ,当投入4万时,利润为1万, 即4k 1=1,得k 1=14,即y 1=x4.∵乙产品的利润与投入资金的算术平方根成正比, ∴设y 2=k 2x ,当投入4万时,利润为2.5万, 即4k 2=52,得2k 2=52,即k 2=54,即y 2=5x4.设乙产品投入资金为x ,则甲产品投入资金为10-x,0≤x ≤10, 则销售甲、乙两种产品所得利润为y =14(10-x )+5x4, 则y ′=-14+58x =5-2x8x ,由y ′>0,得5-2x >0,即0≤x <254,由y ′<0,得5-2x <0,即254<x ≤10,即当x =254时,函数取得极大值同时也是最大值,此时y =14⎝ ⎛⎭⎪⎫10-254+54·254=1516+5016=6516. 15.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎪⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量) 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 由题意得,本年度每辆车的投入成本为10(1+x ), 每辆车的出厂价为13(1+0.7x ),年利润为f (x )=[13(1+0.7x )-10(1+x )]·y=(3-0.9x )×3 240×⎝ ⎛⎭⎪⎫-x 2+2x +53=3 240(0.9x 3-4.8x 2+4.5x +5), 则f ′(x )=3 240(2.7x 2-9.6x +4.5) =972(9x -5)(x -3),由f ′(x )=0,解得x =59或x =3(舍去),当x ∈⎝ ⎛⎭⎪⎫0,59时,f ′(x )>0,f (x )是增函数; 当x ∈⎝ ⎛⎭⎪⎫59,1时,f ′(x )<0,f (x )是减函数. 所以当x =59时,f (x )取极大值,f⎝ ⎛⎭⎪⎫59=20 000. 因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =59时,本年度的年利润最大,最大利润为20 000万元.精美句子1、善思则能“从无字句处读书”。
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.4 1.4.2 导数应用(二)
导数及其应用
1.4 生活中的优化问题举例 1.4.2 导数应用(二)
栏 目 链 接
1.会解决生活中的优化问题. 2.会利用导数解决某些实际问题.
栏 目 链 接
栏 目 链 接
基 础 梳 理
1.用导数解应用题的步骤: (1)根据实际问题写出函数关系; (2)正确确定函数的定义域; (3)利用导数法求出函数的最值; (4)根据实际问题回答(注意反思结果是否符合实际). 2.在具体解题过程中,当得到函数解析式后,要正确选择 解题方法.看是否是最值问题,如果是,需要用导数法,或利 用不等式、利用函数单调性求最值等.注意选择恰当的方法, 不要盲目动手.
栏 目 链 接
跟 踪 训 练
a 解析:(1)因为 x=5 时,y=11,所以 +10=11,所以 a=2. 2 (2)由(1)可知,该商品每日的销售量 y= 2 +10(x-6)2, x-3
栏 目 链 接
所 以 商 场 每 日 销 售 该 商 品 所 获 得 的 利 润 : f(x) = (x -
栏 目 链 接
点评:(1)解决此类有关利润的实际应用题,应灵活 运用题设条件,建立利润的函数关系,常见的基本等量 关系有:①利润=收入-成本;②利润=每件产品的利 润×销售件数. (2)对于单峰函数来说极值点就是最值点.
栏 目 链 接
跟 踪 训 练
1.某商场销售某种商品的经验表明,该商品每日的销 售量 y(单位:千克)与销售价格 x(单位:元/千克)满足关系 a 式 y= +10(x-6)2,其中 3<x<6,a 为常数.已知销售 x-3 价格为 5 元/千克时,每日可售出该商品 11 千克. (1)求 a 的值; (2)若该商品的成本为 3 元/千克,试确定销售价格 x 的 值,使商场每日销售该商品所获得的利润最大.
高中数学 第1章 导数及其应用 1.5.1-1.5.2 定积分学案 苏教版选修2-2(2021年整
2016-2017学年高中数学第1章导数及其应用1.5.1-1.5.2 定积分学案苏教版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第1章导数及其应用1.5.1-1.5.2 定积分学案苏教版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第1章导数及其应用1.5.1-1.5.2 定积分学案苏教版选修2-2的全部内容。
1。
5.1 曲边梯形的面积1.5。
2 定积分1.了解定积分的概念及“以直代曲”、“以不变代变"的思想方法,求定积分.2.理解定积分的几何意义,会求曲边梯形的面积.[基础·初探]教材整理1 曲边梯形的面积阅读教材P41~P45“例2”以上部分,完成下列问题.1.曲边梯形的面积将已知区间[a,b]等分成n个小区间,当分点非常多(n很大)时,可以认为f(x)在小区间上几乎没有变化(或变化非常小),从而可以取小区间内任意一点x i对应的函数值f(x i)作为小矩形一边的长.于是,可用f(x i)Δx来近似表示小曲边梯形的面积,这样,和式f(x1)Δx +f(x2)Δx+…+f(x n)Δx表示了曲边梯形面积的近似值.图1。
5.12.求曲边梯形的面积的步骤求曲边梯形面积的过程可以用流程图表示为:分割→以直代曲→作和→逼近由直线x=1,y=0,x=0和曲线y=x3所围成的曲边梯形,将区间4等分,则曲边梯形面积的近似值(取每个区间的右端点)是________.【解析】将区间[0,1]四等分,得到4个小区间:错误!,错误!,错误!,错误!,以每个小区间右端点的函数值为高,4个小矩形的面积和为曲边梯形面积的近似值S=错误!3×错误!+错误!3×错误!+错误!3×错误!+13×错误!=错误!.【答案】错误!教材整理2 定积分阅读教材P47“例1”以上部分,完成下列问题.一般地,设函数f(x)在区间[a,b]上有定义,将区间[a,b]等分成n个小区间,每个小区间长度为Δx错误!,在每个小区间上取一点,依次为x1,x2,…,x i,…,x n.作和S n=f(x1)Δx +f(x2)Δx+…+f(x i)Δx+…+f(x n)Δx.如果当Δx→0(亦即n→+∞)时,S n→S(常数),那么称常数S为函数f(x)在区间[a,b]上的定积分.记为S=_错误!f(x)d x。
人教版高中数学选修2-2第一章导数及其应用第五节(第一课时)曲边梯形的的面积和定积分的概念(共19张
n nn
nn
nn
每个区间的长度为 x i i 1 1 nn n
过各区间端点作x轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作
S1, S2,, Si ,, Sn.
2、近似代替
S第i个黄色矩形
1 n
f
(i-1) n
10
S第1个黄色矩形
n
f
() n
0
S第2个黄色矩形
1 n
f
(1) n
1 n3
凡 事 都是 多 棱 镜 , 不 同 的 角 度 会 看 到 不 同 的 结果 。 若 能 把 一 些 事 看 淡 了 ,就 会 有 个 好 心 境 , 若 把 很 多事 看 开 了 , 就 会有 个 好 心 情 。 让 聚 散 离 合 犹 如 月 缺 月 圆那 样 寻 常 , 让 得 失 利 弊 犹 如花 开 花 谢 那 样 自 然 , 不 计 较, 也 不 刻 意 执 着; 让 生 命 中 各 种 的 喜 怒 哀 乐 , 就 像 风 儿一 样 , 来 了 , 不 管 是 清 风 拂面 , 还 是 寒 风 凛 冽 , 都 报 以自 然 的 微 笑 , 坦然 的 接 受 命 运 的 馈 赠 , 把 是 非 曲 折 , 都当 作 是 人
n
i 1
f i x
n i 1
ba n
f i
当n→∞时,上式无限接近某个常数,这个常数叫做函数
f
(x)在区间[a,b]上的定积分
记作 b a
f
xdx
b a
f xdx lim n
n i 1
ba n
f i
定积分的定义:即
b a
f
(x)dx
lim
n
n i1
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.4 1.4.1 导数应用(一)
栏 目 链 接
点评:导数在物理中的应用,主要是求物体运 动的瞬时速度.另外,必须了解的内容是:对位移 求导得到的是物体运动的速度,对速度求导,得到 的是物体运动的加速度.
第一章
导数及其应用
1.4 生活中的优化问题举例 1.4.1 导数应用(一)
栏 目 链 接
1.会解决生活中的优化问题. 2.会利用导数解决某些实际问题.
栏 目 链 接
栏 目 链 接
基 础 梳 理
1.导数在几何中的应用:如求切线问题,要正确求出相应 函数的导数,看清题意,如果求过某点的函数的曲线的切线, 首先要判断该点是否在曲线上,再确定切线条数,最后再应用 导数求出切线. 2.导数在物理中的应用,导数的物理意义:s′(t0)是路程 为 s(t)的变速直线运动的瞬时速度 v(t0),利用导数的物理意义 可求变速直线运动在某时刻的瞬时速度.
栏 目 链 接
答案:D
例:函数 f(x)=x2-2x-9,则当 x=________时, 函 数取得最________值,最值为________.
答案:1
小
-10
自 测 自 评
1.已知 f(x)=x2+3xf′(1),则 f′(2)=( A.1 B.2 C.4
) D.8
栏 目 链 接
,
x2 -
, 以 下 只 需 证 明 g(x1) = ≥0 在(0,+∞)上恒成立. g′(x1) = ,当 x1∈ , 令 g′(x1) = 0 , 得 x1 = 0 或 时,g′(x1)<0,g(x1)单调递减;
高中数学第1章导数及其应用14生活中的优化问题举例课件新人教A版选修20
【解】 设容器的高为 x m,底面边长分别为 y m,(y+0.5)m, 则 4x+4y+4(y+0.5)=14.8,
即 y=1.6-2x. 因为 x>0,且 y>0,得 0<x<3.2. 所以容器的容积 V=xy(y+0.5)=x1.6-2x2.1-2x =14x3-1.85x2+3.36x(0<x<3.2).
A.6 千台
B.7 千台
C.8 千台
D.9 千台
解析:设利润为 y,则 y=y1-y2=17x2-(2x3-x2)=-2x3 +18x2(x>0).
∴y′=-6x2+36x=-6x(x-6). ∵当 0<x<6 时 y′>0,当 x>6 时,y′<0, ∴当 x=6 时,y 取得最大值.故选 A. 答案:A
解析:由题设知 y′=x2-39x-40, 令 y′>0,解得 x>40 或 x<-1, 故函数 y=13x3-329x2-40x(x>0)在[40,+∞)上递增,在(0,40] 上递减. ∴当 x=40 时,y 取得最小值. 由此为使耗电量最小,则其速度应定为 40. 答案:40
5.学校或班级举行活动,通常需要张贴海报进行宣 传.现让你设计一张如图所示的竖向张贴的海报,要求 版心面积为 128 dm2,上、下两边各空 2 dm,左、右两 边各空 1 dm.如何设计海报的尺寸,才能使四周空白面积 最小?
(1)用 θ 分别表示矩形 ABCD 和△CDP 的面积,并确定 sin θ 的 取值范围;
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、 乙两种蔬菜的单位面积年产值之比为 4∶3.求当 θ 为何值时,能使甲、 乙两种蔬菜的年总产值最大.
高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)
江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2的全部内容。
导数的概念本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。
2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计5分钟1.复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度.(1)提问:请说出函数从x1到x2的平均变化率公式.(2)提问:如果用x1与增量△x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段]4965,0[里的平均速度是零,而实际上运动员并不是静止的.这说明平均速度不能准确反映他在这段时间里运动状态。
【优化方案】2014年高中数学人教版必修5 配套课件 第1章1.1.2
课 堂 互 动 讲 练
知 能 优 化 训 练
山东水浒书业有限公司·
返回
优化方案系列丛书
第1章 解三角形
课 前 自 主 学 案
课前自主学案 1. 1.2 余 弦 定 理
课 堂 互 动 讲 练课堂互讲练知能优化训练知 能 优 化 训 练
山东水浒书业有限公司·
山东水浒书业有限公司·
课 堂 互 动 讲 练
知 能 优 化 训 练
返回
优化方案系列丛书
第1章 解三角形
课 前 自 主 学 案
通分整理得: a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-b2)=0. 展开整理得(a2-b2)2=c4. ∴a2-b2=±c2,即a2=b2+c2或b2=a2+c2. 课 堂 根据勾股定理,知△ABC是直角三角形. 互 动 【名师点评】 判断三角形的形状时,如果遇到的 讲 练 式子含角的余弦或边的二次式,那么要考虑用余弦 定理;如果遇到的式子含角的正弦或边的一次式, 知 那么大多情况用正弦定理;若是以上特征均不明显, 能 优 化 则要考虑两个定理综合应用. 训
山东水浒书业有限公司·
课 堂 互 动 讲 练
知 能 优 化 训 练
返回
优化方案系列丛书
第1章 解三角形
方法感悟
1.余弦定理指出了三角形的三条边与其中的一 个角之间的关系,每一个等式中都包含四个不同 的量,它们分别是三角形的三边和一个角,知道 其中的三个量,就可以求得第四个量:(1)已知两 边与它们的夹角,可以求得第三边;(2)已知两边 与其中一边的对角,可以代入余弦定理,看成关 于另一边的二次方程,从而解得另一边;(3)已知 三角形的三边可以求得三角形的三个角.从这里 可以看出,利用余弦定理解三角形时,条件中必 须至少知道两边.
2014-2015学年 高中数学 人教A版选修2-2 第一章导数及其应用课后作业
)
12.若函数 f(x)=ax2+c,且 f′(1)=2,求 a 的值.
A.1
B.-1
1 C. 2
8.若曲线 y=2x2-4x+P 与直线 y=1 相切,则 P=________. π 9.设 P 为曲线 C:y=x2+2x+3 上的点,且曲线 C 在点 P 处的切线倾斜角的范围为 0,4,则点 P 横坐标 三、探究与拓展 13.若一物体运动方程如下:(位移单位:m,时间单位:s) 2 t≥3 ① 3t +2 s= 2 29+3t-3 0≤t<3 ② 求: (1)物体在 t∈[3,5]内的平均速度; (2)物体的初速度 v0; (3)物体在 t=1 时的瞬时速度. 的取值范围为________. 10.求过点 P(-1,2)且与曲线 y=3x2-4x+2 在点 M(1,1)处的切线平行的直线.
一、基础过关 1.当自变量从 x0 变到 x1 时,函数值的增量与相应自变量的增量之比是函数 A.在[x0,x1]上的平均变化率 C.在 x1 处的变化率 B.在 x0 处的变化率
D.以上都不对 ( D.7+2(Δx)2 ) ) 三、探究与拓展 13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢 又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从 A 处到 B 处会感觉比 较轻松,而从 B 处到 C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化 BC 段曲线的陡峭程度 吗?
11.已知抛物线 y=x2+4 与直线 y=x+10.求: (1)它们的交点; (2)抛物线在交点处的切线方程.
2
6.过曲线 y=f(x)=x2+1 上两点 P(1,2)和 Q(1+Δx,2+Δy)作曲线的割线,当 Δx=0.1 时,割线的斜率 k= ________. 二、能力提升 7.甲、乙二人跑步路程与时间关系如右图所示,则________跑得快. 8.将半径为 R 的球加热,若半径从 R=1 到 R=m 时球的体积膨胀 28π 率为 ,则 m 的值为________. 3 1 9. 在 x=1 附近, 取 Δx=0.3, 在四个函数①y=x, ②y=x2, ③y=x3, ④y= 中, 平均变化率最大的是________. x π π π 10.求函数 y=sin x 在 0 到 之间和 到 之间的平均变化率,并比较它们的大小. 6 3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【优化方案】2014-2015学年高中数学第一章导数及其应用(第5课时)课时作业新人教A版选修2-2
[学业水平训练]
1.下列函数中,在(0,+∞)内为增函数的是()
A.y=sin x B.y=xe2
C.y=x3-x D.y=ln x-x
答案:B
2. 函数y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()
解析:选D.由函数y=f(x)的图象可知,在区间(-∞,0)和(0,+∞)上,函数f(x)均为减函数,故在区间(-∞,0)和(0,+∞)上,f′(x)均小于0,故选D.
3.已知函数f(x)=x3-3x2-9x,则函数f(x)的单调递增区间是()
A.(3,9) B.(-∞,-1),(3,+∞)
C.(-1,3) D.(-∞,3),(9,+∞)
解析:选B.∵f(x)=x3-3x2-9x,
∴f′(x)=3x2-6x-9=3(x2-2x-3).
令f′(x)>0,知x>3或x<-1.
即函数f(x)的单调递增区间是(-∞,-1),(3,+∞).
4.函数f(x)=xe-x的一个单调递增区间是()
A.[-1,0] B.[2,8]
C.[1,2] D.[0,2]
解析:选A.∵f′(x)=ex-xex
ex 2=(1-x)·e-x>0,又∵e-x>0,∴x<1.
5.已知函数f(x)=x+ln x,则有()
A.f(2)<f(e)<f(3) B.f(e)<f(2)<f(3) C.f(3)<f(e)<f(2) D.f(e)<f(3)<f(2)
解析:选A.因为在定义域(0,+∞)上f′(x)=12x
+1x >0,所以f(x)在(0,+∞)上是增函数,所以有f(2)<f(e)<f(3).
6.若函数f(x)=x3+bx2+cx +d 的单调减区间为(-1,3),则b =________,c =________. 解析:f′(x)=3x2+2bx +c ,
由条件知⎩⎪⎨⎪⎧ f′ -1 =0,f′ 3 =0,
即⎩⎪⎨⎪⎧ 3-2b +c =0,27+6b +c =0.
解得b =-3,c =-9.
答案:-3 -9
7.使y =sin x +ax 为R 上的增函数的a 的取值范围是________.
解析:∵y′=cos x +a >0,
∴a >-cos x 对x ∈R 恒成立.
∴a >1.
答案:(1,+∞)
8.(2014·高考福建卷)函数f(x)=⎩⎪⎨⎪⎧ x2-2, x≤02x -6+ln x , x >0的零点个数是________. 解析:当x≤0时,令x2-2=0,
解得x =-2(正根舍去),
所以在(-∞,0]上有一个零点.
当x >0时,f′(x)=2+1
x >0恒成立,
所以f(x)在(0,+∞)上是增函数.
又因为f(2)=-2+ln 2<0,f(3)=ln 3>0,f(2)·f(3)<0,所以f(x)在(2,3)内有一个零点.
综上,函数f(x)的零点个数为2.
答案:2
9.求下列函数的单调区间:
(1)y =2
3x3-2x2+3;
(2)y =ln(2x +3)+x2.
解:(1)函数的定义域为R.
y′=2x2-4x =2x(x -2).
令y′>0,则2x(x -2)>0,
解得x <0或x >2.
所以函数的单调递增区间为(-∞,0),(2,+∞).
令y′<0,则2x(x -2)<0,
解得0<x <2,
所以函数的单调递减区间为(0,2).
(2)函数y =ln(2x +3)+x2的定义域为(-3
2,+∞).
y′=22x +3+2x =4x2+6x +22x +3=2 2x +1 x +1 2x +3
. 令y′>0,
解得-32<x <-1或x >-12.
所以函数的单调递增区间为(-32,-1),(-12,+∞).
令y′<0,解得-1<x <-12,
所以函数的单调递减区间为(-1,-12).
10.求证:函数y =xsin x +cos x 在区间(3π2,5π2)上是增函数.
证明:y′=sin x +xcos x -sin x =xcos x.
∵x ∈(3π2,5π2),
∴cos x >0.
∴y′>0,
即函数y =xsin x +cos x 在(3π2,5π2)上是增函数.
[高考水平训练]
1.若函数f(x)=x3-ax2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )
A .a≥1
B .a =1
C .a≤1
D .0<a <1
解析:选A.∵f′(x)=3x2-2ax -1,又f(x)在(0,1)内单调递减,
∴不等式3x2-2ax -1<0在(0,1)内恒成立,
∴f′(0)≤0,且f′(1)≤0,
∴a≥1.
2.在下列命题中,真命题是________(填序号).
①若f(x)在(a ,b)内是增函数,则对任意x ∈(a ,b),都应有f′(x)>0;
②若在(a ,b)内f′(x)存在,则f(x)必为单调函数;
③若在(a ,b)内对任意x 都有f′(x)>0,则f(x)在(a ,b)内是增函数;
④若可导函数在(a ,b)内有f′(x)<0,则在(a ,b)内有f(x)<0.
解析:对于①,可以存在x0,使f′(x0)=0不影响区间内函数的单调性;对于②,导数f′(x)符号不确定,函数不一定是单调函数;对于④,f′(x)<0只能得到f(x)单调递减. 答案:③
3.已知函数y =ax 与y =-b x 在(0,+∞)上都是减函数,试确定函数y =ax3+bx2+5的单调
区间.
解:因为函数y =ax 与y =-b x 在(0,+∞)上都是减函数,所以a <0,b <0.
由y =ax3+bx2+5,得y′=3ax2+2bx.
令y′>0,得3ax2+2bx >0,
所以-2b 3a <x <0.
所以当x ∈(-2b 3a ,0)时,函数为增函数.
令y′<0,即3ax2+2bx <0,
所以x <-2b 3a ,或x >0.
所以在(-∞,-2b 3a ),(0,+∞)上函数为减函数.
4.已知函数f(x)=ax -a x -2ln x(a≥0),若函数f(x)在其定义域内为单调函数,求a 的取值范
围.
解:f′(x)=a +a x2-2x ,
要使函数f(x)在定义域(0,+∞)内为单调函数, 则在(0,+∞)内f′(x)恒大于等于0或恒小于等于0.
当a =0时,f′(x)=-2x <0在(0,+∞)内恒成立;
当a >0时,要使f ′(x)=a(1x -1a )2+a -1a ≥0恒成立,
则a -1a ≥0,
解得a≥1.
综上可知,a 的取值范围为a≥1或a =0.。