人教版七年级数学下册--《相交线与平行线》教师教学设计

合集下载

相交线与平行线教案

相交线与平行线教案

5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

3.情感态度与价值观:培养学生合作交流意识和探索精神。

二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。

七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。

今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。

七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。

这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。

因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

人教版七年级数学下册相交线与平行线《平行线的性质(第4课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第4课时)》示范教学设计

平行线的性质(第4课时)教学目标1.了解定理与证明的概念,理解定理可以作为继续推理的依据.2.初步接触逻辑推理的形式,知道逻辑推理的根据主要有已知、定义、定理、基本事实等,理解证明中的每一步都要有根据.3.掌握利用反例来判断一个命题是假命题的方法.教学重点理解证明的必要性和证明的过程步步有根据.教学难点理解什么是证明,填写一些证明的关键步骤和根据.教学过程新课导入【问题】说出两个我们学过的基本事实.【师生活动】学生独立回答,教师引导补充.【答案】如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.【问题】说出两个经过推理得到的真命题.【师生活动】学生思考,教师补充,并回顾是经过怎样的推理得到的.【答案】“对顶角相等”.推理过程如下:因为∠2与∠3互补,∠4与∠3互补(邻补角的定义),所以∠2=∠4(同角的补角相等).“内错角相等,两直线平行”.推理过程如下:因为∠2=∠3,而∠3=∠1,所以∠1=∠2,即同位角相等.从而a∥b.【设计意图】从学生已知的真命题出发,为下文探究定理的概念做准备.新知探究一、探究学习【新知】一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.【问题】推理过程又称为什么呢?【师生活动】教师引导,学生思考.【新知】在很多情况下,一个命题的正确性需要经过推理才能做出判断,这个推理过程叫做证明.【问题】推理和证明有区别吗?(先不作答,带着疑问继续探究.)【设计意图】由已经过推理证实的真命题引出定理和证明的概念,让学生更容易理解和记忆,最后给出的问题又能引导学生在后面的学习探究中深入思考推理和证明的本质.【思考】判断下列命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.【分析】题设:在同一平面内,一条直线垂直于两条平行线中的一条.结论:这条直线也垂直于两条平行线中的另一条.画出图形如下:已知:如图,直线b∥c,a⊥b.求证:a⊥c.分析:【问题】在下面证明命题的过程中,尝试把推理的根据填到括号内.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又b∥c(__________),∴∠1=∠2(________________________).∴∠2=∠1=90°(等量代换).∴a⊥c(_________________).【师生活动】教师引导,小组讨论,然后找学生代表回答.【答案】已知两直线平行,同位角相等垂直的定义【新知】证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.【归纳】推理和证明是有区别的,推理是证明过程中的组成部分.命题1是真命题.【设计意图】通过证明该定理,了解逻辑推理的形式.【思考】判断下列命题的真假.命题2:相等的角是对顶角.【分析】题设:两个角相等.结论:这两个角互为对顶角.对顶角:∠1与∠3,∠2与∠4位置关系:有公共顶点,两边分别互为反向延长线.【答案】反例:OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.反例:∠1=∠2,但∠1与∠2不是对顶角.【归纳】命题2是假命题.【师生活动】教师追问:真命题需要通过推理才能做出判断,那么,怎么判断一个命题是假命题呢?小组讨论,然后学生代表回答.【新知】判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.二、典例精讲【例1】在下面的括号内,填上推理的依据.已知:如图,∠A+∠B=180°.求证:∠C+∠D=180°.证明:∵∠A+∠B=180°,∴AD∥BC(__________________________).∴∠C+∠D=180°(__________________________).【答案】同旁内角互补,两直线平行两直线平行,同旁内角互补【归纳】注明的理由主要是依据的性质、定理、基本事实等,而“已知”式的理由可以不注明.【设计意图】检验学生对证明的步骤以及推理的根据的掌握情况.【例2】命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例.【答案】解:不是,反例如图所示,∠1和∠2是同位角,但∠1≠∠2.【归纳】举反例是判断一个命题是假命题的常用方法,举反例的问题在生活中也常用到.【设计意图】检验学生对通过举反例判断一个命题是假命题的方法的掌握情况.课堂小结板书设计一、定理的概念二、证明的概念及过程三、通过举反例判断假命题课后任务完成教材第23页习题5.3第6题.。

人教版七年级数学下册第5章相交线与平行线(教案)

人教版七年级数学下册第5章相交线与平行线(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的定义、性质和判定方法,以及它们在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动环节,分组的讨论和实验操作让同学们有了实际操作的机会,这有助于他们更好地消化吸收理论知识。但我观察到,有些小组在讨论时可能会偏离主题,需要在今后的教学中加强对讨论主题的引导。
至于学生小组讨论,我认为这是一个很好的互动和学习的机会。学生们能够在这个过程中相互启发,共同解决问题。不过,我也注意到,一些学生在讨论中较为沉默,可能需要我在以后的教学中更加关注这部分学生,鼓励他们积极参与。
-突破方法:通过动态几何软件或实物模型演示,让学生直观感受两条直线从不平行到平行的过程。
-判定方法的灵活运用:学生可能会在具体应用判定方法时感到困惑,尤其是在复杂的几何图形中。

第5章相交线与平行线大单元教学设计人教版七年级数学下册

第5章相交线与平行线大单元教学设计人教版七年级数学下册

单元目标
下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能 力不强,推理能力还需进一步培养。 (一)教学目标
1.理解对顶角、邻补角的概念,识别同位角、内错角、同旁内角,探索并掌握对顶角 相等的性质。
2.理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。理解点 到直线的距离的意义,能度量点到直线的距离。掌握基本事实:过一点有且只有一条直线 与已知直线垂直。
线的距离的概念,能度 角器过一点画已知 垂线
量点到直线的距离.掌 直线的垂线,会用格
握垂线的性质.
尺量点到直线的距
2.通过观察、思考、探 离
究 等活动 归纳 出垂线 3.掌握垂线的性质,
的概念和性质,并利用 并能利用垂线的性
所学知识进行说理,体 质解决问题
会从一般到特殊的方
法,提高逻辑思维能
力.通过利用垂线的性
平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,本章在学生已 有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了两条直线相 交的情形,探究了两条直线相交所成的角的位置和大小关系,给出了邻补角和对顶角概 念,得出了“对顶角相等”的结论。垂直作为两条直线相交的特殊情形,在生活中有着 广泛的应用,与它有关的概念和结论也是学习“平面直角坐标系”的直接基础,本章对 垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂 直”“垂线段最短”等结论,并给出点到直线的距离的概念,为学习在平面直角坐标系 中确定点的坐标打下基础。接下来研究了两条直线被第三条直线所截的情形,给出了同 位角、内错角、同旁内角的概念,为接下来研究平行作准备。对于平面内两条直线平行 的位置关系,首先引入一个基本事实(平行公理),即过直线外一点有且只有一条直线与 已知直线平行,以此为出发点探讨平行线的判定和平行线的性质,对于平行线的判定, 教科书首先结合推三角尺画平行线的方法给出“同位角相等,两直线平行”,并由此推 理得出“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。平行线的性质 也是类似,即通过探究得出性质 1,再由性质 1 推理得出性质 2 和性质 3。接下来对命 题、命题的构成、直假命题、定理作了简单介绍,使学生初步接触有关形式逻辑的概念 和术语,并以“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂 直于另一条直线”为例,介绍了什么是证明。在最后一节安排了有关平移的内容,图形 的变化是“图形与几何”领域中一块重要的内容,通过将图形的平移、旋转折叠等活 动。使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的 变化是研究几何问题、发现几何结论的有效工具。平移的内容一方面是将其作为平行线 的一个应用,另一方面引入平移,可以尽早渗透图形变化的思想,使学生尽早接触利用 平移分析和解决问题的方法。在“平移”一节中,教科书首先给出几个美丽图案,分析 这些图案的共同特点,由此引出图形的平移,接着通过一个“探究”栏目让学生画雪 人,体会动手平移的过程,再观察两个相邻的雪人,分析它们之间对应点连线的位置和 长短关系,发现平移的基本性质,给出了平移的概念,最后学习利用平移设计图案和分 析解决实际生活中的问题。

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

平行线的性质(第2课时)教学目标1.能够灵活应用平行线的性质解决问题.2.加深对平行线的三条性质的理解,提高分析问题、解决问题的能力.教学重点掌握平行线的性质.教学难点应用平行线的性质解决问题.教学过程知识回顾平行线的性质1:两直线平行,同位角相等.平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.本节课,我们针对平行线的性质的应用,展开学习.【设计意图】对上节课所学习的平行线的性质进行复习回顾,为本节课题目的讲解提供理论依据.新知探究一、探究学习【问题】1.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG 的度数是().A.70°B.20°C.35°D.40°【师生活动】学生独立分析题目,得到过程如下:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.【答案】C【归纳】(1)在确定两角之间数量关系或求角度的问题中,如果有平行线,那么先考虑平行线的性质;(2)利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.【问题】2.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,∠1=∠2,∠3=62°,求∠BCA的度数.【师生活动】教师引导学生对图形进行分析,找到角与角之间的对应关系,进行等量替换,通过平行线的性质与判定综合应用来解答本题.【答案】解:∵CD⊥AB,FE⊥AB,∴∠BEF=∠BDC=90°.∴FE∥CD.∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD.∴DG∥BC.∴∠BCA=∠3=62°.【归纳】遇到平行线的条件时就要联想到角的相等或互补;遇到角的相等或互补时就要联想到两直线平行;遇到垂直的条件时就要联想到垂直的性质.【问题】3.如图,AD是∠BAC的平分线,∠2=∠3,试说明∠3=∠G.【答案】解:∵AD平分∠BAC,∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴GE∥AD(内错角相等,两直线平行).∴∠2=∠G(两直线平行,同位角相等).∴∠3=∠G.【归纳】平行线的性质与判定的选择:(1)由角的关系得到平行,用的是平行线的判定.(2)由两直线平行得到角的关系,用的是平行线的性质.【问题】4.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1与∠2之间有什么数量关系?说明理由.【答案】解:∠1+∠2=90°.理由如下:∵BE平分∠ABC,CE平分∠BCD,∴∠1=12∠ABC,∠2=12∠BCD.∵AB∥CD,∴∠ABC+∠BCD=180°.∴∠1+∠2=12∠ABC+12∠BCD=12(∠ABC+∠BCD)=12×180°=90°.【归纳】要确定两个角之间的数量关系,关键是看这两个角属于哪一类角,当角不是由两平行线被第三条直线所截而形成的同位角、内错角或同旁内角时,一般要考虑这两个角与这三类角之间有无倍、分关系.【设计意图】前面几道题目涉及到应用平行线的性质进行相关角度的计算,在解决该类问题时,一般要综合应用平行线的判定和性质,灵活求解.【问题】5.如图,已知BE∥CF,∠1=∠2,请判断直线AB与CD是否平行,并说明理由.【师生活动】学生以组为单位,对图形进行分析,写出解题过程并组内纠错.【答案】解:∵BE∥CF,根据“两直线平行,内错角相等”,得∠EBC=∠BCF.又∵∠1=∠2,∴∠1+∠EBC=∠2+∠BCF.即∠ABC=∠BCD.根据“内错角相等,两直线平行”,得AB∥CD.【问题】6.如图,已知AD∥BC,∠A=∠C,试说明AB和CD的位置关系.【答案】解:AB∥CD.理由如下:∵AD∥BC,∴∠C=∠CDE.∵∠A=∠C,∴∠A=∠CDE.∴AB∥CD(同位角相等,两直线平行).【归纳】在利用平行线的性质或判定时,一定要看清楚直线与角的位置关系,分清同位角、内错角、同旁内角是由哪两条直线被哪条直线所截而成的.【设计意图】问题5和问题6主要应用平行线的性质判断边的位置关系,在解决该类问题时,要分清截线和被截线.【问题】7.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?【师生活动】教师引导学生从梯形的特征去分析,知道两边平行就可以应用平行线的相关知识解决问题.【答案】解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.【问题】8.如图,MN,EF表示两面互相平行的镜子,一束光线AB照射到镜面MN 上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,并说明理由.【答案】解:AB∥CD.理由如下:∵MN∥EF,∴∠2=∠3(两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4.∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°,∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).【归纳】实际问题一般要转化为数学问题解决,解决此类问题的关键是利用平行线的性质求有关角的度数.【设计意图】问题7和问题8两题涉及到平行线的性质在实际生活中的应用,解决这类问题的关键是找出平行线,利用平行线的性质求出角的度数.课堂小结板书设计一、应用平行线的性质计算角的度数二、应用平行线的性质判断边的位置关系三、平行线的性质在实际生活中的应用课后任务完成教材第20页练习第2题.。

人教版七年级数学下册相交线与平行线《平行线及其判定(第1课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线及其判定(第1课时)》示范教学设计

平行线及其判定(第1课时)教学目标1.掌握平行线的定义以及表示方法.2.会根据几何语言用直尺和三角板画平行线.3.掌握平行公理及其推论.教学重点掌握平行公理及其推论.教学难点1.掌握平行线的定义以及表示方法.2.会根据几何语言用直尺和三角板画平行线.教学过程新知探究一、探究学习【问题】如图,分别将木条a,b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线,转动a.想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?【师生活动】学生独立思考,然后教师选取学生代表发言.【新知】在木条转动过程中,存在直线a与b不相交的情形,这时我们说直线a与b 互相平行,记作a∥b.【师生活动】观察下面的动图,进一步理解平行与相交.【设计意图】通过动图,让学生更加直观地发现平行的现象,激发学生的学习兴趣.【问题】平行线在生活中是很常见的,你还能举出其他例子吗?【答案】【设计意图】通过列举平行线在生活中的实例,让学生体会数学与生活的密切联系.【思考】两条不相交的直线就是平行线吗?【答案】不是;不在同一平面内,两条不相交的直线还有第二种可能,即异面(如图AB与CD,以及现实中的立交桥).【新知】在同一平面内,不相交的两条直线叫做平行线.【设计意图】通过此问题让学生知道“在同一平面内”的重要性,关于“异面”的相关知识教师不要展开讲解,让学生了解即可.【注意】(1)两条直线平行必须具备两个条件:①在同一平面内;②不相交.(2)在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(3)两条线段或射线平行是指其所在的直线平行.【问题】如图,过点B画直线a的平行线,能画出几条?【师生活动】学生尝试动手画出平行线,教师巡视并纠错.【答案】1条【新知】通过观察和画图,可以发现一个基本事实(平行公理):经过直线外一点,有且只有一条直线与这条直线平行.【追问】试着归纳出画平行线的步骤.【归纳】画平行线的步骤:一“落”:把三角尺一边落在已知直线上;二“靠”:用直尺紧靠三角尺的另一边;三“移”:沿直尺移动三角尺,使三角尺上与已知直线重合的边过已知点;四“画”:沿三角尺上过已知点的边画直线.【设计意图】通过尝试画平行线,让学生归纳出画平行线的步骤,同时引出平行公理.【问题】如图,过点C画直线a的平行线,它和前面过点B画出的直线平行吗?【师生活动】学生独立思考并给出合理的猜想,然后教师证明猜想.【答案】猜想:如果b∥a,c∥a,那么b∥c.证明:假设b与c不平行,那么b与c相交,设交点为P,那么过点P就有两条直线b和c都与直线a平行,而根据平行公理,这是不可能的,所以b∥c.【新知】由平行公理,进一步可以得到如下结论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果b∥a,c∥a,那么b∥c.【设计意图】通过反证法对平行公理的推论进行证明,让学生对反证法有初步的认识.二、典例精讲【例1】下列说法中,正确的是().A.若两条直线不相交,则它们平行B.若两条线段不相交,则它们平行C.若两条线段平行,则它们不相交D.在同一平面内,两条直线的位置关系有三种:相交、垂直和平行【师生活动】学生思考、回答,教师点评.【答案】C【解析】选项A:未说明“在同一平面内”,故错误.选项B:两条线段平行,是指它们所在的直线平行,而两条线段不相交,它们所在的直线可能相交,故错误.选项C:两条线段平行,即它们所在的直线不相交,所以这两条线段也不相交,故正确.选项D:垂直是相交的一种特殊情况,故错误.【设计意图】通过例1,考查学生对平行与相交相关概念的掌握情况.【例2】如图,P是AB上一点,试过点P作PM∥AC,交BC于点M,过点P作PN∥BC,交AC于点N.【师生活动】学生独立思考,然后作答.【答案】解:如图所示.直线PM,直线PN即为所求.【归纳】平行公理是过直线外一点作这条直线的平行线的依据.【设计意图】通过例2,让学生会根据几何语言用直尺和三角板画平行线.【例3】如图,直线a∥b,b∥c,直线d与a相交于点M.(1)判断直线a,c的位置关系,并说明理由;(2)判断直线c,d的位置关系,并说明理由.【师生活动】学生独立思考,然后回答问题.【答案】解:(1)a∥c.理由如下:因为a∥b,b∥c,所以a∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).(2)c与d相交.理由如下:因为直线a,d都过点M,且a∥c,所以c与d相交(经过直线外一点,有且只有一条直线与这条直线平行).【归纳】1.平行公理表述了平行的唯一性.在平行公理中一定要强调“直线外一点”,否则不存在直线与已知直线平行.2.平行公理的推论表述了平行的传递性.在公理的推论中没有强调“在同一平面内”,事实上,在立体几何中,这个推论也是成立的.【设计意图】通过例3,考查学生运用平行公理及其推论解决相关问题的掌握情况.课堂小结板书设计一、平行线的定义二、平行线的画法三、平行公理及其推论课后任务完成教材第12页练习.。

七年级下册数学教案《相交线与平行线》

七年级下册数学教案《相交线与平行线》

相交线与平行线一、教学目标知识与技能:学生能够理解相交线和平行线的概念,掌握它们的性质(如相交线的对顶角相等、邻补角互补,平行线的同位角相等、内错角相等、同旁内角互补),并能在图形中准确识别和应用这些性质。

过程与方法:通过观察、测量、推理等数学活动,培养学生的观察能力、逻辑思维能力和空间想象力。

引导学生从具体到抽象,从特殊到一般地探索几何图形的性质。

情感态度与价值观:激发学生对几何学习的兴趣,培养学生的探究精神和合作意识,以及严谨的数学学习态度。

二、教学重点和难点重点:相交线和平行线的概念及其性质的理解和应用。

难点:如何运用相交线和平行线的性质解决实际问题,特别是在复杂图形中识别和应用这些性质。

三、教学过程1. 引入新课(5分钟)生活实例:展示一些包含相交线和平行线的生活实例图片(如铁路桥与公路的交叉、铁轨的平行等),引导学生观察并思考这些图形中的共同特点。

提出问题:询问学生是否注意到这些图形中的线条有些相交,有些平行,进而引出相交线和平行线的概念。

明确目标:简要介绍本节课的学习目标,让学生明确将要学习的内容和重要性。

2. 概念讲解(10分钟)定义阐述:清晰地阐述相交线(特别是交点、对顶角、邻补角的概念)和平行线(定义、符号表示)的概念。

图形展示:利用多媒体或黑板绘制相交线和平行线的典型图形,帮助学生直观理解概念。

初步应用:通过简单例子,如识别图形中的相交线和平行线,让学生初步感受这些概念的应用。

3. 性质探究(15分钟)观察测量:引导学生观察相交线的对顶角和邻补角,用量角器测量角度,发现对顶角相等、邻补角互补的规律。

逻辑推理:通过平行线的截线性质(同位角、内错角、同旁内角),引导学生运用逻辑推理得出它们的性质,并尝试用几何语言表述。

合作交流:组织小组讨论,让学生分享自己的发现,互相补充和完善对相交线和平行线性质的理解。

4. 巩固练习(15分钟)例题讲解:选取典型例题,详细讲解如何运用相交线和平行线的性质解决问题,强调解题步骤和注意事项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线(教师教案)第一段典型例题【开课】教师在正式开课前,先把本次课程的内容简单概括一下:今天的内容主要包括以下几部分内容:一.相交线、垂线的概念二.同位角、内错角、同旁内角等的概念三.平行线的的性质和判定【课程目标】1. 理解相交线的定义、对顶角的定义和性质、邻补角的定义,正确识别“三线八角”;2. 理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;3. 理解平行线的概念,正确地表示平行线,会利用三角尺、直尺画平行线,理解平行公理和平行公理的推论;4. 掌握两直线平行的判定方法和平行线的性质;5. 能综合运用平行线的性质和判定证明和计算。

【课程安排】1 教师简要介绍本次课程的关键点,同学做题,然后教师讲解2 教师总结,学生做综合练习(第二段)教师讲解【教师讲课要求】教师先将第一段练习发给每一位学生,学生做题时教师必须巡视,了解学生做题情况,学生完成练习后,教师进行讲解。

第一部分相交线、垂线课时目标:理解相交线的定义、对顶角的定义和性质、邻补角的定义,正确识别“三线八角”;理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;教师讲课要求【知识要点】:请学生看一下做好上课的准备(一)相交线1. 相交线的定义在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点。

如图1所示,直线AB与直线CD相交于点O。

OD C B A4321A B C D O 21O CB A图1 图2 图32. 对顶角的定义若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角。

如图2所示,∠1与∠3、∠2与∠4都是对顶角。

注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3)两条相交线形成2对对顶角。

3. 对顶角的性质对顶角相等。

4. 邻补角的定义如果把一个角的一边反向延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角。

如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°。

(二)垂线1. 垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

AB C D 1 A B C D 1图4如图4所示,直线AB 与CD 互相垂直,垂足为点O ,则记作AB ⊥CD 于点O 。

其中“⊥”是“垂直”的记号;是图形中“垂直”(直角)的标记。

注意:垂线的定义有以下两层含义:(1)∵AB ⊥CD (已知) (2)∵∠1=90°(已知)∴∠1=90°(垂线的定义) ∴AB ⊥CD (垂线的定义)2. 垂线的性质(1)性质1:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直,即过一点有且只有一条直线与已知直线垂直。

(2)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

即垂线段最短。

3. 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

mDC B A P图5 图6如图5所示,m 的垂线段PB 的长度叫做点P 到 直线m 的距离。

4. 垂线的画法(工具:三角板或量角器)5. 画已知线段或射线的垂线(1)垂足在线段或射线上(2)垂足在线段的延长线或射线的反向延长线上(三)“三线八角”两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。

(1)同位角:可以发现∠1与∠5都处于直线l 的同一侧,直线a 、b 的同一方,这样位置的一对角就是同位角。

图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。

(2)内错角:可以发现∠3与∠5都处于直线l 的两旁,直线a 、b 的两方,这样位置的一对角就是内错角。

图中的内错角还有∠4与∠6。

(3)同旁内角:可以发现∠4与∠5都处于直线l 的同一侧,直线a 、b 的两方,这样位置的一对角就是同旁内角。

图中的同旁内角还有∠3与∠6。

范例1. 判断下列语句是否正确,如果是错误的,说明理由。

(1)过直线外一点画直线的垂线,垂线的长度叫做这个点到这条直线的距离;(2)从直线外一点到直线的垂线段,叫做这个点到这条直线的距离;(3)两条直线相交,若有一组对顶角互补,则这两条直线互相垂直;(4)两条直线的位置关系要么相交,要么平行。

分析:本题考查学生对基本概念的理解是否清晰。

(1)、(2)都是对点到直线的距离的描述,由“直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”可判断(1)、(2)都是错的;由对顶角相等且互补易知,这两个角都是90°,故(3)正确;同一平面内,两条直线的位置关系是相交或平行,必须强调“在同一平面内”。

解答:(1)这种说法是错误的。

因为垂线是直线,它的长度不能度量,应改为“垂线段的长度叫做点到直线的距离”。

(2)这种说法是错误的。

因为“点到直线的距离”不是指点到直线的垂线段的本身,而是指垂线段的长度。

(3)这种说法是正确的。

(4)这种说法是错误的。

因为只有在同一平面内,两条直线的位置关系才是相交或平行。

如果没有“在同一平面内”这个前提,两条直线还可能是异面直线。

说明:此题目的是让学生抓住相交线平行线这部分概念的本质,弄清易混概念。

范例2. 如下图(1)所示,直线DE 、BC 被直线AB 所截,问∠∠∠∠1424与,与,∠∠34与各是什么角?AD12 3E4B C图(1)分析:已知图形不标准,开始学不容易看,可把此图画成如下图(2)的样子,这样就容易看了。

AD12 3E4B C图(2)答案:∠∠14与是同位角,∠∠24与是内错角,∠∠34与是同旁内角。

范例3 如下图(1),l 2364 51 2 l 1l 3图(1) (1)∠∠12与是两条直线_________________与_________________被第三条直线_________________所截构成的___________________角。

(2)∠∠13与是两条直线_______________与_________________被第三条直线____________________所截构成的________________角。

(3)∠∠34与是两条直线_______________与___________________被第三条直线_________________________所截构成的_______________角。

(4)∠5与∠6是两条直线_______________与_______________,被第三条直线______________________所截构成的________________角。

分析:从较复杂的图形中分解出有关角的直线,因此可以得到∠∠13与是由直线l l 13,被第三条直线l 2所截构成的同位角,如下图(2),类似可知其他情况。

l 231 l 1l 3图(2) 答案:(1)∠1与∠2是两条直线l l 23与被第三条直线l 1所截构成的同位角。

(2)∠1与∠3是两条直线l l 13与被第三条直线l 2所截构成的同位角。

(3)∠∠34与是两条直线l l 13与被第三条直线l 2所截构成的内错角。

(4)∠5与∠6是两条直线l l 12与被第三条直线l 3所截构成的同旁内角。

范例4按要求作图,并回答问题。

范例5作图题范例6证明垂直第二部分平行线[课时目标] 理解平行线的概念,正确地表示平行线,掌握两直线平行的判定方法和平行线的性质能综合运用平行线的性质和判定证明和计算。

教师讲课要求知识要点:请学生看一下准备上课1. 平行线的概念在同一平面内,不相交的两条直线叫做平行线。

注意:(1)在平行线的定义中,“在同一平面内”是个重要前提;(2)必须是两条直线;(3)同一平面内两条直线的位置关系是:相交或平行,两条互相重合的直线视为同一条直线。

两条直线的位置关系是以这两条直线是否在同一平面内以及它们的公共点个数m进行分类的。

图7 DC BA平行用“∥”表示,如图7所示,直线AB与直线CD平行,记作AB∥CD,读作AB 平行于CD。

3. 平行线的画法4. 平行线的基本性质(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行。

(2)平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。

5. 平行线的判定方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(4)两条直线都和第三条直线平行,那么这两条直线平行。

(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。

6. 平行线的性质:(1)两条平行线被第三条直线所截,同位角相等。

简记:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。

简记:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。

简记:两直线平行,同旁内角互补。

范例1如图,已知∠AMF=∠BNG=75°,∠CMA=55°,求∠MPN 的大小B F H答案:50°解析:因为∠AMF=∠BNG=75°,又因为∠BNG=∠MNP ,所以∠AMF=∠MNP ,所以EF ∥GH ,所以∠MPN=∠CME,又因为∠AMF=75°,∠CMA=55°,所以∠AMF+∠CMA=130°,即∠CMF=130°,所以∠CME=180°-130°=50°,所以∠MPN=50°范例2如图,∠1与∠3为余角,∠2与∠3的余角互补,∠4=115°,CP 平分∠ACM ,求∠PCM答案:57.5°解析:因为∠1+∠3=90°,∠2+(90°-∠3)=180°,所以∠2+∠1=180°,所以AB ∥DE ,所以∠BCN=∠4=115°,所以∠ACM=115°,又因为CP 平分∠ACM ,所以∠PCM=12∠ACM=12×115°=57.5°,所以∠PCM=57.5°范例3如图,已知:∠1+∠2=180°,∠3=78°,求∠4的大小答案:102°解析:因为∠2=∠CDB,又因为∠1+∠2=180°,所以∠1+∠CDB=180°,所以得到AB∥CD,所以∠3+∠4=180°,又因为∠3=78°,所以∠4=102°范例4如图,已知:∠BAP与∠APD 互补,∠1=∠2,说明:∠E=∠F解析:因为∠BAP与∠APD 互补,所以AB∥CD,所以∠BAP=∠CPA,又因为∠1=∠2,所以∠BAP-∠1=∠CPA-∠2,即∠EAP=∠FPA,所以EA∥PF,所以∠E=∠F范例5 如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明答案:∠HOP=∠AGF-∠HPO解析:过O作CD的平行线MN,因为AB∥CD,且CD∥MN,所以AB∥MN,所以∠AGF=∠MOF=∠HON,因为CD∥MN,∠HPO=∠PON,所以∠HOP=∠HON-∠PON=∠HON-∠HPO,所以∠HOP=∠AGF-∠HPO范例6 如图,已知AB∥CD,说明:∠B+∠BED+∠D=360°A B A BE EC D C D分析:因为已知AB∥CD,所以在∠BED的内部过点E作AB的平行线,将∠B+∠BED+∠D的和转化成对平行线的同旁内角来求。

相关文档
最新文档