大学物理六七章作业
大学物理第7章习题解答
第七章7-1容器内装有质量为0.lkg 的氧气,其压强为l0atm(即lMPa),温度为47C 0。
因为漏气,经过若干时间后,压强变为原来的85,温度降到27C 0。
问:(1)容器的容积有多大?(2)漏去了多少氧气? 解:(1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的。
若此气体的压强为Pa 141035.1⨯,试估算太阳的温度。
已知氢原子的质量kg H 271067.1-⨯=μ,太阳半径m R S 81096.6⨯=,太阳质量kg M S 301099.1⨯=。
解: 太阳内氢原子数HSm M N =故氢原子数密度为由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 一容器被中间隔板分成相等的两半,一半装有氮气,温度为1T ,另一半装有氧气,温度为2T ,二者压强相等,今去掉隔板,求两种气体混合后的温度。
解: 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ① 总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证混合后:设共同温度为T()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 题7-2图又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 设有N 个粒子的系统,速率分布函数如习题7一4图所示,求:(1))(v f 的表达式;(2)a 与0v 之间的关系;(3)速率在之间的粒子数;(4)最概然速率;(5)粒子的平均速率;(6) 0.50v ~0v 区间内粒子的平均速率。
大学物理第6章习题参考答案
第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
大学物理习题答案解析第七章
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
大学物理第7章习题参考答案(钟韶 编)
第七章7-1 (1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则T R M m V p ''=' 3201.0853*******⨯⨯='⇒⨯'=⇒R MR M m R Mm pV )kg (151='⇒m 漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2 太阳内氢原子数H Sm M N =故氢原子数密度为3827303)1096.6(341067.11099.134⨯⨯⨯⨯===-ππs H S R m M VN n)(105.8329-⨯=m由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ①总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证1114RT M m E =前 混合后:设共同温度为T题7-2图()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤≤≤=000002020)(v v v v v av v v v av f (2)由归一化条件⎰∞=01d )(v v f 得020032123d d 000v a av v a v v v a v v v =⇒==+⎰⎰(3)4d d )(00002/02/Nv v v a N v v Nf N v v v v =⎪⎪⎭⎫ ⎝⎛==⎰⎰∆ (4)从图中可看出最可几速率为v 0~2v 0各速率. (5)⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛==∞0002/000d d d )(v v v v va v v v av v v vf v020911611v av ==(6)02/02/097d d d )(d )(0002121v v v v a v v av v v v f v v vf v v v v v v v v v =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛==⎰⎰⎰⎰ 7-5 氧气未用时,氧气瓶中T T p L V V ====111,atm 130,32 V RTMp V RT Mp m 11111==① 氧气输出压强降到atm 102=p 时 V RTMp V RT Mp m 22222== ② 氧气每天用的质量 000V RTMP m =③L 400,atm 100==V P设氧气用的天数为x ,则021210m m m x m m xm -=⇒-= 由(1)(2)(3)知021021)(V p Vp p m m m x -=-=)(6.932400110130天=⨯⨯-=7-6 (1))(m 1041.23001038.110325235--⨯=⨯⨯==KT p n (2)(kg)103.51002.61032262330--⨯=⨯⨯==N M μ (3))kg/m (3.1103.51041.232625=⨯⨯⨯==-μρn (4)(m)1046.31041.21193253-⨯=⨯==nl(5)认为氧气分子速率服从麦克斯韦布,故 )(m s 1046.4103230031.86.16.11-23⨯=⨯⨯==-M RT v (6)122ms 1083.43-⨯==MRTv (7)(J)1004.13001038.12522023--⨯=⨯⨯⨯==KT i ε 7-7 3112310m 1006.12371038.1104---⨯=⨯⨯⨯==∴=kT p n nkTp )(cm 1006.135-⨯= 故1cm 3中有51006.1⨯个氮气分子.m101.21006.111d 43113-⨯≈⨯==n7-8 由课本P 257-258例7-4的结论知 )l n (0pp Mg RTh =(m)1096.1)8.01ln(8.9102930031.833⨯=⨯⨯⨯=- 7-9 (1) (J)1021.63001038.123232123--⨯=⨯⨯⨯==KT t (2)看作理想气体,则3132310101030028.16.16.1---⨯⨯⨯==μKTv 12ms 1003.1--⨯=7-10 (J)5.373930031.82323=⨯⨯===RT N E 平动平动ε (J)249330031.8122=⨯⨯===RT N E 转动转动ε内能(J)1023.630031.825253⨯=⨯⨯==RT E7-11 (1)由KTpn nKT p =⇒=∵是等温等压 ∴ 1:1:21=n n (2) MRT v 6.1=是等温,∴4:1322::1221====M M v v7-12317233102.33001038.11033.1---⨯=⨯⨯⨯==m KT P n m)(8.71033.110923001038.1d 2320232=⨯⨯⨯⨯⨯⨯==---ππλpKT7-13 (1)8000021042.56.1d 2⨯=⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫===z M RT v KT p n v n z π(2)由公式MTRK p M RTKT p v n z 222d 26.1d 2d 2πππ===知 z 与T 和P 有关,由于T 不变,故z 只与P 有关.则1854000071.01042.510013.11033.1::--=⨯⨯⨯⨯='='⇒'='s z p p z p p z z 7-14 (1)如图MRT v 32=∴A c A c T T v v ::22=又 C B →等温过程,故C B T T =. 由B A A B V V P P RT Mm pV ===2则A B T T 2= ∴1:2:22=A c V V(2)AAc c A c P T P T pKT ::d 22==λλπλ C B →等温过程 A C A A A C B B C C p p V p V p V p V p =⇒=⨯⇒=221:2:=∴A C7-15 (1)MRTv 73.12= )(ms 100.7102400031.873.1133--⨯=⨯⨯=(2)m 10210)31(2122101021--⨯=⨯+=+=d d d (3)325202210710401042d 2⨯⨯⨯⨯⨯⨯==-ππv n z110s 105-⨯= 7-16 (1)题7-14图MTR k p z KT pn M RT v v n z ππππ8d 28d 222=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=== ① 又由mREMT RT M m RT M m E 3326=⇒==② 把②代入①知EmkMpKN E m kM pR z ππ3d 43d 4022== EmMpN π3d 402=(2) MRTv P 2=把②代入得mEmR EM M R V P 3232=⨯=(3)平均平动动能 0232323mN EMmR EM k kT t =⨯==ε。
大学应用物理第七章习题答案
第七章 电场7-1回答下列问题:(1)在电场中某一点的场强定义为0q =F E ,若该点没有检验电荷,那么该点的场强如何?如果电荷在电场中某点受到的电场力很大,该点的场强是否一定很大?提示:电场强度是电场的基本性质,由电荷的分布决定,而与试验电荷无关。
因而若该点没有试验电荷,场强并不发生变化;若该点的电场力很大,场强不一定很大。
(2)根据点电荷的场强公式:304q rπε=r E ,从形式上看,当所考察的场点和点电荷的距离0→r 时,则按上述公式E →∞,但这是没有意义的。
对这个问题如何解释。
提示:点电荷的场强公式304q rπε=r E 是由库仑定律0304qq F rπε=r 推导而来,而库仑定律是经验公式,当0→r 时,点电荷的模型不成立,库仑定律不成立,此时点电荷的场强公式也不成立。
7-2—个带正电荷的质点。
在电场力作用下从A 点出发经C 点运动到B 点,其运动轨迹如图7-2所示。
巳知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是( )。
①质点沿曲线运动时,加速度的 方向总是指向曲线凹的一边; ②依题意,质点的切向加速度a τ与线速度υ反向;③电场强度E 的方向即为质点在该点加速度a 的方向,将a 分解为切向加速度a τ与法向加速度n a提示:D7-3 如7-3题图所示,闭合曲面S 内有—点电荷q ,P 为S 面上一点,在S 面外A 点有—点电荷`q ,若将`q 移至B 点,则( )(D)(A)穿过S 面的电通量改变、P 点的电场强度不变; (B)穿过S 面的电通量不变,P 点的电场强度改变; (C)穿过S 面的电通量和P 点的电场强度都不变; (D)穿过S 面的电通量和P 点的电场强度都改变。
提示:B7-4 在真空中有A 、B 两块板,板面积为S ,分别带有电量q +、q -,相距为d ,若忽略边缘效应,则两板间的相互作用力为多少?解:A 板上的电荷q +在B 板q 产生的场中,0022q E Sσεε==。
(完整版)大学物理学(课后答案)第7章
第七章课后习题解答、选择题7-1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[](A)温度,压强均不相同(B)温度相同,但氦气压强大于氮气的压强(C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强3分析:理想气体分子的平均平动动能 \ - kT,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT ,当两者分子数密度相同时,它们压强也相同。
故选( C)。
7-2理想气体处于平衡状态,设温度为T,气体分子的自由度为i,则每个气体分子所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为-kT (D)平均平动动能为-RT2 23分析:由理想气体分子的的平均平动动能 \ 3kT和理想气体分子的的平均动能2-丄kT,故选择(C)。
27-3三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根1/2 1/2 1/2速率之比为v A : v B : v C 1:2:4,则其压强之比为P A:P B:P c[](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1分析:由分子方均根速率公式厂2,又由物态方程p nkT,所以当三容器中得分子数密度相同时,得p1: P2: P3 T1 :T2 :T3 1: 4:16。
故选择(C)。
7-4图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果V p O和V p H分别表示氧气和氢气的最概然速率,则[] O 2 H 2(A)图中a表示氧气分子的速率分布曲线且V p O/ V p H4质量M H 2 M O 2,可知氢气的最概然速率大于氧气的最概然速率,故曲线 M 1 ( ) i于氧分子的速率分布曲线。
又因16,所以盘4。
故选择(B )。
f(v)习题7-4图7-5在一个体积不变的容器中,储有一定量的某种理想气体,温度为T 。
大学物理第七章习题及答案
第七章 振动学基础一、填空1.简谐振动的运动学方程是 。
简谐振动系统的机械能是 。
2.简谐振动的角频率由 决定,而振幅和初相位由 决定。
3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。
4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。
5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位 6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。
7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。
8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。
二、简答1.简述弹簧振子模型的理想化条件。
2.简述什么是简谐振动,阻尼振动和受迫振动。
3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求: (1)振动的圆频率,周期,初相位及速度与加速度的最大值; (2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。
7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为: (1)X 0=-A ;(2)过平衡位置向正向运动; (3)过X=A/2处向负向运动; (4)过X=2A 处向正向运动。
大学物理六习题集答案
大学物理六习题集答案大学物理六习题集答案大学物理是一门重要的基础学科,它涵盖了广泛的知识领域,包括力学、电磁学、光学等等。
在学习大学物理的过程中,做习题是非常重要的一部分,它能够帮助我们巩固知识,提高解题能力。
本文将为大家提供一些大学物理六习题集的答案,希望能够对大家的学习有所帮助。
第一题:力学题目:一个物体以速度v沿着水平方向匀速运动,突然受到一个水平方向的恒力F作用,物体在经过一段时间t后速度变为v',求恒力F的大小。
解答:根据牛顿第二定律,力等于质量乘以加速度。
由于物体在经过一段时间t 后速度变为v',可以得出加速度a=(v'-v)/t。
所以恒力F=m*a,其中m为物体的质量。
将a带入公式,可以得到F=m*(v'-v)/t。
第二题:电磁学题目:一根长直导线通有电流I,求导线周围的磁场强度B。
解答:根据安培定律,长直导线周围的磁场强度与电流成正比,与距离成反比。
具体公式为B=μ0*I/(2πr),其中μ0为真空中的磁导率,约等于4π×10^-7T·m/A,r为导线到观察点的距离。
第三题:光学题目:一束光从空气射入玻璃,求光的折射角。
解答:根据斯涅尔定律,光线从一个介质射入另一个介质时,入射角和折射角满足sinθ1/sinθ2=n2/n1,其中θ1为入射角,θ2为折射角,n1为入射介质的折射率,n2为折射介质的折射率。
对于空气和玻璃的界面,空气的折射率近似为1,玻璃的折射率可以通过查表得到。
第四题:热学题目:一定质量的物体从温度T1升到温度T2,求物体所吸收的热量。
解答:物体所吸收的热量可以通过热容公式计算,即Q=m*c*(T2-T1),其中Q为所吸收的热量,m为物体的质量,c为物体的比热容,T2-T1为温度的变化。
第五题:波动题目:一条绳子上有一定张力的波动传播,求波速。
解答:波速可以通过绳子的线密度和张力计算,即v=sqrt(T/μ),其中v为波速,T为绳子的张力,μ为绳子的线密度。
大学物理6,7章作业答案
⼤学物理6,7章作业答案第六章机械振动参考答案⼀. 选择题1. ( C )2. ( B )3.( D )4. ( D )5. ( B )6. ( D )7. ( D )8. ( D )9. ( C )⼆. 填空题10. (,)11. (;;)12. (;)13. ()14. ( 0 )三. 计算题15. 质量为10g 的⼩球与轻弹簧组成的系统,按 cm )3 8cos(5.0ππ+=t x 的规律振动,式中t 的单位为S 。
试求:(1)振动的圆周期、周期、初相、速度及加速度的最⼤值;(2)t =1s 、2s 时的相位各为多少?解:(1)将原式与简谐振动的⼀般表达式⽐较圆频率,初相,周期速度最⼤值加速度最⼤值(2)相位将代⼊,得相位分别为.16. ⼀质点沿x 轴作简谐振动,平衡位置在x 轴的原点,振幅cm 3=A ,频率Hz 6=ν。
(1)以质点经过平衡位置向x 轴负⽅向运动为计时零点,求振动的初相位及振动⽅程;(2)以位移 cm 3-=x 时为计时零点,写出振动⽅程.解: (1) 设振动⽅程为当t =0, x =0, 做旋转⽮量图,可得初相位振动⽅程为(2) 当t =0 , x = -3cm , 做旋转⽮量图,可得初相位所以振动⽅程为17. 在⼀轻弹簧下端悬挂砝码时,弹簧伸长8cm ,现在此弹簧下端悬挂的物体,构成弹簧振⼦。
将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 初速度(设这时t = 0)令其振动起来,取x 轴向下,写出振动⽅程。
解: 设振动⽅程为由,可知振幅A初相位由旋转⽮量图可得振动⽅程为18. 两质点同时参与两个在同⼀直线上的简谐振动,其表达式为:)652cos(03.0,)62cos(04.021ππ-=+=t x t x试求其合振动的振幅和初相位(式中x 以m 计,t 以s 计).解:⼆振动的频率相同,它们的相位差因⽽合振动的振幅设合振动的初相为,则第七章机械波参考答案⼀. 选择题1. (B)2. (D)3. (B)4.(C )5. (C )6. (D)7.(C )8.(B )9.(C )⼆. 填空题 10. ( 503 m/s )11. ( 1 Hz ; 1m/s ; 1m )12. (;)13. ( )14. ( 5J ) 15. ( - π/2 ) 16. ( - 2π/3 )三. 计算题17. ⼀横波沿绳⼦传播时的波动表式为 )410cos(05.0x t y ππ-=[SI] . 求:(1)此波的振幅、波速、频率和波长;(2)绳⼦上各质点振动的最⼤速度和最⼤加速度; 解:(1)波动⽅程可得振幅频率波长波速(2)绳上各质点振动时的最⼤速度绳上各质点振动时的最⼤加速度18. ⼀平⾯简谐纵波沿线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最⼤位移为3.0cm ,振动频率为Hz 5.2,弹簧中相邻两疏部中⼼的距离为cm 24. 当0=t 时,在0=x 处质元的位移为零并向x 轴正向运动, 试写出该波的波动表式.解: 设平⾯简谐波的波动⽅程为已知:,,⼜时,原点处质点的位移,速度,故该质点的初相cm19. ⼀平⾯波在介质中以速度1s m 20-?=u 沿x 轴负⽅向传播,已知a 点的振动表式为t y a π4cos 3= [SI].(1)以a 为坐标原点写出波动⽅程;(2)以与a 点相距m 5处的b 点为坐标原点,写出波动⽅程.解:(1)已知A = 3m ,,因波沿x 轴负⽅向传播,以a 点为坐标原点的波动⽅程为(2)以a 点为坐标原点时,b 点的坐标为代⼊上式得b 点的振动⽅程为若以b 点为坐标原点,则波动⽅程为20. 如图所⽰,已知和时的波形曲线分别为图中实线曲线Ⅰ和虚线曲线Ⅱ,波沿x 轴正向传播. 根据图中给出的条件,求:(1)波动⽅程;(2)P 点质元的振动⽅程.解:(1) 设波动⽅程为由图知A= 0.1m,λ= 4m⼜时,原点处质点的位移,速度,故该质点的初相(2)将代⼊波动⽅程,得点质元振动⽅程为21. 如图所⽰,两相⼲波源分别在P、Q两点,它们发出频率为ν,波长为λ,初相相同的两列相⼲波,振幅分别为A1和A2 ,设2/3λPQ,R为PQ连线上的⼀点.求:=(1)⾃P、Q发出的两列波在R处的相位差;(2)两波在R处⼲涉时的合振幅.解:(1)两列波的初相位相同,在R处的相位差为(2)两波在R处的振动⽅向相同,频率相同,相位差,则合振幅为。
大学物理第六章 例题习题
2019秋学期大学物理(2)例题习题程守洙编《普通物理学》上下册(第七版)高教出版第六章热力学基础例题:P217 例6-1,P229 例6-5,习题:一、单选题1. 一定量的理想气体,开始时处于压强、体积、温度分别为p1,V1,T1的平衡态,后来变到压强、体积、温度分别为p2,V2,T2的终态.若已知V2>V1,且T2=T1,则以下各种说法中正确的是:[](A) 不论经历的是什么过程,气体对外净作的功一定为正值.(B) 不论经历的是什么过程,气体从外界净吸的热一定为正值.(C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D) 如果不给定气体所经历的是什么过程,则气体在过程中对外净作功和从外界净吸热的正负皆无法判断.2. 一定量的理想气体,从a态出发经过①或②过程到达b态,acb为等温线(如图),则①、②两过程中外界对系统传递的热量Q1、Q2是[](A) Q1>0,Q2>0.(B) Q1<0,Q2<0.(C) Q1>0,Q2<0.(D) Q1<0,Q2>0.3. 如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程: [ ](A) 是A→B. (B)是A→C. (C)是A→D.(D)既是A→B也是A→C, 两过程吸热一样多。
4. 一定量的理想气体从初态(V,T)开始,先绝热膨胀到体积为2V,然后经等容过程使温度恢复到T,最后经等温压缩到体积为V,如图所示,在这个循环中,气体必然[ ](A)内能增加(B)内能减少(C)向外界放热(D)对外界做功5. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外做功与从外界吸收的热量之比W/Q等于:[ ](A)1/3 (B)1/4 (C)2/5 (D)2/76. 有两个相同的容器,容积固定不变,一个盛有氨气,一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J的热量传给氢气,使氢气温度升高。
大学物理第六章课后习题答案
第六章静电场中的导体与电介质6 —1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。
由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。
6 —2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。
若将导体N的左端接地(如图所示),则()(B)N上的正电荷入地(A )N上的负电荷入地(C)N上的所有电荷入地地(D)N上所有的感应电荷入题6-2图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。
因而正确答案为( A )。
6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。
设无穷远处为零电势,则在导体球球心0点有()(A)E =0,V —4 n^d(B)E J,V L4 n%d 4 n %d (C)E = 0,V = 0题6-3图分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷 q 在导 体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q'在球心 0点激发的电势为零,0点的电势等于点电荷q 在该处激发的电势。
因而正 确答案为(A )。
6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合 曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是()(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有 自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代 数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有 极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零; 由于电介质会改变自由电荷的空间分布, 介质 中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理课后习题答案第七章 a
第七章 电磁感应选择题7-1 在闭合导线回路的电阻不变的情况下,下述正确的是 ( B ) (A) 穿过闭合回路所围面积的磁通量最大时,回路中的感应电流最大; (B) 穿过闭合回路所围面积的磁通量变化越快,回路中的感应电流越大; (C) 穿过闭合回路所围面积的磁通量变化越大,回路中的感应电流越大; (D) 穿过闭合回路所围面积的磁通量为零时,回路中的感应电流一定为零.7-2 导体细棒ab 与载流长直导线垂直.在如图所示的四种情况中,细棒ab 均以与载流导线平行的速度v 平动,且b 端到长直导线的距离都一样.在(a)、(b)和(c)三种情况中,细棒ab 与光滑金属框保持接触.设四种情况下细棒ab 上的感应电动势分别为a E 、b E 、c E 和d E ,则 ( C )(A) a b c d ==<E E E E ; (B) a b c d ==>E E E >E ; (C) a b c d ===E E E E ;(D) a b c d >>>E E E E .7-3 如图所示,半圆周和直径组成的封闭导线,处在垂直于匀强磁场的平面内.磁场的磁感应强度的大小为B ,直径AB 长为l .如果线圈以速度v 在线圈所在平面内平动, v 与AB 的夹角为θ,则 ( A )(A) 线圈上的感应电动势为零,AB 间的感应电动势sin AB Bl θ=E v ; (B) 线圈上的感应电动势为零,AB 间的感应电动势cos AB Bl θ=E v ;(C) 线圈上的感应电动势为i 2sin Bl θ=E v ,AB 间感应电动势为sin AB Bl θ=E v ; (D) 线圈上的感应电动势为i 2cos Bl θ=E v ,AB 间感应电动势为cos AB Bl θ=E v . 7-4 一个面积210cm S =的圆线圈,其电阻0.10R =Ω,处于垂直于匀强磁场的平面内,若磁感应强度的大小随时间的变化率1d 10T s d Bt-=⋅,则线圈中的感应电流的大小为( D )(A) 3i 1.010A I -=⨯; (B) 2i 1.010A I -=⨯; (C) 2i 1.010A I =⨯; (D) 1i 1.010A I -=⨯.7-5 导线元d l 在磁感应强度为B 的磁场中以速度v 运动时,其上的动生电动势为()i d d =⨯⋅B l E v( D ) (A) 当v 与d l 垂直时,一定有i d d B l =E v ; (B) 当v 与B 垂直时,一定有i d d B l =E v ; (C) 当d l 与B 垂直时,一定有i d d B l =E v ;(D) 只有在v 、B 和d l 三者相互垂直时,才有i d d B l =E v 或i d d B l =-E v .7-6 下述正确的是 ( C )(A) 静电场和感生电场的电场线都不闭合;(B) 静电场的电场线是闭合的,感生电场的电场线不闭合; (C) 感生电场的电场线是闭合的,静电场的电场线不闭合; (D) 静电场和感生电场的电场线都是闭合的.7-7 静止的导体中产生涡电流的原因是 ( C ) (A) 导体处于不均匀的稳恒磁场中; (B) 导体处于不均匀的静电场中; (C) 导体处于随时间变化磁场中; (D) 导体处于通有稳恒电流的线圈内. 7-8 在自感线圈中,电流i 随时间t 的变化曲线如图(a)所示.若以i 的正流向为正方向,则线圈中自感电动势L E 随时间t 的变化曲线应为图(b)中的 ( D )7-9 尺寸相同的铜环和铝环,穿过它们所围面积的磁通量的变化率相同.设铜环上的感应电动势和感应电流分别为1E 和1I ,铝环上的感应电动势和感应电流分别为2E 和2I ,则( C )(A) 12=E E , 12I I =; (B) 12>E E , 12I I >; (C) 12=E E , 12I I >; (D) 12>E E , 12I I =.7-10 如图所示,若一块磁铁沿着一根竖直放置的长铜管的轴线,自管口竖直下落,如果忽略空气阻力,则 ( C )(A) 磁铁越落越快,最后速度趋于无限大; (B) 磁铁越落越慢,最后速度趋于零; (C) 磁铁越落越快,最后达到一恒定速度; (D) 磁铁越落越慢,最后达到一恒定速度;计算题7-11 一个匝数100N =的导线圈,通过每匝线圈的磁通量41510sin10πΦt =⨯,式中1Φ的单为Wb ,t 的单位为s .求:(1) 任意时刻线圈上的感应电动势;(2) 在10s t =时,线圈上的感应电动势的大小.解 (1) 根据法拉第电磁感应定律,任意时刻线圈上的感应电动势为()41i d d100510sin10π0.5πcos10πd d ΦNt t t t-=-=-⨯=-E 式中t 的单位为s ,i E 的单位为V .(2) 10s t =时,线圈上的感应电动势为()i 0.5πcos 10π10 V 1.57 V =-⨯=-i E大小为i 1.57 V =i E7-12 若在一方向不变的磁场中,有一面积为20.03m 的平面线圈,线圈所在平面的法线与磁场的夹角为θ,磁感强度的大小为510B t =+,式中B 的单位为T ,t 的单位为s .求:(1) 当π3θ=时,线圈中的感应电动势的大小; (2) 当π2θ=,2s t =时,线圈中的感应电动势的大小; 解 穿过线圈所围平面的磁通量为()()cos 5100.03cos 0.150.3cos BS t t Φθθθ==+⨯=+线圈中的感应电动势为()i d d0.150.3cos 0.3cos d d t t tΦθθ=-=-+=-E (1) 在π3θ=的情况下,线圈中的感应电动势为 i π0.3cos V 0.15V 3⎛⎫=-=- ⎪⎝⎭E其大小为0.15V(2) 在π2θ=的情况下,2s t =时,线圈中的感应电动势为 i π0.3cos V 02⎛⎫=-= ⎪⎝⎭E7-13 如图所示,一正方形线圈与载流长直导线共面,线圈的匝数为N ,边长为a ,其两边与长直导线平行,与长直导线之间的最小距离为b .长直导线中的电流为I .(1) 求通过线圈的磁通量;(2) 若100N =,20cm a =,10cm b =,当长直导线中的电流I 以12A s -⋅的变化率增长时,求线圈中的感应电动势.解 (1) 坐标选取如图所示.以顺时针为线圈回路的正方向, 则线圈所围平面的法向单位矢量n e 垂直纸面向里.在线圈平面上,长直载流导线的磁感应强度为0n 2πIaxμ=B e .在x 处取面元dS d a x =,则面元矢量为n d d a x =S e .穿过面元的磁通量为0d d d 2πIaΦx xμ=⋅=B S穿过线圈所围平面的磁通量为00d d ln2π2πa bSaIaNIaa bΦN N x xbμμ++=⋅==⎰⎰B S(2) 若100N =,20cm a =,10cm b =,则7064π101000.200.200.10ln ln Wb2π2π0.10 4.4010WbNIaa b I Φb I μ--⎛⎫+⨯⨯⨯⨯+== ⎪⎝⎭=⨯ 线圈中的感应电动势为()666i d d 4.4010 4.40102 V 8.8010 V d d ΦIt t--=-=-⨯=-⨯⨯=-⨯E i 0<E ,表明线圈中的感应电动势沿逆时针方向.7-14 如图所示,矩形导线框ABCD 与载流为I 的长直导线共面,边长分别为b 和l ,AB 与长直导线平行.矩形线框以速度v 在其平面内向右运动,v 与直导线垂直.在时刻t ,AB 与长直导线间的距离为a .求此时线框上的感应电动势.解 在长直导线右侧的线框平面上,到长直导线的距离为r 的点上,载流长直导线的磁场,方向垂直于纸面向里,磁感应强度的大小为02πIB rμ=以顺时针为导线回路的正方向,线圈中的感应电动势为()()()()()i d d d d d ABCDAAB BC CD DA =⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅⎰⎰⎰⎰⎰B l B l B l B l B lv v v v v E 在BC 和DA 段上,d l v ,()d 0⨯⋅=B l v ,因此积分为零.在时刻t ,AB 处的磁感应强度大小为012πIB aμ=,CD 处的磁感应强度大小为()022πIB a b μ=+.于是()()()i 1200000d d d d d d 11 2π2π2πAB CD AB CD llB l B lI lI l Il a a b a a b μμμ=⨯⋅+⨯⋅=+-⎛⎫=-=- ⎪++⎝⎭⎰⎰⎰⎰⎰⎰B l B l E v v v v v v vi 0>E ,表明线圈中的感应电动势沿顺时针方向.7-15 如图所示,匀强磁场的磁感应强度的大小为B ,方向垂直纸面向外.有一根长为L 的金属棒MN ,可绕点O 在纸面内逆时针旋转,角速度为ω,4LOM =.求金属棒两端之间的电动势.那一端的电势较高?解 如图所示,在棒MN 上,到点O 的距离为l 处,沿径向取位移元d l .d l 的速度v 的方向如图,既垂直于d l ,也垂直于B ,大小为l ω=v .d l 上的动生电动势为()i d d d Bl l ω=⨯⋅=B l dE vMN 上的动生电动势为32441d 4L L MN Bl l BL ωω==⎰E0MN >E ,表明动生电动势的方向为从M 到N ,N 端电势较高.7-16 如图所示,矩形导线框ABCD 与载流长直导线共面,AB 与长直导线平行,相互间的距离为a ,导线框的边长分别为b 和l .如果长直导线上的电流为0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,式中0I 和ω为常量.求在0t =时,导线框上的感应电动势.解 坐标选取如图所示.以ABCDA ,即顺时针为线框回路的正方向,则平面ABCD 的法向单位矢量n e 垂直纸面向里.在平面ABCD 上,长直载流导线的磁感应强度为0n 2πIx μ=B e .由于0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,因此B 的具体指向随时间变化.在x 处取面元dS d l x =,则面元矢量为n d d l x =S e .穿过面元的磁通量为0d d d d 2πIlΦB S x xμ=⋅==B S穿过线框所围平面的磁通量为00d d ln2π2πa bSaIlIla bΦx xaμμ++=⋅==⎰⎰B S 矩形线框ABCD 上的感应电动势为0i 0000d d ln d 2πd d ππ ln cos ln sin 2πd 32π3l a b I t a tl I l a b a b I t t a t a μΦμμωωω+=-=-+⎡⎤+⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦E0t =时0000i πlnsin ln2π34πI lI l a b a b a aμωω++==E i 0>E ,表明此时线框上的感应电动势沿顺时针方向.7-17 在一个长为0.6m 、直径为5.0cm 的纸筒上,密绕1200匝线圈.求这个长直螺线管的自感.解 长直螺线管的自感为()2220027223π44π101200π 5.010H 5.9210H40.6N SN d L llμμ---==⨯⨯⨯⨯⨯==⨯⨯7-18 一螺线管的自感为21.010H -⨯,流过的电流为2.0A .求其储存的磁场能.解 载流螺线管储存的磁场能为2222m 11 1.010 2.0J 2.010J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭7-19 一个直径为0.01m 、长为0.10m 的长直密绕螺线管,共1000匝线圈,总电阻为7.76Ω.若把螺线管接到电动势为2V 的电池上,求电流稳定后,螺线管中储存的磁能和管内的磁能密度.解 长直螺线管的自感为()2220027223π44π101000π 1.010H 9.8710H40.1N SN d L llμμ--==⨯⨯⨯⨯⨯==⨯⨯线圈上稳定电流的强度为2A 0.258A 7.76U I R === 电流稳定后,螺线管中储存的磁能为2325m 119.87100.258J 3.2810J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭载流螺线管中磁能密度为()533m m m 22244 3.2810J m 4.18J m ππ1.0100.1W W V d l ---⨯⨯===⋅=⋅⨯⨯w 7-20 在真空中,若一匀强电场中的电场能量密度与一0.5T 的匀强磁场的能量密度相等,求该电场的电场强度.解 设电场强度为E 的匀强电场的能量密度与0.5T B =的匀强磁场的能量密度相等,则有22001122B E εμ=由此可得181m 1.5010 V m E --==⋅=⨯⋅。
大学物理第一册567章测验试题
大学物理第一册(马文蔚编)5、6、7章测验试题(答案1)姓名_____________ 专业_______________ 学号_____________ 说明:试卷共150分,可以选择完成试题,总分按100分计。
一、简答题(每题4分,共32分)1、写出静电场和静磁场的高斯定理,并分别说明其揭示了什么性质。
(4分)答:0ε∑⎰=⋅q s d E sρρ静电场是有源场;0=⋅⎰ss d B ρρ静磁场是无源场;2、写出静电场和静磁场的安培环路定理,并说明其揭示了什么性质?(4分)答:0=⋅⎰Ll d E ρρ静电场是保守场;∑⎰=⋅I l d B L0μρρ静磁场是非保守场;2)导体电势为等势体,电介质不是;3)导体表面有净电荷,电介质体内和表面都有极化电荷;4、写出电场强度与电势的关系式。
(4分)答:nB AABe dL dV E l d E V ρρρρ⋅-=⋅=⎰;5、电场线为什么不可以相交?(4分)答:因为电场中每一点的电场强度只能有一个确定的方向,电场线若相交则该点有不同的电场方向。
6、电容器的电容C 与那些因素有关?(4分)答:只于电容器本身的材料,尺寸(长度、面积等),电容率有关。
7、在电场中某一点的电场强度定义为0FE q =r r .若该点没有试验电荷,那么该点的电场强度又如何?为什么?(4分)答: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
8、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?(4分)答:磁力线垂直穿过正四方型线圈的位置。
因为线圈每边受到的安培力为B l Id F d ρρρ⨯=每边受到的磁力大小相等方向相反。
二、选择题(每题3分,共30分)1、一带正电的物体,其上电势的正负由 B 确定。
A 、带电体自身电荷符号B 、坐标零标度C 、空间所有电荷代数和2、静电场中某点电势的数值等于 C 。
(A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能. (D)把单位正电荷从该点移到电势零点外力所作的功. 分析:A 和B 试验电荷时电量足够小的电荷;D 错在“外力”; 3、图中1、2是两个完全相同的空气电容器,将其充电后与电源断开,再将一块各向同性均匀电介质板插入电容器1的两极板间,则电容器2上的电压U 2C 。
大学物理第六章练习答案
第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后 A (A) 温度不变,熵增加; B 温度升高,熵增加;C 温度降低,熵增加;D 温度不变,熵不变; 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值; C A 等容降压过程; B 等温膨胀过程; C 等压压缩过程; D 绝热膨胀过程; 3. 一定量的理想气体,分别经历如图11所示的abc 过程图中虚线ac 为等温线和图12所示的def 过程图中虚线df 为绝热线 ; 判断这两过程是吸热还是放热: A A abc 过程吸热,def 过程放热; B abc 过程放热,def 过程吸热; C abc 过程def 过程都吸热; D abc 过程def 过程都放热;4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B A p =B p ,则无论经过的是什么过程,系统必然 B(A) 对外做正功; B 内能增加; C 从外界吸热; D 向外界放热; 二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量; 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J,则该过程中需吸热__-200__ ___J;3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能 减少,填增加或减少,21E E = -380 J;4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J ;图.2图1图3三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量;1 求氢气的摩尔数2 氢气内能变化多少3 氢气对外做了多少功4 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: 1由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ 24,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ 344(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ 444.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V =aP 的规律变化,其中a 为常数,试求:1 气体从体积1V 膨胀到2V 所做的功;2体积为1V 时的温度1T 与体积为2V 时的温度2T 之比;1:⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W 2: 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功;1 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量2 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量 是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+1∵a 沿acb 过程达到状态b,系统的内能变化是:560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =系统吸收的热量是:204220424ab acb Q E W J J J =+=+=2系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程;其中吸热最多的过程 AA 是A →B ; B 是A →C ; C 是A →D ; D 既是A →B,也是A → C,两者一样多;2. 用公式V E C T ∆=μ∆ 式中V C 为定容摩尔热容量,μ为气体摩尔数,计算理想气体内能增量时,此式 D(A) 只适用于准静态的等容过程; B 只适用于一切等容过程; C 只适用于一切准静态过程; D 适用于一切始末态为平衡态的过程;3. 用下列两种方法: 1 使高温热源的温度1T 升高T ∆, 2 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: BA 1∆η> 2∆η;B 2∆η>1∆η;C 1∆η= 2∆η;D 无法确定哪个大; 二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 ;1 2图1图32. 常温常压下,一定量的某种理想气体视为刚性分子,自由度为i ,在等压过程中吸热为Q,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, ∆E/Q = ii +2; 3.一卡诺热机可逆的,低温热源的温度为27℃,热机效率40%,其高温热源温度为C 127T 1=;今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加C 200T =∆;4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0; Q >0 , ∆E >0 ; 三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞忽略摩擦,使左室气体的体积膨胀为右室的2倍,问外力必须做多少功 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K; 1求状态B 、C 的温度;2计算各过程中气体吸收的热量、气体所做的功和气体内能的增量;RT MmPV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002图2图4图5JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线;该循环的工质是一定质量的理想气体;其,V m C 和γ均已知且为常量;已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程;求:1 c 点的温度;2 循环的效率;解: 1c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭2a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r c V m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小图1中阴影部分分别为S 1和S 2 ,则二者的大小关系是 BA S 1 > S 2 ;B S 1 = S 2 ;C S 1 < S 2 ;D 无法确定; 2. 在下列说法中,哪些是正确的 C1 可逆过程一定是平衡过程;2 平衡过程一定是可逆的;3 不可逆过程一定是非平衡过程;4 非平衡过程一定是不可逆的;A 1、4 ;B 2、3 ;C 1、2、3、4 ;D 1、3 ; 3. 根据热力学第二定律可知 DA 功可以全部转换为热,但热不能全部转换为功;B 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C 不可逆过程就是不能向相反方向进行的过程;D 一切自发过程都是不可逆的;4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”;对此说法,有以下几种评论,哪种是正确的 CA 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律; 二. 填空题1. 如图2的卡诺循环:1abcda,2dcefd,3abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 ;2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/T 1-T 2 式中A 为外界对系统做的功,则每一循环中外界必须做功A= 200J ;3. 1 mol 理想气体设γ = C p / C V 为已知的循环过程如图3的T —V 图所示,其中CA 为绝热过程,A 点状态参量T 1,V 1和B 点的状态参量T 1,V 2为已知,试求C 点的状态量:V c =2V ,T c =1121T VV r -⎪⎪⎭⎫ ⎝⎛,P c =r r V V RT 2111-;三. 计算题1. 一热机在1000K 和300K 的两热源之间工作,如果 1 高温热源提高为1100K ;2 低温热源降低为200K,从理论上说,热机效率各可增加多少为了提高热机效率哪一种方案为好 热机在1000K 和300K 的两热源之间工作,121T T T -=η,%7010003001000=-=η 解: 高温热源提高为1100K :%73.72110030011001=-=η,效率提高:%73.2=η∆低温热源降低为200K : %80100020010002=-=η,效率提高:%10=η∆提高热机效率降低低温热源的温度的方案为好;2. 1 mol 单原子分子理想气体的循环过程如图4的T —V 图所示, 其中c 点的温度为T c =600K,试求: 1ab 、bc 、ca 各个过程系统吸收的热量;2经一循环系统所做的净功;3循环的效率;注: 循环效率η=A/Q 1,A 为循环过程系统对外做的净功,Q 1为循环过程系统从外界吸收的热量,1n2=解: 由b b b a a a T VP T V P =,得K T b 300=J V V RT Q baca 0.34562ln 60031.8ln=⨯⨯== 等温过程 ()()J T T C Q b c v bc 5.373930060031.823=-⨯=-= 等容过程 ()()J T T C Q a b b ab 5.623260030031.825-=-⨯=-= 等压过程图2图3图4()6232.524932ab ab b a iW Q E R T T J=-∆=---=-J Q W ca ca 0.3456==%38.132********=+-==bcca Q Q Q A η。
大学物理学第版修订版北京邮电大学出版社上册第七章习题答案
⼤学物理学第版修订版北京邮电⼤学出版社上册第七章习题答案习题 77.1选择题(1) 容器中贮有⼀定量的理想⽓体,⽓体分⼦的质量为m ,当温度为T 时,根据理想⽓体的分⼦模型和统计假设,分⼦速度在x ⽅向的分量平⽅的平均值是:(A)2x υ=.(B) 2x υ= [](C) 23x kT m υ= . (D) 2x kT mυ= .[答案:D 。
2222x y z υυυυ=++, 222213x y z υυυυ===,23kT mυ=。
](2) ⼀瓶氦⽓和⼀瓶氮⽓的密度相同,分⼦平均平动动能相同,⽽且都处于平衡状态,则它们[](A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦⽓的压强⼤于氮⽓的压强. (D) 温度相同,但氦⽓的压强⼩于氮⽓的压强.[答案:C 。
由32w kT =,w w =氦氮,得T 氦=T 氮;由molpM RTρ=,ρρ=氦氮,T 氦=T 氮,⽽M M 氦氮。
] (3) 在标准状态下,氧⽓和氦⽓体积⽐为V 1 /V 2=1/2,都视为刚性分⼦理想⽓体,则其内能之⽐E 1 / E 2为: [](A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。
由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==?=。
](4) ⼀定质量的理想⽓体的内能E 随体积V 的变化关系为⼀直线,其延长线过E ~V 图的原点,题7.1图所⽰,则此直线表⽰的过程为:[](A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[答案:B 。
由图得E =kV , ⽽2i E pV =,i 不变,2ik p =为⼀常数。
] (5) 在恒定不变的压强下,⽓体分⼦的平均碰撞频率Z 与⽓体的热⼒学温度T 的关系为[ ](A)Z 与T ⽆关. (B).Z 与T 成正⽐.(C) Z 与T 成反⽐. (D) Z 与T 成正⽐.题7.1图[答案:C。
大学物理六七章作业
第六章机械振动一. 选择题1. 一弹簧振子,水平放置时做简谐振动,若把它竖直放置或放在一光滑斜面上,下列说法正确的是(A) 竖直时做简谐振动,在斜面上不做简谐振动(B) 竖直时不做简谐振动,在斜面上做简谐振动(C) 两种情况下都做简谐振动(D) 两种情况下都不做简谐振动2. 质点沿x轴做简谐振动,振动方程用余弦函数表示,若时,质点过平衡位置且向x轴负方向运动,则它的振动初相位为(A) 0 (B) (C) (D)3. 两个质点各自做简谐振动,它们的振幅、周期相同,第一个质点的振动方程为,当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为:(A) (B)(C) (D)4. 质点沿x轴做简谐振动,振动方程为,从t = 0时刻起,到质点位置在x = -2cm处,且向x轴正方向运动的最短时间间隔为(A) (B) (C) (D)5. 质点做简谐振动,振幅为A,初始时刻质点的位移为,且向x轴正向运动,代表此简谐振动的旋转矢量图为(A)(B)(D)(C)6. 图示为质点做简谐振动的曲线,该质点的振动方程为(A) ) cm(B) ) cm(C) ) cm(D) ) cm7. 一弹簧振子做简谐振动,总能量为E0,如果振幅增加为原来的两倍,则它的总能量为(A) (B) (C) (D)8. 一弹簧振子做简谐振动,当位移为振幅的一半时,其动能为总能量的(A) (B) (C) (D) (E)9. 两个简谐振动,,,且,合振动的振幅为(A) (B) (C) (D)二. 填空题10. 一弹簧振子,弹簧的弹性系数为k,物体的质量为m,则该系统固有圆频率为_________,故有振动周期为_____________.11. 物体做简谐振动,振动方程(SI ),则振动周期T =_______________,频率ν =___________,初相位φ0 =__________________.12. 一简谐振动方程为,已知时的初位移为0.04m ,初速度为0.09m/s ,则振幅为____________,初相位为____________.13. 单摆做小幅摆动的最大摆角为θm ,摆动周期为T ,时处于图示位置,选单摆平衡位置为坐标原点,向右方为正向,则振动方程为______________________________.14. 一质点同时参与三个简谐振动,振动方程分别为:,,.则合振动方程为___________________. 三. 计算题15. 质量为10g 的小球与轻弹簧组成的系统,按 cm )38cos(5.0ππ+=t x 的规律振动,式中t 的单位为S 。
大学物理第六章习题解答和分析
6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。
解:波速ρ/E u =,波长νλ/u =0.4m λ==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-= (1)求波的振幅、波速、频率及波长; (2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.分析 与标准方程比较即可确定其特征参量。
解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = /2 2.5/2 1.25Hz νωπππ=== 2, 2.0m ππλλ== 2.5/u m s λν== (2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-= x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.题图6-2分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出 t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样?分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章机械振动
一. 选择题
1. 一弹簧振子,水平放置时做简谐振动,若把它竖直放置或放在一光滑斜面上,下列说法正确的是
(A) 竖直时做简谐振动,在斜面上不做简谐振动
(B) 竖直时不做简谐振动,在斜面上做简谐振动
(C) 两种情况下都做简谐振动
(D) 两种情况下都不做简谐振动
2. 质点沿x轴做简谐振动,振动方程用余弦函数表示,若时,质点过平衡位置且向x轴负方向运动,则它的振动初相位为
(A) 0 (B) (C) (D)
3. 两个质点各自做简谐振动,它们的振幅、周期相同,第一个质点的振动方程为
,当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为:
(A) (B)
(C) (D)
4. 质点沿x轴做简谐振动,振动方程为,从t = 0时刻起,到质点位置在x = -2cm处,且向x轴正方向运动的最短时间间隔为
(A) (B) (C) (D)
5. 质点做简谐振动,振幅为A,初始时刻质点的位移为,且向x轴正向运动,代表此简谐振动的旋转矢量图为
(A)
(B)
(D)
(C)
6. 图示为质点做简谐振动的曲线,该质点的振动方程为
(A) ) cm
(B) ) cm
(C) ) cm
(D) ) cm
7. 一弹簧振子做简谐振动,总能量为E0,如果振幅增加为原来的两倍,则它的总能量为
(A) (B) (C) (D)
8. 一弹簧振子做简谐振动,当位移为振幅的一半时,其动能为总能量的
(A) (B) (C) (D) (E)
9. 两个简谐振动,,,且,合振动的振幅为
(A) (B) (C) (D)
二. 填空题
10. 一弹簧振子,弹簧的弹性系数为k,物体的质量为m,则该系统固有圆频率为_________,故有振动周期为_____________.
11. 物体做简谐振动,振动方程(SI ),则振动周期
T =_______________,频率ν =___________,初相位φ0 =__________________.
12. 一简谐振动方程为
,已知
时的初位移为0.04m ,初速度为
0.09m/s ,则振幅为____________,初相位为____________.
13. 单摆做小幅摆动的最大摆角为θm ,摆动周期为T ,
时处于图
示位置,选单摆平衡位置为坐标原点,向右方为正向,则振动方程为______________________________.
14. 一质点同时参与三个简谐振动,振动方程分别为:
,
,.
则合振动方程为___________________. 三. 计算题
15. 质量为10g 的小球与轻弹簧组成的系统,按 cm )3
8cos(5.0π
π+
=t x 的规律振动,式中t 的单位为S 。
试求:(1)振动的圆周期、周期、初相、速度及加速度的最大值; (2)t =1s 、2s 时的相位各为多少?
16. 一质点沿x 轴作简谐振动,平衡位置在x 轴的原点,振幅cm 3=A ,频率Hz 6=ν。
(1)以质点经过平衡位置向x 轴负方向运动为计时零点,求振动的初相位及振动方程; (2)以位移 cm 3-=x 时为计时零点,写出振动方程.
17. 在一轻弹簧下端悬挂砝码时,弹簧伸长8cm ,现在此弹簧下端悬挂
的物体,构成弹簧振子。
将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 初
速度(设这时t = 0)令其振动起来,取x 轴向下,写出振动方程。
18. 两质点同时参与两个在同一直线上的简谐振动,其表达式为:
)65
2cos(03.0,)62cos(04.021ππ-=+=t x t x
试求其合振动的振幅和初相位.
第七章机械波
一. 选择题
1. 机械波的表示式为(SI),则
(A) 其振幅为3m
(B) 其周期为1/3s
(C) 其波速为10m/s
(D) 波沿x轴正向传播
2. 一平面简谐波沿x轴正向传播,时波形图如图示,此时处质点的相位为
(A) 0
(B) π
(C) π/2
(D) - π/2
3. 一平面简谐波周期为1s,波速为10m/s,A、B是同一传播方向上的两点,间距为5m,则A、B两点的相位差为
(A) π/2 (B) π(C) 3π/2 (D) 0
4. 如图,一平面简谐波沿x轴负向传播,原点O的振动方程
为,则B点的振动方程为
(A)
(B)
(C)
(D)
5. 一平面简谐波在介质中传播,在某一瞬时,介质中某质元正处于平衡位置,此时它的能量为
(A) 动能为零,势能最大 (B) 动能为零,势能为零
(C) 动能最大,势能最大 (D) 动能最大,势能为零
6. 一平面简谐波在弹性介质中传播,下述各结论哪个是正确的?
(A) 介质质元的振动动能增大时,其弹性势能减小,总机械能守恒
(B) 介质质元的振动动能和弹性势能做周期性变化,但二者的相位不相同
(C) 介质质元的振动动能和弹性势的相位在任一时刻都相同,但二者的数值不相等
(D) 介质质元在其平衡位置处弹性势能最大
7. 两相干波源S1、S2发出的两列波长为λ的同相位波列在P点相遇,S1到P点的距离是r1,S2到P点的距离是r2,则P点干涉极大的条件是
(A)
(B)
(C)
(D)
8. 两相干波源S 1和S2相距λ/4(λ为波长),S1的相位比S2的相位超前,在S1、S2连线上,S1外侧各点(例如P点)两波干涉叠加的结果是
(A) 干涉极大
(B) 干涉极小
(C) 有些点干涉极大,有些点干涉极小
(D)无法确定
9. 在波长为λ的驻波中,任意两个相邻波节之间的距离为
(A) λ(B) 3λ/4 (C) λ/2 (D) λ/4
二. 填空题
10. 一声波在空气中的波长是0.25m,传播速度时340m/s,当它进入另一种介质时,波长变成了0.37m,则它在该介质中的传播速度为__________________.
11. 平面简谐波方程为,波的频率为________,波速为________,波长为__________.
12. 一平面简谐波沿x 轴正向传播,波动方程为,则处质点的
振动方程为__________________________, 处质点与
处质点振动的相位差为
____________.
13. 简谐波沿 x 轴正向传播,传播速度为5m/s ,原点O 振动方程为
(SI ),则
处质点的振动方程为___________________.
14. 一平面简谐波在介质中传播时,某一质元t 时刻总机械能是10J ,则在(T 为周期)时刻该质元的振动动能是________________.
15. S 1、S 2是两个相干波源,已知S 1初相位为 ,若使S 1S 2连线中垂线上各点均干涉相消,S 2的初相位为_______________.
16. 如图,波源S 1、S 2发出的波在P 点相遇,若P 点的合振幅总是极大值,则波源S 1的相位比S 2的相位领先_____________________.
三. 计算题
17. 一横波沿绳子传播时的波动表式为 )410cos(05.0x t y ππ-=[SI] . 求:
(1)此波的振幅、波速、频率和波长;
(2)绳子上各质点振动的最大速度和最大加速度;
18. 一平面简谐纵波沿线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0cm ,振动频率为Hz 5.2,弹簧中相邻两疏部中心的距离为cm 24. 当0=t 时,在0=x 处质元的位移为零并向x 轴正向运动, 试写出该波的波动表式.
19. 一平面波在介质中以速度1s m 20-⋅=u 沿x 轴负方向传播,已知a 点的振动表式为
t y a π4cos 3= [SI].(1)以a 为坐标原点写出波动方程;(2)以与a 点相距m 5处的b 点为坐标原点,写出波动方程.
20. 如图所示,已知
和
时的波形曲线分别为图中实线曲线Ⅰ和虚线曲线Ⅱ,
波沿x 轴正向传播. 根据图中给出的条件,求:(1)波动方程;(2)P 点质元的振动方程.
21. 如图所示,两相干波源分别在P 、Q 两点,它们发出频率为ν,波长为λ,初相相同的两列相干波,振幅分别为A 1和A 2 ,设2/3λ=PQ ,R 为PQ 连线上的一点.求:
(1)自P 、Q 发出的两列波在R 处的相位差; (2)两波在R 处干涉时的合振幅.。