2011日本磁制冷样机
室温磁制冷技术的研究进展
( 4)
G p
T, B
( 5) ( 6) ( 7) NhomakorabeaG B G T
T, p
B, p
=
M( T , B) T
B, p
( 8)
36
沈阳师 范大学学报 ( 自然科学版 )
Bf Bi
第 29 卷
Sm( T , B ) = 根据热力学第二定律 , 得 : dS dT 磁系统在外磁场变化 B 时的熵变为 :
图 2 磁 热效应 S- T 示意图 [ 3]
以, 施加磁场 ( 磁化 ) 时 , 磁熵 S M 减小, 使得 S L 增大, 从而使材料温度升高。退去磁场时 , 磁熵 S M 增 。
热力学中, 熵是微观粒子混乱程度的量度 , 所以磁熵是磁性物质磁有序的量度, 材料的磁有序的改 变引起磁熵的改变, 从而引起温度的变化。 熵是状态函数, 对于一个封闭系统 , 对熵的全微分可表达为 : dS = S T
变化下 , 磁熵变随温度的变化曲线 [ 11]
第1期
郝
爽等 : 室温磁制冷技术的研究进展
37
化[ 7-
10]
。从图 5 中可以看到, 样品合金在 277 K, 0~ 5 T 的磁场变化下, 获得磁熵变为 14 J/ kg ∋K 。样
品合金在 278 K, 0~ 2 T 的磁场变化下 , 获得 18 J/ kg ∋K 的大磁熵变。 虽然合金在 278 K, 0~ 2 T 的磁场变化下, 获得了较大的磁熵变 , 但是其磁热效应的最大值所对应 的温度略低于室温, 真正实用的室温磁制冷机应该在 320 K 左右。再者, 由于结构转变同构建单元的滑 移有关 , 界面的杂质对结构转变敏感。一级转变所得的磁热效应大小取决于所用材料的纯度以及样品 的制备过程[ 11] 。 2. 1. 2 Heusler 合金 铁磁性 Heusler 合金在马氏体转变附近发现 了 巨磁热效应。其中以 Ni- Mn- Ga 体系研究的最为 广泛。Ni- M n- Ga 在 376 K 以下为铁磁性有序, 磁 矩为 4 17。在此转变温度附近 , 可以观察到低磁场 下大的磁化强度的改变 , 这种改变是同此晶各项 异 性相联系的 , 会导致中等的磁熵的改变, 在单晶时大 大增 强 。此 外, Ni - M n - Sn , N i - M n In[ 16] , Ni- M n- Sb [ 17] 中也观察到了大的磁热效应。 从图 6 可以看出在 5 T 的磁场变化条件下, Ni- M n - Ga( x = 0 13 的最大等温磁熵变为 18 J/ kg∋K 。
磁制冷器
1 引 言
磁 制冷 是一 种磁 热效 应为 基 础 的制 冷 技术 。这 种 技术 既可 以用 来实 现 极低 温 度 ( 于 1 ,也 可 低 K) 以用来 实现 普通 冰箱 范 围的温 度 。虽 然 它 在极 低 温 领域 中起 着 很大 的作 用 ,如用 在航 天 空 间站 的红外
与 常规 的蒸 气压 缩式 制冷 相 比 ,磁 制冷 的主要 以想 象 当磁制 冷冰 箱进 入千 家 万户 后 ,将 会 产 生 多 优 点是 : 1 )节 能 。 由 于磁 制 冷是 依 靠 磁 热效 应 能量 转 么 巨大 的影 响 。另 一方 面 ,产 品 的产 量越 大 ,成本 就越 低 ,就越 容易 被 消费者 接 受 。 因此 , 目前 各 国
第3 卷第3 总 1 期) 0 期( 1 6
文 章 编 号 :IS I0 —98 (0 1 3 05—0 SN O 5 10 2 1 )0 —03 7
2 1年 9月 1 0
制
冷
磁 制 冷 器
周 子 成
[ 要 ] 磁 制 冷 是 一 种 以 磁 热 效 应 为基 础 的 制 冷 方 法 . 早 是 由德 国 物 理 学 家 于 18 年 发 现 。 早期 用 于 制 摘 最 80
了较 高 的 制 冷 效 率 ,实 际 效 率 达 到 卡 诺 循 环 的
3 0% 。
制冷 冰箱 。杰 奥 奎 ( l砌 F Gaqe Wii l .i u)和 麦 克道 u
格 尔 ( . . a og 1 在 13 年 利 用 D PM c ua ) D l 93 20 年荷兰阿姆斯特丹大学的门德尔松 一范德 02 (O)8 2 “ 热 去 磁 冷 却 ” 法 ,从 42 出发 获 瓦尔 斯 研 究 所 发 现 锰 铁 磷 砷 合 金 也 具 有 巨磁 热 效 S4 H O 绝 .K
第一台永磁式室温磁制冷机问世
d s i ol eP e¥ 1 8 2 2 ut a C l r ̄ , 9 7.2 ] rl g e
・
前 沿和 动 态 ・
第 一 台 永 磁 式 室 温 磁 制 冷 机 问 世
据 中 央 电 视 台 20 0 2年 1 4 日报 道 , 一 台 在 月 第 室 温 下 工 作 的 永 磁 式 磁 制 冷 机 已 经 在 美 国 A t n u s oa . r
ds il ol ePes 18 . 1 ] uta C lg rs,9 7 2 5 r e
【 P i A.P yi o a ,18 ( 2 : 7 9j a h s c Tdy 9 9 oa ,17 ( ) 4 ; 建邺 等译 . 1 ] h bc h s c Tdy 9 6 6 :7 杨 e s 物理
C Z . A S u y o c e c o g t S a g a : h n h i P pe s td fS in e T u h . h n h i S a g a e l h o
【8] U ln ekGE.P yi oa ,17 ( )4 ; 建 邺 等 译 . 理 hebc hs Tdy 9 6 6 :4 杨 s c 物 学 与 物 理 学 家 . 汉 : 中 工 学 院 出 版 社 ,9 7 25 YagJ 武 华 18 . 1 [ h
【0 M haJ Reh negH.1l Hs r a ee p eto unu 1] er , eebr 1 ioi l vl m n fQ atm e t e D o
h oy T e r . V 1 1 N w Yo k: p ig r Ve lg l c 1 8 6 6 o . . e r S rn e - r n , 9 2. 9 a
磁制冷技术商品化开发的可行性探索
的磁 场源 。 的磁 场为 超导 体 , 而 严重 地阻碍 了磁 它 从
制 冷技 术 的商品化 开发 。 2 1 磁 制 冷 材 料 方 面 的 困 难 .
制冷材料和热交换技 术是磁制冷技术 商品化 开发 的主要难关 ,并提 出了解决这两个难关 的探索性方案 。 : 美键词: 磁制 冷;商品化 磁材料 ;热交换
[ 图分 类 号] T 4 B 6 中 B6 :T 6 [ 献标识码] A 文
Exp o a i n o he Pr b e f t e M a ne i f i e a i nd Co m e c a ia i n l r to n t o l m o h g tc Re r g r ton a m r i lz to
Rer e aina dc mme c l ain. t e r h g ei tr 1 n e tta se Fn l fi r t n o g o ri i t a z o h yae te ma n tcma ei d h a rn fr a a ial ti a e y. hsp p r
Ab l a t A  ̄ r t e a e t r f r nc s fo sr c : t h 1 t s e e e e r m a r a e b o d. t i p p r n l s s h q e t n s b u t e h s a e a a y e t e u s i e a o t h o c mme c l a i n f o r i i t o ma n t r fi e a i n Th r a e WO i o t n q e to s b u t e a z o g e i e r g r t . e e r t mp r a t u s in a o t h M a n t c o g ei c
磁致冷永磁高强磁场的仿真及其优化
郑志 刚,钟喜春 ,余红雅 ,曾德长 ,黄伟 东
( 华南理工大学 材料科学与X程学院,广东广州 504 ) - - 16 0
摘 要 :室温磁致 冷是 一种绿 色环保技术 ,有着 巨大的发展潜 力,而磁致冷机的工作 效率主要取决于磁 场
大小和均 匀度 ,因此磁路设 计就显得 尤为重要 。本文首先介绍 了磁路设计 的磁路定理和有限元模拟 方法 ,然后 用有 限元软件 A ss A DL参数化编程技 术对磁制冷样机 中e rm n nt lme tmeh d ae b e y d s r e n tep p r Th g ei f x d n i fwokn a s h oe a d f i ee n to r r f e ci d i h a e. ema t u e st o rig g p i i e il b n cl y
De i n a p i i a i n o r a n a nei sg nd O tm z to fPe m ne tM g tc Fil o a n tcRe rg r to ed f rM g e i fi e a in
Z HE NG i a g Z Zh — n , HONG — h m, U n — a ZE g Xic t Y Ho g y , NG —h n , De c a g HUANG e— o g W id n
e ce c f erg r t n mo t e e d nt e s e g h a du io mi f g e i fed . o t ec mp tt n o e d i f in y o f e a i sl d p n s t n t n n f r t o n t l s S o u ai f l ri o y o h r y ma ci h o i f a d d sg f ma e i c r u ta e e s n il t h g e i erg rt r a o m e e au e Th g ei i u t n e i n o g r i i r se ta o t e ma n t r fi ea o tr o t mp r tr . e ma n t cr i n c c c c c
磁制冷技术的研究及应用
磁制冷技术的研究及应⽤磁制冷技术的研究及应⽤摘要:随着环境和能源问题⽇益突出,磁制冷作为⼀种绿⾊制冷技术越来越受到各国重视。
本⽂阐述了磁制冷技术的⼯作原理和典型的磁制冷循环过程。
⽂章重点介绍了磁制冷材料和磁制冷样机的研究进展,并指出了磁制冷技术的⼏个应⽤⽅向及⽬前存在的困难。
关键词:磁热效应;磁制冷循环;磁制冷材料;磁制冷样机Research and Application of Magnetic Refrigeration TechnologyAbstract:With the environment and energy problems have become increasingly prominent, magnetic refrigeration as a green refrigeration technology draws more and more attention all over the world.In this paper, the operating principle of magnetic refrigeration and typical magnetic refrigeration cycles were illustrated. The research progress of magnetic refrigeration materials and magnetic refrigeration prototypes were emphatically introduced. Finally, several main application directions of magnetic refrigeration technology and the existing problems were pointed out.Keywords:magnetocaloric effect; magnetic refrigeration cycle; magnetocaloric materials; magnetic refrigeration prototypes1前⾔制冷就是使某⼀空间内物体的温度低于周围环境介质的温度,并维持这个低温的过程。
磁制冷研究现状
磁制冷材料研究进展姓名:王永莉单位:有色院磁制冷材料研究进展摘要:1989等[1]。
,制制冷剂,1881过改变顺磁材料的磁化强度导致可逆温度变化。
1926年Debye,1927年Giuque两位科学家分别从理论上推导出可以利用绝热去磁制冷的结论后,极大地促进了磁制冷的发展。
1933年Giauque等人以顺磁盐Gd2(SO4)3·8H2O为工质成功获得了1K以下的超低温,从此,在超低温范围内,磁制冷发挥了很大的作用,一直到现在这种超低温磁制冷技术已经很成熟。
随着磁制冷技术的迅速发展,其研究工作也逐步从低温向高温发展。
1976年,美国NASA Lewis和首先采用金属Gd为磁制冷介质,采用Stiring循环,在7T磁场下进行了室温磁制冷试验,开创了室温磁制冷的新纪元,人们开始转向寻找高性能的室温磁致冷材料的研究[3]。
3 磁制冷原理3.1 磁熵理论磁致冷是利用磁性材料的磁熵变化过程中吸热和放出热的制冷方式。
从热力学观点看,磁致冷物质由自旋体系、晶格体系和传导电子体系组成,它们除了各自具有的热运动以外,各体系间还存在着种种相互作用,并且进行着热交换。
当磁性工质达到热平衡状态时,各体系的温度都等于磁性工质的温度。
磁性工质的熵为磁熵、晶格熵和电子熵的总和。
在不考虑压力影响的情况下,磁性材[4]C H将(dS =(i)(ii)dS = (?M/?T)H dH (8)(iii)等磁场条件下,dH = 0dS =(C H/T)dT (9)如能通过实验测得M(T,H)和C H(H,T),则根据方程可确定ΔT及ΔS M。
3.2 磁制冷循环的原理磁致冷循环的制冷循环如图1所示。
磁致冷材料的磁矩在无外加磁场情况下处于无序状态,磁熵较大;当磁致冷材料绝热磁化时,磁矩在磁场作用下与外磁场平行,磁有序度增加,磁熵值降低,向外界放出热量(类似于气体压缩放热的情形);相反,当磁致冷材料绝热去磁时,材料的磁矩由于原子或离子的热运动又回复到随机排列的状态,磁有序度降低,磁熵增加,材料从外界吸收热量,使外界温度降低(类似于气体膨胀吸热的情形);不断重复上面的循环,就可实现制冷目的。
磁制冷技术
磁制冷技术摘要:传统压缩制冷技术广泛应用于各行各业,形成了庞大的产业,但它存在两个明显的缺陷:制冷效率低且氟利昂工质的泄漏会破坏大气臭氧层。
根据蒙特利尔协议到 2000 年将全面禁止氟利昂的生产和使用,使制冷行业面临一场变革。
现在大力研究开发的无氟替代制冷剂,基本上可以克服破坏大气臭氧层的缺陷,但仍保留了制冷效率低、能耗大的缺陷,而且有的还会产生温室效应等,不是根本解决办法。
磁制冷因具有高效节能、无环境污染、运行可靠、尺寸小、重量轻等优点,且完全具有替换气体压缩制冷的可能,引起了广泛的关注。
所谓磁制冷,即指借助磁制冷材料(磁工质)的磁热效应(MagnetocaIoric Effect,MCE),在等温磁化时向外界排放热量,退磁时从外界吸取热量,从而达到制冷目的。
关键词:磁制冷、无污染、高效节能引言:磁制冷技术是一种极具发展潜力的制冷技术。
其具有节能、环保的特点。
作为磁制冷技术的心脏,磁制冷材料的性能直接影响到磁制冷的功率和效率等性能。
根据蒙特利尔协议,到2000年将逐步禁止氟利昂的生产和使用,使氟利昂压缩制冷面临困境。
磁制冷作为一项高新绿色制冷技术,与传统压缩制冷相比具有如下竞争优势:无环境污染:由于工质本身为固体材料以及可用水来作为传热介质,消除了因使用氟利昂、氨及碳氢化合物等制冷剂所带来的破坏臭氧层、有毒、易泄漏、易燃、易爆等损害环境的缺陷;高效节能:磁制冷的效率可达到卡诺循环的30% ~ 60%,而气体压缩制冷一般仅为 5 % ~ l0%,节能优势显著;易于小型化:由于磁工质是固体,其熵密度远远大于气体的熵密度,因而易于做到小型化;稳定可靠;由于无需压缩机,运动部件少且转速缓慢可大幅降低振动与噪音,可靠性高,寿命长,便于维修。
1976年美国国家航空航天局的G.V.Brown[2]首次将磁制冷技术应用于室温范围,采用金属Gd作为磁制冷工质,在7T的超导磁场和无热负荷的条件下获得了47K的温度差。
室温磁制冷最新研究进展
ao; ema dn mi aa s ;P ru d i tr T r l a c n l i oo sme a h y ys
磁 制冷是 一种绿 色环保 的新 型制 冷技术 。与 传 统蒸 汽压缩式 制冷 相 比, 磁制 冷 采 用磁 性 材 料作 为 制冷工 质 , 臭氧层 无破坏作 用 , 对 无温 室效应 。最新
高 2 % ~3 %E 。室 温磁制 冷技术仍 处 于实验 研究 0 0 l i
T e t e m a d n mi c a a t r fma n t fie a in c ce r n l e .T e p r u da mo e f c i e e — h h r l y a c h r ce so g e i r r rt y ls a e a a z d h o o s me i ce g o y d l t e rg n o a v
室温 磁 制 冷 最 新研 究进 展
刘 敏 俞 炳丰 胡张保
西安 704 ) 109 ( 西安交通大学能源与动力工程学院
摘 要
室温磁制冷作为一种 高效环保 的新 制冷技术 , 具备 十分广 阔的应用前 景。文章 阐述 了室温磁 制冷 中磁性
材料的最新发展情况 , 分析 了磁 Bat 与磁 Ei sn r o yn r s 制冷循环的热力特性 , co 讨论 了基于非 D r 效应的活性蓄冷器 的 ac y
a d is o ra p la l po p r .I t i p p r h e d v l me to h g ei maeilsd s r e n h wsage ta pi be rs i t c e t n hs a ,t e n w e eo y e p n fte ma n t t r e ci d. c ai b
小型室温磁制冷系统的研制
小型室温磁制冷系统的研制李振兴;李珂;沈俊;戴巍;贾际琛;郭小惠;高新强;公茂琼【摘要】Magnetic refrigeration shows great characteristic for refrigeration applications due to its merits of environmental friendliness,potential high efficiency,low noise and low vibration.A compact room-temperature magnetic refrigerator is established with rotating Halbachpermanent magnetgroup and duo-flow channel design,and system performance have been preliminarily tested.The motion of rotating magnet and hydraulic piston are controlled by Multi-axis servo drivers.With 0.55-0.80 mm gadolinium spheres as magnetic material,pH value 11 NaOH solution as the heat transfer fluid and 1.3 T maximu mmagnetic field,maximum no-load temperature span is 13.3 K at 0.6 Hz operation frequency.When it operates at 0.40 Hz frequency,the optimum utilization factor is 0.35.And maximum no-load temperature span is 12.1 K.%设计并搭建了一台小型室温磁制冷系统,进行了初步性能实验研究.系统采用双层同轴Halbach永磁组,磁体旋转后可在中心处获得最大1.3T磁场;在主动磁回热器两端设计了双通道流路,可有效避免系统流体死体积;驱动控制系统利用多轴伺服驱动器对磁体和水力活塞运动进行控制.样机采用了直径0.55-0.80 mm钆球作为制冷工质、pH值为11的氢氧化钠溶液为换热流体,进行了初步实验研究,考察了利用系数对制冷温跨的影响等.在高低温端绝热与运行频率0.60 Hz的情况下,实验获得13.3 K的最大无负荷制冷温跨;在运行频率为0.4 Hz时最佳利用系数为0.35,此时无负荷制冷温跨为12.1 K.【期刊名称】《低温工程》【年(卷),期】2017(000)001【总页数】5页(P13-16,20)【关键词】室温磁制冷机;磁热效应;制冷温跨;利用系数【作者】李振兴;李珂;沈俊;戴巍;贾际琛;郭小惠;高新强;公茂琼【作者单位】中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院大学北京100049;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院大学北京100049;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院大学北京100049;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院大学北京100049;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院理化技术研究所中国科学院低温工程学重点实验室北京100190;中国科学院大学北京100049【正文语种】中文【中图分类】TB65当今世界,人们越来越多地关注环境和能源问题。
磁制冷相关背景知识.doc
一、磁制冷的背景知识磁制冷是一种全新的制冷技术,磁制冷利用的是固态工质,它具有较大的密度,与通常的紧缩气体制冷方式相较,磁制冷机的体积较小。
磁制冷机利用磁场转变来取代压力转变,因此在整个系统中省去了紧缩机等运动机械,因此结构相对简单,振动和噪音也大幅降低。
另一方面,固态工质使得所有的热互换能在液态和固态之间进行,因此磁制冷机的功耗低,效率高,另外磁制冷技术最突出的优势是再也不利用对大气臭氧层有破坏作用的氟里昂作制冷剂,因此被称为无污染的绿色环保制冷技术。
可见在追求绿色环保的今天,开发、研究和利用以磁制冷材料为先导的磁制冷技术已成为当前制冷工程中一项重要课题。
二、磁制冷的大体原理当把磁性物质放入磁场时,磁矩沿磁化方向择优取向,在等温条件下,致使材料的磁熵下降,有序度增加,磁性材料向外界放热;当磁场强度减弱时,由于磁性粒子的热运动,其磁矩又开始磁制冷,是指以磁热材料为工质的一种新型的制冷技术,其大体原理是借助磁制冷材料的磁热效应,即磁制冷材料在等温磁化时向外界放出热量,而在等温退磁时从外界吸收热量。
磁性物质是由具有磁矩的磁性粒子组成的物体,它具有必然的热运动或振动,当没有外加磁场时磁性物质内磁矩的取向是无规那么的,现在相应的磁熵较大,恢复到无序状态,等温的条件下磁熵增加,磁性材料从外界吸收热量,从而达到制冷的目的。
1.其具体原理如图a-b进程是磁热材料在外磁场作用下的励磁进程现在磁热材料的磁矩由无序到有序,磁熵增大;b-c进程是磁热材料在等磁矩下向外界放热;同理c-d进程是磁热材料的退磁进程现在磁热材料的磁矩由有序到无序,磁熵增减小;然后d-a进程是磁热材料在等磁矩下向外界吸热,在整个循环中磁工质向外界吸收的热量大于其向外放出的热量,最终达到使外界温度降低。
3 磁制冷的几种循环进程磁制冷循环是将磁性材料在高温环境加磁场放热和在低温环境退磁场吸热进程连接起来,而实现的制冷进程。
依照不同的连接方式,可分为四种不同的循环方式:布雷顿循环,卡诺循环,斯特林循环及埃克森循环3.1 卡诺循环卡诺循环是最理想的进程:由等温放热,绝热退磁,等温吸热和绝热磁化四个进程组成。
日本采用La-Fe-Si系磁制冷物质开发磁热泵
添加元素为 2 w t % ,点火 2 0 0 次,成功 1 6 7 次) ,铈系材料 为 1 0 2 次,钇系材料为 1 7 8 次。 替代材料 的价格根据厂家、品种 、尺寸等 ,有 的与钍钨材料相 当,有的高 3 0 % ~ 5 0 % 。由 j 添加 的稀土氧化物非常硬,在对各种稀土氧化物与钨的合金进行加工,制成电极棒时,合 金 内部 的氧化 物颗 粒 很难 变形 , 因此提 高 了加 工成 本 。 由于稀土 原料 在 电极棒 中 的用 量 很少 , 因而 占总成 本 的 比例 有 限。而 占重量 9 8 % 的钨 的价 格对 生 产成 本影 响 巨大 。
在替代材料 中,镧系材料 ( w — 1 % ~ 2 % L a 0 。 )的耐磨耗性是包括钍钨材料在 内的所有电极
棒 中最 高的。根据 日本焊接 协会的数据,镧系 电极棒的磨耗量约为 5 m g( 1 5 0 A下通 电 6 0 m i n 后) ,是钍钨 电极棒 的 1 / 2 。虽然磨耗后 的电极前端经研磨后可以再利用,但镧系材料 的研 磨周期长 , 使焊机效率提高 ,因此多在液化气罐、造船等领域的 自动焊接机上使用 。 铈系材 料 ( w - 1 % ~ 2 % C e O )因其 具 有 交流 电下 很难 产 生熔 融 变形 的特 点 ,多 用 于铝 、铝 合 金等 用 交
场强度为 1 . 1 T , 磁制冷物质为 7 5 0 k g ) , L a — F e — S i 系材料的制冷能力为 1 0 4 W , 是G G G 材料( 6 3 W )
6
现代材料动 态
磁制冷技术
磁制冷技术摘要:传统压缩制冷技术广泛应用于各行各业,形成了庞大的产业,但它存在两个明显的缺陷:制冷效率低且氟利昂工质的泄漏会破坏大气臭氧层。
根据蒙特利尔协议到 2000 年将全面禁止氟利昂的生产和使用,使制冷行业面临一场变革。
现在大力研究开发的无氟替代制冷剂,基本上可以克服破坏大气臭氧层的缺陷,但仍保留了制冷效率低、能耗大的缺陷,而且有的还会产生温室效应等,不是根本解决办法。
磁制冷因具有高效节能、无环境污染、运行可靠、尺寸小、重量轻等优点,且完全具有替换气体压缩制冷的可能,引起了广泛的关注。
所谓磁制冷,即指借助磁制冷材料(磁工质)的磁热效应(MagnetocaIoric Effect,MCE),在等温磁化时向外界排放热量,退磁时从外界吸取热量,从而达到制冷目的。
关键词:磁制冷、无污染、高效节能引言:磁制冷技术是一种极具发展潜力的制冷技术。
其具有节能、环保的特点。
作为磁制冷技术的心脏,磁制冷材料的性能直接影响到磁制冷的功率和效率等性能。
根据蒙特利尔协议,到2000年将逐步禁止氟利昂的生产和使用,使氟利昂压缩制冷面临困境。
磁制冷作为一项高新绿色制冷技术,与传统压缩制冷相比具有如下竞争优势:无环境污染:由于工质本身为固体材料以及可用水来作为传热介质,消除了因使用氟利昂、氨及碳氢化合物等制冷剂所带来的破坏臭氧层、有毒、易泄漏、易燃、易爆等损害环境的缺陷;高效节能:磁制冷的效率可达到卡诺循环的30% ~ 60%,而气体压缩制冷一般仅为5 % ~ l0%,节能优势显著;易于小型化:由于磁工质是固体,其熵密度远远大于气体的熵密度,因而易于做到小型化;稳定可靠;由于无需压缩机,运动部件少且转速缓慢可大幅降低振动与噪音,可靠性高,寿命长,便于维修。
1976年美国国家航空航天局的G.V.Brown[2]首次将磁制冷技术应用于室温范围,采用金属Gd作为磁制冷工质,在7T的超导磁场和无热负荷的条件下获得了47K 的温度差。
低温磁制冷技术的应用与发展
低温磁制冷技术的应用与发展摘要:随着制冷与低温工程的发展,人们面临着环境的再次挑战,臭氧层的破坏和温室效应与一些制冷剂的使用和泄露有密切的联系,因此有必要找到一种更有效更环保的制冷方法,所以磁制冷以其自身的特点具有更广阔的应用前景。
引言臭氧层是指距地球表面10至50公里的大气层中由臭氧构成的气层。
臭氧是一种气体,其分子结构为三个氧原子,即O3。
臭氧层的主要功能在于吸收来自宇宙的紫外线,使地球上的万物免受紫外线辐射的危害,所以,臭氧层被称之为地球的保护伞。
但如今,臭氧层已被人类严重破坏,本世纪开始人类大量使用高度稳定的合成化合物,如空调器、冰箱工业、溶剂、航空航天用制冷剂、喷雾剂、清洗剂中含氯氟烃化合的挥发出来,通过复杂的物理化学过程与臭氧发生化学反应而将其摧毁。
为了防止生产和使用氟氯碳类化合物造成的大气臭氧层的破坏,到2000年全世界将限制和禁止使用氟里昂制冷剂,我国于1991年6月加入这个国际公约并做出规定,到2010年我国将禁止生产和使用氟里昂等氯氟烃和氢氯氟烃类化合物。
因此,需要加快研究开发无害的新型制冷剂或不使用氟里昂制冷剂的其它类型制冷技术。
本世纪二十年代末,科学家发现了磁性物质在磁场作用下温度升高的现象,即磁热效应。
随后许多科学家和工程师对具有磁热效应的材料、磁制冷技术及装置进行了大量的研究开发工作。
磁制冷原理及特点[1]⑴磁制冷就是利用磁热效应,又称磁卡效应(Magneto-Caloric Effect ,MCE)的制冷。
磁热效应是指磁制冷工质在等温磁化时向外界放出热量,而绝热去磁时温度降低,从外界吸收热量的现象。
例如对于铁磁性材料来说,磁热效应在它的居里温度(磁有序-无序转变的温度)附近最为显著,当作用有外磁场时,该材料的磁熵值降低并放出热量;反之,当去除外磁场时,材料的磁熵值升高并吸收热量,这和气体的压缩-膨胀过程中所引起的放热-吸热的现象相似。
其原理图如图1-1所示磁热效应热力学基础[2]顺磁体的物质,磁化强度M是(H/T)的函数,当H/T≤6×105A/(m.K)时,其关系式为:(1) 式中,Cc称为居里常数,(m3.k/mol) (2) 有(1-1)得(3)这是顺磁态物质的物态方程式,与理想气体状态方程式相似,由热力学定律,对于单位体积磁介质H (4)比较纯物质的热力学基本方程(5)可以看出,对于磁介质 H相当于纯物质的P,µ0M相当于纯物质的V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tsuyoshi KawanamiShigeki Hirano Department of Mechanical Engineering,Kobe University,1-1,Rokkodai-cho,Nada-ku,Kobe657-8501,JapanMasahiro Ikegawa Division of Human Mechanical Systems andDesign,Graduate School of Engineering,Hokkaido University,N13-W8,Kita-ku,Sapporo060-8628,JapanKoji Fumoto Department of Mechanical Engineering, Kushiro National College of Technology,Otanoshike-Nishi2-32-1,Kushiro084-0916,Japan Cooling Characteristics of Regenerative Magnetic Refrigeration With Particle-Packed BedThe aim of our study was to elucidate the fundamental cooling characteristics and to improve the cooling characteristics of a room-temperature magnetic refrigerator oper-ated under an active magnetic regenerator(AMR)cycle.The AMR refrigeration cycle, which includes a thermal storage process and a regeneration process,is used to realize a practical magnetic refrigerator operating near room-temperature.The basic compo-nents of the target AMR system are a magnetic circuit,test section,fluid-displacing device,and associated instrumentation.Spherical gadolinium particles are packed in the test section as the magnetic working substance,and air and water are used as heat transferfluids.The cooling characteristics of the target AMR system under various op-erating conditions are investigated.The results show that the AMR cycle is very effective in improving the cooling performance of the room-temperature magnetic refrigerator.͓DOI:10.1115/1.4003450͔Keywords:magnetic refrigeration,magnetocaloric effect,heat pump,regenerative cycle1IntroductionIn recent years,global warming has become an international concern,and it has become essential to reduce the emission of greenhouse gases.Instead of chlorofluorocarbons͑CFCs͒,whose use is restricted because they cause a depletion of the ozone layer, hydrofluorocarbons͑HFCs͒are used as refrigerants.Recent re-searches,however,have shown that HFCs also have a large green-house effect.Therefore,it is desirable to develop a new alternative refrigerant and an environmentally friendly refrigeration system. Magnetic refrigeration is a cooling method that is based on the magnetocaloric effect͓1–3͔.This effect is an entropy change in-duced by a change in the magneticfield in a particular kind ofmaterial.The magnetic material generates and absorbs heat due tothe magneticfield change,and it can be used as a working mate-rial.The magnetic refrigerator does not require F-gases and thushas the potential of being an alternative refrigeration method.When the operation temperature of a magnetic refrigerator isshifted to near room-temperature,the heat capacity of the mag-netic working substance͑magnetocaloric material͑MCM͒͒in-creases,and the temperature change occurring due to the magneticfield change decreases.Therefore,an active magnetic regenerator ͑AMR͒cycle that includes a thermal storage process and a regen-eration process is a highly effective approach for increasing thetemperature difference between the hot and cold ends of a mag-netic refrigerator.The general concept of the AMR cycle wasproposed by Barclay and Steyert͓4͔,and they showed the possi-bilities of using an AMR in a room-temperature magnetic refrig-erator.Moreover,some experimental and analytical studies wereconducted for investigating the detailed cooling characteristics ofan AMR͓5–8͔.In addition,valuable operation data of prototyperoom-temperature magnetic refrigerators have been reported ͓9–12͔.Usually,water is used as the heat transferfluid in an AMRrefrigeration cycle.However,in an air conditioning system,room air can be used as the heat transferfluid.Therefore,experimental and analytical studies have been conducted to understand the fun-damental cooling characteristics and improve the performance of a magnetic refrigerator operated with an AMR refrigeration cycle using water and air as the heat transferfluids.The primary aim of the present study was to gain fundamental knowledge about how the efficiency of room-temperature mag-netic refrigerators can be improved.In this study,the cooling characteristics of the AMR refrigerator were estimated by per-forming a numerical simulation.2Magnetic Refrigeration2.1Magnetic Working Substance.It is well known that the magnetocaloric effect of a magnetic working substance becomes maximal at the Curie point.Spherical gadolinium particles are used as the magnetic working substance in this study.The physi-cal properties of gadolinium are listed in Table1.The adiabatic temperature change⌬T ad,which occurred when the magneticfield was removed from the magnetic working substance,was mea-sured experimentally,as shown in Fig.1.The horizontal axis shows the initial temperature of the material T i.Figure1shows that⌬T ad during the demagnetization process tends to be maxi-mum at around20°C because that is the Curie point of gado-linium;further,it is confirmed that the maximum values of⌬T ad are approximately4.2°C for2.0T and2.6°C for1.0T.2.2AMR Cycle.Figure2shows the basic cycle͑right side͒and T-s diagrams͑left side͒of the AMR refrigerator.In thisfig-ure,the dashed lines show thefluid temperature distribution of the packed bed in the AMR just after each process begins and the solid lines show the temperature at the end of each process.The AMR cycle includes the following four processes,which are based on the regenerative Brayton cycle:͑a͒magnetization pro-cess,͑b͒fluidflow process͑from cold end to hot end͒,͑c͒demag-netization process,and͑d͒fluidflow process͑from hot end to cold end͒.Because the temperature gradient in the packed bed becomes steeper with each passing cycle,the temperature difference be-tween the hot and cold ends increases gradually.However,after aContributed by the Heat Transfer Division of ASME for publication in the J OUR-NAL OF H EAT T RANSFER.Manuscript received November28,2009;final manuscriptreceived November11,2010;published online March4,2011.Assoc.Editor:Yo-gendra Joshi.sufficient number of cycles,the temperatures at both the hot and cold ends remain almost constant.The operation sequence of the present AMR cycle is shown in Fig.3.3Experiment3.1Experimental Apparatus.The schematic diagram of the experimental setup based on the AMR cycle is depicted in Fig.4.The experimental apparatus consists of a test section as the AMR particle-packing bed,a linear drive fluid displacer that drives the heat transfer fluid reciprocately with the electrical linear-motion slider ͑see Fig.4,“electric slider No.2”͒,a permanent magnetic circuit,and a data acquisition system.Both sides of the test sec-tion have retention spaces for the heat transfer fluid,which serve as a hot end and a cold end,and each end of the test section is connected to the fluid displacer.The magnetic circuit is a closed circuit composed of two opposite Halbach magnets with a 20mm gap distance.The maximum magnetic flux density is about 2.0T at the center of the gap between the two magnets,as shown in Fig.5.The test section and displacer are installed on the moving stage of the electrical linear-motion slider ͑see Fig.4,“electric slider No.1”͒controlled by a personal computer.Figure 6shows the test section.Spherical gadolinium particles ͑mean diameter:0.6mm ͒are packed in an acrylic tube.The length of the particle-packed bed is 60mm and the inner diameter is 12mm.The weight of the packed gadolinium is 33.4g.The gadolinium particles for testing are filled in the packed bed at an average packing rate of 0.63by volume ͑i.e.,porosity =0.37͒.The void volume of the particle-packed bed is filled with the heat transfer fluid.To measure the temperature distribution in the test section,three platinum resis-tance temperature detectors ͑RTDs ͒are installed at the hot end ͑T h ͒,center ͑T center ͒,and cold end ͑T c ͒of the test section.The operating frequency of the present AMR cycle was set from 4s to 10s,and all of temperature data were recorded every 0.1s intothe data acquisition system.From the result of the error analysis,the uncertainty of the present temperature measurement system is estimated as Ϯ0.38°C for 20°C.3.2Setting Parameters.The volume V of the fluid flow is obtained from the displaced volume of the displacer,and the flow rate F is calculated from the moving time of the displacer.The relative fluid flow volume V ءand relative volumetric flow rate F ءare defined as follows:V ء=V V void,F ء=F V void͑1͒where V void is the void volume in the particle-packed bed.4Experimental Results4.1Fundamental Temperature Change in AMR Refrigera-tion Cycle.Figure 7shows the transition of temperature at the hot end and the cold end of the water-based AMR apparatus for an applied magnetic field of 2.0T for V ء=0.43and F ء=0.87s −1.This result shows that the temperature difference ⌬T between the hot end and the cold end increases with time t .The temperature difference ⌬T after 800s is larger than the adiabatic temperature change of 4.2°C,as shown in Fig.1.Therefore,it is confirmed that the AMR refrigeration cycle is effective in increasing the temperature difference between the hot end and the cold end of the magnetic refrigerator near room-temperature.4.2Effect of Magnetic Field on Cooling Characteristics.The relationship between the temperature differences ⌬T and V ءis shown in Fig.8for various magnetic fluxes.The relationship be-tween the temperature differences ⌬T and F ءis shown in Fig.9.At 1.0T and 2.0T,the temperature difference shows the same tendency for both various V ءand various F ء.Moreover,it can be observed that under all operating conditions,the temperature dif-ference ⌬T at 2.0T is larger than that at 1.0T.This indicates that increasing the magnetic field is effective for improving the perfor-mance of the magnetic refrigerator.However,even when the magnetic field doubles,the amount by which ⌬T increases is small at low F ءregion.The reason for this behavior is probably the increase in heat loss.In the water-based AMR cycle,it is believed that the temperatures of the magnetic material at the ends of the particle-packed bed affect the attained hot and cold temperatures.Since the time period of the fluid flow process increases with a decrease in F ء,it will be considered that the effect of heat loss increases with a decrease in F ء.The tem-perature gradient is generated in the particle-packed bed,and heat loss by conduction always exists significantly at low F ءcondition.4.3Cooling Characteristics of Water-Based AMR Cycle.Figure 10shows the temperature difference ⌬T in the case of the water-based AMR cycle for various V ءand F ءusing 2.0T magnet.These data indicate that the largest ⌬T can be obtained if the parameters are set to optimum values.This is because the tem-perature distribution in the packed bed is significantly affected by the energy balance between the heat transferred from/to the mag-netic working substance to/from the fluid and that transported by the fluid flow.It is important to ensure the exchange of sufficient thermal energy between the magnetic working substance and the heat transfer fluid during the fluid flow process.However,the amount of exchanged thermal energy in a fluid flow process de-creases when the fluid flow volume is small.As a result,both the stored heat and the amount of heat regenerated in the AMR cycle decrease.On the other hand,when V ءand F ءincrease to a certain extent,it becomes difficult to bring about a larger temperature change because of the larger heat capacity of the fluid.Thus,the effectiveness of the thermal storage and the regeneration de-creases,and as a result,⌬T becomes small.Hence,in order toTable 1Physical properties of gadolinium †13,14‡QuantityValue Atomic No.64Atomic mass 157.26g Curie temperature 20°C Density7860kg /m 3Lattice heat capacity 298J /kg K Thermal conductivity8.8W /m KFig.1Adiabatic temperature change of gadolinium,the data were measured for 2.0T …closed diamonds …and 1.0T …open circles …obtain the largest ⌬T ,it is necessary to set an appropriate operat-ing condition as the temperature profile in the packed bed be-comes steep.4.4Cooling Characteristics of Air-Based AMR Cycle.The temperature transition at the hot and cold ends of the test section in the case of the air-based AMR is shown in Fig.11.From the figure,it is found that the temperature difference between the hot end and the cold end increases with time t .The temperature dif-ference ⌬T after 500cycles is larger than the adiabatic tempera-ture change shown in Fig.1.The effectiveness of the AMR cycle is confirmed even in the case when air is used as the heat transfer fluid.Figure 12shows the temperature difference ⌬T for various V ءand F ء.Although no optimum operating condition is found in the present parameter range,the air-based AMR shows the same ten-dency as the water-based AMR,i.e.,the temperature difference ⌬T increases as V ءand F ءincrease.However,the values of V ءand F ءof the air-based AMR under the optimized condition are much larger than those of the water-based AMR.The heat capacity of air is smaller than that of water;thus,a large-volume fluid is neces-sary for the air-based AMR.5Numerical AnalysisIt is extremely important to elucidate the heat transfer phenom-ena inside the particle-packed bed of the AMR in order to under-stand the fundamental cooling mechanism.The transitional tem-perature change in an AMR particle-packed bed was considering in detail ͓6͔.Moreover,the heat transfer characteristics in a packed bed were showed with a computer simulation in various parameters ͓7,8͔.Hence,in the present study,an appropriatesimu-Fig.2Transition of temperature distribution in a test section with AMR:…a …magnetization process,…b …fluid flow process,…c …demagnetization process,and …d …fluid flow processlation model of the heat transfer mechanism inside the packed bedis devised;further,numerical analyses of the temperature profile inside the particle-packed bed of the AMR cycle are performed.5.1Analytical Model.The schematic of the analytical model is shown in Fig.13.In this study,the particle-packed bed is as-sumed to be a structure having a bundle of many small circularchannels ͑channel diameter is D 2and number of channels is n t ͓͒15͔.The values of D 2and n t are defined on the basis of the void volume and the heat transfer surface area in the actual testing particle-packed bed,and they are given byD 2=d p ͑s D 12L −4M s ͒6M s ͑2͒n t =36M s2s d p 2L ͑s D 12L −4M s ͒͑3͒where d p M s ,L ,and s are the diameter of spherical magnetic material,the mass of magnetic material,the length of testsection,Fig.3Operation sequence for the present AMRcycleFig.4Schematic diagram of the experimental setup:…1…test section as the AMR particle-packing bed,…2…2.0T Halbach magnetic circuit with a 20mm gap distance,…3…fluid displacer that drives the heat transfer fluid reciprocately,…4…electric linear-motion slider No.1,…5…electric linear-motion slider No.2,…6…platinum resistance temperature detector,…7…data acquisi-tion unit,and …8…personalcomputerFig.5Distribution of magnetic field induction in-betweenmagnetsFig.6Dimension of the test section and installation of the temperaturedetectorsFig.7Experimental temperature distributions at 2.0T with wa-ter as the heat transfer fluid for V ء=0.43and F ء=0.87s−1Fig.8Distribution of temperature difference of water-based AMR as a function of relative flow volume and magnetic flux for F ء=0.21and the density of magnetic material,respectively.The heat transfer fluid,main flow velocity is u 1in the test section,passes through the small channels with a velocity u 2and it is defined asu 2=u 1͑4͒5.2Governing Equations.As shown in Fig.13,the test sec-tion is classified into three regions:͑i ͒fluid region outside the material-packed bed,͑ii ͒fluid region inside a small straight chan-nel,and ͑iii ͒solid region.In addition to the diameter of the flow channel assumed as D 2is quite small,the fluid flow varies from 0to u 0or −u 0almost stepwise and keeps constant through the fluid flow,as shown in Fig.3.Therefore,we assumed the flow through test section as laminar flow.The temperature profile in the material-packed bed is calculated by solving the energy balance equation for each region.The energy equations for each region are expressed as follows,where x is the coordinate in the flow direction.͑i ͒Fluid region outside the material-packed bedf c f ͩץT f ץt +u 1ץT f ץx ͪ=eff ץ2T f ץx 2+4D 1K out ͑T room −T f ͒͑5͒͑ii ͒Fluid region inside the small straight channelf c f ͩץT f ץt +u 2ץT f ץx ͪ=ͩD 1D 2ͪ2eff ץ2T f ץx 2+4D 2h fs ͑T s −T f ͒͑6͒Fig.9Distribution of temperature difference of water-based AMR as a function of relative volumetric flow rate and magnetic flux for V ء=0.87Fig.10Relationship between the temperature difference andthe operating conditions for 2.0T magnetic flux:water-basedAMRFig.11Experimental temperature distributions at 2.0T with air as the heat transfer fluid for V ء=350and F ء=88s−1Fig.12Relationship between the temperature difference and the operating conditions for 2.0T magnetic flux:air-basedAMRFig.13Details of the simulation model͑iii ͒Solid regionf c f ץT s ץt =s ץ2T s ץx 2+4n t D 2͑1−͒D 12h fs ͑T f −T s ͒−4D 1͑1−͒D 12K out ͑T room −T f ͒+Q s͑7͒where K out ,h fs ,eff ,and Q s are the overall heat transfer coefficientbetween the heat transfer fluid and the surrounding air,the heat transfer coefficient between the heat transfer fluid and the mag-netic material,the effective thermal conductivity of the fluid in the void of the particle-packed bed,and the unit volumetric heat gen-eration and absorption value obtained by the magnetocaloric ef-fect,respectively.h fs is calculated based on the Nusselt number Nu=3.66,which can be applied to developed laminar flow in a tube.eff is obtained from the effective thermal diffusivity with oscillating flow ͓16͔.Q s is calculated using the experimental re-sult of the adiabatic demagnetization shown in Fig.1.The tem-perature of the heat transfer fluid and the magnetic material are set to 20°C as an initial condition,and the surrounding temperature is maintained at 20°C as a boundary condition.The time step was calculated and set to satisfy Courant–Friedricks–Lewey ͑CFL ͒condition automatically.This time step is short enough ͑ordinary,less than 0.1s ͒compared with the operation frequency span that is from 4s to 10s.In addition,the grid size ⌬x is fixed at 0.5mm.6Analytical Results6.1AMR Refrigeration Cycle.Figure 14shows the com-puted temperature transition at the hot and cold ends of the test section in the case of repeated operation of the AMR refrigeration cycle using water.From this figure,it is found that the tempera-ture difference between the hot end and the cold end gradually increases with time and asymptotically approaches a constant value.As is the case with the experimental result,the computed temperature difference in the steady state of the AMR cycle ex-ceeds the temperature difference obtained by the magnetocaloric effect.6.2Cooling Characteristics of Water-Based AMR.Figure 15shows the effect of the relative flow volume V ءon the tem-perature difference ⌬T .The relationship between the temperature difference ⌬T and the relative volumetric flow rate F ءis shown in Fig.16.In these figures,the computed results are compared with experimental data,and both sets of data show that the maximum temperature difference can be attained at optimum values of V ءand F ء,although the optimum values obtained from the computed and experimental results are somewhat different.The reason for this difference may be that in our analysis,the flow field in the test section is assumed to be uniform and the mixing effect of flow is ignored.6.3Cooling Characteristics of Air-Based AMR.Figure 17shows the numerical results of the temperature transition at both ends of the test section in the case that air is used as the heat transfer fluid.The figure indicates that,as is the case with the water-based AMR,the temperature difference increases gradually with time and asymptotically approaches a constant value.However,the result of the numerical simulation differs from the experimental result ͑shown in Fig.11͒in that the time required to reach the steady state in the numerical simulation is shorter than that required experimentally.The reason for this behavior is that the mixing effect of flow,which is neglected in the analysis,dis-turbs the rapid growth of the temperature gradient in an actual gadolinium-particle-packed bed.The temperature difference ⌬T for various V ءand F ءis shown in Figs.18and 19,respectively,in comparison with experimental data.As observed from these figures,the experimental dataandFig.14Analytical temperature distributions at 2.0T with water as the heat transfer fluid for V ء=0.43and F ء=0.87s−1Fig.15Distribution of maximum temperature difference at 2.0T of the water-based AMR form the present simulation as a function of relative volumetric flow rate for V ء=0.43,the data were obtained from analysis …closed circles …and experiment …open diamonds…Fig.16Distribution of maximum temperature difference at 2.0T of the water-based AMR form the present simulation as a function of relative flow volume for F ء=1.3,the data were ob-tained from analysis …closed circles …and experiment …open diamonds …numerical analysis data show a similar tendency.However,all parameter values in the latter are up to roughly 4.1°C larger than those in the former,probably for the abovementioned reason.Figures 18and 19show the existence of an optimum flow vol-ume V ءthat is not observed in the experiment due to the limitation of the experimental pared with the water-based AMR,the maximum temperature difference attained in the air-based AMR cycle is about 1/3.This seems to be due to the effect of the thermophysical properties of the heat transfer fluid,particu-larly the effect of the thermal capacity.Through these investiga-tions,it is found that the physical properties of a heat transfer fluid have a significant effect on the cooling characteristics of an AMR refrigerator.7ConclusionsThe cooling characteristics of a room-temperature magnetic re-frigerator operated with an AMR refrigeration cycle have been studied experimentally and analytically.As for experimental study,we newly introduced F ء͑relative volumetric flow rate ͒and V ء͑relative flow volume ͒to appreciate the optimum operating condition of magnetic refrigeration with AMR cycle,and we also introduced a new approach for numerical analysis,which has bundles of small channels to exchange heat with the heat transfer fluid.The accuracy need to be improved but these associated data between experimental and numerical results of heat transfer through particle-packed bed will greatly contribute the reciprocat-ing magnet refrigerator with AMR cycle operation.The following conclusions may be drawn from the present study.͑1͒The cooling characteristics of the magnetic refrigeratorvary with the applied magnetic field.͑2͒Either water or air is capable as the heat transfer fluid,andmoreover,the water-based AMR has a high capacity of heat transport and a possibility to raise the temperature differ-ence with a low fluid volume displacement.͑3͒As compared with the water-based AMR cycle,in the air-based AMR cycle,the optimized operating condition in-cludes a larger flow volume and higher flow rate.However,the heat capacity of air is smaller than that of water;thus,a large-volume fluid is necessary for the air-based AMR.It would induce the increase of pressure loss during air blow processes.AcknowledgmentThis research was financially supported by the national project of “Development of Nonfluorinated Energy-Saving Refrigeration and Air Conditioning Systems”of the New Energy and Industrial Technology Development Organization ͑Grant No.P05029͒.Nomenclaturec ϭspecific heat,J kg −1K −1D ϭinner diameter,md p ϭdiameter of spherical magnetic material,m F ϭvolumetric flow rate,m 3s −1F ءϭrelative volumetric flow rate,s −1h fs ϭheat transfer coefficient,W m −2K −1K out ϭoverall heat transfer coefficient,W m −2K −1L ϭlength of test section,m n t ϭnumber of ideal channel M ϭmass,kgQ ϭunit volumetric heat by magnetocaloric effect,W m −3t ϭelapsed time,s T ϭtemperature,°C u ϭvelocity,m s −1V ϭflow volume,m 3V ءϭrelative flow volumeV voidϭvoid volume in material-packed bed,m3Fig.17Temperature change at 2.0T for AMR refrigeration cycle with air as the heat transfer fluid for V ء=350and F ء=88s−1Fig.18Distribution of maximum difference at 2.0T of air-based AMR as a function of the relative flow volume for F ء=88s −1,the data were obtained from analysis …closed circles …and experiment …open diamonds…Fig.19Distribution of maximum temperature difference at 2.0T of air-based AMR as a function of the relative volumetric flow rate for V ء=438,the data were obtained from analysis …closed circles …and experiment …open diamonds …⌬Tϭtemperature difference between hot and coldends,°C⌬T adϭadiabatic temperature change of gadolinium,°CGreek Symbolsϭporosityϭdensity,kg m−3ϭthermal conductivity,W m−1K−1Subscriptsadϭadiabaticcϭcold end sidecenterϭcenter positioneffϭeffectivefϭfluidhϭhot end sideiϭinitialroomϭsurroundingssϭmagnetic materialvoidϭvoid space1ϭtest section2ϭtube of analytical modelReferences͓1͔Yu,B.F.,Gao,Q.,Zhang,B.,Meng,X.Z.,and Chen,Z.,2003,“Review on Research of Room Temperature Magnetic Refrigeration,”Int.J.Refrig.,26, pp.622–636.͓2͔Yao,G.H.,Gong,M.Q.,and Wu,J.F.,2006,“Experimental Study on the Performance of a Room Temperature Magnetic Refrigerator Using Permanent Magnets,”Int.J.Refrig.,29,pp.1267–1273.͓3͔Kitanovski,A.,and Egolf,P.W.,2006,“Thermodynamics of Magnetic Refrig-eration,”Int.J.Refrig.,29,pp.3–21.͓4͔Barclay,J.A.,and Steyert,W.A.,1981,“Active Magnetic Regenerator,”U.S.Patent No.4,332,135.͓5͔Shir,F.,Mavriplis,C.L.,Bennett,H.,and Torre,E.D.,2005,“Analysis of Room Temperature Magnetic Regenerative Refrigeration,”Int.J.Refrig.,28, pp.616–627.͓6͔Sarlah,A.,Kitanovski,A.,Poredos,A.,Egolf,P.W.,Sari,O.,Gendre,F.,and Besson,C.,2006,“Static and Rotating Active Magnetic Regenerators With Porous Heat Exchangers for Magnetic Cooling,”Int.J.Refrig.,29,pp.1332–1339.͓7͔Kawanami,T.,Chiba,K.,Sakurai,K.,and Ikegawa,M.,2006,“Optimization of a Magnetic Refrigerator at Room Temperature for Air Cooling Systems,”Int.J.Refrig.,29,pp.1294–1301.͓8͔Petersen,T.F.,Pryds,N.,Smith,A.,Hattel,J.,Schmidt,H.,and Knudsen,H.H.,2008,“Two-Dimensional Mathematical Model of a Reciprocating Room-Temperature Active Magnetic Regenerator,”Int.J.Refrig.,31,pp.432–443.͓9͔Okamura,T.,Yamada,K.,Hirano,N.,and Nagaya,S.,2006,“Performance ofa Room-Temperature Rotary Magnetic Refrigerator,”Int.J.Refrig.,29,pp.1327–1331.͓10͔Zimm,C.,Boeder,A.,Chell,J.,Sternberg,A.,Fujita,A.,Fujieda,S.,and Fukamichi,K.,2006,“Design and Performance of a Permanent-Magnet Ro-tary Refrigerator,”Int.J.Refrig.,29,pp.1302–1306.͓11͔Hirano,N.,Nagaya,S.,Okamura,T.,Kawanami,T.,and Wada,H.,2007,“Development of Room Temperature Magnetic Refrigerator—Overall Plan,”Proceedings of the Second IIF-IIR International Conference on Magnetic Re-frigeration at Room Temperature,Portoroz,Slovenia,pp.281–287.͓12͔Hirano,S.,Kawanami,T.,Ito,K.,and Fumoto,K.,2010,“Experimental Study on Cooling Characteristics of Rotational Magnetic Refrigerator,”Proceedings of the Sustainable Refrigeration and Heat Pump Technology,Stockholm,Swe-den,Paper No.NVC-5.͓13͔Hashimoto,T.,Numasawa,T.,Shino,M.,and Okada,T.,1981,“Magnetic Refrigeration in the Temperature Range From10K to Room Temperature:The Ferromagnetic Refrigerants,”Cryogenics,21͑11͒,pp.647–653.͓14͔Dan’kov,S.Y.,Tishin,A.M.,Pecharsky,V.K.,and Gschneidner,K.A.,Jr., 1998,“Magnetic Phase Transitions and the Magnetothermal Properties of Ga-dolinium,”Phys.Rev.B,57,pp.3478–3490.͓15͔Kotake,S.,Hijikata,K.,and Matsumoto,Y.,1994,Handbook of Thermofluid Analysis,Maruzen,Tokyo͑in Japanese͒.͓16͔Hayashi,T.,Ikegawa,M.,and Takahashi,T.,2007,“Heat Transport Charac-teristics of Oscillatory Flow in a Channel With a Rectangular Cross Section,”Trans.Jpn.Soc.Mech.Eng.,Ser.B,73͑727͒,pp.831–838͑in Japanese͒.。