600分考点 700分考法 A版 高考数学(文)---专题5 平面向量

合集下载

高考数学专题复习《平面向量基本定理》知识梳理及典型例题讲解课件(含答案)

高考数学专题复习《平面向量基本定理》知识梳理及典型例题讲解课件(含答案)

√A. (3,7)
B. (0, 7)
C. (3,5)
D. (3,5)
因为向量 a (1,1) , b (3, 2) , 所以 3a 2b 3(1,1) 2(3, 2) (3,3) (6, 4) (3, 7) .故选 A.
变式训练
2.已知向量 a ,b 满足 2a b 0,3 ,a 2b 3,0 ,a b 1,1,则 ( )
2
2 1 1
,解得
1 1
,故
0
.
故选 B.
剖情景,创素养
【规律总结】 1. 平面向量的线性运算要抓住两条主线: 一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现. 2. 正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识, 注重数形结合思想、方程思想与转化思想的形 ABCD 中,M 是 BC 的中点.若 AC AM BD ,则 的值为( )
A. 4 3
√B. 5 3
C. 15
D.2
8
典型例题
以 A 为坐标原点建立平面直角坐标系,设正方形边长为 1,则
AC
(1,1)
,
AM
1,
1 2
, BD
(1,1) ,故1
2.基底 若 e1 ,e2 不共线,则把{e1 ,e2} 叫做表示这一平面内所有向量的一个基底. 3. 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.
考点二:平面向量的坐标
知识梳理
设向量 a (x1 ,y1),b (x2 ,y2 ), R ,则有下表:
运算
文字描述
谢谢观看
平面向量
考情分析
重点
1.了解平面向量基本定理及其意义. 2.会用坐标表示平面向量的加法,减法与数 乘运算. 3.掌握平面向量的正交分解及其坐标表示.

高考数学(文)《平面向量》专题复习

高考数学(文)《平面向量》专题复习
专题5 平面向量
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

高考平面向量知识点总结

高考平面向量知识点总结

高考平面向量知识点总结高考平面向量的知识点总结如下:1. 平面向量的定义:平面上的向量是有大小和方向的有向线段,可以用有向线段的终点与起点之间的位移来表示。

2. 平面向量的表示:平面向量可以用坐标表示,形如AB→=(x2-x1, y2-y1)。

3. 平面向量的基本运算:a) 向量的加法:将两个向量的相应分量相加,得到一个新的向量。

b) 向量的减法:将两个向量的相应分量相减,得到一个新的向量。

c) 向量的数乘:将向量的每一个分量都乘以一个标量,得到一个新的向量。

d) 向量的数量积:将两个向量的相应分量相乘,再将这些乘积相加,得到一个标量。

e) 向量的模长:向量的模长等于对应坐标差的平方和的平方根。

4. 平面向量的运算规律:a) 加法的交换律:A+B=B+Ab) 加法的结合律:(A+B)+C = A+(B+C)c) 数乘的结合律:k(A+B) = kA+kBd) 数乘的分配律:(k+l)A = kA + lA5. 平面向量共线与平行:若向量a与向量b线性相关,则称向量a 与向量b共线;若向量a与向量b既共线又同向或反向,则称向量a与向量b平行。

6. 平面向量的数量积与夹角关系:a) 两个向量共线时,它们的数量积等于它们的模长的乘积。

b) 两个向量平行时,它们的数量积等于它们的模长的乘积乘以它们的夹角余弦值。

7. 平面向量的坐标表示与几何应用:a) 两个向量的坐标之间的关系:可以根据向量与坐标之间的关系,求解所有给出的向量的坐标。

b) 利用向量的坐标表示进行运算:可以通过向量的坐标表示来进行向量的加法、减法、数量积等运算。

c) 利用向量的几何应用:可以用向量的几何性质解决平面几何问题,如求线段的垂直平分线等。

这些是高考平面向量的基本知识点,掌握了这些知识点可以帮助理解和解决与平面向量相关的问题。

(精校版)高考数学平面向量知识点及相关题型

(精校版)高考数学平面向量知识点及相关题型

A.3Error!
B.2
C.4Error!
D。Error!
2、 在 ABC 中 , 角 A, B,C 所 对 的 边 分 别 为 a, b, c, 已 知
a b, c 3, cos2 A cos2 B 3 sinAcosA 3 sin B cos B
(1) 求角 C 的大小
(直打版)高考数学平面向量知识点及相关题型(word 版可编辑修改)
7、三角形的面积公式的选择
(1)已知三角形一边及该边上的高,利用 S 1 ah
2
(2)已知三角形的两边及其夹角,利用 S 1 absin(C)
2
(3)已知三角形的三边,利用 S p( p a)( p b)( p c),其中p= a b c
2
[练习]
1、在△ABC 中,a=3 2,b=2Error!,cos C= ,则△ABC 的面积为( ).
(直打版)高考数学平面向量知识点及相关题型(word 版可编辑修改)
(直打版)高考数学平面向量知识点及相关题型(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)高考数学平面向量知 识点及相关题型(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希 望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为(直打版)高考数学平面向量知识点及相关题型(word 版可编辑修改)的全部内容。
2、 在平行四边形 ABCD 中,AD=1,角 BAD=60 度,E 为 CD 的重点,若 ACBE 1,则 AB

高三数学总复习平面向量整理资料新人教A版

高三数学总复习平面向量整理资料新人教A版

平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。

例:已知A (1,2),B (4,2),把向量按向量a =(-1,3)平移得到的向量是_____2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量是-。

例:下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =。

(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______ 二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

高考平面向量题型归纳总结

高考平面向量题型归纳总结

高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。

平面向量题型包括向量的加减、数量积、向量方向等。

本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。

一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。

2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。

其中,-b表示b的反向量,即方向相反的向量,模长相等。

二、数量积数量积又称为内积或点积,记作a·b。

1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。

另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。

2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。

三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。

2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。

在解决平面向量题型时,可以利用这两种方式来确定向量的方向。

高考专题:平面向量

高考专题:平面向量
B
3、数量积的坐标运算
θ
a b x1x2 y1 y2
O
B1
A
平面向量的数量积a·b的性质: ①e·a=a·e=|a|cosθ
②a⊥b a·b=0
③a,b同向a·b=|a||b|反向时a·b= -|a|·|b|
A
a2=a·a=|a|2
④cosθ= ab
|a||b|
θ
O
B
四、向量垂直的判定
a a

b b
2 10
(8)2 62 10
13.已知 a,b 为单位向量,且 a·b=0,若c 2a 5b ,则cos a,c ____
解析: c2 (2a
5b ) 2

4a 2
5b 2
4
5a

b
c 2 4 5 9
c

3
a c a (2a
5b )

2
a
2


cos

a,
b

a c a c
2 3
5a
b

2
3.已知向量 a=(2,3),b=(3,2),则|a–b|=
A. 2 B.2
C.5 2
D.50
解析: a
b
2

(a
b)2
=
ab ab

| b |2 2 | b |2

1 2
,所以a 与b 的夹角为
3
,故选
B.
6.在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB
A. 3 AB 1 AC 44

平面向量知识点归纳高考

平面向量知识点归纳高考

平面向量知识点归纳高考一、向量的定义和性质在数学中,向量是由大小和方向组成的量。

平面向量可以表示为有序的数对,其中第一个数表示向量在水平方向上的分量,第二个数表示向量在垂直方向上的分量。

即向量a可以表示为a=(a₁, a₂)。

向量的性质有:1. 向量相等:如果两个向量的对应分量相等,那么这两个向量是相等的。

2. 向量的加法:向量的加法是指将两个向量的对应分量相加得到一个新的向量。

即a+b=(a₁+b₁, a₂+b₂)。

3. 向量的数乘:向量的数乘是指将向量的每个分量都乘以一个常数得到一个新的向量。

即k×a=(k×a₁, k×a₂)。

4. 向量的减法:向量的减法是指将两个向量的对应分量相减得到一个新的向量。

即a-b=(a₁-b₁, a₂-b₂)。

5. 零向量:所有分量都为零的向量称为零向量,用0表示。

二、向量的模和方向角1. 向量的模:向量的模是指向量的长度,也就是向量的大小。

向量a的模可以表示为|a|=√(a₁²+a₂²)。

2. 向量的方向角:向量的方向角是指向量与某个固定直线之间的夹角。

一般将向量与x轴正方向之间的夹角称为向量的方向角。

三、向量的数量积和向量积1. 向量的数量积:向量的数量积又称为点积或内积。

数量积的结果是一个标量,表示两个向量的相似程度。

向量a和向量b的数量积可以表示为a·b=a₁b₁+a₂b₂。

2. 向量的向量积:向量的向量积又称为叉积或外积。

向量积的结果是一个向量,垂直于这两个向量所在的平面。

向量a和向量b的向量积可以表示为a×b=(a₁b₂-a₂b₁)。

四、平面向量的运算定律1. 交换律:向量的加法满足交换律,即a+b=b+a;向量的数量积满足交换律,即a·b=b·a。

2. 结合律:向量的加法满足结合律,即(a+b)+c=a+(b+c);向量的数量积满足结合律,即(a·b)·c=a·(b·c)。

高三数学平面向量知识点

高三数学平面向量知识点

高三数学平面向量知识点平面向量是高中数学中的重要内容,既可以用于描述物理问题中的力、速度等概念,也可以应用于平面几何、立体几何等数学领域。

在高三数学中,平面向量的知识点常常涉及向量的表示与运算、向量的共线性与共面性、向量的线性相关与线性无关等内容。

下面将详细介绍这些知识点。

1. 向量的表示与运算平面向量通常用有向线段表示。

设有向线段AB表示向量a,则向量a的起点为A,终点为B。

向量的模长表示了向量的大小,记作|a|。

向量还可以表示为有序数对(a1, a2),其中a1, a2分别表示向量在坐标系中的横坐标和纵坐标。

对于两个向量a和b,可以进行加法和减法运算。

向量加法满足平行四边形法则,即将两个向量的起点重合,然后将它们的终点相连,所得线段表示了向量a和向量b的和。

向量减法可以通过向量加法和取负得到,即a-b=a+(-b)。

2. 向量的共线性与共面性如果存在一个实数k,使得向量b=k·a,称向量a和向量b共线。

当且仅当k=0时,向量a和向量b重合;当k>0时,向量a和向量b同向;当k<0时,向量a和向量b反向。

设有向线段AB和AC表示向量a和向量b,则向量a和向量b共面的充分必要条件是向量AB和向量AC共线,即向量a和向量b的起点和一个固定点共线。

3. 向量的线性相关与线性无关设有向线段AB, AC和AD分别表示向量a, b和c。

如果存在不全为0的实数k1, k2和k3,使得k1·AB+k2·AC+k3·AD=0,则称向量AB, AC和AD线性相关。

当且仅当k1=k2=k3=0时,向量AB, AC和AD线性无关。

线性相关的向量满足一定的线性关系,可以由其他向量线性表示;线性无关的向量则不存在这样的线性关系。

上述是高三数学中平面向量的几个重要知识点,除此之外,还有向量的数量积、向量的夹角等内容,但因为篇幅有限,无法在此一一展开。

希望通过对这些知识点的学习,能够更好地掌握平面向量的概念和性质,提高解决数学问题的能力。

2023年新考案 微专题5 数学工具——平面向量在解题中的应用(共22张PPT)

2023年新考案 微专题5 数学工具——平面向量在解题中的应用(共22张PPT)

21
目录
(2)若 θ∈
π
0,
2
,向量 m= ,n=(1-cos θ,sinθ-2cos θ),求 m·n 的最
小值及对应的 θ 的值.
【解析】由题意得 C(cosθ,sinθ),m= =(cosθ+1,sin θ),
π
4
则 m·n=1-cos2θ+sin2θ-2sin θcosθ=1-cos 2θ-sin 2θ=1- 2sin 2θ+ ,
要使·最小,则与方向相反,即点 P 在线段 AD 上,则
(2·)min=-2||||,问题转化为求||||的最大值.
3
又||+||=||=2× = 3,
2
| |+| | 2
3 2 3
∴||||≤
=
= ,
2
2
4

3 3
[·(+ )]min=(2·)min=-2× =- .故选
4
(1)若 θ= ,设点 D 为线段 OA 上的动点,求| + |的最小值;
2 2
2 2
【解析】
(1)设 D(t,0)(0≤t≤1),由题意知 C - ,
-
2
2
+t,
2
2
,所以 +=
,
所以| +|2= t2
2
2 2 1
+ ,
2
2
2
2
所以当 t= 时,| +|有最小值,最小值为 .
即点 B 在圆(x-2)2+y2=1 上运动.
∵=a-b,∴|a-b|的最小值即点 B 到射线 OA 的距离的最小值,为圆心(2,0)
到射线 y= 3x(x≥0)的距离减去圆的半径,

高考文科平面向量知识点

高考文科平面向量知识点

高考文科平面向量知识点高考是对学生多年来所学知识的综合考察,而数学是文科生必考的一门科目。

在数学中,平面向量是一个重要的知识点,也是考试中常常涉及的内容。

下面,将介绍高考文科平面向量的知识点,帮助考生更好地理解和掌握这一部分内容。

一、向量的概念和运算向量是表示有大小和方向的量,常用箭头表示。

在平面上,向量通常用一个有序数对表示,如AB向量可以表示为a = (x, y)。

向量的长度是指从起点到终点的距离,记作|a|。

向量的加法和减法可以通过对应坐标的加减实现,如a + b = (x₁ + x₂, y₁ + y₂)。

二、向量的数量积向量的数量积也称点积,是指两个向量间的乘积结果,记作a·b。

计算公式为:a·b = |a| |b| cosθ。

其中,θ表示两个向量之间的夹角。

数量积的结果为一个实数,具有求模、交换律以及分配律等性质。

三、向量的向量积向量的向量积也称叉积,是指两个向量间的乘积结果,记作a × b。

计算公式为:a × b = |a| |b| sinθ n。

其中,θ表示两个向量之间的夹角,n表示垂直于两个向量所在平面的单位法向量。

向量积的结果为一个向量,其方向遵循右手法则,模长为|a| |b| sinθ。

四、向量的共线与线性运算在平面向量中,如果存在一个实数k,使得a = kb,那么向量a与向量b就是共线的。

共线的向量也叫线性相关向量。

线性运算是指对多个向量进行加法、减法和数量乘法的运算。

线性相关的向量之间可以进行代入消元等操作,进而解出线性方程组。

五、向量的应用平面向量广泛应用于各个学科和职业领域,如物理学、力学、工程、计算机图形学等。

在解决实际问题时,我们可以利用向量进行几何推理、计算机模拟、数据分析等。

例如,在解决运动问题时,可以将速度、加速度等物理量抽象为向量,简化计算过程。

六、习题和应用题为了更好地理解和掌握平面向量的知识,考生可以进行大量的习题和应用题的训练。

高考数学平面向量知识点汇总

高考数学平面向量知识点汇总

高考数学平面向量知识点汇总在高考数学中,平面向量是一个重要的概念。

平面向量既可以表示位移,也可以表示力或速度等物理量。

掌握平面向量的基本概念和相关性质,对于解决与平面向量相关的问题起到至关重要的作用。

下面将对高考数学中与平面向量相关的知识点进行汇总和归纳,供同学们复习和回顾。

一、平面向量的定义与运算平面向量是具有大小和方向的量。

顺便一提,相同大小和方向的向量被认为是相等的。

平面向量通常用字母加粗表示,例如a、b、c 等。

平面向量的加法:设有两个向量a和b,其和记为a+b,既可以利用三角形法则直观地完成向量加法,也可以用坐标法进行计算,即a=(a₁,a₂),b=(b₁,b₂),则a+b=(a₁+b₁,a₂+b₂)。

平面向量的减法:设有两个向量a和b,其差记为a-b,可以通过a+(-b)来计算。

平面向量的数量积:设有两个向量a和b,其数量积记为a·b,数值上等于|a|·|b|·cosθ,其中|a|和|b|分别表示向量a和b的模,θ表示夹角。

二、平面向量的性质和定理1. 平移性:任意向量加上一个固定的向量,其结果仍然是平行于原向量的。

2. 平行四边形定理:平面上一点A沿两条有向线段的位移到B 和C两点,那么向量AB和向量AC平行且共线。

3. 平行四边形法则:用任一边为向量的起点,从起点引一条平行于另一边的线段,则这两条边所决定的平行四边形的对角线相等。

4. 平面向量共线定理:两个非零向量共线的充分必要条件是它们的坐标成比例。

5. 平面向量垂直定理:两个非零向量垂直的充分必要条件是它们的数量积等于零。

三、平面向量的应用平面向量在几何推理中有着广泛的应用。

以下是一些典型的应用:1. 向量共线判定:可以通过判断向量坐标的比例关系,来确定给定向量是否共线。

2. 向量垂直判定:可以通过计算向量的数量积是否等于零,来判断给定向量是否垂直。

3. 向量位移计算:可以利用向量的平移性质,计算一个物体在平面上的位移。

2023年高考数学(文科)一轮复习课件——平面向量基本定理及坐标表示

2023年高考数学(文科)一轮复习课件——平面向量基本定理及坐标表示
索引
诊断自测
1.思考辨析(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.( × )
(2)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+
μ2b,则λ1=λ2,μ1=μ2.( √ )
(3)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可以表示成xx12=yy12.( × )
索引
5.(易错题)已知 A(-1,3),B(2,-1),则与向量A→B共线的单位向量是 ___±__35_,__-__54________. 解析 ∵A→B=(2,-1)-(-1,3)=(3,-4), ∴|A→B|=5.故与向量A→B共线的单位向量坐标为±35,-54.
索引
8 6.(2021·全国乙卷)已知向量a=(2,5),b=(λ,4),若a∥b,则λ=____5____.
1.(2021·西安调研)在平面直角坐标系中,O 为坐标原点,O→A= 23,21,若O→A绕
点 O 逆时针旋转 60°得到向量O→B,则O→B=( A )
A.(0,1)
B.(1,0)
C. 23,-12
D.12,-
3 2
解析 ∵O→A= 23,12,∴O→A与 x 轴的夹角为 30°,
依题意,向量O→B与 x 轴的夹角为 90°,
索引
感悟提升
1.两平面向量共线的充要条件有两种形式: (1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0; (2)若a∥b(b≠0),则a=λb. 2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当 两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
索引

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型例题1向量的相关概念给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型例题2向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型例题3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD→共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意]对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2.1向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律交换律 a +b =b +a 结合律 (a +b )+c =a +(b +c )典型例题1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型例题2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型例题3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型例题1向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →.【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型例题2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量. 典型例题3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型例题1向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型例题2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法. 典型例题3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________;(2)MN →=________.【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2. 【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD →=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b 方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型例题1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →. 【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型例题2向量模的有关计算(1)已知平面向量a与b的夹角为60°,|a|=2,|b|=1,则|a+2b|=()A.3B.23C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型例题3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.【解析】 (1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b-a·b=0.所以b⊥(a+t b).命题角度三:利用夹角和垂直求参数(1)已知a⊥b,|a|=2,|b|=3且向量3a+2b与k a-b互相垂直,则k 的值为()A.-32B.32C.±32D.1(2)已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3.1 平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型例题1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样. 典型例题2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a =a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型例题3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP→=45AM →,BP →=35BN →, 所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP→=25NB →,CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AP→=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型例题1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标. 典型例题2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2.所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型例题3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP→=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b . 典型例题1向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线.又AB →=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4) =⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型例题2三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC→=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k )(k -12)+7(10-k )=0, 所以k 2-9k -22=0,解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线.判断向量(或三点)共线的三个步骤典型例题3向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC→=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标. 【解】 因为OC →=14OA →=14(0,5)=⎝ ⎛⎭⎪⎫0,54, 所以C ⎝ ⎛⎭⎪⎫0,54. 因为OD →=12OB →=12(4,3)=⎝ ⎛⎭⎪⎫2,32, 所以D ⎝ ⎛⎭⎪⎫2,32.设M (x ,y ),则AM→=(x ,y -5),AD →=⎝ ⎛⎭⎪⎫2-0,32-5=⎝ ⎛⎭⎪⎫2,-72.因为AM→∥AD →, 所以-72x -2(y -5)=0, 即7x +4y =20.①又CM →=⎝ ⎛⎭⎪⎫x ,y -54,CB →=⎝ ⎛⎭⎪⎫4,74,因为CM →∥CB →,所以74x -4⎝ ⎛⎭⎪⎫y -54=0,即7x -16y =-20.②联立①②解得x =127,y =2,故点M 的坐标为⎝ ⎛⎭⎪⎫127,2.应用向量共线的坐标表示求解几何问题的步骤1.平面向量数量积的坐标表示已知a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 即两个向量的数量积等于它们对应坐标的乘积的和. ■名师点拨公式a ·b =|a ||b |cos 〈a ,b 〉与a ·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.两个公式、一个充要条件(1)向量的模长公式:若a =(x ,y ),则|a |(2)向量的夹角公式:设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是。

高考数学专题05平面向量-高考数学试题分项版解析(解析版).docx

高考数学专题05平面向量-高考数学试题分项版解析(解析版).docx

专题5 平面向量1. 【2014高考安徽卷文第10题】设,a b r r 为非零向量,2b a =r r ,两组向量1234,,,x x x x u r u u r u u r u u r 和1234,,,y y y y u u r u u r u u r u u r 均由2个a r 和2个b r 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r 所有可能取值中的最小值为24a r ,则a r 与b r 的夹角为( ) A.23π B.3π C.6π D.02. 【2014高考北京卷文第3题】已知向量()2,4a =r ,()1,1b =-r ,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9【答案】A【解析】因为2(4,8)a =r ,所以2(4,8)(1,1)a b -=--r r =(5,7),故选A.【考点】本小题主要考查平面向量的基本运算,属容易题.3. 【2014高考大纲卷文第6题】已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2【答案】B【解析】试题分析:22(2)22cos ,a b b a b b a b a b b -⋅=⋅-=⨯⨯<>-r r r r r r r r r r r =2×1×1×c os 60︒-1=0,故选B.【考点】向量的数量积运算.4. 【2014高考福建卷文第10题】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++u u u r u u u r u u u r u u u r 等于 ( )..2.3.4A OM B OM C OM D OM u u u u r u u u u r u u u u r u u u u r5. 【2014高考广东卷文第3题】已知向量()1,2a =r ,()3,1b =r ,则b a -=r r ( )A.()2,1-B.()2,1-C.()2,0D.()4,37. 【2014高考湖南卷文第10题】在平面直角坐标系中,O 为原点,()1,0A -,(03B ,,()30C ,,动点D 满足1CD =u u u r ,则OA OB OD ++u u u r u u u r u u u r 的取值范围是( )A.[]46,B.19-119+1⎡⎤⎣⎦,C.2327⎡⎣,D.7-17+1⎡⎤⎣⎦, 【答案】D【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程8.【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=u u u v u u u v u u u v u u u v ,则AB AD ⋅u u u v u u u v 的值是 .9.【2014高考江西卷文第12题】已知单位向量=-==||,23,31cos ,,2121a e e a e e ρρρρρρ则若向量且的夹角为αα_______. 【答案】3 【解析】试题分析:因为22221211221||(32)9124912cos 413129,3a e e e e e e α=-=-⋅+=-⨯+=-⨯=r r r r r r r 所以|| 3.a =r 考点:向量数量积10. 【2014高考辽宁卷文第5题】设,,a b c r r r 是非零向量,已知命题P :若0a b ⋅=r r ,0b c ⋅=r r ,则0a c ⋅=r r ;命题q :若//,//a b b c r r r r ,则//a c r r ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12. 【2014高考全国2卷文第4题】设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=⋅b a ρρ( )A. 1B. 2C. 3D. 513.【2014高考山东卷文第7题】已知向量(3a =r ,()3,b m =r .若向量,a b r r 的夹角为π6,则实数m =( )(A )23(B 3 (C )0 (D )3【答案】B【解析】因为cos ,,||||a b a b a b ⋅<>=⋅r r r r u u r r 所以2233cos ,623m m π+=+解得3m =,故选B. 考点:平面向量的数量积、模与夹角.14.【2014高考四川卷文第14题】平面向量(1,2)a =r ,(4,2)b =r ,c ma b =+r r r (m R ∈),且c r 与a r 的夹角等于c r 与b r 的夹角,则m = .15. 【2014高考天津卷卷文第13题】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1,AE AF ⋅=u u u r u u u r ,则λ的值为________.16.【2014高考浙江卷文第9题】设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t a b +的最小值为1( )A.若θ确定,则 ||a 唯一确定B.若θ确定,则 ||b 唯一确定C.若||a 确定,则 θ唯一确定D.若||b 确定,则 θ唯一确定17.【2014高考重庆卷文第12题】已知向量=⋅=--=b a b a b a ρρρρρρο则,且的夹角为与,10||),6,2(60_________.18.【2014高考上海卷文第14题】已知曲线C :24x y =--l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r ,则m 的取值范围为 .【答案】[2,3]【解析】由0AP AQ +=u u u r u u u r r 知A 是PQ 的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.【考点】向量的坐标运算.19.【2014高考上海卷文第17题】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =L 是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=u u u r u u u r L 的不同值的个数为( ) (A )7 (B )5 (C )3 (D )120.【2014高考陕西文第18题】在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r .(1)若23m n ==,求||OP u u u r ; (2)用,x y 表示m n -,并求m n -的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档