【精品习题】高二数学人教A必修5练习:第一章 解三角形 Word版含解析

合集下载

高中数学人教A版必修5习题:第一章解三角形1.1.1含解析

高中数学人教A版必修5习题:第一章解三角形1.1.1含解析

01第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理课时过关·能力提升基础巩固1在△ABC中,下列关系一定成立的是().A.a>b sin AB.a≤b sin AC.a<b sin AD.a≥b sin A答案:D2在△ABC中,若A=60°,a=4√3,b=4√2,则B等于().A.45°或135°B.135°C.45°D.以上答案都不对答案:C3在△ABC中,若sin A>sin B,则角A与角B的大小关系是().A.A>BB.A<BC.A=BD.不确定答案:A4在△ABC中,若a∶b∶c=2∶5∶6,则sin A∶sin B∶sin C等于().A.2∶5∶6B.6∶5∶2C.6∶2∶5D.不确定解析:由正弦定理,知sin A∶sin B∶sin C=a∶b∶c=2∶5∶6.答案:A5在△ABC中,a=20,A=45°,B=75°,则边c的长为. 解析:C=180°-45°-75°=60°.由正弦定理得asinA =csinC,即20sin45°=csin60°,故c=20sin60°sin45°=20×√32√22=10√6.答案:10√66在△ABC中,角A,B,C所对的边分别为a,b,c,若a=√3,b=1,A=π3,则B=.解析:由正弦定理得asinA=bsinB,所以√3sinπ3=1sinB,解得sin B=12,所以B=5π6或B=π6,又因为a=√3,b=1,所以B<A,所以B=π6.答案:π67在△ABC中,A=2π3,a=√3c,则bc=.解析:由正弦定理知sinAsinC =ac=√3,即sin C=sin2π3√3=12,又a>c,可得C=π6,∴B=π−2π3−π6=π6,∴b=c,即bc=1.答案:18在△ABC中,若B=2A,a∶b=1∶√3,则A=.解析:∵B=2A,∴sin B=sin2A,∴sin B=2sin A cos A,∴sinAsinB=12cosA.由正弦定理,得ab =sinAsinB=√3,∴1 2cosA =√3∴cos A=√32.又0°<A<180°,∴A=30°.答案:30°9在△ABC中,a=5,B=45°,C=105°,求边c.解由三角形内角和定理,知A+B+C=180°, 故A=180°-(B+C)=180°-(45°+105°)=30°.由正弦定理,得c=a·sinCsinA=5·sin105°sin30°=5·sin(60°+45°)sin30°=5·sin60°cos45°+cos60°sin45°sin30°=52(√6+√2).10在△ABC中,已知a=√2,b=2,A=30°,解此三角形.解由asinA =bsinB,得sin B=bsinAa=√2=√22.∵0°<B<180°,∴B=45°或B=135°.当B=45°时,C=180°-(A+B)=180°-(30°+45°)=105°.∵csinC=asinA,∴c=asinCsinA =√2sin105°sin30°=√2×√6+√2412=√3+1.当B=135°时,C=180°-(A+B)=180°-(30°+135°)=15°,∴c=asinCsinA =√2sin15°sin30°=√2×√6-√2412=√3−1.综上可得,B=45°,C=105°,c=√3+1或B=135°,C=15°,c=√3−1.能力提升1在△ABC中,A=60°,a=√13,则a+b+csinA+sinB+sinC等于().A.8√33B.2√393C.26√33D.2√3解析:由a=2R sin A,b=2R sin B,c=2R sin C,得a+b+csinA+sinB+sinC =2R=asinA=√13sin60°=2√393.答案:B2在△ABC中,若a=4,A=45°,B=60°,则b的值为().A.2√6B.2+2√3C.√3+1D.2√3+1解析:由正弦定理得,asinA =bsinB,则b=asinBsinA =4sin60°sin45°=2√6.答案:A★3在△ABC中,角A,B,C的对边分别为a,b,c,如果m=(a2,b2),n=(tan A,tan B),且m∥n,那么△ABC 一定是().A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形解析:由m∥n得a2tan B=b2tan A,结合正弦定理有sin 2Bsin2A =tanBtanA,∴sinBsinA=cosAcosB.∴sin2A=sin2B.∴2A=2B或2A+2B=π.∴A=B或A+B=π2,即△ABC是等腰三角形或直角三角形.故选D.答案:D4在△ABC中,角A,B,C所对的边分别为a,b,c,若3b cos A=c cos A+a cos C,则tan A的值是().A.-2√2B.−√2C.2√2D.√2解析:由正弦定理得b=2R sin B,c=2R sin C,a=2R sin A,则3(2R sin B)cos A=2R sin C cos A+2R sin A cos C,则有3sin B cos A=sin(C+A)=sin B.又∵sin B≠0,则cos A=13>0,∴A为锐角,∴sin A=√1-cos2A=√1-19=2√23,则有tan A=sinAcosA =2√2313=2√2.答案:C5在△ABC中,B=30°,C=120°,则a∶b∶c=. 解析:由题意得A=180°-B-C=30°,则sin A=12,sin B=12,sin C=√32,∴a∶b∶c=sin A∶sin B∶sin C=1∶1∶√3.答案:1∶1∶√36在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA +b2sinB+2csinC=.解析:由正弦定理得asinA=2R=2,b2sinB=R=1,2csinC=4R=4,故asinA+b2sinB+2csinC=2+1+4=7.答案:77已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m=(√3,−1),n=(cos A,sin A),若m⊥n,且a cos B+b cos A=c sin C,则角B=.解析:由题意知m·n=0,∴√3cos A-sin A=0.∴tan A=√3,A=π3.又a cos B+b cos A=c sin C,∴由正弦定理,得sin A cos B+sin B cos A=sin2C,即sin(A+B)=sin2C,sin(π-C)=sin2C,sin C=sin2C.∴sin C=1.∴C=π2.∴B=π6.答案:π6★8已知△ABC为锐角三角形,角A,B,C分别对应边a,b,c,且a=2b sin A,求cos A+sin C的取值范围.解设R为△ABC外接圆的半径.∵a=2b sin A,∴2R sin A=4R sin B sin A.∵sin A≠0,∴sin B=12.∵B为锐角,∴B=π6.令y=cos A+sin C=cos A+sin[π-(B+A)]=cos A+si n(π6+A)=cos A+si nπ6cos A+co sπ6sin A=32cos A+√32sin A=√3sin(A+π3).由△ABC为锐角三角形,知π2−B<A<π2,∴π3<A<π2.∴2π3<A+π3<5π6,∴12<sin(A+π3)<√32.∴√32<√3sin(A+π3)<32,即√32<y<32.∴cos A+sin C的取值范围是(√32,3 2 ).。

高中数学人教A版必修五 第一章解三角形 学业分层测评5 Word版含答案

高中数学人教A版必修五 第一章解三角形 学业分层测评5 Word版含答案

高中数学必修五《解三角形》单元测试(含答案)一、选择题1.已知方程x2sin A+2x sin B+sin C=0有重根,则△ABC的三边a,b,c的关系满足() A.b=ac B.b2=acC.a=b=c D.c=ab【解析】由方程有重根,∴Δ=4sin2B-4sin A sin C=0,即sin2B=sin A sin C,∴b2=ac.【答案】 B2.在△ABC中,A=60°,b=1,S△ABC=3,则角A的对边的长为()A.57B.37C.21 D.13【解析】∵S△ABC =12bc sin A=12×1×c×sin 60°=3,∴c=4.由余弦定理a2=b2+c2-2bc cos 60°=1+16-2×1×4×12=13.∴a=13.【答案】 D3.在△ABC中,a=1,B=45°,S△ABC=2,则此三角形的外接圆的半径R=()A.12B.1C.2 2 D.52 2【解析】S△ABC =12ac sin B=24c=2,∴c=4 2.b2=a2+c2-2ac cos B=1+32-82×22=25,∴b=5.∴R=b2sin B=52×22=522.【答案】 D4.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于()A.32 B.332C.3+62D.3+394【解析】在△ABC 中,由余弦定理可知:AC 2=AB 2+BC 2-2AB ·BC cos B ,即7=AB 2+4-2×2×AB ×12.整理得AB 2-2AB -3=0.解得AB =-1(舍去)或AB =3.故BC 边上的高AD =AB ·sin B =3×sin 60°=332.【答案】 B5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4【解析】 由题意知:a =b +1,c =b -1,所以3b =20a cos A =20(b +1)·b 2+c 2-a 22bc=20(b +1)·b 2+(b -1)2-(b +1)22b (b -1), 整理得7b 2-27b -40=0,解之得:b =5(负值舍去),可知a =6,c =4.结合正弦定理可知sin A ∶sin B ∶sin C =6∶5∶4.【答案】 D二、填空题6.在△ABC 中,B =60°,AB =1,BC =4,则BC 边上的中线AD 的长为 .【解析】 画出三角形知AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=3,∴AD = 3.【答案】 37.有一三角形的两边长分别为3 cm,5 cm ,其夹角α的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是 cm 2.【解析】 解方程5x 2-7x -6=0,得x =2或x =-35,∵|cos α|≤1,∴cos α=-35,sin α=45.故S △=12×3×5×45=6(cm 2).【答案】 68.(2021·郑州模拟)在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为 .【解析】 由余弦定理得b 2=a 2+c 2-2ac cos B ,即49=a 2+25-2×5×a cos 120°.整理得a 2+5a -24=0,解得a =3或a =-8(舍).∴S △ABC =12ac sin B =12×3×5sin 120°=1534.【答案】 1534三、解答题9.已知△ABC 的三内角满足cos(A +B )cos(A -B )=1-5sin 2C ,求证:a 2+b 2=5c 2.【证明】 由已知得cos 2A cos 2B -sin 2A sin 2B =1-5sin 2C ,∴(1-sin 2A )(1-sin 2B )-sin 2A sin 2B =1-5sin 2C ,∴1-sin 2A -sin 2B =1-5sin 2C ,∴sin 2A +sin 2B =5sin 2C .由正弦定理得,所以⎝ ⎛⎭⎪⎫a 2R 2+⎝ ⎛⎭⎪⎫b 2R 2=5⎝ ⎛⎭⎪⎫c 2R 2, 即a 2+b 2=5c 2.10.(2014·全国卷Ⅱ)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C . ②由①,②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2·sin 60°=2 3. [能力提升]1.为了测量某塔的高度,某人在一条水平公路C ,D 两点处进行测量.在C 点测得塔底B 在南偏西80°,塔顶仰角为45°,此人沿着南偏东40°方向前进10米到D 点,测得塔顶的仰角为30°,则塔的高度为( )A .5米B .10米C .15米D .20米【解析】 如图,由题意得,AB ⊥平面BCD ,∴AB ⊥BC ,AB ⊥BD .设塔高AB =x ,在Rt △ABC 中,∠ACB =45°,所以BC =AB =x ,在Rt △ABD 中,∠ADB =30°,∴BD =AB tan 30°=3x ,在△BCD 中,由余弦定理得BD 2=CB 2+CD 2-2CB ·CD ·cos 120°,∴(3x )2=x 2+100+10x ,解得x =10或x =-5(舍去),故选B.【答案】 B2.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为( ) A.1507分钟 B.157分钟 C .21.5分钟 D .2.15小时【解析】 如图,设t 小时后甲行驶到D 处,则AD =10-4t ,乙行驶到C 处,则AC =6t .∵∠BAC =120°,∴DC 2=AD 2+AC 2-2AD ·AC ·cos 120°=(10-4t )2+(6t )2-2×(10-4t )×6t ×cos 120°=28t 2-20t +100=28⎝ ⎛⎭⎪⎫t -5142+6757.当t =514时,DC 2最小,即DC 最小,此时它们所航行的时间为514×60=1507分钟.【答案】 A3.如图1-2-28所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ= .图1-2-28【解析】 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.由正弦定理AB sin ∠ACB =BC sin ∠BAC⇒ sin ∠ACB =AB BC ·sin ∠BAC =217,∠BAC =120°,则∠ACB 为锐角,cos ∠ACB =277.由θ=∠ACB+30°,则cos θ=cos(∠ACB+30°)=cos∠ACB·cos 30°-sin∠ACB·sin 30°=2114.【答案】21 144.如图1-2-29,某军舰艇位于岛屿A的正西方C处,且与岛屿A相距120海里.经过侦察发现,国际海盗船以100海里/小时的速度从岛屿A出发沿东偏北60°方向逃窜,同时,该军舰艇从C处出发沿东偏北α的方向匀速追赶国际海盗船,恰好用2小时追上.图1-2-29(1)求该军舰艇的速度;(2)求sin α的值.解(1)依题意知,∠CAB=120°,AB=100×2=200,AC=120,∠ACB=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠CAB=2002+1202-2×200×120cos 120°=78 400,解得BC=280.所以该军舰艇的速度为BC2=140海里/小时.(2)在△ABC中,由正弦定理,得ABsin α=BCsin 120°,即sin α=AB sin 120°BC=200×32280=5314.。

高中数学 人教A版 必修5 第一章 解三角形 高考复习习题(解答题1-100)含答案解析

高中数学 人教A版 必修5 第一章 解三角形 高考复习习题(解答题1-100)含答案解析

高中数学人教A版必修5 第一章解三角形高考复习习题(解答题1-100)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题1.在△ABC中,内角A,B,C的对边分别是,向量,且.(1)求角B的值;(2)若,且,求△ABC的面积.2.在△ABC中,D为BC上一点,AD=CD,BA=7,BC=8。

(1)若B=60°,求△ABC外接圆的半径R;(2)设,若,求△ABC面积。

3.在斜中,内角所对的边分别为,已知.(1)证明:;(2)若的面积为边上的中点,,求.4.如图,三个警亭有直道相通,已知在的正北方向6千米处,在的正东方向千米处.(1)警员甲从出发,沿行至点处,此时,求的距离;(2)警员甲从出发沿前往,警员乙从出发沿前往,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达后原地等待,直到甲到达时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?5.已知的面积.(Ⅰ)求的大小.(Ⅱ)若,求的最大值.6.已知函数.(1)求的对称轴所在直线方程及其对称中心;(2)在中,内角、、所对的边分别是、、,且,,求周长的取值范围.7.在中,角的对边分别为,.(1)求角的大小;(2)若的外接圆直径为2,求的取值范围.8.在平面直角坐标系中,,,(O是坐标原点),其中。

(1)求B点坐标;(2)求四边形OABC在第一象限部分面积 .9.在中,,,以边为一边长向外作正方体,为方形的中心,,分别为边,的中点.(1)若,求的长.(2)当变化时,求的最大值.10.如图,在中,,点在边上,为垂足.(1)若的面积为,求的长;(2)若,求角 的大小. 11.在 中,内角 所对的边分别为 ,已知 . (Ⅰ)求角 的大小; (Ⅱ)若 的面积,且 ,求 .12.如图,在ABC ∆中, 5AD DB =,点M 在CD 的延长线上,点P 是边BC 上的一点,且存在非零实数λ,使A BA C M P M A AB AC λ⎛⎫ ⎪=++⎪. (Ⅰ)求AB 与BC 的数量积; (Ⅱ)求AP 与CD 的数量积.13 (1)求()f x 在[]0π,上的最小值;(2)已知a , b ,c 分别为ABC 内角A 、B 、C 的对边, 且()1f B =,求边a 的长.14.在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,且()cos 3cos a B c b A =-. (1)求cos A 的值;(2)若3b =,点M 在线段BC 上, 2AB AC AM +=, 32AM =求ABC ∆的面积.15(Ⅰ) 求()f x 的单调增区间;(Ⅱ) 已知ABC ∆的内角分别为,,A B C ,且ABC ∆能够盖住的最大圆面积为π,求AB AC ⋅的最小值.16.在锐角三角形 中,角 所对的边分别为 ,已知 . (1)求角 的大小;(2)求 的取值范围。

【专业资料】新版高中数学人教A版必修5习题:第一章解三角形 1.2.1 含解析

【专业资料】新版高中数学人教A版必修5习题:第一章解三角形 1.2.1 含解析

1.2应用举例第1课时距离问题课时过关·能力提升基础巩固1已知A,B两地相距10 km,B,C两地相距20 km,且∠ABC=120°,则A,C两地相距().A.10 kmB.10√3 kmC.10√5 kmD.10√7 km答案:D2如图,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为().A.a kmB.√3a kmC.√2a kmD.2a km解析:由题意知,在△ABC中,AC=BC=a km,∠ACB=120°,则AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2a2cos120°=3a2,故AB=√3a km.答案:B3如图,B,C两点在河的两岸,在河岸AC测量BC的距离有下列四组数据,较适宜测量的数据是().A.γ,c,αB.b,c,αC.c,α,βD.b,α,γ答案:D4在△ABC中,B=70°,C=36°,a=4,则c等于().A.4sin36°B.4sin70°C.4sin36°D.4sin74°答案:C5在△ABC中,已知a=4,b=6,C=120°,则sin A的值为().A.√5719B.√217C.√338D.−√5719解析:c2=a2+b2-2ab cos C=42+62-2×4×6×cos120°=76,则c=2√19.由asinA =csinC,得sin A=asinCc=√5719.答案:A6某人向正东方向走了x km后向右转了150°,然后沿新方向走了3 km,结果离出发点恰好为√3 km,那么x的值为().A.√3B.2√3C.2√3或√3D.3解析:如图,若设出发点为A,则有AC2=AB2+BC2-2AB·BC·cos∠ABC,则(√3)2=x2+9−2x×3cos30°,解得x=2√3或x=√3.答案:C7如图,为了测量河的宽度,在一岸边选定两点A,B,分别在A,B点望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度CD为.解析:tan30°=CDAD ,tan75°=CDDB,又AD+DB=AB=120m,∴AD tan30°=(120-AD)tan75°.∴AD=60√3m.故CD=60m.答案:60 m8一艘船在海上由西向东航行,在A处望见灯塔C在船的东北方向,半小时后在B处望见灯塔C 在船的北偏东30°方向,航速为30海里/时,当船到达D处时望见灯塔C在船的西北方向,求A,D两点间的距离.解如图,在△ABC中,A=45°,∠ABC=120°,AB=15,∠ACB=15°,由正弦定理,得ACsin120°=15sin15°,∴AC=3√2+√62×15.∴AD=√2AC=15(3+√3)(海里).答:A,D两点间的距离是15(3+√3)海里.9海上某货轮在A处看灯塔B在货轮北偏东75°,距离为12√6 n mile;在A处看灯塔C,在货轮的北偏西30°,距离为8√3 n mile;货轮向正北由A处航行到D处时看灯塔B在北偏东120°,求:(1)A处与D处之间的距离;(2)灯塔C与D处之间的距离.解由题意,画出示意图.(1)在△ABD中,由已知得∠ADB=60°,B=45°,AB=12√6nmile.由正弦定理得AD=ABsin60°sin45°=24(nmile).(2)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD·AC cos30°=242+(8√3)2−2×24×8√3×√3=192,故CD=8√3(n mile).答:A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为8√3nmile.能力提升1在△ABC中,已知B=60°,最大边与最小边的比为√3+12,则三角形的最大角为().A.60°B.75°C.90°D.115°解析:设最大边为a,最小边为c,则最大角为A,最小角为C,且sinAsinC=sin(120°-C)sinC=√3+12,整理得tan C=1.又0°<C<120°,∴C=45°.∴A=180°-(B+C)=180°-(60°+45°)=75°.答案:B2如图,某炮兵阵地位于A点,两个观察所分别位于C,D两点.已知△ACD为等边三角形,且DC=√3 km,当目标出现在B点时,测得∠CDB=45°,∠BCD=75°,则炮兵阵地与目标的距离约是().A.1.1 kmB.2.2 kmC.2.9 kmD.3.5 km解析:∠CBD=180°-∠BCD-∠CDB=60°.在△BCD中,由正弦定理,得BD=CDsin75°=√6+√2.在△ABD中,∠ADB=45°+60°=105°.由余弦定理,得AB2=AD2+BD2-2AD·BD cos105°=3+(√6+√2)24+2×√3×√6+√22×√6-√24=5+2√3.则AB=√5+2√3≈2.9(km).故炮兵阵地与目标的距离约是2.9km. 答案:C3已知A 船在灯塔C 北偏东80°,且A 到C 的距离为2 km,B 船在灯塔C 北偏西40°,A ,B 两船的距离为3 km,则B 到C 的距离为 .解析:如图所示,在△ABC 中,∠ACB=40°+80°=120°,AB=3km,AC=2km.设BC=a km.由余弦定理,得cos ∠ACB =BC 2+AC 2-AB 22BC ·AC, 即cos120°=a 2+4-94a, 解得a =√6−1或a=−√6−1(舍去), 即B 到C 的距离为(√6−1)km. 答案:(√6−1)km ★4某观测站C 在A 城的南偏西20°的方向,由A 城出发有一条公路,公路走向是南偏东40°,在公路上测得距离C 31 km 的B 处有一人正沿公路向A 城走去,走了20 km 后到达D 处,此时C ,D 之间相距21 km,问此人还要走多远才能到达A 城?解如图,∠CAB=60°,BD=20,CB=31,CD=21.在△BCD 中,由余弦定理, 得cos ∠BDC =BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=−17,则sin ∠BDC =4√37.在△ACD 中,∠ACD=∠BDC-∠CAD=∠BDC-60°.由正弦定理,可得AD =CDsin∠ACDsin60°.∵sin ∠ACD=sin(∠BDC-60°)=sin ∠BDC cos60°-cos ∠BDC sin60°=5√3,∴AD =21×5√314√32=15(km).答:此人还要走15km 才能到达A 城.★5如图,一人在C地看到建筑物A在正北方向,另一建筑物B在北偏西45°方向,此人向北偏西75°方向前进√30 km到达D,看到A在他的北偏东45°方向,B在他的北偏东75°方向,试求这两座建筑物之间的距离.解由题意得,DC=√30,∠ADB=∠BCD=30°=∠BDC,∠DBC=120°,∠ADC=60°,∠DAC=45°.在△BDC中,由正弦定理可得,BC=DCsin∠BDCsin∠DBC =√30sin30°sin120°=√10.在△ADC中,由正弦定理可得,AC=DCsin∠ADCsin∠DAC =√30sin60°sin45°=3√5.在△ABC中,由余弦定理可得AB2=AC2+BC2-2AC·BC cos∠ACB=(3√5)2+(√10)2−2×3√5×√10×cos45°=25,解得AB=5.答:这两座建筑物之间的距离为5km.。

2020高二数学人教A必修5练习:第一章 解三角形 章末复习课 Word版含解析

2020高二数学人教A必修5练习:第一章 解三角形 章末复习课 Word版含解析

第一章 章末复习课一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎨⎧ a +b >c a +c >b 即⎩⎨⎧m 2k +1>2mk 3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-βB.a sin αsin βcos α-βC.a sin αcos βsin α-βD.a cos αcos βcos α-β 答案 A解析 设AB =h ,则AD =h sin α,在△ACD 中,∵∠CAD =α-β,∴CD sin α-β=AD sin β.∴a sin α-β=h sin αsin β,∴h =a sin αsin βsin α-β.5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49.6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b 2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则a sin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393.9.在△ABC中,a=x,b=2,B=45°,若三角形有两解,则x的取值范围是______________.答案2<x<2 2解析因为三角形有两解,所以a sin B<b<a ,即22x<2<x,∴2<x <2 2.10.一艘船以20 km/h的速度向正北航行,船在A处看见灯塔B在船的东北方向,1 h后船在C处看见灯塔B在船的北偏东75°的方向上,这时船与灯塔的距离BC等于________km.答案20 2解析如图所示,BCsin 45°=ACsin 30°∴BC=ACsin 30°×sin 45°=2012×22=20 2 (km).三、解答题11.在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sin A=2sin B cos C,试确定△ABC的形状.解由(a+b+c)(b+c-a)=3bc,得b2+2bc+c2-a2=3bc,即a2=b2+c2-bc,∴cos A=b2+c2-a22bc=bc2bc=12,∴A=π3.又sin A=2sin B cos C.∴a=2b·a2+b2-c22ab=a2+b2-c2a,∴b2=c2,b=c,∴△ABC为等边三角形.12.在△ABC中,若已知三边为连续正整数,最大角为钝角.(1)求最大角的余弦值;(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积.解(1)设这三个数为n,n+1,n+2,最大角为θ,则cos θ=n2+n+12-n+222·n·n+1<0,化简得:n2-2n-3<0⇒-1<n<3.∵n∈N*且n+(n+1)>n+2,∴n=2.∴cos θ=4+9-162×2×3=-14.(2)设此平行四边形的一边长为a ,则夹θ角的另一边长为4-a ,平行四边形的面积为:S =a (4-a )·sin θ=154(4a -a 2)=154[-(a -2)2+4]≤15.当且仅当a =2时,S max =15.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解 (1)∵cos 2C =1-2sin 2C =-14,0<C <π,∴sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A=c sin C,得c =4.由cos 2C =2cos 2C -1=-14及0<C <π,得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C , 得b 2±6b -12=0(b >0), 解得b =6或26, ∴⎩⎨⎧ b =6,c =4或⎩⎨⎧b =26,c =4. 14.如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解 设BD =x ,在△ABD 中,由余弦定理有 AB 2=AD 2+BD 2-2AD ·BD ·cos ∠ADB , 即142=x 2+102-20x cos 60°,∴x 2-10x -96=0,∴x =16(x =-6舍去), 即BD =16.在△BCD 中,由正弦定理BC sin ∠CDB=BD sin ∠BCD,∴BC =16sin 30°sin 135°=8 2.。

人教A版高中数学必修五第一章 解三角形练习题

人教A版高中数学必修五第一章  解三角形练习题

高中数学学习材料金戈铁骑整理制作第一章 解三角形练习题姓名______学号______ 得分______ 一、选择题(每小题5 分,共70分)1 2 3 4 5 6 7 8 9 10 11 12 13 141.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 4.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或5.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .01506.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .1:3:2D .2:3:17.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 28.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )A .直角三角形B .等边三角形C .不能确定D .等腰三角形9.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )A .090B .060C .0135D .015010.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .81- 11.A 为△ABC 的内角,则A A cos sin +的取值范围是( ) A .)2,2( B .)2,2(- C .]2,1(- D .]2,2[-12.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221 C .28 D .36 13.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A .sin cos A A >B .sin cos B A >C .sin cos A B >D .sin cos B B >14.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )A .090B .060C .0120D .0150二、填空题(每小题5分,共30分)1.在△ABC 中,若005,60,15a A C ===,则此三角形的最大边长为_________。

人教A版高中数学必修五《第一章解三角形》基础知识和经典例题详解.docx

人教A版高中数学必修五《第一章解三角形》基础知识和经典例题详解.docx

1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 6、简单的判断三角形设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =o ;②若222a b c +>,则90C <o ;③若222a b c +<,则90C >o .7.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.8.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

【精品习题】高二数学人教A必修5章末检测:第一章 解三角形 Word版含解析

【精品习题】高二数学人教A必修5章末检测:第一章 解三角形 Word版含解析

章末检测一、选择题1.在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若A +C =2B ,有a =1,b =3,则S △ABC 等于( )A. 2B. 3C.32D .2 答案 C解析 由A +C =2B ,解得B =π3.由余弦定理得(3)2=1+c 2-2c cos π3,解得c =2或c =-1(舍去).于是,S △ABC =12ac sin B =12×1×2sin π3=32.2.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝ ⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.3.在△ABC 中,若a =52b ,A =2B ,则cos B 等于( ) A.53 B.54 C.55 D.56答案 B解析 由正弦定理得a b =sin A sin B ,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若C =120°,c =2a ,则( ) A .a >b B .a <bC .a =bD .a 与b 的大小关系不能确定答案 A解析 由余弦定理得c 2=a 2+b 2-2ab cos C ,又C =120°,∴2a 2=a 2+b 2+ab ,∴a 2=b 2+ab >b 2,∴a >b ,故选A.5.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0)C .(-12,0)D .(12,+∞)答案 D解析 由正弦定理得:a =mk ,b =m (k +1),c =2mk (m >0),∵⎩⎪⎨⎪⎧a +b >ca +c >b即⎩⎪⎨⎪⎧m 2k +1>2mk3mk >m k +1,∴k >12.6.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922 B.924 C.928D .9 2 答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.7.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形答案 B解析 ∵sin A =sin C 且A 、C 是三角形内角, ∴A =C 或A +C =π(舍去). ∴△ABC 是等腰三角形.8.在锐角△ABC 中,BC =1,∠B =2∠A ,则AC 的取值范围是( ) A .[-2,2] B .[0,2] C .(0,2] D .(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧0<π-3∠A <π2,0<2∠A <π2⇒π6<∠A <π4, 由正弦定理ACsin B =BCsin A得AC =2cos A .∵∠A ∈⎝ ⎛⎭⎪⎫π6,π4,∴AC ∈(2,3).9.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解 答案 D解析 A 中,因a sin A =bsin B,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中,∵A =90°,a =5,c =2,∴b =a 2-c 2=25-4=21,即有解; 故A 、B 、C 都不正确.用排除法应选D.10.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( ) A.21 B.106 C.69 D.154 答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB , 即72=14a 2+42-2×a 2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即62=42+14a 2+2×4×a 2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.二、填空题11.已知△ABC 中,3a 2-2ab +3b 2-3c 2=0,则cos C 的大小是________. 答案 13解析 由3a 2-2ab +3b 2-3c 2=0,得c 2=a 2+b 2-23ab .根据余弦定理,得cos C =a 2+b 2-c 22ab=a 2+b 2-a 2-b 2+23ab2ab=13,所以cos C =13. 12.在△ABC 中,若b +c =2a,3sin A =5sin B ,则角C =________. 答案2π3解析 由已知3sin A =5sin B ,利用正弦定理可得3a =5b .由3a =5b ,b +c =2a ,利用余弦定理得cos C =a 2+b 2-c 22ab =-12.C ∈(0,π),C =23π.13.在△ABC 中,已知cos A =35,cos B =513,b =3,则c =________.答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665.由正弦定理知b sin B =c sin C ,∴c =b sin Csin B =3×56651213=145.14.太湖中有一小岛C ,沿太湖有一条正南方向的公路,一辆汽车在公路A 处测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 到达B 处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km. 答案36解析 如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 (km).由正弦定理得BCsin ∠CAB=ABsin ∠ACB,∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36(km). 三、解答题15.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值. 解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =b sin B ,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.16.如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/时的速度追击,求我艇追上走私船所需要的时间. 解 设我艇追上走私船所需时间为t 小时,则BC =10t ,AC =14t ,在△ABC 中,由∠ABC =180°+45°-105°=120°, 根据余弦定理知(14t )2=(10t )2+122-2·12·10t cos 120°, ∴t =2(t =-34舍去).答 我艇追上走私船所需要的时间为2小时. 17.在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解 (1)因为a =3,b =26,∠B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =26sin 2A .所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin Csin A=5.18.已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sinA ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.(1)证明 ∵m ∥n ,∴a sin A =b sin B , 即a ·a 2R =b ·b2R,其中R 是△ABC 外接圆半径,∴a =b . ∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0, 即a (b -2)+b (a -2)=0. ∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0. ∴ab =4(舍去ab =-1),∴S △ABC =12ab sin C =12×4×sin π3= 3.。

高二数学人教A必修5练习:第一章 解三角形 章末检测(B) Word版含解析

高二数学人教A必修5练习:第一章 解三角形 章末检测(B) Word版含解析

第一章 章末检测 (B)姓名:________ 班级:________ 学号:________ 得分:________(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q = (b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →·AC →等于( ) A .-2 B .2 C .±4 D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( ) A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 5 7.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a =cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________. 15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A 的仰角分别为α,β,CD =a ,测角仪器的高是h ,用a ,h ,α,β表示建筑物高度AB .18.(12分)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A . (1)求B 的大小.(2)若a =33,c =5,求b .19.(12分)如图所示,已知⊙O 的半径是1,点C 在直径AB 的延长线上,BC =1,点P 是⊙O 上半圆上的一个动点,以PC 为边作等边三角形PCD ,且点D 与圆心分别在PC 的两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示为关于θ的函数; (2)求四边形OPDC 面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+(3)2-122×2×3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴|AB |·|AC →|·sin A =12×4×1×sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.·AC →=|AB →|·|AC →|cos A =4×1×cos A =±2.]4.D [由正弦定理得b sin B =csin C,∴sin C =c ·sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角. ∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10·sin 60°15=33.∵a >b ,A =60°,∴B <60°.∴cos B =1-sin 2B =1-(33)2=63.] 8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos B ,∴12=(3)2+BC 2-2×3×BC ×32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ·BC sin B =12×3×1×12=34.当BC =2时,S △ABC =12AB ·BC sin B =12×3×2×12=32.]10.C [由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.]12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =(a 2+b 2-c 2)2(2ab )2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos B b .∴sin B =cos B .∴B =45°. 14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ·AC cos A , ∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12×5×8×sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64×32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β,由正弦定理,得AC sin β=DCsin (α-β),∴AC =a sin βsin (α-β)∴AB =AE +EB =AC sin α+h =a sin βsin αsin (α-β)+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ·sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°.由余弦定理b 2=a 2+c 2-2ac cos B =(33)2+52-2×33×5×cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ·OC ·cos θ =5-4cos θ,所以y =S △OPC +S △PCD =12×1×2sin θ+34×(5-4cos θ) =2sin ⎝⎛⎭⎫θ-π3+534. (2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2sin (α1+α2);第二步:计算AN .由正弦定理AN =d sin β2sin (β2-β1);第三步:计算MN ,由余弦定理MN =AM 2+AN 2-2AM ×AN cos (α1-β1). 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ. 又OC sin (60°-θ)=2sin 120°,∴OC =43sin(60°-θ). 因此△POC 的面积为S (θ)=12CP ·OC sin 120°=12·43sin θ·43sin(60°-θ)×32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎫32cos θ-12sin θ=2sin θ·cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎫2θ+π6-33 ∴θ=π6时,S (θ)取得最大值为33.。

高二数学人教A必修5练习及解析:1-2-2 三角形中的几何计算

高二数学人教A必修5练习及解析:1-2-2 三角形中的几何计算
1
∴c=4.由余弦定理 a2=b2+c2-2bccos 60°=1+16-2×4×2=13.
∴a=√13.
1
3
3.在△ABC 中,已知 a=3√2,cos C= ,S△ABC=4√3,则 b=(
A.√3
B.2√3
)
C.4√3
D.3√2
答案:B
解析:在△ABC 中,sin C=√1-cos 2 =
4
sin
所以
=
2√3
,解得
sin60°
=

,
sin
sin B=1.
因为 B∈(0°,120°),所以 B=90°,所以 C=30°
1
2
所以△ABC 的面积 S△ABC= ·AC·BC·sin C=2√3.
5.(2015 河南郑州高二期末,19)在锐角△ABC 中,角 A,B,C 的对边分别为 a,b,c,且√3b=2csin B.
2
一、选择题
1.已知方程 x2sin A+2xsin B+sin C=0 有重根,则△ABC 的三边 a,b,c 的关系
满足(
)
A.b=ac
B.b2=ac
C.a=b=c
D.c=ab
【解析】
由方程有重根,∴Δ=4sin2B-4sin Asin C=0,即 sin2B=sin Asin C,
∴b2=ac.
即 sin B(sin2A+cos2A)=√2sin A.


故 sin B=√2sin A,所以 = √2.
(2)由余弦定理和 c2=b2+√3a2,
(1+√3)
.
2
得 cos B=
由(1)知 b2=2a2,故 c2=(2+√3)a2.

新版高中数学人教A版必修5习题:第一章解三角形 1.2.1(1)

新版高中数学人教A版必修5习题:第一章解三角形 1.2.1(1)

1.2应用举例第1课时距离问题课时过关·能力提升基础巩固1已知A,B两地相距10 km,B,C两地相距20 km,且∠ABC=120°,则A,C两地相距().A.10 kmB.10√3 kmC.10√5 kmD.10√7 km答案:D2如图,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为().A.a kmB.√3a kmC.√2a kmD.2a km解析:由题意知,在△ABC中,AC=BC=a km,∠ACB=120°,则AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2a2cos120°=3a2,故AB=√3a km.答案:B3如图,B,C两点在河的两岸,在河岸AC测量BC的距离有下列四组数据,较适宜测量的数据是().A.γ,c,αB.b,c,αC.c,α,βD.b,α,γ答案:D4在△ABC中,B=70°,C=36°,a=4,则c等于().A.4sin36°sin70°B.4sin70°sin36°C.4sin36°sin74°D.4sin74°sin36°答案:C5在△ABC中,已知a=4,b=6,C=120°,则sin A的值为().A.√5719B.√217C.√338D.−√5719解析:c2=a2+b2-2ab cos C=42+62-2×4×6×cos120°=76,则c=2√19.由asinA =csinC,得sin A=asinCc=√5719.答案:A6某人向正东方向走了x km后向右转了150°,然后沿新方向走了3 km,结果离出发点恰好为√3 km,那么x的值为().A.√3B.2√3C.2√3或√3D.3解析:如图,若设出发点为A,则有AC2=AB2+BC2-2AB·BC·cos∠ABC,则(√3)2=x2+9−2x×3cos30°,解得x=2√3或x=√3.答案:C7如图,为了测量河的宽度,在一岸边选定两点A,B,分别在A,B点望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度CD为.解析:tan30°=CDAD ,tan75°=CDDB,又AD+DB=AB=120m,∴AD tan30°=(120-AD)tan75°.∴AD=60√3m.故CD=60m.答案:60 m8一艘船在海上由西向东航行,在A处望见灯塔C在船的东北方向,半小时后在B处望见灯塔C 在船的北偏东30°方向,航速为30海里/时,当船到达D处时望见灯塔C在船的西北方向,求A,D两点间的距离.解如图,在△ABC中,A=45°,∠ABC=120°,AB=15,∠ACB=15°,由正弦定理,得ACsin120°=15sin15°,∴AC=3√2+√62×15.∴AD=√2AC=15(3+√3)(海里).答:A,D两点间的距离是15(3+√3)海里.9海上某货轮在A处看灯塔B在货轮北偏东75°,距离为12√6 n mile;在A处看灯塔C,在货轮的北偏西30°,距离为8√3 n mile;货轮向正北由A处航行到D处时看灯塔B在北偏东120°,求:(1)A处与D处之间的距离;(2)灯塔C与D处之间的距离.解由题意,画出示意图.(1)在△ABD中,由已知得∠ADB=60°,B=45°,AB=12√6nmile.由正弦定理得AD=ABsin60°sin45°=24(nmile).(2)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD·AC cos30°=242+(8√3)2−2×24×8√3×√32=192,故CD=8√3(n mile).答:A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为8√3nmile.能力提升1在△ABC中,已知B=60°,最大边与最小边的比为√3+12,则三角形的最大角为().A.60°B.75°C.90°D.115°解析:设最大边为a,最小边为c,则最大角为A,最小角为C,且sinAsinC=sin(120°-C)sinC=√3+12,整理得tan C=1.又0°<C<120°,∴C=45°.∴A=180°-(B+C)=180°-(60°+45°)=75°.答案:B2如图,某炮兵阵地位于A点,两个观察所分别位于C,D两点.已知△ACD为等边三角形,且DC=√3 km,当目标出现在B点时,测得∠CDB=45°,∠BCD=75°,则炮兵阵地与目标的距离约是().A.1.1 kmB.2.2 kmC.2.9 kmD.3.5 km解析:∠CBD=180°-∠BCD-∠CDB=60°.在△BCD 中,由正弦定理,得BD =CDsin75°sin60°=√6+√22.在△ABD 中,∠ADB=45°+60°=105°. 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos105°=3+(√6+√2)24+2×√3×√6+√22×√6-√24=5+2√3.则AB =√5+2√3≈2.9(km).故炮兵阵地与目标的距离约是2.9km. 答案:C3已知A 船在灯塔C 北偏东80°,且A 到C 的距离为2 km,B 船在灯塔C 北偏西40°,A ,B 两船的距离为3 km,则B 到C 的距离为 .解析:如图所示,在△ABC 中,∠ACB=40°+80°=120°,AB=3km,AC=2km.设BC=a km.由余弦定理,得cos ∠ACB =BC 2+AC 2-AB 22BC ·AC, 即cos120°=a 2+4-94a, 解得a =√6−1或a=−√6−1(舍去),即B 到C 的距离为(√6−1)km. 答案:(√6−1)km★4某观测站C 在A 城的南偏西20°的方向,由A 城出发有一条公路,公路走向是南偏东40°,在公路上测得距离C 31 km 的B 处有一人正沿公路向A 城走去,走了20 km 后到达D 处,此时C ,D 之间相距21 km,问此人还要走多远才能到达A 城?解如图,∠CAB=60°,BD=20,CB=31,CD=21.在△BCD 中,由余弦定理,得cos ∠BDC =BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=−17,则sin ∠BDC =4√37.在△ACD 中,∠ACD=∠BDC-∠CAD=∠BDC-60°.由正弦定理,可得AD =CDsin∠ACDsin60°. ∵sin ∠ACD=sin(∠BDC-60°)=sin ∠BDC cos60°-cos ∠BDC sin60°=5√314, ∴AD =21×5√314√32=15(km).答:此人还要走15km 才能到达A 城.★5如图,一人在C 地看到建筑物A 在正北方向,另一建筑物B 在北偏西45°方向,此人向北偏西75°方向前进√30 km 到达D,看到A 在他的北偏东45°方向,B 在他的北偏东75°方向,试求这两座建筑物之间的距离.解由题意得,DC=√30,∠ADB=∠BCD=30°=∠BDC,∠DBC=120°,∠ADC=60°,∠DAC=45°.在△BDC中,由正弦定理可得,BC=DCsin∠BDCsin∠DBC =√30sin30°sin120°=√10.在△ADC中,由正弦定理可得,AC=DCsin∠ADCsin∠DAC =√30sin60°sin45°=3√5.在△ABC中,由余弦定理可得AB2=AC2+BC2-2AC·BC cos∠ACB=(3√5)2+(√10)2−2×3√5×√10×cos45°=25,解得AB=5.答:这两座建筑物之间的距离为5km.。

高二数学人教A必修5练习:第一章 解三角形 Word版含解析

高二数学人教A必修5练习:第一章 解三角形 Word版含解析

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C解析 由正弦定理a sin A =bsin B,得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C解析由asin A=bsin B得sin B=b sin Aa=2sin 60°3=22.∵a>b,∴A>B,B<60°∴B=45°.6.在△ABC中,角A,B,C所对的边分别为a,b,c,如果c=3a,B=30°,那么角C等于()A.120°B.105°C.90°D.75°答案 A解析∵c=3a,∴sin C=3sin A=3sin(180°-30°-C)=3sin(30°+C)=3⎝⎛⎭⎫32sin C+12cos C,即sin C=-3cos C.∴tan C=- 3.又C∈(0°,180°),∴C=120°.二、填空题7.在△ABC中,AC=6,BC=2,B=60°,则C=_________.答案75°解析由正弦定理得2sin A=6sin 60°,∴sin A=22.∵BC=2<AC=6,∴A为锐角.∴A=45°.∴C=75°.8.在△ABC中,若tan A=13,C=150°,BC=1,则AB=________.答案102解析∵tan A=13,A∈(0°,180°),∴sin A=1010.由正弦定理知BCsin A=ABsin C,∴AB=BC sin Csin A=1×sin 150°1010=102.9.在△ABC中,b=1,c=3,C=2π3,则a=________.答案 1解析由正弦定理,得3sin2π3=1sin B,∴sin B=12.∵C为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A , 化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°, 即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故ab的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角. (2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin Ab sin A<a <b a ≥b 无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角 或钝角 a ≤b a >b 无解一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C ,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C . 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2, ∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 答案 12 6解析a +b +csin A +sin B +sin C =a sin A=6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明 因为在△ABC 中,a sin A =b sin B =csin C =2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A =右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A =sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sinA +B 2=cosC 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2. 2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°; (3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( )A.π3B.π6C.π4D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C ,∴C =45° .二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________.答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60° =12 ∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.答案 120° 解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎪⎨⎪⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∴sin C =22.∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B . 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角, 则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2, 则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2. 由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A =AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3.三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C . 解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54. ∴S △ABC = 21acsinB = 21×35×54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设BA ·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件应用定理一般解法一边和两角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b与c.在有解时只有一解.两边和夹角(如a,b,C) 余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解.三边(a,b,c) 余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,求出角C.在有一解时只有一解.两边和其中一边的对角如(a,b,A) 余弦定理正弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c.可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.§1.2应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a ,∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB=AC·sin∠ACBsin∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N处,又测得灯塔在货轮的东北方向,则货轮的速度为()A.20(6+2) 海里/小时B.20(6-2) 海里/小时C.20(6+3) 海里/小时D.20(6-3) 海里/小时答案 B解析由题意,∠SMN=45°,∠SNM=105°,∠NSM=30°.由正弦定理得MNsin 30°=MSsin 105°.∴MN=MS sin 30°sin 105°=106+24=10(6-2).则v货=20(6-2) 海里/小时.6.甲船在岛B的正南A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是()A.1507分钟 B.157小时C.21.5 分钟D.2.15 分钟答案 A解析设行驶x小时后甲到点C,乙到点D,两船相距y km,则∠DBC=180°-60°=120°.∴y2=(10-4x)2+(6x)2-2(10-4x)·6x cos 120°=28x2-20x+100=28(x2-57x)+100=28⎝⎛⎭⎫x-5142-257+100∴当x=514(小时)=1507(分钟)时,y2有最小值.∴y最小.二、填空题7.如图,A、B两点间的距离为________.答案32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得 BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile). 即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°,由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形.∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答河对岸A、B两点间距离为64km.能力提升13.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的持续时间为() A.0.5小时B.1小时C.1.5小时D.2小时答案 B解析设t小时时,B市恰好处于危险区,则由余弦定理得:(20t)2+402-2×20t×40·cos 45°=302.化简得:4t2-82t+7=0,∴t1+t2=22,t1·t2=74.从而|t1-t2|=(t1+t2)2-4t1t2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问乙船每小时航行多少海里?解如图所示,连结A1B2,由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2,又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=10 2.由已知,A1B1=20,∠B1A1B2=105°-60°=45°,在△A1B2B1中,由余弦定理,B1B22=A1B21+A1B22-2A1B1·A1B2·cos 45°=202+(102)2-2×20×102×22=200. ∴B 1B 2=10 2.因此,乙船速度的大小为10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△P AB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°, PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( )A .16B .17.5C .18D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α, 则a +b =9,a 2+b 2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16.二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =t v ,AC =3t v ,B =120°,由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°, ∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝⎛⎭⎫-12=3a 2,∴AC =3a . 8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12,由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β), ∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β). 即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M . DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m).在△DEF 中,由余弦定理的变形公式,得 cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解如图所示:∠CBD=30°,∠ADB=30°,∠ACB=45°∵AB=30,∴BC=30,BD=30tan 30°=30 3.在△BCD中,CD2=BC2+BD2-2BC·BD·cos 30°=900,∴CD=30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章解三角形复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0)C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β) 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49.6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( ) A .30° B .60° C .120° D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b 2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.。

2020高二数学人教A必修5练习:第一章 解三角形 章末检测(A) Word版含解析

2020高二数学人教A必修5练习:第一章 解三角形 章末检测(A) Word版含解析

第一章 章末检测(A )一、选择题(本大题共12小题,每小题5分,共60分)1.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =52b ,A =2B ,则cos B等于( )A.53 B.54 C.55 D.56答案 B解析 由正弦定理得a b =sin A sin B,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54.2.在△ABC 中,AB=3,AC=2,BC= 10,则BA ·AC →等于( )A .-32B .-23 C.23 D.32答案 A解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =9+4-1012=14.∴AB ·AC →=|AB →|·|AC →|·cos A =3×2×14=32.∴BA ·AC →=-AB →·AC →=-32.3.在△ABC 中,已知a =5,b =15,A =30°,则c 等于( ) A .2 5 B. 5C .25或 5D .以上都不对 答案 C解析 ∵a 2=b 2+c 2-2bc cos A , ∴5=15+c 2-215×c ×32.化简得:c 2-35c +10=0,即(c -25)(c -5)=0, ∴c =25或c = 5.4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解D .a =30,b =25,A =150°,有一解 答案 D解析 A 中,因a sin A =bsin B,所以sin B =16×sin 30°8=1,∴B =90°,即只有一解;B 中,sinC =20sin 60°18=539,且c >b ,∴C >B ,故有两解;C 中,∵A =90°,a =5,c =2, ∴b =a 2-c 2=25-4=21, 即有解,故A 、B 、C 都不正确.5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2答案 C解析 设另一条边为x ,则x 2=22+32-2×2×3×13,∴x 2=9,∴x =3.设cos θ=13,则sin θ=223.∴2R =3sin θ=3223=924,R =928.6.在△ABC 中,cos 2A 2=b +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 由cos 2A 2=b +c 2c ⇒cos A =bc,又cos A =b 2+c 2-a 22bc,∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A.7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a =c =6+2,且A =75°,则b 等于( )A .2 B.6- 2 C .4-2 3 D .4+2 3 答案 A解析 sin A =sin 75°=sin(30°+45°)=6+24,由a =c 知,C =75°,B =30°.sin B =12.由正弦定理:b sin B =a sin A =6+26+24=4.∴b =4sin B =2.8.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152 B.15 C.8155D .6 3 答案 A解析 由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即6=4c 2+c 2-4c 2·78.∴c =2,从而b =4.∴S △ABC =12bc sin A =12×2×4×1-⎝ ⎛⎭⎪⎫782=152.9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A.21B.106C.69D.154答案 B解析 设BC =a ,则BM =MC =a2.在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即72=14a 2+42-2×a2×4·cos ∠AMB ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即62=42+14a 2+2×4×a 2·cos ∠AMB ②①+②得:72+62=42+42+12a 2,∴a =106.10.若sin A a =cos B b =cos Cc,则△ABC 是( )A .等边三角形B .有一内角是30°的直角三角形C .等腰直角三角形D .有一内角是30°的等腰三角形 答案 C解析 ∵sin A a=cos Bb,∴a cos B =b sin A ,∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 答案 D解析 ∵(a 2+c 2-b 2)tan B =3ac ,∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32. ∵0<B <π,∴角B 的值为π3或2π3.12.△ABC 中,A =π3,BC =3,则△ABC 的周长为( )A .43sin ⎝ ⎛⎭⎪⎫B +π3+3 B .43sin ⎝ ⎛⎭⎪⎫B +π6+3C .6sin ⎝ ⎛⎭⎪⎫B +π3+3D .6sin ⎝ ⎛⎭⎪⎫B +π6+3答案 D解析 A =π3,BC =3,设周长为x ,由正弦定理知BC sin A =AC sin B =ABsin C=2R ,由合分比定理知BC sin A =AB +BC +ACsin A +sin B +sin C,即332=x 32+sin B +sin C.∴23⎣⎢⎡⎦⎥⎤32+sin B +sin A +B =x , 即x =3+23⎣⎢⎡⎦⎥⎤sin B +sin ⎝ ⎛⎭⎪⎫B +π3=3+23⎝⎛⎭⎪⎫sin B +sin B cos π3+cos B sin π3=3+23⎝ ⎛⎭⎪⎫sin B +12sin B +32cos B=3+23⎝ ⎛⎭⎪⎫32sin B +32cos B=3+6⎝ ⎛⎭⎪⎫32 sin B +12cos B=3+6sin ⎝ ⎛⎭⎪⎫B +π6.二、填空题(本大题共4小题,每小题4分,共16分)13.在△ABC 中,2asin A-bsin B-csin C=________.答案014.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2=3ac,则角B 的值为________.答案π6解析∵a2+c2-b2=3ac,∴cos B=a2+c2-b22ac=3ac2ac=32,∴B=π6.15.已知a,b,c分别是△ABC的三个内角A,B,C所对的边.若a=1,b=3,A+C=2B,则sin C=________.答案 1解析在△ABC中,A+B+C=π,A+C=2B.∴B=π3.由正弦定理知,sin A=a sin Bb=12.又a<b.∴A=π6,C=π2.∴sin C=1.16.钝角三角形的三边为a,a+1,a+2,其最大角不超过120°,则a的取值范围是________.答案32≤a<3解析由⎩⎪⎨⎪⎧a a+1>a+2a2a+12a+22<0a2a+12a+222a a+1≥-12.解得32≤a<3.三、解答题(本大题共6小题,共74分)17.(10分)如图所示,我艇在A处发现一走私船在方位角45°且距离为12海里的B处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.解 设我艇追上走私船所需时间为t 小时,则 BC =10t ,AC =14t ,在△ABC 中,由∠ABC =180°+45°-105°=120°, 根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°, ∴t =2.答 我艇追上走私船所需的时间为2小时.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2B +C2+cos 2A 的值;(2)若b =2,△ABC 的面积S =3,求a .解 (1)sin 2 B +C 2+cos 2A =1-cos B +C 2+cos 2A =1+cos A 2+2cos 2 A -1=5950.(2)∵cos A =45,∴sin A =35.由S △ABC =12bc sin A ,得3=12×2c ×35,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得a 2=4+25-2×2×5×45=13,∴a =13.19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos(45°-30°)=6+24. (2)在△ABE 中,AB =2,由正弦定理得AE sin ∠ABE =ABsin ∠AEB ,即AE sin45°-15=2sin 90°+15,故AE =2sin 30°cos 15°=2×126+24=6- 2.20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =bsin B,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.21.(12分)(2010·辽宁)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C ,又A =120°,∴sin 2B +sin 2C +sin B sin C =34,∵sin B +sin C =1,∴sin C =1-sin B .∴sin 2B +(1-sin B )2+sin B (1-sin B )=34,即sin 2B -sin B +14=0.解得sin B =12.故sin C =12.∴B =C =30°.所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°, 则C =60°-B ,∴sin B +sin C =sin B +sin(60°-B ) =sin B +32cos B -12sin B=12sin B +32cos B=sin(B+60°)=1,∴B=30°,C=30°.∴△ABC是等腰的钝角三角形.。

高中数学必修五习题第一章解三角形有答案解析

高中数学必修五习题第一章解三角形有答案解析

必修五第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A>B>CB .B>A>C C .C>B>AD .C>A>B3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC →的值为( )A .5B .-5C .15D .-15答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2 +3a 2-2a 22a ·3a ==2a 2+3a 2-2·2a ·3a °,∴C =60°. 因此三角之比为答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数不确定7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°8.在△ABC 中,已知sin A +sin B -sinAsinB =sin C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 39.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC的值为( ) A.85 B.58 C.53 D.3510.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π311.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 213.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.14.在△ABC 中,若b =2a ,B =A +60°,则A =________.15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.16.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析 设⎩⎪⎨⎪⎧b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =3b ,试判断△ABC 的形状.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.19.a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.。

2018秋新版高中数学人教A版必修5习题:第一章解三角形 1.1.2 Word版含解析

2018秋新版高中数学人教A版必修5习题:第一章解三角形 1.1.2 Word版含解析

1.1.2 余弦定理课时过关·能力提升基础巩固1在△ABC 中,符合余弦定理的是( ).A.c 2=a 2+b 2-2ab cos CB.c 2=a 2-b 2-2bc cos AC.b 2=a 2-c 2-2bc cos AD.cos C =a 2+b 2+c 22ab答案:A2已知在△ABC 中,b cos A=a cos B ,则△ABC 是( ).A.等边三角形B.等腰三角形C.直角三角形D.锐角三角形解析:由余弦定理得,b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,整理得,a=b.故选B .答案:B3在△ABC 中,若a=7,b=8,cos C =1314,则最大角的余弦值是(). A.−15B.−16C.−17D.−18解析:因为c 2=a 2+b 2-2ab cos C=72+82-2×7×8×1314=9,所以c=3. 根据三边的长度知角B 为最大角,故cos B =a 2+c 2-b 22ac =49+9-642×7×3=−17.所以cos B=−17.答案:C4在△ABC 中,已知a=2,则b cos C+c cos B 等于( ).A. 1 B .√2C.2D.4解析:b cos C+c cos B=b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a=a =2. 答案:C5在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若a 2-b 2=√3bc,sin C =2√3sin B,则A 等于( ).A.30°B.60°C.120°D.150° 解析:根据正弦定理,由sin C=2√3sin B 可得c=2√3b,把它代入a 2-b 2=√3bc 得a 2-b 2=6b 2,即a 2=7b 2.结合余弦定理得cos A =b 2+c 2-a 22bc =22-7b 22b ·2√3b √32. 又∵0°<A<180°,∴A=30°.答案:A6在△ABC 中,若sin A ∶sin B ∶sin C=5∶7∶8,则B= .解析:由正弦定理,有a ∶b ∶c=5∶7∶8,不妨设a=5k ,b=7k ,c=8k ,则由余弦定理得cos B =a 2+c 2-b 22ac=(5k )2+(8k )2-(7k )22×5k×8k =12,所以B =π3. 答案:π37在△ABC 中,若a=b=1,c =√3,则C = .解析:由余弦定理得,cos C =a 2+b 2-c 22ab =1+1-32×1×1=−12. ∵C ∈(0°,180°),∴C=120°.答案:120°8在△ABC 中,若b=1,c =√3,A =π6,则a = ,sin B = . 解析:由余弦定理得a 2=b 2+c 2-2bc cos A=12+(√3)2−2×1×√3cosπ6=1, 所以a=1.所以a=b.所以A=B =π6.所以sin B =12. 答案:1 12 9在△ABC 中,已知cos 2A 2=b+c 2c ,判断△ABC 的形状.。

高二人教版数学必修5第一章章末检测检测题:解三角形(附答案)-word文档

高二人教版数学必修5第一章章末检测检测题:解三角形(附答案)-word文档

高二人教版数学必修5第一章章末检测检测题:解三角形(附答案)在中国古代把数学叫算术,又称算学,最后才改为数学。

数学分为两部分,一部分是几何,另一部分是代数。

以下是查字典数学网为大家整理的高二人教版数学必修5第一章章末检测检测题,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

一、选择题(本大题共12小题,每小题5分,共60分)1.在△ABC中,a=2,b=3,c=1,则最小角为()A. B.6C. D.32.△ABC的三内角A、B、C所对边的长分别是a、b、c,设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A. B.3C. D.233.在△ABC中,已知| |=4,|AC|=1,S△ABC=3,则ABAC等于()A.-2B.2C.4D.24.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120,则a等于()A.6B.2C.3D.25.在△ABC中,A=120,AB=5,BC=7,则sin Bsin C的值为()A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x,则x的取值范围是()A.1C.17.在△ABC中,a=15,b=10,A=60,则cos B等于()A.-223B.223C.-63D.638.下列判断中正确的是()A.△ABC中,a=7,b=14,A=30,有两解B.△ABC中,a=30,b=25,A=150,有一解C.△ABC中,a=6,b=9,A=45,有两解D.△ABC中,b=9,c=10,B=60,无解9.在△ABC中,B=30,AB=3,AC=1,则△ABC的面积是()A.34B.32C.3或32D.32或3410.在△ABC中,BC=2,B=3,若△ABC的面积为32,则tan C 为()A.3B.1C.33D.3211.在△ABC中,如果sin Asin B+sin Acos B+cos Asin B+cos Acos B=2,则△ABC是()A.等边三角形B.钝角三角形C.等腰直角三角形D.直角三角形12.△ABC中,若a4+b4+c4=2c2(a2+b2),则角C的度数是()A.60B.45或135C.120D.30题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC中,若sin Aa=cos Bb,则B=________.14.在△ABC中,A=60,AB=5,BC=7,则△ABC的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75距塔64海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/小时.16.在△ABC中,角A、B、C所对的边分别为a、b、c.若(3b-c)cos A=acos C,则cos A=________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H、G、B三点在同一条直线上,在G、H两点用测角仪器测得A的仰角分别为,,CD=a,测角仪器的高是h,用a,h,,表示建筑物高度AB.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2bsin A.(1)求B的大小.(2)若a=33,c=5,求b.19.(12分)如图所示,已知⊙O的半径是1,点C在直径AB 的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC 为边作等边三角形PCD,且点D与圆心分别在PC的两侧.(1)若POB=,试将四边形OPDC的面积y表示为关于的函数;(2)求四边形OPDC面积的最大值.20.(12分)为了测量两山顶M、N间的距离,飞机沿水平方向在A、B两点进行测量,A、B、M、N在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M、N间的距离的步骤.21.(12分)在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,C=3.(1)若△ABC的面积等于3,求a,b.(2)若sin B=2sin A,求△ABC的面积.22.(12分) 如图所示,扇形AOB,圆心角AOB等于60,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA 交于点C,设AOP=,求△POC面积的最大值及此时的值.第一章解三角形章末检测答案 (B)1.B [∵ac,C最小.∵cos C=a2+b2-c22ab=22+32-12223=32,又∵02.B [∵p∥q,(a+c)(c-a)-b(b-a)=0.c2=a2+b2-ab,∵c2=a2+b2-2abcos C,cos C=12,又∵0| ||AC|sin A=1241sin A=3.sin A=32.又∵0A=60或120.AC=|AB||AC|cos A=41cos A=2.]4.D [由正弦定理得bsin B=csin C,sin C=csin Bb=2sin 1206=12,∵cC=30,A=180-120-30=30.a=c=2.]5.D [由余弦定理得BC2=AB2+AC2-2ABACcos A,即72=52+AC2-10ACcos 120,AC=3.由正弦定理得sin Bsin C=ACAB=35.]6.D [由题意,x应满足条件22+42-x2022+x2-420解得:237.D [由正弦定理得15sin 60=10sin B.sin B=10sin 6015=33.∵ab,A=60,B.cos B=1-sin2B=1-332=63.]8.B [A:a=bsin A,有一解;B:A,ab,有一解;C:aD:ccsin B,有两解.]9.D [由余弦定理AC2=AB2+BC2-2ABBCcos B,12=(3)2+BC2-23BC32.整理得:BC2-3BC+2=0.BC=1或2.当BC=1时,S△ABC=12ABBCsin B=123112=34.当BC=2时,S△A BC=12ABBCsin B=123212=32.]10.C [由S△ABC=12BCBAsin B=32得BA=1,由余弦定理得AC2=AB2+BC2-2ABBCcos B,AC=3,△ABC为直角三角形,其中A为直角,tan C=ABAC=33.]11.C [由已知,得cos(A-B)+sin(A+B)=2,又|cos(A-B)|1,|sin(A+B)|1,故cos(A-B)=1且sin(A+B)=1,即A=B且A+B=90,故选C.]12.B [由a4+b4+c4=2c2a2+2b2c2,得cos2C=a2+b2-c222ab2=a4+b4+c4+2a2b2-2c2a2-2b2c24a2b2=12 cos C=22.角C为45或135.]13.45解析由正弦定理,sin Aa=sin Bb.sin Bb=cos Bb.sin B=cos B.B=45.14.103解析设AC=x,则由余弦定理得:BC2=AB2+AC2-2ABACcos A,49=25+x2-5x,x2-5x-24=0.x=8或x=-3(舍去).S△ABC=1258sin 60=103.15.86解析如图所示,在△PMN中,PMsin 45=MNsin 120,MN=6432=326,v=MN4=86(海里/小时).16.33解析由(3b-c)cos A=acos C,得(3b-c)b2+c2-a22bc=aa2+b2-c22ab,即b2+c2-a22bc=33,由余弦定理得cos A=33.17.解在△ACD中,DAC=-,由正弦定理,得ACsin =DCsin-,AC=asin sin-AB=AE+EB=ACsin +h=asin sin sin-+h.18.解(1)∵a=2bsin A,sin A=2sin Bsin A,sin B=12.∵0(2)∵a=33,c=5,B=30.由余弦定理b2=a2+c2-2accos B=(33)2+52-2335cos 30=7.b=7.19.解 (1)在△POC中,由余弦定理,得PC2=OP2+OC2-2OPOCcos=5-4cos ,所以y=S△OPC+S△PCD=1212sin +34(5-4cos )=2sin3+534.(2)当3=2,即=56时,ymax=2+534.答四边形OPDC面积的最大值为2+534.20.解①需要测量的数据有:A点到M、N点的俯角1、B点到M、N点的俯角2、A、B的距离d(如图所示).②第一步:计算AM,由正弦定理AM=dsin 2sin1+2第二步:计算AN.由正弦定理AN=dsin 2sin2-1第三步:计算MN,由余弦定理MN=AM2+AN2-2AMANcos1-1.21.解 (1)由余弦定理及已知条件得a2+b2-ab=4.又因为△ABC的面积等于3,所以12absin C=3,由此得ab=4.联立方程组a2+b2-ab=4,ab=4,解得a=2,b=2.(2)由正弦定理及已知条件得b=2a.联立方程组a2+b2-ab=4,b=2a,解得a=233,b=433.所以△ABC的面积S=12absin C=233.22.解∵CP∥OB,CPO=POB=60-,OCP=120.在△POC中,由正弦定理得OPsinPCO=CPsin ,2sin 120=CPsin ,CP=43sin .又OCsin60-=2sin 120,OC=43sin(60-).因此△POC的面积为S()=12CPOCsin 120=1243sin 43sin(60-)32=43sin sin(60-)=43sin 32cos -12sin=2sin cos -23sin2=sin 2+33cos 2-33=233sin26-336时,S()取得最大值为33.最后,希望小编整理的高二人教版数学必修5第一章章末检测检测题对您有所帮助,祝同学们学习进步。

2020高二数学人教A必修5练习:1.2.1 解三角形的实际应用举例 Word版含解析

2020高二数学人教A必修5练习:1.2.1 解三角形的实际应用举例 Word版含解析

课时训练3解三角形的实际应用举例一、测量中的距离问题1.有一长为10 m的斜坡,倾斜角为60°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长的长度(单位:m)是()A.5B.5√3C.10√3D.10答案:D解析:如图,在Rt△ABC中,AC=10,∠ACB=60°.∴AB=5√3,BC=5,在Rt△ABD中,∠ADB=30°,∴BD=15.∴CD=BD-BC=10.2.(2015福建宁德五校联考,14)一艘船以15 km/h的速度向东航行,船在A处看到灯塔B在北偏东60°处;行驶4 h后,船到达C处,看到灯塔B在北偏东15°处,这时船与灯塔的距离为km.答案:30√2解析:根据题意画出图形,如图所示,可得B=75°-30°=45°,在△ABC中,根据正弦定理得,ACsinB =BCsin∠BAC,即22=BC12,∴BC=30√2 km,即此时船与灯塔的距离为30√2 km.3.(2015福建厦门高二期末,15)如图,某观测站C在A城的南偏西20°,一条笔直公路AB,其中B在A 城南偏东40°,B与C相距31千米.有一人从B出发沿公路向A城走去,走了20千米后到达D处,此时C,D之间的距离为21千米,则A,C之间的距离是千米.答案:24解析:由已知得CD=21,BC=31,BD=20,在△BCD 中,由余弦定理得cos ∠BDC=212+202-3122×21×20=-17. 设∠ADC=α,则cos α=17,sin α=4√37. 在△ACD 中,由正弦定理,得AC=21sinαsin60°=24.二、测量中的高度与角度问题4.如图,D ,C ,B 三点在地面同一直线上,DC=a ,从C ,D 两点测得A 点的仰角分别是β,α(α<β),则A 点距离地面的高度AB 等于( )A.asinαsinβsin(β-α) B.asinαsinβcos(α-β) C.asinαcosβsin(β-α) D.acosαsinβcos(α-β)答案:A解析:在△ACD 中,∠DAC=β-α,DC=a ,∠ADC=α,由正弦定理得AC=asinαsin(β-α), ∴在Rt △ACB 中,AB=AC sin β=asinαsinβsin(β-α).5.运动会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10√6 m(如图所示),则旗杆的高度为( ) A.10 m B.30 mC.10√3 mD.10√6 m答案:B解析:如图所示,由题意知∠AEC=45°,∠ACE=180°-60°-15°=105°,∴∠EAC=180°-45°-105°=30°,由正弦定理知CE sin ∠EAC=AC sin ∠CEA,∴AC=CE·sin∠CEAsin∠EAC=20√3(m),∴在Rt△ABC中,AB=AC·sin∠ACB=30(m).∴旗杆的高度为30 m.6.当甲船位于A处时获悉,在其正东方向相距20 n mile的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距10 n mile C处的乙船,乙船立即朝北偏东θ角的方向沿直线前往B处救援,则sin θ的值等于()A.√217B.√22C.√32D.5√714答案:D解析:根据题目条件可作图如图:在△ABC中,AB=20,AC=10,∠CAB=120°,由余弦定理有BC2=AB2+AC2-2AB·AC cos∠CAB=202+102-2×20×10cos 120°=700,∴BC=10√7.再由正弦定理得ABsin∠ACB =BCsin∠CAB,∴sin∠ACB=AB·sin∠CAB=20×sin120°10√7=√217.又0°<∠ACB<90°,∴cos∠ACB=2√7,∴sin θ=sin(30°+∠ACB)=sin 30°cos∠ACB+cos 30°sin∠ACB=1×2√7+√3×√21=5√7.7.某海岛周围38 n mile有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30 n mile后测得此岛在东北方向,若不改变航向,则此船触礁的危险(填“有”或“无”).答案:无解析:由题意在△ABC中,AB=30 n mile,∠BAC=30°,∠ABC=135°,∴∠ACB=15°. 由正弦定理,得BC=AB sin ∠ACB·sin ∠BAC=30sin15°·sin 30°=6-24=15(√6+√2).在Rt △BDC 中,CD=√22BC=15(√3+1)>38.∴无触礁的危险.8.如图,在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距40√2海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ(其中sinθ=√2626,0°<θ<90°)且与点A 相距10√13海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由. 解:(1)因为AB=40√2,AC=10√13,∠BAC=θ,sin θ=√26,0°<θ<90°,所以cos θ=√1-(√2626)2=5√2626.由余弦定理得BC=√AB 2+AC 2-2AB ·AC ·cosθ=10√5,所以该船的行驶速度为v=10√523=15√5(海里/小时).(2)设直线AE 与BC 的延长线相交于点Q. 在△ABC 中,由余弦定理得 cos ∠ABC=AB 2+BC 2-AC 22AB ·BC=√2)2√5)2√13)22×402×105=3√1010,所以sin ∠ABC=√1-cos 2∠ABC =√1-910=√1010. 在△ABQ 中,由正弦定理得AQ=ABsin∠ABCsin(45°-∠ABC)=40√2×√101022×21010=40.因为AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP⊥BC于点P,则EP为点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×√55=3√5<7.故该船会进入警戒水域.(建议用时:30分钟)1.如图,已知两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B 在观察站C的南偏东60°,则灯塔A在灯塔B的()的位置.A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°答案:B解析:由图可知,∠ACB=180°-(40°+60°)=80°.又∵AC=BC,∴∠A=∠CBA=12(180°-80°)=50°.∵CE∥BD,∴∠CBD=∠BCE=60°,∴∠ABD=60°-50°=10°.∴灯塔A在灯塔B的北偏西10°的位置.2.如图所示,为测一树的高度,在地面上选取A,B两点(点A,B与树根部在同一直线上),从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60 m,则树的高度为()A.(30+30√3) mB.(30+15√3) mC.(15+30√3) mD.(15+3√3) m答案:A解析:设树高为h,则由题意得√3h-h=60,∴h=√3-1=30(√3+1)=(30√3+30)(m).3.一艘客船上午9:30在A处,测得灯塔S在它的北偏东30°,之后它以32 n mile/h的速度继续沿正北方向匀速航行,上午10:00到达B处,此时测得船与灯塔S相距8√2 n mile,则灯塔S在B处的()A.北偏东75°B.东偏南75°C.北偏东75°或东偏南75°D.以上方位都不对答案:C解析:根据题意画出示意图,如图,由题意可知AB=32×12=16,BS=8√2,∠A=30°.在△ABS中,由正弦定理得ABsinS =BSsinA,sin S=ABsinABS=16sin30°8√2=√22,∴S=45°或135°,∴B=105°或15°,即灯塔S在B处的北偏东75°或东偏南75°.4.一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行3 h后,又测得灯塔在货轮的东北方向,则货轮的速度为()A.103(√6+√2) n mile/hB.103(√6−√2) n mile/hC.103(√6+√3) n mile/hD.103(√6−√3) n mile/h答案:B解析:如图,设货轮的时速为v,则在△AMS中,∠AMS=45°,∠SAM=105°,∠ASM=30°,SM=20,AM=3v.由正弦定理得3vsin30°=20sin105°,即v=206sin105°=103(√6−√2)(n mile/h).5.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离d1与第二辆车与第三辆车的距离d2之间的关系为()A.d1>d2B.d1=d2C.d1<d2D.不能确定大小答案:C解析:如图,B,C,D分别是第一、二、三辆车所在的位置,由题意可知α=β.在△PBC中,d1sinα=PBsin∠PCB,在△PCD中,d2sinβ=PDsin∠PCD,∵sin α=sin β,sin∠PCB=sin∠PCD,∴d1d2=PBPD.∵PB<PD,∴d1<d2.6.如图,某人于地面上C处观察一架迎面飞来的飞机在A处的仰角为30°,过1 min后到B再测得仰角为45°,如果该飞机以450 km/h的速度沿水平方向飞行,则飞机的高度为 km.答案:15(√3+1)4解析:如图,∠DCA=60°,∠DCB=45°,设飞机高为h,则BD=h,AD=√3h.又AB=450×160=7.5,由AD-BD=AB得√3h-h=7.5.∴h=√3-1=15(√3+1)4.7.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min后到点B处望见灯塔在船的北偏东75°方向上,则船在点B时与灯塔S的距离是 km.答案:3√2解析:如图,由条件知,AB=24×1560=6(km).在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,∴∠ASB=45°.由正弦定理,得BSsin30°=ABsin45°,∴BS=6sin30°sin45°=3√2.8.海上一观测站测得方位角为240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为90 n mile/h.此时海盗船距观测站10√7 n mile,20 min后测得海盗船距观测站20 n mile,再过min,海盗船到达商船.答案:403解析:如图,设开始时观测站、商船、海盗船分别位于A,B,C处,20 min后,海盗船到达D处,在△ADC 中,AC=10√7,AD=20,CD=30,由余弦定理,得cos∠ADC=AD2+CD2-AC22AD·CD =400+900-7002×20×30=12.∴∠ADC=60°,在△ABD中,由已知,得∠ABD=30°,∠BAD=60°-30°=30°,∴BD=AD=20,2090×60=403(min).9.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°方向,距离为12√6 km,在A 处看灯塔C 在货轮的北偏西30°方向,距离为8√3 km,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解:(1)在△ABD 中,∠ADB=60°,∠B=45°,由正弦定理得AD=AB ·sinB sin ∠ADB=12√6×√2232=24(km).∴A 处与D 处的距离为24 km .(2)在△ACD 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos 30°,解得CD=8√3(km).∴灯塔C 与D 处的距离为8√3 km .。

高二数学人教A必修5练习:第一章 解三角形 过关检测 Word版含解析

高二数学人教A必修5练习:第一章 解三角形 过关检测 Word版含解析

第一章过关检测(时间:90分钟 满分:100分)知识点分布表一、选择题(本大题共10小题,每小题4分,共40分)1.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( )A.A>BB.A<BC.A ≥BD.A ,B 的大小关系不能确定 答案:A解析:∵sin A>sin B ,∴2R sin A>2R sin B ,即a>b.∴A>B.2.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc=16√2,则三角形的面积为( )A.2√2B.8√2C.√2D.√22 答案:C解析:∵a sinA =b sinB =c sinC =2R=8,∴sin C=c 8, ∴S △ABC =12ab sin C=116abc=116×16√2=√2.3.在△ABC 中,A=60°,AC=16,面积S=220√3,则BC 长为( )A.20√6B.75C.51D.49 答案:D解析:由S=12AC ·AB ·sin A=12×16×AB ·sin 60°=4√3AB=220√3,解得AB=55.再用余弦定理求得BC=49.4.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a sinB +b sinA =2c ,则A 的大小是( )A.π2B.π3C.π4D.π6答案:C解析:∵a sinB +b sinA =2c ,∴由正弦定理得2sin C=a b +b a ≥2√a b ·b a =2,当且仅当a b =b a时等号成立,∴sin C=1,C=π2,A=π4.5.在△ABC 中,b=a sin C ,c=a cos B ,则△ABC 一定是( ) A.等腰三角形但不是直角三角形B.等边三角形C.直角三角形但不是等腰三角形D.等腰直角三角形答案:D解析:由c=a cos B 得,c=a×a 2+c 2-b22ac ,∴a 2=b 2+c 2,∴△ABC 为直角三角形,∴b=a sin C=a×c a =c ,∴△ABC 是等腰直角三角形.6.钝角三角形的三边为a ,a+1,a+2,其最大角不超过120°,则a 的取值范围是( )A.0<a<3B.32≤a<3C.2<a ≤3D.1≤a<52答案:B解析:∵三角形为钝角三角形,∴{a +a +1>a +2,0>a 2+(a+1)2-(a+2)22a (a+1)≥-12⇒32≤a<3.7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-bc=a 2,且a b =√3,则角C 的值为() A.45° B.60° C.90° D.120°答案:C解析:由b 2+c 2-bc=a 2,得b 2+c 2-a 2=bc ,∴cos A=b 2+c 2-a 22bc =12.∴A=60°,又a b =√3,∴sinA sinB =√3.∴sin B=√33sin A=√33×√32=12.∴B=30°,∴C=180°-A-B=90°.8.如图,在△ABC 中,D 是边AC 上的点,且AB=AD ,2AB=√3BD ,BC=2BD ,则sin C 的值为( )A.√33B.√36C.√63D.√66 答案:D解析:设BD=a ,则BC=2a ,AB=AD=√32a.在△ABD 中,由余弦定理,得cos A=AB 2+AD 2-BD 22AB ·AD =(√32a )2+(√32a )2-a 22×32a ·32a =13.又∵A 为△ABC 的内角,∴sin A=2√23. 在△ABC 中,由正弦定理得,BC sinA =ABsinC .∴sin C=AB BC ·sin A=√32a 2a ·2√23=√66. 9.设a ,b ,c 是△ABC 的三条边长,对任意实数x ,f (x )=b 2x 2+(b 2+c 2-a 2)x+c 2,有( )A.f (x )=0B.f (x )>0C.f (x )≤0D.f (x )<0答案:B解析:由余弦定理可得f (x )=b 2x 2+2bc cos A ·x+c 2, ∵Δ=(2bc cos A )2-4b 2c 2=4b 2c 2·(cos 2A-1)<0,且b 2>0,∴f (x )>0.10.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A.30(√3+1) mB.120(√3-1) mC.180(√2-1) mD.240(√3-1) m答案:B 解析:如图,∠DAB=15°,∵tan 15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30°=2-√3.在Rt △ADB 中,又AD=60, ∴DB=AD ·tan 15°=60×(2-√3)=120-60√3.在Rt △ADC 中,∠DAC=60°,AD=60,∴DC=AD ·tan 60°=60√3.∴BC=DC-DB=60√3-(120-60√3)=120(√3-1)(m).∴河流的宽度BC 等于120(√3-1) m,故选B .二、填空题(本大题共4小题,每小题4分,共16分)11.设△ABC 的外接圆半径为4,且sin B sin C+sin 2B+sin 2C=sin 2A ,则a= .答案:4√3解析:依题意,得bc+b 2+c 2=a 2,即cos A=b 2+c 2-a 22bc =-bc 2bc =-12, ∴cos A=-12,A=120°.又∵a sinA =2R ,∴a=2R sin A=2×4×sin 120°=4√3.12.在锐角△ABC 中,BC=1,B=2A ,则AC cosA = ,AC 的取值范围为 .答案:2 (√2,√3)解析:由正弦定理得AC sinB =BC sinA . ∵B=2A ,BC=1,∴AC sin2A =1sinA .∴AC cosA =2.∵△ABC 是锐角三角形,∴0°<2A<90°且A+B=3A>90°,∴30°<A<45°.又AC=2cos A ,∴AC ∈(√2,√3).13.如图,在山底测得山顶仰角∠CAB=45°,沿倾斜角为30°的斜坡走1 000 m 至S 点,又测得山顶仰角∠DSB=75°,则山高BC 为 m .答案:1 000解析:如图,∠SAB=45°-30°=15°,又∠SBD=15°,∴∠ABS=30°.又AS=1 000 m,由正弦定理知BS sin15°=1 000sin30°, ∴BS=2 000sin 15°.∴BD=BS ·sin 75°=2 000sin 15°·cos 15°=1 000sin 30°=500(m),且DC=ST=1 000sin 30°=500(m),从而BC=DC+DB=1 000(m).14.已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,向量m =(√3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B+b cos A=c sin C ,则角B= .答案:π6解析:由m ⊥n ,得√3cos A-sin A=0,即A=π3.由余弦定理及a cos B+b cos A=c sin C ,有a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =c sin C , 即2c 2=2c 2sin C ,∴sin C=1,解得C=π2,∴B=π-π2−π3=π6. 三、解答题(本大题共4小题,15、16小题每小题10分,17、18小题每小题12分,共44分)15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A=√3a cos B.(1)求角B 的大小;(2)若b=3,sin C=2sin A ,求a ,c 的值.解:(1)由b sin A=√3a cos B 及正弦定理a sinA =b sinB ,得sin B=√3cos B ,所以tan B=√3,所以B=π3.(2)由sin C=2sin A 及a sinA =c sinC ,得c=2a.由b=3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac.所以a=√3,c=2√3.16.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A=(2b+c )sin B+(2c+b )sin C.(1)求A 的大小;(2)若sin B+sin C=1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b+c )b+(2c+b )c ,则a 2=b 2+c 2+bc.由余弦定理a 2=b 2+c 2-2bc cos A ,得cos A=-12.又A ∈(0°,180°),∴A=120°.(2)由(1)中a 2=b 2+c 2+bc ,结合正弦定理,可得sin 2A=sin 2B+sin 2C+sin B sin C=34.又sin B+sin C=1,∴sin B=sin C=12. ∵0°<B<60°,0°<C<60°,∴B=C.∴△ABC 是等腰钝角三角形.17.已知a ,b ,c 分别为△ABC 三内角A ,B ,C 的对边,B=π3,c=8,cos C=-17.(1)求b 的值;(2)求△ABC 的面积.解:(1)∵cos C=-17,∴sin C=√1-cos 2C =4√37. ∵c sinC =b sinB ,B=π3,∴437=32,即b=7. (2)∵sin A=sin(π-B-C )=sin(B+C )=sin B cos C+cos B sin C=√32×(-17)+12×4√37=3√314, ∴S △ABC =12bc sin A=12×8×7×3√314=6√3.18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径,一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min .在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC 长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 解:(1)在△ABC 中,因为cos A=1213,cos C=35,所以sin A=513,sin C=45.从而sin B=sin[π-(A+C )]=sin(A+C )=sin A cos C+cos A sin C=513×35+1213×45=6365.由正弦定理得AB sinC =AC sinB ,得AB=AC sinB ×sin C=1 2606365×45=1 040(m).所以索道AB 的长为1 040 m .(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t ) m,乙距离A 处130t m,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t×(100+50t )×1213=200(37t 2-70t+50),因为0≤t ≤1 040130,即0≤t ≤8, 故当t=3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sinA =AC sinB ,得BC=AC sinB ×sin A=1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C. 设乙步行的速度为v m/min,由题意得-3≤500v −71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3 min,乙步行的速度应控制在(1 25043,62514)(单位:m/min)内.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A.45°或135° B.60°C.45° D.135°答案 C解析由asin A=bsin B得sin B=b sin Aa=2sin 60°3=22.∵a>b,∴A>B,B<60°∴B=45°.6.在△ABC中,角A,B,C所对的边分别为a,b,c,如果c=3a,B=30°,那么角C等于( )A.120° B.105° C.90° D.75°答案 A解析∵c=3a,∴sin C=3sin A=3sin(180°-30°-C)=3sin(30°+C)=3⎝⎛⎭⎪⎫32sin C+12cos C,即sin C=-3cos C.∴tan C=- 3.又C∈(0°,180°),∴C=120°.二、填空题7.在△ABC中,AC=6,BC=2,B=60°,则C=_________.答案75°解析由正弦定理得2sin A=6sin 60°,∴sin A=22.∵BC=2<AC=6,∴A为锐角.∴A=45°.∴C=75°.8.在△ABC中,若tan A=13,C=150°,BC=1,则AB=________.答案102解析∵tan A=13,A∈(0°,180°),∴sin A=1010.由正弦定理知BCsin A=ABsin C,∴AB=BC sin Csin A=1×sin 150°1010=102.9.在△ABC中,b=1,c=3,C=2π3,则a=________.答案 1解析由正弦定理,得3sin2π3=1sin B,∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A=a sin Bb=2×222=12. 又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角 a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角,一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B=45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( )A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22,∴sin C =22. ∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2. (2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0, ∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -Bsin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C . 解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21. ∴ac=35,∵cosB = 53,∴sinB =54. ∴S △ABC =21acsinB = 21×35×54= 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:csin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设BA ·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表: 已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一角.在有解时只有一解.三边 (a ,b ,c ) 余弦定理由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求 c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析在△ABC中,∠C=180°-60°-75°=45°.由正弦定理得:BCsin A=ABsin B∴BCsin 60°=10sin 45°解得BC=5 6.4.如图所示,设A、B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( )A.50 2 m B.50 3 mC.25 2 m D.2522m答案 A解析由题意知∠ABC=30°,由正弦定理ACsin∠ABC=ABsin∠ACB,∴AB=AC·sin∠ACBsin∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A.20(6+2) 海里/小时B.20(6-2) 海里/小时C.20(6+3) 海里/小时D.20(6-3) 海里/小时答案 B解析由题意,∠SMN=45°,∠SNM=105°,∠NSM=30°.由正弦定理得MNsin 30°=MSsin 105°.∴MN=MS sin 30°sin 105°=106+24=10(6-2).则v货=20(6-2) 海里/小时.6.甲船在岛B的正南A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟 B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB=15°,∠CBA=180°-75°=105°,∠ACB=180°-105°-15°=60°,AB=1 km.由正弦定理得BCsin∠CAB=ABsin∠ACB∴BC=1sin 60°·sin 15°=6-223(km).设C到直线AB的距离为d,则d=BC·sin 75°=6-223·6+24=36(km).三、解答题11.如图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C在货轮的北偏西30°,距离为8 3 n mile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°方向上,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.解(1)在△ABD中,∠ADB=60°,∠B=45°,由正弦定理得AD=AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD·AC·cos 30°,解得CD=83≈14(n mile).即A处与D处的距离为24 n mile,灯塔C与D处的距离约为14 n mile.12.如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2×20t ×40·cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,403 3 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,203 3 m 答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC ,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β=h cos αsin βsin α-β.即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m), EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解如图所示:∠CBD=30°,∠ADB=30°,∠ACB=45°∵AB=30,∴BC=30,BD=30tan 30°=30 3.在△BCD中,CD2=BC2+BD2-2BC·BD·cos 30°=900,∴CD=30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章解三角形复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β。

相关文档
最新文档