北京市八年级上学期数学第一周考试试卷

合集下载

北京市八年级上学期开学数学试卷

北京市八年级上学期开学数学试卷

北京市八年级上学期开学数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A . 2B . 4C . 8D . 162. (2分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A . 25B . 14,C . 7D . 7或253. (2分) (2016八上·济南开学考) 如图,一棵大树在一次强台风中于离地面5米处折断倒下,树干顶部落在与树干底部12米处,这棵大树在折断前的高度为()A . 10米B . 15米C . 18米D . 20米4. (2分) (2016八上·济南开学考) 如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A . 6B . 8C . 10D . 125. (2分)如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A . 4米B . 6米C . 8米D . 10米6. (2分) (2016八上·济南开学考) 直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A . 6cmB . 8.5cmC . cmD . cm7. (2分) (2016八上·济南开学考) 下列说法正确的有()①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数.A . 1个B . 2个C . 3个D . 4个8. (2分) (2016八上·济南开学考) 下列语句中正确的是()A . 9的算术平方根是3B . 9的平方根是3C . ﹣9的平方根是﹣3D . 9的算术平方根是±39. (2分) (2016八上·济南开学考) 在下列各数3π、0、0. 、、6.1010010001…、、中,无理数的个数是()A . 4B . 3C . 2D . 110. (2分) (2016八上·济南开学考) 下列各式中,正确的是()A . =﹣2B . (﹣)2=9C . =﹣3D . ± =±3二、填空题 (共10题;共11分)11. (1分)如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD=________ °.12. (1分) (2017八上·普陀开学考) 已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________ cm.13. (1分)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是________14. (1分)(2020·北京模拟) 如图,在平面直角坐标系中,,以为一边,在第一象限作菱形,并使,再以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,,,则过点,,的圆的圆心坐标为________.15. (1分) (2017八上·肥城期末) 如图,已知AB=A1B,A1C=A1A2 , A2D=A2A3 , A3E=A3A4 ,∠B=20°,则∠A4=________度.16. (2分)(2019·上饶模拟) 如图,菱形OP1A1Q1为长为2,且∠P1=60°,将菱形OP1A1Q1绕点A1顺时针旋转1800 ,得到菱形A1P2A2Q2 ,将菱形A1P2A2Q2绕点A2顺时针旋转180°,得到菱形A2P3A3Q3……,如此进行下去,直至得到菱形A8P9A9Q9 ,则:(1) P1的坐标为________;(2) Q9的坐标为________;17. (1分) (2018七下·浦东期中) 已知△ABC的三边为则=________.18. (1分)(2020八下·龙湖期末) 已知的三边分别为a, b ,c,且a, b 满足,c=13,则 =________.19. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.20. (1分)如图,数轴上点A所对应的数是________.三、计算题 (共2题;共15分)21. (5分)(2017·开江模拟) 先化简:÷(﹣),然后再从﹣2<x≤2的范围内选取一个合适的x的整数值代入求值.22. (10分) (2016八上·济南开学考) 解方程:(1)(2x﹣3)2=25(2)(2x﹣1)3=﹣8.四、解答题: (共2题;共10分)23. (5分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC 相交于N,连接MN,DN.请你判定四边形BMDN是什么特殊四边形,并说明理由.24. (5分)(2019·衡阳) 如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面处测得楼房顶部A的仰角为,沿坡面向下走到坡脚处,然后向楼房方向继续行走10米到达处,测得楼房顶部的仰角为.已知坡面米,山坡的坡度(坡度是指坡面的铅直高度与水平宽度的比),求楼房高度.(结果精确到0.1米)(参考数据:,)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、17-1、18-1、19-1、20-1、三、计算题 (共2题;共15分)21-1、22-1、22-2、四、解答题: (共2题;共10分)23-1、24-1、。

20182019学年度第一学期京改版本初中八年级的数学测试卷试题第一章分式

20182019学年度第一学期京改版本初中八年级的数学测试卷试题第一章分式

2021--2021 学年度第一学期京改版八年级数学单元测试题第十章分式做题时间 100 分钟总分值 120 分题号一二三总分得分班级姓名一.单项选择题〔共 10 小题 , 每题 3 分, 计 30 分〕1.x﹣1=3,那么4﹣1x2+3x的值为〔〕x22A. 1B.C.D.2.分式方程的解是〔〕.A.x=0B.x=-1C.x=±1D.无解3.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:〔1〕甲班捐款 2500 元,乙班捐款 2700 元;〔2〕乙班平均每人捐款数比甲班平均每人捐款数多 1 ;5〔3〕甲班比乙班多 5 人,设甲班有 x 人,根据以上信息列方程得〔〕A.B.C.2500×〔 1+1〕=2700D.x5x-54.化简的结果是〔〕A.1B.C.a+1D.5.小明通常上学时走上坡路 , 途中平均速度为 m千米 / 时, 放学回家时沿原路返回 , 通常平均速度为 n 千米 / 时, 那么小明上学和放学路上的平均速度为______________千米 / 时.A. B. C. D.6. 假设解分式方程产生增根,那么 m的值是〔〕〔A〕或〔B〕或 2〔C〕 1 或 2〔D〕 1 或7.要使分式的值为0,那么x应该等于〔〕A.4或 1B.4C.1D.-4 或-18.甲乙两地相距 420 千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的 1.5 倍,进而从甲地到乙地的时间缩短了 2 小时.设原来的平均速度为x 千米 / 时,可列方程为〔〕A.B.C.D.9.要使分式有意义,那么的取值范围是〔〕A. x≠1B. x>1C. x<1D. x≠﹣110. 清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早 20min 到达目的地.骑自行车的速度是步行速度的2 倍,设步行的速度为 x km/h,那么 x 满足的方程为〔〕A.4-4=20B.4-4=20 C4-4=1D.4-4=1 x 2x2x x X 2x 32x x 3二.填空题〔共9 小题 , 每题 4 分,计 36 分〕1.当x=时,的值为零.2.假设,那么为___________.3.分式, 当 x=_____________时, 值为零 ; 当 x=_____________时, 无意义.4.把分式中的 x、y都扩大两倍 , 那么分式的值_________________.5.假设方程x-2=k会产生增根 , 那么 k=_______________.x-3x-36.假设 x+ 1=2+1,那么 x=___________或___________.x 27.某车间加工 120 个零件后,采用了新工艺,工效是原来的 1.5 倍,这样加工同样多的零件就少用 1 小时,采用新工艺前每小时加工多少个零件?假设设采用新工艺前每小时加工x 个零件,那么根据题意可列方程为 ___________.8.观察分析以下方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程〔n为正整数〕的根,你的答案是:___________.9.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为 1:3;假设甲、丙两车合运相同次数运完这批货物时,甲车共运了 120 吨,假设乙、丙两车合运相同次数运完这批货物时,乙车共运了180 吨.那么这批货物共 ___________吨.三.解答题〔共7 小题 , 计 54 分〕1.解方程:.2.,求的值.3.计算:.4.(1) 甲、乙两人同时从 A 地出发去 B 地, 甲的速度是乙的 1.5 倍. A、B两地相距 27 千米,甲到达乙地 3 小时后 , 乙才到达 , 求甲、乙两人的速度.(2)甲、乙两人同时从相距 9 千米的 A、B 两地同时出发 , 假设相向而行 , 那么 1 小时相遇 , 假设同向而行,乙在甲前面 , 那么甲走了 18 千米后追上乙 , 求甲、乙两人的速度.5.娄底到长沙的距离约为 180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发 1 小时,最后两车同时到达长沙,小轿车的速度是大货车速度的 1.5 倍.〔1〕求小轿车和大货车的速度各是多少?〔列方程解答〕〔2〕当小刘出发时,求小张离长沙还有多远?6.几个小伙伴打算去音乐厅观看演出,他们准备用 360 元购置门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.7. 小马自驾私家车从地到车所需电费 27 元,每行驶地,驾驶原来的燃油汽车所需油费108 元,驾驶新购置的纯电动1 千米,原来的燃油汽车所需的油费比新购置的纯电动汽车所需的电费多元,求新购置的纯电动汽车每行驶 1 千米所需的电费.---------答题卡 ---------一.单项选择题1.答案: D1.解释:D.【解析】试题分析:∵ x-=3,2∴x-1=3x2∴x-3x=1 ,2∴原式 =4-〔x-3x〕=4-=.应选 D.考点: 1. 代数式求值; 2. 分式的混合运算.2.答案: D2.解释:D.【解析】试题分析:方程两边都乘以(x 2-1) 得:x+1-2(x-1)=4解得: x=-1,经检验: x=-1 是增根,所以原方程无解.应选 D.考点: 解分式方程.3.答案: C3.解释:分析:人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×〔1+〕=乙班平均每人捐款数.解答:解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据〔 2〕中所给出的信息,方程可列为:×〔 1+〕=.应选 C.点评:找到关键描述语,找到等量关系是解决问题的关键.4.答案: B4.解释:B【解析】试题分析:原式=,应选 B考点:分式乘除法5.答案: C5.解释:C【解析】由平均速度 =总路程 / 总时间,可设路程为s,上坡时间为,返回时间为,总时间为+ =,平均速度为2s÷=.6.答案: D6.解释:D.【解析】试题分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母 x〔x+1〕=0,得到 x=0 或,然后代入化为整式方程的方程算出 m的值:方程两边都乘x〔x+1〕,得.∵原方程有增根,∴最简公分母x〔x+1〕=0,解得x=0或.当 x=0 时, m=;当x=时,m=1.应选 D.考点:分式方程的增根.7.答案: C7.解释:分析:分式的值为 0 的条件是:〔1〕分子为 0;〔2〕分母不为 0.两个条件需同时具备,缺一不可.据此可以列方程组解答此题.解答:解:由分式的值为零的条件得,解得 x=1.应选 C.点评:此题考查了分式的值为 0 的条件.由于该类型的题易忽略分母不为 0 这个条件,所以常以这个知识点来命题.8.答案: B8.解释:B.【解析】试题分析:设原来的平均速度为 x 千米 / 时,由题意得,.应选 B.考点:由实际问题抽象出分式方程.9.答案: A9.解释:A.【解析】试题分析:根据分式分母不为0 的条件,要使在实数范围内有意义,必须.应选 A.考点:分式有意义的条件.10.答案: C10.解释:分析:首先表示出骑自行车速度为2xkm/h,再根据时间 =路程÷速度表示出去距离学校4km的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min 可得方程.解答:解: 20min= h,步行的速度为 x km/h,那么骑自行车速度为2xkm/h,由题意得:-= ,应选 C.点评:此题主要考查了由实际问题抽象出分式方程,关键是弄懂题意,表示出步行所用时间与骑自行车所用时间.二.填空题1.答案:x=-1.1.解释:x=-1.【解析】试题分析:根据分式的值为零,分子等于 0,分母不等于 0 列式进行计算即可得解.试题解析:根据题意得, |x|-1=0 且 x2 +2x-3 ≠0,由|x|-1=0 得: x=1 或 x=-1由x2+2x-3 ≠0知 x≠-3 或 x≠1故x=-1.考点: 分式的值为零的条件.2.答案: =.故答案为.2.解释:分析:由的分式可知: 3〔x-2y 〕=2〔3y-x 〕,即 5x=12y,可得的值.解答:解:由,得3〔x-2y 〕=2〔3y-x 〕,即 5x=12y,故 = .故答案为.点评:在分式中,无论进行何种运算,如果要不改变分式的值,那么所做变化必须遵循分式根本性质的要求.3.答案: 6 -23.解释:6-2【解析】分式的值为0,那么分子为0,分母不是0,所以x-6=0 ,x=6;分母为0,那么分式无意义,则x+2=0,得 x=-2.4.答案:不变4.解释:不变【解析】分式的根本性质,中的 x、y都扩大两倍,得到==.5.答案: 35.解释:3【解析】增根就是使分母为 0 的解,所以增根为 3,增根是去分母后整式方程的解,不是原分式方程的解,应代入去分母后的方程, x-2(x-3)=k ,得 k=3.6.答案: 2;6.解释:分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.2解答:解:分式方程去分母得:2x +2=4x+x,整理得:〔x-2 〕〔2x-1 〕=0,可得: x=2 或 x= ,经检验都是分式方程的解.故答案为: 2;点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.答案:.7.解释:分析:由于某车间加工120 个零件后,采用了新工艺,工效是原来的 1.5 倍,设采用新工艺前每小时加工 x 个零件,那么采用新工艺后每小时加工 1.5x 个零件,又同样多的零件就少用 1 小时,由此即可列出方程解决问题.解答:解:依题意得.故答案为:.点评:此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.8.答案:x=n+3或x=n+4.8.解释:分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b 的根为: x=a 或 x=b,然后将 x+=2n+4 化为〔 x-3 〕+=n+〔n+1〕,利用规律求解即可求得答案.解答:解:∵由①得,方程的根为:x=1 或 x=2,由②得,方程的根为: x=2 或 x=3,由③得,方程的根为: x=3 或 x=4,∴方程 x+=a+b 的根为: x=a 或 x=b,∴x+=2n+4 可化为〔 x-3 〕+=n+〔n+1〕,∴此方程的根为: x-3=n 或 x-3=n+1,即x=n+3 或 x=n+4.故答案为: x=n+3 或 x=n+4.点评:此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为: x=a 或 x=b 是解此题的关键.9.答案: 240.9.解释:分析:可设货物总吨数,三种车每种车可运吨数为未知数,根据所用次数得到等量关系为:=;=,整理成只剩下货物总吨数为未知数的方程,求解即可.解答:解:设货物总吨数为x 吨.甲每次运 a 吨,乙每次运 3a 吨,丙每次运 b 吨.,=,解得 x=240.故答案为: 240.点评:考查分式方程的应用;根据次数得到相应的等量关系是解决此题的关键;得到只含有所求未知数的方程是解决此题的难点.三.主观题1.答案:.1.解释:.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.试题解析:去分母,得,去括号,得,移项、合并同类项,得,化 x 的系数为1,得.经检验:是原方程的解.考点:解分式方程.2.答案:.2.解释:.【解析】试题分析:先将括号里面的通分后,约分化简,然后将整体代入即可.试题解析:∵,∴.∴.考点: 1.分式的化简求值; 2..整体思想的应用.3.答案:-43.解释:-4【解析】试题分析:从左至右按二次根式的化简、乘方、0 指数幂、负指数幂依次计算即可试题解析:原式=- 2+1×1+( -3) =- 2+1-3=-4考点: 1、乘方; 2、零指数幂; 3、二次根式的化简; 4、实数的运算4.答案:(1)甲为千米 / 时, 乙为 3 千米 / 时.(2)甲为 6 千米 / 时, 乙为 3 千米 / 时.4.解释:(1)甲为千米 / 时, 乙为 3 千米 / 时.(2)甲为 6 千米 / 时, 乙为 3 千米 / 时.【解析】 (1)根据甲比乙少用 3 小时为等量关系列出方程 . 设乙的速度为 x 千米 / 时,列方程得-=3, 甲为 4.5 千米 / 时,乙为 3 千米 / 时.(2)设甲的速度为 x 千米 / 时, 相向而行,1 小时相遇,那么 ( 甲速 +乙速 ) ×1=9,所以乙速 =9-x. 又假设同向而行,乙在甲前面,那么甲走了18 千米后追上乙,即甲走18 千米所用时间 =乙走 9 千米所用的时间相等,由此可列出方程,得=,甲为6千米/时,乙为3千米/时.5.答案:(1) 大货车速度为60km/h,那么小轿车的速度为90km/h;(2) 当小刘出发时,小张离长沙还有120km.5.解释:(1)大货车速度为 60km/h,那么小轿车的速度为 90km/h;(2) 当小刘出发时,小张离长沙还有120km.【解析】试题分析:,根据“小刘比张晚出发1〔1〕由题意,设大货车速度为xkm/h,那么小轿车的速度为小时,最后两车同时到达长沙,〞列出方程解决问题;〔2〕利用〔 1〕中小张开着大货车的速度,即可求得答案.试题解析:解:〔1〕设大货车速度为xkm/h,那么小轿车的速度为,由题意得﹣=1解得 x=60,则1.5x=90 ,答:大货车速度为60km/h,那么小轿车的速度为90km/h.〔2〕180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.考点:分式方程的应用6.答案:8.6.解释:8.【解析】试题分析:方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.此题设票价为 x,根据小伙伴的人数不变,列方程求解.元,根据图中所给的信息可得小伙伴的人数为:试题解析:解:设票价为x 元,由题意得,,解得: x=60,经检验, x=60 是原方程的根.那么小伙伴的人数为:=8.答:小伙伴们的人数为8 人.考点: 1. 阅读理解型; 2. 分式方程的应用.7.答案:纯电动车行驶一千米所需电费为 0.18 元7.解释:纯电动车行驶一千米所需电费为 0.18 元【解析】试题分析:此题的等量关系是:A 地到 B 地的路程是不变的,即:试题解析:设新购置的纯电动汽车每行驶一千米所需电费为x 元.由题意得:解得:经检验 0.18 为原方程的解答:纯电动车行驶一千米所需电费为 0.18 元.考点:分式方程的应用。

北师版八年级数学上册全册周周测、周周清(全册195页含答案)

北师版八年级数学上册全册周周测、周周清(全册195页含答案)

北师版八年级数学上册全册周周测、周周清(全册195页含答案)第一章勾股定理周周测1一、选择题1.在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A.9B.5C.14D.4或142.在R t△ABC中,∠C=90°,若∠A=30°,AB=12cm,则BC边的长为()A.6cmB.12cmC.24cmD.无法确定3.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为()A.25B.19C.13D.1694.如图,在△ABC中,AB=6cm,∠B=∠C=30°,那么△ABC的中线AD=()cm.A.3B.4C.5D.65.小明同学先向北行进4千米,然后向东进4千米,再向北行进2千米,最后又向东行进一定距离,此时小明离出发点的距离是10千米,小明最后向东行进了()A.3千米B.4千米C.5千米D.6千米6.若直角三角形两边长分别是6,8,则它的斜边为()A.8B.10C.8或10D.以上都不正确7.已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A.5B.C.D.或58.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米.A.4米B.5米C.7米D.8米9.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D、E为垂足,下列结论正确的是()A.AC=2ABB.AC=8ECC.CE=BDD.BC=2BD10.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距()A.12海里B.16海里C.20海里D.28海里11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64二、解答题12.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若c-a=4,b=12,求a,c.13.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?14.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD= ______ ;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.第一章勾股定理周周测2一、选择题1.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为A. 4B. 6C. 8D. 102.如图,在中,,垂足为,则BD的长为A.B. 2C.D. 33.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为A. 20 cmB. 50 cmC. 40 cmD. 45 cm4.如图,是台阶的示意图已知每个台阶的宽度都是20cm,每个台阶的高度都是10cm,连接AB,则AB等于A. 120cmB. 130cmC. 140cmD. 150cm5.如果一个直角三角形的两边分别是2、5,那么第三边的平方是A. 21B. 26C. 29D. 21或296.直角三角形的一直角边长是12,斜边长是15,则另一直角边是A. 8B. 9C. 10D. 117.如图,已知在中,、E为垂足,下列结论正确的是A.B.C.D.8.已知一直角三角形的木板,三边的平方和为,则斜边长为A. 30cmB. 80cmC. 90cmD. 120cm9.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为A.B. 4C.D.10.如图,图中每个四边形都是正方形,字母A所代表的正方形的面积为A. 4B. 8C. 16D. 6411.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm和5cm,则小正方形的面积为A. B. 2 C. 3 D.12.如图所示,的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为A.B.C.D.二、解答题13.如图,在中,边上的中线求AC的长.14.市政广场前有块形状为直角三角形的绿地如图所示,其中为广场整体布局考虑,现在将原绿地扩充成等腰三角形,且扩充所增加的部分要求是以AC为直角边的直角三角形请求出扩充建设后所得等腰三角形绿地的周长.15.如图是“赵爽弦图”,其中、、和是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理设,取.正方形EFGH的面积为______,四个直角三角形的面积和为______;求的值.第一章勾股定理周周测3一、选择题16.下列各组数据中的三个数,可作为三边长构成直角三角形的是A. B. C.D.17.下列各组数中,以为边的三角形不是直角三角形的是A. B. C. D.18.下列几组数:;;;是大于1的整数,其中是勾股数的有A. 1组B. 2组C. 3组D. 4组19.一直角三角形三边长分别为,那么由为自然数为三边组成的三角形一定是A. 等腰三角形B. 等腰直角三角形C. 钝角三角形D. 任意三角形20.已知的三边长分别为且,则的形状为A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定21.一个三角形的三边长为,则此三角形最大边上的高为A. 10B. 12C. 24D. 4822.在中,,则点C到AB的距离是A. B. C. D.23.给出长度分别为的五根木棒,分别取其中的三根首尾连接最多可以搭成的直角三角形的个数为A. 1个B. 2个C. 3个D. 4个24.中,则D.A. 60B. 30C. 7825.中,的对边分别为a、b、c,下列说法中错误的A. 如果,则是直角三角形,且B. 如果,则是直角三角形,且C. 如果,则是直角三角形,且D. 如果:::2:5,则是直角三角形,且26.在中,已知,则的面积等于A. B. C. D.27.三角形的三边长满足,则此三角形是A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等边三角形二、解答题28.已知为三角形的三边且满足,试判断三角形的形状.29.已知:如图,四边形ABCD中,求证:是直角三角形.30.已知,在中,,求的面积.31.如图,四边形ABCD中,.判断是否是直角,并说明理由.求四边形ABCD的面积.第一章 勾股定理周周测4一、选择题:1、以下面每组中的三条线段为边的三角形中,是直角三角形的是( ) A 5cm ,12cm ,13cm B 5cm ,8cm ,11cm C 5cm ,13cm ,11cm D 8cm ,13cm ,11cm2、由下列线段组成的三角形中,不是直角三角形的是( ) A a=7,b=25,c=24 B a=2.5,b=2,c=1.5C a=45,b=1,c= 32 D a=15,b=20,c=253、三角形的三边长a 、b 、c 满足ab c b a 2)(22=-+,则此三角形是( ) A 直角三角形 B 锐角三角形 C 钝角三角形 D 等腰三角形4、小红要求△ABC 最长边上的高,测得AB =8 cm ,AC =6 cm ,BC =10 cm ,则可知最长边上的高是A.48 cmB.4.8 cmC.0.48 cmD.5 cm5.满足下列条件的△ABC ,不是直角三角形的是A.b 2=c 2-a 2B.a ∶b ∶c =3∶4∶5C.∠C =∠A -∠BD.∠A ∶∠B ∶∠C =12∶13∶156.在下列长度的各组线段中,能组成直角三角形的是A.5,6,7B.1,4,9C.5,12,13D.5,11,127.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52C.7D.52或78.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直角三角形,且斜边长2 为mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形9.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ).A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形10.一部电视机屏幕的长为58厘米,宽为46厘米,则这部电视机大小规格(实际测量误差忽略不计)().A.34英寸(87厘米)B.29英寸(74厘米)C.25英寸(64厘米)D.21英寸(54厘米)11.一块木板如图所示,已知AB=4,BC=3, DC=12,AD=13,∠B=90°,木板的面积ADBC为( ).A.60B.30C.24D.12二、填空题:12、若一个三角形的三边长分别是m+1,m+2,m+3,则当m= ,它是直角三角形。

(人教版)北京市八年级数学上册第一单元《三角形》测试(答案解析)

(人教版)北京市八年级数学上册第一单元《三角形》测试(答案解析)

一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD2.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°3.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 4.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 5.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11 6.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 7.下列长度(单位:cm )的三条线段能组成三角形的是( ) A .13,11,12B .3,2,1C .5,12,7D .5,13,5 8.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2mB .3mC .5mD .7m 9.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变B .减少C .增加D .不能确定 10.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm11.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 12.如图,直线//,65,30AB CD AE ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°二、填空题13.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.14.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.15.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.16.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.17.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.18.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.19.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.20.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空).三、解答题21.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.22.如图,在ABC 中,90ACB ∠=︒,29A ∠=︒,CD 是边AB 上的高,E 是边AB 延长线上一点.求:(1)CBE ∠的度数;(2)BCD ∠的度数.23.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.24.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒25.一个多边形的每个外角都等于40°,求这个多边形的内角和.26.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在ABC 中,过C 点向AB 所在的直线作垂线,顶点与垂足之间的线段是AB 上的高,由此可得答案.【详解】解:ABC 中,AB 边上的高为:.CG故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵△CDB′是由△CDB翻折得到,∴∠CB′D=∠B,∵∠CB′D=∠A+∠ADB′=∠A+20°,∴∠A+∠A+20°=90°,解得∠A=35°.故选:C.【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.4.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.5.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.6.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.7.A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m,则5-2<x<5+2即3<x<7,∴当x=5时,能与2m、5m长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.9.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A.【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°.10.C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A选项错误;∵7+8=15,∴B选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.11.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.12.B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键.二、填空题13.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键 解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.14.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.15.【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3继而求得边上的中线长为9【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍∴DG=AG=×6=3∴AD=AG+GD解析:9【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3,继而求得BC 边上的中线长为9.【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=12AG=12×6=3, ∴AD=AG+GD=6+3=9.即BC 边上的中线长为9.故答案为:9.【点睛】本题考查的是三角形重心的性质,熟知三角形的重心到顶点的距离是其到对边中点的距离的2倍是解决问题的关键.16.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B∠D+∠E再根据邻补角表示出∠CGF然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B,∠D+∠E,再根据邻补角表示出∠CGF,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.17.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B∠2=∠C+∠D∠3=∠E+∠F∠4=∠G+∠H∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.18.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.19.74°【分析】先根据三角形的内角和定理求得∠ACB的度数再根据CE平分∠ACB求得∠ACE的度数则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE再结合CD⊥ABDF⊥CE就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【详解】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.20.;【分析】根据三角形的高的概念得到AM⊥BC根据垂线段最短判断【详解】解:如图∵线段AM是△ABC边BC上的高∴AM⊥BC由垂线段最短可知AN≥AM故答案为:【点睛】本题考查的是中线和高的概念掌握垂解析:≤;【分析】根据三角形的高的概念得到AM⊥BC,根据垂线段最短判断.【详解】解:如图,∵线段AM是△ABC边BC上的高,∴AM⊥BC,由垂线段最短可知,AN≥AM,故答案为:≤.【点睛】本题考查的是中线和高的概念,掌握垂线段最短是解题的关键.三、解答题21.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE与AB、BF相交于点M、N,如图所示:设∠ABF=x,∠DCF=y,∵∠EBF=2∠ABF,CF平分∠DCE,∴∠EBF=2x,∠ABE=3x,∠FCE=y,∠DCE=2y,∵AB∥DC,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.22.(1)119°;(2)29°.【分析】(1)根据外角的性质解答即可;(2)根据90A ACD ∠+∠=︒,90ACD BCD ACB ∠+∠=∠=︒,从而 得到29BCD A ∠=∠=︒即可.【详解】解:(1)∵ 90ACB ∠=︒,29A ∠=︒,CBE ∠是ABC 的外角,∴ 119CBE ACB A ∠=∠+∠=︒;(2)∵ CD 是AB 边上的高,∴ 90ADC ∠=︒.∴ 90A ACD ∠+∠=︒.∵ 90ACB ACD BCD ∠=∠+∠=︒,29A ∠=︒,∴ 29BCD A ∠=∠=︒.【点睛】本题主要考查了三角形的内角和、外角的性质以及互余的性质,解题关键是熟练运用三角形外角的性质以及互余的性质.23.(1)证明见解析;(2),,B ADE DEF ∠∠∠.【分析】(1)先根据角的和差、等量代换可得EFG ADG ∠=∠,再根据平行线的判定可得//EF AB ,然后根据平行线的性质可得ADE DEF ∠=∠,从而可得B ADE ∠=∠,最后根据平行线的判定即可得证;(2)根据直角三角形的两锐角互余、等量代换即可得.【详解】(1)180,180BDG EFG BDG ADG ∠+∠=︒∠+∠=︒,EFG ADG ∴∠=∠,//EF AB ∴,ADE DEF ∴∠=∠,B DEF ∠=∠,B ADE ∴∠=∠,//DE BC ∴;(2)90A ∠=︒,90B C ∴∠+∠=︒,B DEF ∠=∠,90DEF C ∴∠+∠=︒, 由(1)可知,B ADE ∠=∠,90ADE C ∴∠+∠=︒,综上,与C ∠互余的角有,,B ADE DEF ∠∠∠.【点睛】本题考查了直角三角形的两锐角互余、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.24.(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD 中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD 中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD (三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE (等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.25.1260︒【分析】先利用外角和360度除以每个外角的度数求出边数,再利用多边形内角和公式计算得出答案.【详解】 解:这个多边形的边数为36040=9(条), ∴180(92)1260︒⨯-=︒,∴这个多边形的内角和是1260︒.【点睛】此题考查多边形的角度计算,多边形的外角和定理,多边形的内角和计算公式,根据多边形的每个外角都等于40°求出多边形的边数是解题的关键.26.50︒【分析】根据角平分线的性质求出∠BAD 的度数,利用三角形内角和求出∠B 的度数,由此得到∠ADE 的度数,利用三角形外角性质求出∠ADC ,即可得到答案.【详解】解:∵AD 平分BAC ∠, ∴1302BAD DAC BAC ∠=∠=∠=︒, ∵180180608040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∴403070ADC B BAD ∠=∠+∠=︒+︒=︒, ∴1202ADE B ∠=∠=︒, ∴702050CDE ADC ADE ∠=∠-∠=︒-︒=︒.【点睛】 此题考查三角形内角和定理,角平分线的性质,三角形外角定理,正确分析图形掌握各角直角的位置关系是解题的关键.。

2022年北京市各区八年级数学第一学期期末检测模拟试题含解析

2022年北京市各区八年级数学第一学期期末检测模拟试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.若点A (m+2,3)与点B (﹣4,n+5)关于x 轴对称,则m+n 的值( ) A .﹣14 B .﹣8 C .3 D .72.已知如图,等腰ABC ∆中,,120,AB AC BAC AD BC =∠=︒⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,.OP OC =下面的结论:① 30APO DCO ∠+∠=︒;②OPC ∆是等边三角形;③AC AO AP =+;④APO DCO ∠=∠.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④3.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A .B .()2a b +C .D .4.已知函数12y x =-和221y x =+,当时12y y >,x 的取值范围是( )A .5x <-B .3x <-C .5x -﹥D .3x -﹥5.如果3x y a b 与61x a b +-是同类项,则 ( )A .23x y =-⎧⎨=⎩B .23x y =⎧⎨=-⎩C .23x y =⎧⎨=⎩D .23x y =-⎧⎨=-⎩6.下列图形中是轴对称图形的有( )A .B .C .D .7.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H8.已知等腰三角形的两边长满足4a -+(b ﹣5)2=0,那么这个等腰三角形的周长为( )A .13B .14C .13或14D .9 9.实数-2,0.3,17,2,-π中,无理数的个数是: A .2 B .3 C .4 D .510.如图,已知OAC ≌OBD ,若13OC =,7OB =,则AD 的长为( ).A .5B .6C .7D .8二、填空题(每小题3分,共24分)11.以方程组2123y x y x =+⎧⎨=--⎩的解为坐标的点(,)x y 在第__________象限. 12.如图所示,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积为8,则阴影部分的面积为_____.13.如图(1),在三角形ABC 中,38A ∠=︒72C ∠=︒,BC 边绕点C 按逆时针方向旋转1(080)αα︒≤≤︒,在旋转过程中(图2),当//CB AB '时,旋转角为__________度;当CB '所在直线垂直于AB 时,旋转角为___________度.14.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ’处,则重叠部分△AFC 的面积为___________.15.如图,等边ABC ∆的边AB 垂直于x 轴,点C 在x 轴上已知点()2A ,2,则点C 的坐标为____.16.如图,一个密封的圆柱形油罐底面圆的周长是10m ,高为13m ,一只壁虎在距底面1m 的A 处,C 处有食物,壁虎沿油罐的外侧面爬行到C 处捕食,它爬行的最短路线长为_____m .17.如图,图中两条直线12,l l 的交点坐标的是方程组 _____________ 的解.18.计算:2(23)-=___________.三、解答题(共66分)19.(10分)已知a 、b 是实数.(1)当a 2-2=0时,求a 、b 的值;(2)当a 、b 取(1)中的数值时,求(2a a b --2b a b -)÷2222a 2ab b a b ab+++的值. 20.(6分)因为()()2632x x x x +-=+-,令26x x +-=1,则(x+3)(x-2)=1,x=-3或x=2,反过来,x =2能使多项式26x x +-的值为1.利用上述阅读材料求解:(1)若x ﹣4是多项式x 2+mx+8的一个因式,求m 的值;(2)若(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,试求a,b 的值; (3)在(2)的条件下,把多项式325x ax x b +-+因式分解的结果为 .21.(6分)自2019年11月20日零时起,大西高铁车站开始试点电子客票业务,旅客购票乘车更加便捷.大西高铁客运专线是国家《中长期铁路网规划》中的重要组成部分,它的建成将意味着今后山西人去西安旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车.已知高铁线路中从A 地到某市的高铁行驶路程是400km ,普通列车的行驶路程是高铁行驶路程的1.3倍,若高铁的平均速度(km/h )是普通列车平均速度(km/h )的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h ,求普通列车和高铁的平均速度.22.(8分)先化简2211a a a a⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.23.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)若△A 1B 1C 1与△ABC 关于y 轴成轴对称,则△A 1B 1C 1三个顶点坐标分别为A 1 ,B 1 ,C 1 ;(2)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标是 . (3)在y 轴上是否存在点Q .使得S △ACQ =12S △ABC ,如果存在,求出点Q 的坐标,如果不存在,说明理由.24.(8分)数学课上,老师给出了如下问题:已知:如图1,在Rt △ABC 中,∠C=90°,AC=BC ,延长CB 到点D ,∠DBE=45°,点F 是边BC 上一点,连结AF ,作FE ⊥AF ,交BE 于点E .(1)求证:∠CAF=∠DFE ;(2)求证:AF=EF .经过独立思考后,老师让同学们小组交流.小辉同学说出了对于第二问的想法:“我想通过构造含有边AF 和EF 的全等三角形,又考虑到第(1)题中的结论,因此我过点E 作EG ⊥CD 于G (如图2所示),再证明Rt △ACF 和Rt △FGE 全等,问题就解决了.”你同意小辉的方法吗?如果同意,请给出证明过程;不同意,请给出理由;(3)小亮同学说:“按小辉同学的思路,我还可以有其他添加辅助线的方法.”请你顺着小亮同学的思路在图3中继续尝试,并完成证明.25.(10分)甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.26.(10分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE 翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n 的值,再计算m+n即可.【详解】由题意,得m+2=−4,n+5=−3,解得m=−6,n=−1.所以m+n=−2.故答案选:A.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2、A【分析】①连接BO,根据等腰三角形的性质可知AD垂直平分BC,从而得出BO=CO,又OP=OC,得到BO=OP,再根据等腰三角形的性质可得出结果;②证明∠POC=60°,结合OP=OC,即可证得△OPC是等边三角形;③在AC上截取AE=PA,连接PE,先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;④根据∠APO=∠ABO,∠DCO=∠DBO,因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°-∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°-(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°-∠BAC=60°,∴△APE 是等边三角形,∴∠PEA=∠APE=60°,PE=PA ,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE ,∵OP=CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩,∴△OPA ≌△CPE (SAS ),∴AO=CE ,∴AC=AE+CE=AO+AP ,故③正确;④由①中可得,∠APO=∠ABO ,∠DCO=∠DBO ,∵点O 是线段AD 上一点,∴∠ABO 与∠DBO 不一定相等,则∠APO 与∠DCO 不一定相等,故④不正确; 故①②③正确.故选:A .【点睛】本题主要考查了等腰三角形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.3、C【解析】试题分析:由题意可得,正方形的边长为a b +,故正方形的面积为()2a b +.又∵原矩形的面积为2a 2b 4ab ⋅=,∴中间空的部分的面积=()()22a b 4ab a b +-=-.故选C .4、B【分析】由题意得到x−2>2x+1,解不等式即可.【详解】解:∵y 1>y 2,∴x−2>2x+1,解得x<−3,故选B .【点睛】本题主要考查的是一次函数的性质,一次函数与一元一次不等式的有关知识,把比较函数值的大小问题,转化为不等式的问题,是解本题的关键.5、C【分析】根据同类项的定义:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,列出二元一次方程组,即可得出x y 、的值.【详解】由题意,得361x y x =⎧⎨=+⎩ 解得23x y =⎧⎨=⎩故选:C.【点睛】此题主要考查对同类项的理解,熟练掌握,即可解题.6、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键. 7、C【解析】根据被开方数越大算术平方根越大,可得答案.∴3<4,∵,∴3<a <4,故选:C .【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<10<4是解题关键.8、C【解析】首先依据非负数的性质求得a ,b 的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可. 【详解】解:根据题意得,a ﹣4=0,b ﹣5=0,解得a =4,b =5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=1,所以,三角形的周长为13或1.故选:C .【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.9、A【分析】实数包括有理数和无理数,而无限不循环小数是无理数【详解】解:给出的数中,,-π是无理数,故选A . 考点:无理数的意义.10、B【分析】根据全等三角形的性质即可得到结论.【详解】解:∵OAC ≌OBD ,∴OC OD =,OB OA =,∵13OC =,7OB =,∴1376AD OD OA OC OB =-=-=-=.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.二、填空题(每小题3分,共24分)11、三【分析】解出x,y的值,再通过符号判断出在第几象限即可.【详解】解:由方程组2123y xy x=+⎧⎨=--⎩可得11xy=-⎧⎨=-⎩,根据第三象限点的特点可知,点(-1,-1)在第三象限,故答案为:三.【点睛】本题考查了二元一次方程组的解法及直角坐标系中各象限点的坐标特点,解题的关键是熟记各象限点的坐标特点.12、1.【分析】根据三角形的中线将三角形分成面积相等的两部分的知识进行解答即可.【详解】∵AD是△ABC的中线,∴S△ABD=S△ACD 12S△ABC=1,∵点E是AD的中点,∴S△ABE=12S△ABD=2,S△CED=12S△ADC=2,∴阴影部分的面积=S△ABE+S△CED=1,故答案为:1.【点睛】此题考查三角形中线的性质,三角形的面积,解题关键在于利用面积等量替换解答. 13、70 1【分析】在三角形ABC中,根据三角形的内角和得到∠B=180°-38°-72°=70°,如图1,当CB′∥AB时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB时根据垂直的定义即可得到结论.【详解】解:∵在三角形ABC中,∠A=38°,∠C=72°,∴∠B=180°-38°-72°=70°,如图1,当CB′∥AB时,旋转角=∠B=70°,∴当CB′∥AB时,旋转角为70°;如图2,当CB′⊥AB时,∠BCB″=90°-70°=20°,∴旋转角=180°-20°=1°,∴当CB′⊥AB时,旋转角为1°;故答案为:70;1.【点睛】本题考查了三角形的内角和,平行线的性质,正确的画出图形是解题的关键.14、10【分析】先证AF=CF,再根据Rt△CFB中建立方程求出AF长,从而求出△AFC的面积.【详解】解:∵将矩形沿AC折叠,∴∠DCA=∠FCA,∵四边形ABCD为矩形,∴DC∥AB,∴∠DCA=∠BAC,∴∠FCA=∠FAC,∴AF=CF,设AF为x,∵AB=8,BC=4,∴CF=AF=x ,BF=8-x ,在Rt △CFB 中,222BF +BC =CF ,即()2228-x +4=x ,解得:x=5,∴S △AFC=11AF BC=54=1022⋅⨯⨯, 故答案为:10.【点睛】本题是对勾股定理的考查,熟练掌握勾股定理知识是解决本题的关键.15、()223-,0【分析】根据等边三角形的性质以及30°的直角三角形的性质求出AC 的长度,再利用勾股定理求出CE 的长度即可得出答案.【详解】如图:设AB 与x 轴交于E 点∵AB ⊥CE∴∠CEA=90°∵()2A ,2∴AE=2,OE=2∵△ABC 是等边三角形,CE ⊥AB∴1302ACE ACB ∠=∠=︒ 在Rt △ACE 中,AC=2AE=4∴22224223CE AC AE =--=∴232CO CE OE =-=∴点C 的坐标为()223-,0故答案为:()223-,0 【点睛】 本题考查了等边三角形,30°的直角三角形的性质,勾股定理,掌握等边三角形,30°的直角三角形的性质,勾股定理是解题的关键.16、1【分析】根据题意画出圆柱的侧面展开图的平面图形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得:AD =5m ,CD =12m ,则AC =2212513+=(m ),故答案为:1.【点睛】 本题主要考查了平面展开图的最短路径问题,正确画出平面图形是解题的关键. 17、335yx y x 【分析】根据题中给出的点的坐标,用待定系数法求出两条直线的解析式,联立两直线解析式所组成的方程组即为所求的方程组.【详解】解:根据题意可知,1l 所经过的点的坐标:(2,1),(0,3),2l 所经过的点的坐标:(2,1),(0,5)-,∴设1l 解析式为11y k x b =+,则有:111123k b b , 解之得:1113k b∴1l 解析式为3y x =-+,设2l 解析式为22y k x b =+,则有:222125k b b ,解之得:2235k b∴2l 解析式为35y x =-,因此所求的二元一次方程组是335y x y x . 故答案是:335y x y x .【点睛】本题考查二元一次方程组与一次函数的关系.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18、【分析】依据完全平方公式222()2a b a ab b -=-+进行计算.【详解】24(372=-=-【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.三、解答题(共66分)19、 (1)a=2,b=-5;(2)ab , -1.【解析】(1)根据非负数的性质,可以求得a 、b 的值;(2)根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】(1)+(b+5)2=0,∴a-2=0,b+5=0,解得,a=2,b=-5; (2)(2a a b --2b a b -)÷2222a 2ab b a b ab+++ =()222ab a b a b a b (a b)+-⋅-+ =()()()2a b a b ab a b a b (a b)+-+⋅-+=ab ,当a=2,b=-5时,原式=2×(-5)=-1.【点睛】本题考查分式的化简求值、非负数的性质,解答本题的关键是明确分式化简求值的方法.20、(1)m=-6;(2)26a b =-⎧⎨=⎩;(3)(x-1)(x+2)(x-3) 【分析】(1)由已知条件可知,当x=4时,x 2+mx+8=1,将x 的值代入即可求得; (2)由题意可知,x=1和x=-2时,x 3+ax 2-5x+b=1,由此得二元一次方程组,从而可求得a 和b 的值;(3)将(2)中a 和b 的值代入x 3+ax 2-5x+b ,则由题意知(x-1)和(x+2)也是所给多项式的因式,从而问题得解.【详解】解:(1)∵x ﹣4是多项式x 2+mx+8的一个因式,则x=4使x 2+mx+8=1, ∴16+4m+8=1,解得m=-6;(2)∵(x ﹣1)和(x+2)是多项式325x ax x b +-+的两个因式,则x=1和x=-2都使325x ax x b +-+=1,得方程组为:15084100a b a b +-+=⎧⎨-+++=⎩,解得26a b =-⎧⎨=⎩; (3)由(2)得,x 3-2x 2-5x+6有两个因式(x ﹣1)和(x+2),又36(1)2(3)x x x x =⋅⋅=-⨯⨯-,, 则第三个因式为(x-3),∴x 3-2x 2-5x+6=(x-1)(x+2)(x-3).故答案为:(x-1)(x+2)(x-3).【点睛】本题考查了分解因式的特殊方法,根据阅读材料仿做,是解答本题的关键.21、普通列车的平均速度是100km/h ,高铁的平均速度是250km/h .【分析】由高铁行驶路程×1.3即可求出普通列车的行驶路程;设普通列车的平均速度为x km/h ,则高铁的平均速度为2.5 km/h ,根据乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h 列出分式方程即可求解。

八年级上册北京数学全册全套试卷培优测试卷

八年级上册北京数学全册全套试卷培优测试卷

八年级上册北京数学全册全套试卷培优测试卷一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB 为Rt△,AD ,BE ,分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于一点F . ∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE ,分别是∠CAB 和∠ABC 的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°. 故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.3.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得: ∠ACD=∠A+∠ABC.又∵∠ABC 与∠ACD 的平分线交于点A 1,∴1111222A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A 依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A=180256⨯=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..4.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m ,则所用时间是:48÷0.3=160s .考点:多边形内角与外角.5.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.6.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.二、八年级数学三角形选择题(难)7.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【答案】D【解析】【分析】 连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.【详解】连接OA ,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.8.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3的度数等于()A.50°B.30°C.20°D.15°【答案】C【解析】【分析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠3=50°,∴∠3=∠4-30°=20°,故选C.9.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.10.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【答案】B【解析】【分析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【点睛】本题考查多边形内角与外角,熟记公式是关键.11.以下列数据为长度的三条线段,能组成三角形的是( )A .2 cm 、3cm 、5cmB .2 cm 、3 cm 、4 cmC .3 cm 、5 cm 、9 cmD .8 cm 、4 cm 、4 cm 【答案】B【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A 、2+3=5,故本选项错误.B 、2+3>4,故本选项正确.C 、3+5<9,故本选项错误.D 、4+4=8,故本选项错误.故选B .【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.12.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B.【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.三、八年级数学全等三角形填空题(难)13.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.【答案】301 4【解析】【分析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=14故答案为:30,1 4【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.14.如图,Rt△ABC中,∠ACB=90°,AC=BC,CF交AB于E,BD⊥CF,AF⊥CF,则下列结论:①∠ACF=∠CBD②BD=FC③FC=FD+AF④AE=DC中,正确的结论是____________(填正确结论的编号)【答案】①②③【解析】【分析】根据同角的余角相等,可得到结论①,再证明△ACF≌△CBD,然后根据全等三角形的性质判断结论②、③、④即可.【详解】解:∵BD⊥CF,AF⊥CF,∴∠BDC=∠AFC=90°,∵∠ACB=90°,∴∠ACF+∠BCD=∠CBD+∠BCD=90°,∴∠ACF=∠CBD,故①正确;在△ACF和△CBD中,BDC AFCACF CBDAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBD,∴BD=FC,CD=AF,故结论②正确∴FC=FD+CD=FD+AF,故结论③正确,∵在Rt△AEF中,AE>AF,∴AE>CD,故结论④错误.综上所述,正确的结论是:①②③.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握判定方法及全等的性质是解题的关键.15.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.【答案】0、2、6、8【解析】∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,∴∠CAB=∠DBE=90°,∴△CAB和△EBD都是Rt△,∵点E运动过程中两三角形始终保持斜边ED=CB,∴当BE=BA=12cm或BE=AC=6cm时,两三角形全等,如图共有四种情形,此时AE分别等于0cm、6cm、18cm、24cm,又∵点E每秒钟移动3cm,∴当点E移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.16.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,EF=2PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=2PE=AP,在其它位置时EF≠AP,故④错误;故答案为:①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.17.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_____个.【答案】7【解析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为718.如图,在△ABC 中,∠B =∠C ,BD =CE ,BE =CF .若∠A =40°,则∠DEF 的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS 证得△BDE ≌△CEF ,得出∠BDE=∠CEF ,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE ,即可得出∠DEF=∠B=70°. 点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF ,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难)19.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;643AOO OBO AOBO S S S '∆'∆'=+=+四边形,故结论④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯+⨯=+四边形, 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则23193436324AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.20.如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化【答案】B【解析】【分析】作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.【详解】如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,∴AB=BE,BF=BO;在△ABO与△BEN中,BAO NBEAOB BNEAB BE∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO≌△BEN(AAS),∴BO=NE,BN=AO ;∵BO=BF ,∴BF=NE ,在△BPF 与△NPE 中,FBP ENP FPB EPN BF NE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BPF ≌△NPE (AAS ), ∴BP=NP=12BN ;而BN=AO , ∴BP=12AO=12×8=4, 故选B .【点睛】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.21.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.22.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点【答案】B【解析】【分析】 根据角平分线上的点到角的两边距离相等可得AD =AE ,BC =BE ,利用角平分线的定义和平角的性质可得到∠AOB 的度数,再利用“HL ”证明Rt △AOD 和Rt △AOE 全等,根据全等三角形对应边相等可得OD =OE ,同理可得OC =OE ,然后求出∠AOB =90°,然后对各选项分析判断即可得解.【详解】∵点A ,B 分别是∠NOP ,∠MOP 平分线上的点,∴AD =AE ,BC =BE .∵AB =AE +BE ,∴AB =AD +BC ,故A 选项结论正确;与∠CBO 互余的角有∠COB ,∠EOB ,∠OAD ,∠OAE 共4个,故B 选项结论错误;∵点A、B 分别是∠NOP 、∠MOP 平分线上的点,∴∠AOE =12∠EOD ,∠BOC =12∠MOE ,∴∠AOB =12(∠EOD +∠MOE )=12×180°=90°,故C 选项结论正确; 在Rt △AOD 和Rt △AOE 中,AO AO AD AE =⎧⎨=⎩,∴Rt △AOD ≌Rt △AOE (HL ),∴OD =OE ,同理可得OC =OE ,∴OC =OD =OE ,∴点O 是CD 的中点,故D 选项结论正确.故选B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.23.如图,△ABC 中,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则下列结论不正确的是A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC【答案】B【解析】【分析】 根据余角的性质得到∠C =∠ABE ,∠EBC =∠BAC .根据SAS 推出△ABF ≌△ADF ,根据全等三角形的性质得到BF =DF ,故A 正确;由全等三角形的性质得到∠ABE =∠ADF ,等量代换得到∠ADF =∠C ,根据平行线的判定得到DF ∥BC ,故D 正确;根据直角三角形的性质得到DF >EF ,等量代换得到BF >EF ;故C 正确;根据平行线的性质得到∠EFD =∠EBC =∠BAC =2∠1,故B 错误.【详解】∵AB ⊥BC ,BE ⊥AC ,∴∠C +∠BAC =∠ABE +∠BAC =90°,∴∠C =∠ABE .同理:∠EBC =∠BAC .在△ABF 与△ADF 中,∵12AD AB AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△ADF ,∴BF =DF ,故A 正确, ∵△ABF ≌△ADF ,∴∠ABE =∠ADF ,∴∠ADF =∠C ,∴DF ∥BC ,故D 正确;∵∠FED =90°,∴DF >EF ,∴BF >EF ;故C 正确;∵DF ∥BC ,∴∠EFD =∠EBC .∵∠EBC =∠BAC =∠BAC =2∠1,∴∠EFD =2∠1,故B 错误. 故选B .【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF ≌△ADF 是解题的关键.24.如图,与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则.A.1 B.2 C.3 D.4【答案】C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵与都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC +∠BAC即∠DAC=∠EAB∴∴,①正确;∵∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA-∠ADC≠∠CEA-∠AEB∴,③错误∵∴∠DAC+∠BCA=180°∵∠DAB=60°,∴∠BCA=180°-∠DAB-∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴④正确故由①②④三个正确,故选:C【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.五、八年级数学轴对称三角形填空题(难)25.如图,在长方形ABCD 的边AD 上找一点P ,使得点P 到B 、C 两点的距离之和最短,则点P 的位置应该在_____.【答案】AD 的中点【解析】【分析】【详解】分析:过AD 作C 点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P 点使BP+PC 的之最短.详解:如图,过AD 作C 点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD 是矩形∴AB=CD∴△ABP ≌△DC′P∴AP=PD即P 为AD 的中点.故答案为P 为AB 的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.26.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.27.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC____.【答案】2.【解析】【分析】根据题意作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH,并设AD=2x,解直角三角形求出BC(用x表示)即可解决问题.【详解】解:作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH.设AD=2x,∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=x , ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°, ∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=x ,∴AB=AC=2x+23x ,在Rt △ACE 中,EC 12=AC=x 3+x ,AE 3=EC 3=x+3x , ∴BE=AB ﹣AE 3=x ﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.28.如图,在ABC 中, 90,ACB ABD ︒∠=是ABC 的轴对称图形,点E 在AD 上,点F 在AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF ,设DE=x ,则CF=x ,∵AE=5,AF=13,∴AC=AD=5+x ,∴AF=5+2x ,∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.29.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.30.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】2018180 2⎛⎫⨯ ⎪⎝⎭【解析】【分析】根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.【详解】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C=°180-2B∠=80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×80°;同理可得∠EA3A2=(12)2×80°,∠FA4A3=(12)3×80°,∴第n个三角形中以A n为顶点的底角度数是(12)n-1×80°.∴第2017个三角形中以A2019为顶点的底角度数是(12)2018×80°,故答案为:(12)2018×80°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB ⊥AC .∴∠BAC =90°,∵∠BAC+∠ABC+∠ACB =180°,∴∠ABC+∠ACB =90°∵CD 、BE 分别是△ABC 的角平分线,∴2∠FBC+2∠FCB =90°∴∠FBC+∠FCB =45°∴∠BFC =135°故④正确.∵AG ∥BC ,∴∠BAG =∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.32.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A.9个B.7个C.6个D.5个【答案】B【解析】【分析】∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等先以Rt ABC腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则∆BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则∆ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则∆BCM、∆BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则∆ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则∆AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则∆BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.33.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A .2B .3C .4D .5【答案】D【解析】【分析】 由题意易证:△ACE ≅△DCB ,进而可得AE =BD ;由△ACE ≅△DCB ,可得∠CAE=∠CDB ,从而△ACM ≅△DCN ,可得:CM =CN ;易证△MCN 是等边三角形,可得∠MNC=∠BCE , 即MN ∥AB ;由∠CAE=∠CDB ,∠AMC=∠DMO ,得∠ACM=∠DOM=60°,即∠AOB =120º;作CG ⊥AE ,CH ⊥BD ,易证CG =CH ,即:OC 平分∠AOB .【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC ,CE=CB ,∠ACE=∠DCB=120°,∴△ACE ≅△DCB(SAS)∴AE =BD ,∴①正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC ,在△ACM 和△DCN 中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO,即:∠ACM=∠DOM=60°,∴∠AOB=120º,∴④正确;作CG⊥AE,CH⊥BD,垂足分别为点G,点H,如图,在△ACG和△DCH中,∵90?AMC DHCCAE CDBAC DC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG≅△DCH(AAS),∴CG=CH,∴OC 平分∠AOB,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.34.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,根据等腰三角形“三线合一”的性质判断出①正确;根据HL证明Rt△APR≌Rt△APS,即可判断②正确;根据等边对等角的性质可得∠APQ =∠PAQ ,根据三角形外角的性质得到然后得到∠PQC =2∠PAC =60°=∠BAC ,然后根据同位角相等两直线平行可得QP ∥AB ,从而判断出③正确,④由③易证△QPC 是等边三角形,得到PQ =PC ,等量代换得到BP =PQ ,用HL 证明Rt △BRP ≌Rt △QSP ,即可得到④正确.【详解】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上.∵AB =AC ,∴AP ⊥BC ,故①正确;∵PA =PA ,PR =PS ,∴Rt △APR ≌Rt △APS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确; 由③得:△PQC 是等边三角形,∴△PQS ≌△PCS ,∴PQ =PC .又∵AB =AC ,AP ⊥BC ,∴BP =PC ,∴BP =PQ .∵PR =PS ,∴Rt △BRP ≌Rt △QSP ,故④也正确.∵①②③④都正确.故选D .【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.35.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE ,又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.36.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM =;(4)结合(1)(2)的结论,BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.【详解】解:。

(人教版)北京市八年级数学上册第一单元《三角形》检测题(包含答案解析)

(人教版)北京市八年级数学上册第一单元《三角形》检测题(包含答案解析)

一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余2.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6 3.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35°4.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形5.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4 6.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .107.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°8.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .79.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米10.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°11.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .0 12.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+C .180b a =+︒D .360b a =+︒二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.15.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;16.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.17.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.18.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.19.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题 21.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.22.在△ABC 中,∠B =40°,∠C =60°,AD 平分∠BAC ,点E 为AD 延长线上的点,EF ⊥BC 于F ,求∠DEF 的度数.23.如果一个多边形的内角和是它的外角和的4倍,求这个多边形的对角线总数. 24.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?25.(问题引入)(1)如图1,△ABC ,点O 是∠ABC 和∠ACB 相邻的外角平分线的交点,若∠A=40°,请求出∠BOC 的度数.(深入探究)(2)如图2,在四边形ABDC 中,点O 是∠BAC 和∠ACD 的角平分线的交点,若∠B+∠D=110°,请求出∠AOC 的度数.(类比猜想)(3)如图3,在△ABC 中,∠CBO=13∠DBC ,∠BCO= 13∠ECB ,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程). (4)如果BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO=∠1n DBC ∠BCO=1n∠ECB ,则∠BOC=___(用n 、a 的代数式表示,直接写出结果,不需要写出解答过程). 26.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的稳定性可以解决.【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B .【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.3.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∴∠ABD=∠CBD=1∠ABC=30°,2DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.4.D解析:D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,故选:D.【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.5.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+6<11,不能组成三角形,不符合题意;C、5+8>10,能组成三角形,符合题意;D、4+4=8,不能够组成三角形,不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.C解析:C【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可.【详解】解:三角形的两条边长为3和7,设第三边为x,则第三边的取值范围是:7-3<x<7+3,解得,4<x<10,故选:C.【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键.7.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】∠=∠-∠,由图可知DAE DAC EAC∵AD是角平分线.∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.8.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C .【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.9.D解析:D【分析】连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果.【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.10.D解析:D【分析】由题意得:∠A=30°,∠FDE=45°,利用平角等于180°,可得到∠ADF 的度数,在△AMD 中,利用三角形内角和为180°,可以求出∠AMD 的度数.【详解】解:∵∠B=60°,∴∠A=30°,∵∠BDE=75°,∠FDE=45°,∴∠ADF=180°-75°-45°=60°,∴∠AMD=180°-30°-60°=90°,故选D .【点睛】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角之间的关系.11.C解析:C【分析】分别利用直线、射线、线段的定义、角的概念和角平分线的定义以及多边形对角线的求法分析得出即可.【详解】解:①把一个角分成两个角的射线叫做这个角的角平分线,故原说法错误;②连接C 、D 两点的线段的长度叫两点之间的距离,故原说法错误;③两点之间线段最短,故原说法错误;④射线上点的个数与直线上点的个数没有关系,故原说法错误;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形,此说法正确.所以,正确的说法只有1个,故选:C .【点睛】此题主要考查了直线、射线、线段的定义以及角的概念和角平分线的定义等知识,正确把握相关定义是解题关键.12.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 14.19【分析】根据从n 边形的一个顶点出发连接这个点与其余各顶点可以把一个n 边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n 边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n 边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形, ∴n -2=17,∴19n =.故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.15.38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数已知∠P =90°根据三角形内角和定理易求∠PBC +∠PCB 的度数进而得到∠1+∠2的度数【详解】∵∠A =52°∴∠ABC +∠ACB =18解析:38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数.已知∠P =90°,根据三角形内角和定理易求∠PBC +∠PCB 的度数,进而得到∠1+∠2的度数.【详解】∵∠A =52°,∴∠ABC +∠ACB =180°−52°=128°,∵∠P =90°,∴∠PBC +∠PCB =90°,∴∠ABP +∠ACP =128°−90°=38°,即∠1+∠2=38°.故答案为:38°.【点睛】本题考查的是三角形内角和定理以及直角三角形的性质等知识,注意运用整体法计算,解决问题的关键是求出∠ABC +∠ACB ,∠PBC +∠PCB 的度数.16.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.17.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.18.54°【分析】根据折叠的性质及题意可在Rt △BEC 中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.19.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平 解析:40【分析】如图(见解析),先根据直角三角板的定义可得445∠=︒,再根据平行线的性质可得1585=∠∠=︒,然后根据三角形的外角性质可得340∠=︒,最后根据对顶角相等即可得.【详解】如图,由题意得:445∠=︒,//a b ,185∠=︒,1855∴∠∠==︒,35440∴∠=∠-∠=︒,由对顶角相等得:2340∠=∠=︒,故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.20.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC 又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于 解析:49【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆ ∵13AE AD =E AB ∆和BDE ∆的高相等 ∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】 此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系.三、解答题21.(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线, 111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.22.10°【分析】利用三角形的外角的性质求出∠ADC ,再利用三角形内角和定理求出∠DEF 即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC =180°-∠B-∠C =80°.∵AD 平分∠BAC ,∴∠BAD =12∠BAC =40° ∴∠ADC =∠B+∠BAD =80°∴∠EDF =∠ADC =80°∵EF ⊥BC ,∴∠EFD =90°∴∠DEF=90°-80°=10°【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.23.35条【分析】一个多边形的内角和等于外角和的4倍而任何多边形的外角和是360°,因而多边形的内角和等于1440°.n边形的内角和可以表示成(n-2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【详解】解:设这是一个n边形,依题意得:(n-2).180°=4×360°,解得n=10故这个多边形的总条数为()10103352⨯-=(条)答:对角线的总数为35条.【点睛】本题主要考查多边形内角与外角的知识点,此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解即可.24.2cm.【分析】先根据中线的定义得出MA=MC,再求出两三角形的周长差即可.【详解】解:∵BM是△ABC的中线,∴MA=MC,∴△ABM的周长﹣△BCM的周长=AB+BM+MA﹣BC﹣CM﹣BM=AB﹣BC=5﹣3=2(cm).答:△ABM与△BCM的周长是差是2cm.【点睛】本题考查的是三角形的中线,熟知三角形中线的定义是解答此题的关键.25.(1)70°;(2)55°;(3)120°-13α;(4)()11801nn nα-⨯︒-【分析】(1)由三角形内角和定理可求得∠ABC+∠ACB,再利用邻补角可求得∠DBC+∠ECB,根据角平分线的定义可求得∠OBC+∠OCB,在△BOC中利用三角形内角和定理可求得∠BOC;(2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC与∠B+∠D之间的关系;(3)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=120°-3α;(4)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=()11801n n nα-⨯︒-. 【详解】(1)∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°,∵BO 、CO 分别平分∠DBC 和∠ECB ,∴∠OBC+∠OCB=12(∠DBC+∠ECB) =12×220°=110°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-110°=70°;(2)∵点O 是∠BAC 和∠ACD 的角平分线的交点,∴∠OAC=12∠CAB ,∠OCA=12∠ACD , ∴∠AOC=180°-(∠OAC+∠OCA) =180°-12(∠CAB+∠ACD) =180°-12(360°-∠B-∠D) =12(∠B+∠D), ∵∠B+∠D=110°, ∴∠AOC=12(∠B+∠D)=55°; (3)在△OBC 中,∠BOC=180°-(∠OBC+∠OCB)=180°-13(∠DBC+∠ECB) =180°-13(∠A+∠ACB+∠A+∠ABC) =180°-13(∠A+180°) =120°-13α; 故答案为:120°-13α;(4)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-1n(∠DBC+∠ECB)=180°-1n(∠A+∠ACB+∠A+∠ABC)=180°-1n(∠A+180°)=()11801nn nα-⨯︒-.故答案为:()11801nn nα-⨯︒-.【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,整体思想的利用是解题的关键.26.(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD(三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE(等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.。

北师大版八年级(上)第一章—第四章数学试卷及答案

北师大版八年级(上)第一章—第四章数学试卷及答案

八年级上册(第一章-第四章)数学测试卷姓名:成绩:一、选择题(共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.下列各数中,无理数是()A.0.3B.C.3.14 D.2.点(﹣2,1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间4.下列计算正确的是()A.=±4 B.=﹣4 C.D.(﹣)2=25.y=x﹣2的大致图象是()A.B.C.D.6.如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为()A.2﹣B.﹣C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.=.8.如图,长方形的花圃中,有人避开拐角线A→B→C而直接走“捷径”AC,小明想在A处树立一个标牌“少走米,踏之何忍”,请根据图中数字计算完成标牌中未填的数字.9.点P(﹣3,﹣4)到y轴的距离是.10.在平面直角坐标系中点A(m+1,3)与B(4,2n﹣1)关于x轴对称,则m+n=.11.点A(,y1)和点B(,y2)在直线y=2x+m上,则y1与y2的大小关系是y1y2(填“>”“=”“<”).12.)如图,y=kx+b的图象,则kx+b=0的解为x=.13.五个正方形按如图放置在直线l上,其中第1、2、4个正方形的面积分别为2、5、4,则第5个正方形的面积S5=.14.+的值可能为.三、(本大题共4小题,每小题5分,共20分)15.计算:+()+2.16.一个数的平方根为2n+1和n﹣4,而4n是3m+16的立方根,求m值.17.)在5×5的网格中有线段AB,在网格线的交点上找一点C,使三角形ABC满足如下条件.(仅用直尺作图)(1)在网格①中作一个等腰三角形ABC;(2)在网格②中作一个直角三角形ABC,使两直角边的长为无理数.18.如图,等腰△ABC中,AB=AC=5,BC=8①请根据此图建立平面直角坐标系并写出三个顶点的坐标.②求△ABC的面积.四、(本大题共4小题,每小题7分,共28分)19.如图,直线y=x+3与y=kx交于(1,m),根据图象试求m和k的值.20.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式;(2)小明家5月份交纳电费117元,小明家这个月用电多少度?21.在如图所示的正方形网格中,格点三角形ABC(即顶点都是网格线的交点)的顶点A、C的坐标为A(﹣1,4)、B(﹣3,2).(1)请在图中作出平面直角坐标系,并作出△ABC关于y轴对称的△A1B1C1.(2)判断△A1B1C1的形状何有特殊性.22.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(时)之间的关系如图所示,请根据图象所提供的信息回答下列问题(1)甲、乙蜡烛燃烧的高度分别是,乙蜡烛从点燃到燃尽的时间分别是.(2)分别求出甲、乙两根蜡烛燃烧时,y与x之间的函数关系式.(3)燃烧多长时间时,甲、乙两蜡烛的高度相等(不考虑都燃尽的情况)五、本大题10分23.(10分)在进行二次根式简化时,我们有时会碰上如,,一样的式子,其实我们还可将其进一步简化:=;(一)==;(二)===;(三)以上这种化简的步骤叫做分母有理化还可以用以下方法化简:===;(四)(1)化简==(2)请用不同的方法化简.①参照(三)式得=②步骤(四)式得=(3)化简:+++…+.八年级上册(第一章-第四章)数学测试卷参考答案一、选择题(共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.B 2.B 3.C 4.D 5.A 6.A二、填空题(本大题共8小题,每小题3分,共24分)7.6 8.4 9.3 10.2 11.>12.-1 13.1 14.0或±2三、(本大题共4小题,每小题5分,共20分)15.3√6(3又根号6)16.M=1617.18、四、(本大题共4小题,每小题7分,共28分)19.M=2,k=220.21.22.(1)30cm,25cm2h,2.5h(2)甲y=-15x+30 乙y=-10x+15 (3)x=1五、本大题10分23.。

北京八年级上学期开学数学试卷

北京八年级上学期开学数学试卷

北京八年级上学期开学数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)有理数a、b在数轴上的位置如图所示,则下列各代数式值为正数的是()A . a-bB . a-1C . a2+aD . b-a-12. (2分) (2018·新疆) 的相反数是()A . ﹣B . 2C . ﹣2D . 0.53. (2分) (2018七上·山东期中) 若2(a+3)的值与4互为相反数,则a的值为().A . -1B . -C . -5D .4. (2分) (2018七上·台州期中) 2012年中秋、国庆假日八天里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班77 800余班,将77 800用科学记数法表示应为()A .B .C .D .5. (2分)下列现象是数学中的平移的是()A . 电梯由一楼升到顶楼B . 飞船绕月球运动C . DVD片在光驱中运行D . 秋天的树叶从树上随风飘落6. (2分)估计8- 的整数部分是()A . 3B . 4C . 5D . 67. (2分)小明的作业本上有以下四题:①②③a;④.做错的题是()A . ①B . ②C . ③D . ④8. (2分)生态园位于县城东北方向5公里处,如图表示准确的是()A .B .C .D .9. (2分) (2017七下·江东月考) 今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()A . 鸡10,兔14B . 鸡11,兔13C . 鸡12,兔12D . 鸡13,兔11二、填空 (共6题;共6分)10. (1分) (2017八下·路南期中) 若m分别表示3﹣的小数部分,则m2的值为________.(结果可以带根号)11. (1分) (2015七上·句容期末) 已知|m﹣2|+(n+1)2=0,则m﹣n=________.12. (1分) (2019七下·绍兴月考) 如图,将平移到的位置(点在边上),若,,则的度数为________.13. (1分)(2013·南宁) 某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是________分.14. (1分)(2019·信阳模拟) 计算: ________。

2022-2023学年北京市十一学校八年级上学期期末考数学试卷含答案

2022-2023学年北京市十一学校八年级上学期期末考数学试卷含答案

2022-2023学年北京市十一学校八年级(上)期末数学试卷一、选择题(每题2分,共20分)1.(2分)下面四个图形是“志远意诚,思方行圆”中某个字的小篆体,其中最接近轴对称图形的汉字是()A.B.C.D.2.(2分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列条件中,能判定△ABC是直角三角形的是()A.a=1,b=2,c=3B.a2=(c﹣b)(c+b)C.∠A=∠C D.∠A:∠B:∠C=3:4:53.(2分)如图,AB=AC,AD=AE,BD=CE,BD与CE相交于点O,与∠CAB(不包括∠CAB)一定相等的角有()个.A.1B.2C.3D.44.(2分)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.2cm B.3cm C.4cm D.6cm5.(2分)如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.B.C.D.6.(2分)当a<0时,化简的结果是()A.B.C.D.7.(2分)定义:如果两个分式的积等于这两个分式的差乘以一个常数,那么这两个分式叫做和谐分式.如,则与是和谐分式.下列每组两个分式是和谐分式的是()A.与B.与C.与D.与8.(2分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA =OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()种.A.2B.3C.4D.59.(2分)如图,从等边三角形内一点P向三边作垂线,垂足分别是Q、R、S,PQ=3,PR=4,PS=5,则△ABC 的面积是()A.48B.C.96D.10.(2分)如图,在平面直角坐标系中,Rt△AOB的直角顶点A在x轴的正半轴上,顶点B的坐标为,点P为斜边OB上的一个动点,点C为线段OA上的一个动点,则PA+PC的最小值为()A.3B.C.2D.二、填空题(每题2分,共16分)11.(2分)写出一个与是同类二次根式的最简二次根式.(不与原数相等)12.(2分)DNA是每一个生物携带自身基因的载体,它是遗传物质脱氧核糖核酸的英文简称,DNA分子的直径只有0.000000736cm,则这个数用科学记数法表示是.13.(2分)已知实数m、n在数轴上的对应点如图所示,化简=.14.(2分)已知m=2+,n=2﹣,则的值为.15.(2分)如图,点D在∠AOB的平分线OC上,P为OB上的一点,∠DPO=36°,点Q是射线OA上的一点,并且满足DP=DQ,则∠DQO的度数为.16.(2分)在平面直角坐标系中,入射光线经过y轴上点A(0,8),由x轴上点C反射,反射光线经过点B(﹣5,4),则AC+BC的值是.17.(2分)∠MAB为锐角,AB=a,点C在射线AM上,点B到射线M的距离为b,BC=x,若△ABC的形状、大小是唯一确定的,则x的取值范围是.(结果用含a、b的式子表示)18.(2分)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序数对(a,b)为点P的斜坐标.(1)点P(x,y)关于原点对称的点的斜坐标是;(2)在某平面斜坐标系中,已知θ=60°,点P的斜坐标为(2,4),点N与点P关于x轴对称,则点N的斜坐标是.三、解答题(第19题12分,第20题6分,第21题12分,第22~24题每题5分,第25~26题每题6分,第27题7分,共64分)。

2022-2023学年北京市海淀区八一学校八年级上学期期中考试数学试卷带讲解

2022-2023学年北京市海淀区八一学校八年级上学期期中考试数学试卷带讲解
∴O在线段AC的垂直平分线上,
即O是△ABC三边垂直平分线的交点,
故选:A.
【点睛】本题考查了三角形的角平分线、中线、高,线段垂直平分线的性质,能熟记到线段两个端点距离相等的点在这条线段的垂直平分线上是解此题的关键.
8.如图,四边形 中, , ,我们把这种两组邻边分别相等的四边形叫做“筝形”,根据所学知识,请在下列选项中选出不正确的一项()
【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求出答案.
【详解】解:设第三边为 ,
∴ ,即 ,
故选: .
【点睛】本题主要考查三角形三边的关系,理解组成三角形三边的大小关系是解题的关键.
4.下列命题是假命题的是()
A.三角形具有稳定性B.周长相等的两个三角形全等
C.全等三角形的对应边相等D.等腰三角形的两个底角相等
【小问1详解】
解:作 关于y轴对称的 ,如下图:
由图可知,点 的坐标为(4,1);
【小问2详解】
如下图,点P即为所求.
【点睛】本题主要考查了坐标与图形、作图—轴对称变换、最短路径等问题,熟练掌握轴对称的定义与性质是解题关键.
22.如图,已知线段 ,
(1)请用直尺和圆规作出它的垂直平分线 ,在 上取点A,连接 , (保留作图痕迹)
A.10米B.12米C.16米D.20米
【答案】B
【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.
详解】解:∵ ,
∴他需要走12次才会回到原来的起点,即一共走了 (米).
故选:B.
【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是 .
10.在平图直角坐标系 中,点 , , ,若 是等腰直角三角形,且 ,当 时,点C的横坐标m的取值范围是()

北京市朝阳区2023-2024学年八年级上学期期末数学试题(含答案)

北京市朝阳区2023-2024学年八年级上学期期末数学试题(含答案)

北京市朝阳区2023~2024学年度第一学期期末检测八年级数学试卷(选用)2024.1(考试时间90分钟 满分100分)学校______班级______姓名______考号______考生须知1.本试卷共6页,共三道大题,26道小题.2.在试卷和答题卡上认真填写学校、班级、姓名、考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(共24分,每题3分)下面1-8题均有四个选项,符合题意的选项只有一个.1.下列图形中,不是轴对称图形的是(A )(B )(C )(D )2.下列计算正确的是(A )(B )(C )(D )3.2023年5月20日是第24个世界计量日,在湖北省武汉市举办了世界计量日中国主场活动,会上发布了四个国际单位制新词头的中文名称:容、柔,昆、亏.容表示的数值为,柔表示的数值为,昆表示的数值为,亏表示的数值为.一个电子的质量约为克,可以表示为(A )91柔克(B )0.91柔克(C )91亏克(D )0.091亏克4.在多项式,,,中,完全平方式有(A )1个(B )2个(C )3个(D )4个5.右图中的两个三角形全等,则等于(A )58°(B )72°(C )40°(D )50°2861x x x ÷=33a a a ⋅=()326abab =221a a-+=27102710-30103010-289.110-⨯244a a -+214a +2441b b +-22a ab b ++1∠6.如图,点P 在的内部,点C ,D 分别在,上,且,只添加一个条件即可证明和全等,这个条件不可以是(A )(B )平分(C )平分(D )7.在平面直角坐标系中,点经过某些运动得到点,对于点A 的运动描述正确的是(A )向下平移7个单位长度(B )向右平移5个单位长度(C )先向上平移7个单位长度,再关于x 轴作轴对称(D )先关于x 轴作轴对称,再向下平移5个单位长度8.已知的三边长分别为a ,b ,c ,且,以下列各式的值为边长,其中不一定能形成三角形的是(A ),,(B ),,(C ),,(D),,二、填空题(共24分,每题3分)9.分解因式:_______.10.当_______时,分式的值为0.11.图中x 的值为_______.12.如图,在四边形中,,,,若平分,则四边形的面积为_______.13.如图,在平面直角坐标系中,的斜边在x 轴上,,若点A 的横坐标为1,则点B 的坐标为_______.14.若分式的值为整数,则x 的整数值为_______.15.在一张凸n 边形纸片上剪去一个三角形纸片,得到一个内角和为720°的凸多边形纸片,则n 的值为_______.AOB ∠OA OB OC OD =OPC △OPD △PC PD =OP AOB ∠PO CPD∠90OCP ODP ∠=∠=︒xOy ()5,6A --()5,1A '--ABC △a b c <<1a +1b +1c +2a 2b 2c2a 2b 2c1a b -+1b c -+1c a -+3ab ab -=x =11x x +-ABCD 90B ∠=︒4AD BC ==6AB =AC BAD ∠ABCD xOy Rt OAB △OB 30ABO ∠=︒421x +16.在中,,D ,E 是边上的两点,且,有下列四个推断:①若是的高,则可能是的中线;②若是的中线,则不可能是的高;③若是的角平分线,则可能是的中线;④若是的高,则不可能是的角平分线.上述推断中,所有正确结论的序号是_______.三、解答题(共52分,第17-23题,每题5分,第24题4分,第25题6分,第26题7分)17.计算:.18.计算:.19.解分式方程:.20.化简:,并选择一个适当的t 的值代入求值.21.已知:如图,是等边三角形,D 是上一点,,.求证:是等边三角形.22.如图,在锐角三角形中,D 为边上一点,,在上求作一点P ,使得.(1)通过尺规作图确定点P 的位置(保留作图痕迹);(2)证明满足此作图的点P 即为所求.23.某项研究表明在智能手机上输入短信或其他文字信息时,使用语音输入的速度约为键盘输入速度的3倍,该研究的测试者在手机上输入300个单词,使用语音输入比键盘输入平均快2.5分钟,求测试者使用语音输入平均每分钟输入多少个单词.24.下面是一些方程和它们的解.的解为,;ABC △AB AC <BC BD BE <AD ABC △AE ABC △AD ABC △AE ABC △AD ABC △AE ABC △AD ABC △AE ABC △()32347a a aa ⋅+-÷()()()22222x y x y x y y -----221111x x x x --=--2222421112t t t t t t t++-÷+--+ABC △AC ABD ACE ∠=∠AE BC ∥ADE △ABC BC B BAD CAD ∠=∠=∠AD APC ADB ∠=∠1122x x +=+12x =212x =的解为,;的解为,;……根据上面的方程和它们的解所反映的规律,解答下面问题:(1)的解为_______;(2)关于x 的方程的解为_______;(3)关于x 的方程的解为_______.25.如图,在中,D 是上一点(不与点B ,C 重合),将沿直线翻折得到,将平移得到(点B 与点E 为对应点),连接.(1)求证:;(2)连接,若在点D 的运动过程中,始终有,写出需要满足的条件,并证明.26.通常把脏衣服用洗衣液清洗后会进行拧干,但由于不可能拧净衣服上的全部污水,所以还需要用清水进行多次漂洗,不断降低衣服中污水的含量.某小组研究了如何用清水漂洗衣服效果更好,部分内容如下,请补充完整:实验研究:先准备几件相同的洗过一次并拧干(存留一些污水)的衣服,把每件衣服分别用一定量的清水浸泡,经过充分搓洗,使清水与衣服上存留的污水混合均匀,然后拧干,视为一次漂洗.称重、记录每次漂洗后衣服上存留的污水重量和比例,如:把一件存留1斤污水的衣服用10斤清水漂洗后,拧干到仍然存留1斤污水,则漂洗后衣服中存有的污物是原来的.在多次实验后,通过对收集的数据进行分析,该小组决定使用20斤清水,采用三种不同的方案,对每件衣服分别进行漂洗,并假设每次拧干后的衣服上都存留约1斤的污水.数据计算:对三种漂洗方案进行计算、比较.方案一:采用一次漂洗的方式.将20斤清水一次用掉,漂洗后衣服中存有的污物是原来的______;1133x x +=+13x =213x =1144x x +=+14x =214x =1155x x +=+11x n x n+=+21111x x a x a -+=+--ABC △BC DA BC DE BD EF DF ADB DEF ≌△△CF AD CF =ABC △111方案二:采用两次漂洗的方式,且两次用水量不同.如第一次用12斤清水,第二次用8斤清水,漂洗后衣服中存有的污物是原来的______;方案三:采用两次漂洗的方式,且两次用水量相同.每次用10斤清水,漂洗后衣服中存有的污物是原来的______.实验结论:对比可知,在这三种方案中,方案______的漂洗效果最好(填“一”“二”或“三”).推广证明:将脏衣服用洗衣液清洗后,再用清水进行漂洗,假设每次拧干后还存留斤污水.现用斤清水漂洗(方案二中第一次用水量为x 斤),证明上面实验中得到的结论.()0a a >()0m m >北京市朝阳区2023~2024学年度第一学期期末检测八年级数学试卷参考答案及评分标准2024.1一、选择题(共24分,每题3分)题号12345678答案DABADCCC二、填空题(共24分,每题3分)题号9101112答案6020题号13141516答案0或5或6或7①②③三、解答题(共52分,第17-23题,每题5分,第24题4分,第25题6分,第26题7分)17.解:18.解:.19.解:去分母,得.解得.经检验,是原分式方程的解.所以原分式方程的解是20.解:()()11ab b b +-1-()4,01-()32347a a aa ⋅+-÷()5127a a a =+-÷55a a =-0=()()()22222x y x y x y y -----()2222244322x xy y x xy y y =-+--+-2222244322x xy y x xy y y =-+-+--xy =-()()21211x x x x +--=-2x =2x =2x =2222421112t t t t t t t ++-÷+--+()()()()222121112t t tt t t t +-=-⋅++-+.答案不唯一.如:当时,原式=2.21.证明:是等边三角形,,.,..,..是等边三角形.22.法一:(1)如图所示.(2)证明:由作图可知..,.,,.点P 即为所求.法二:(1)如图所示.(2)证明:由作图可知.()21211t t t t -=-++21t =+0t = ABC △∴AB AC =60BAC ACB ∠=∠=︒ AE BC ∥∴60CAE ACB ∠=∠=︒∴BAD CAE ∠=∠ ABD ACE ∠=∠∴ABD ACE ≌△△∴AD AE =∴ADE △AP CP =∴PAC PCA ∠=∠ B BAD CAD ∠=∠=∠∴B BAD CAD PCA ∠=∠=∠=∠ 180APC CAD PCA ∠+∠+∠=︒180ADB B BAD ∠+∠+∠=︒∴APC ADB ∠=∠∴CP CD =.,,.点P 即为所求.23.解:设测试者使用键盘输入平均每分钟输入x 个单词,则使用语音输入平均每分钟输入个单词.由题意,得.解得.经检验,是原分式方程的解,且符合题意.所以.答:测试者使用语音输入平均每分钟输入240个单词.24.解:(1),;(2),;(3),.25.(1)证明:将沿直线翻折得到,,.将平移得到(点B 与点E 为对应点),,....(2)需要满足的条件为.证明:此时图形如图所示.由(1)可知,.,,.∴CPD CDP ∠=∠ 180APC CPD ∠+∠=︒180ADB CDP ∠+∠=︒∴APC ADB ∠=∠∴3x 3003002.53x x-=80x =80x =3240x =15x =215x =1x n =21x n =1x a =21a x a =- DA BC DE ∴AD ED =ADB EDB ∠=∠ BD EF ∴BD EF =BD EF ∥∴E EDB ∠=∠∴ADB E ∠=∠∴ADB DEF ≌△△ABC △AB AC =ADB DEF≌△△∴AB DF =B DFE ∠=∠ AB AC =∴AC DF =B ACB ∠=∠,....26.数据计算:;;.实验结论:三.推广证明:依题意可得,选择方案一进行一次漂洗后,衣服中存有的污物是原来的,可化为;选择方案二进行两次漂洗后,衣服中存有的污物是原来的,整理得;选择方案三进行两次漂洗后,衣服中存有的污物是原来的,整理得;因为三个分式的分子,分母都是正数,且分子相同,所以要判断三个分式值的大小,只需比较分母的大小.因为,且,,所以.所以.所以.即方案二比方案一的漂洗效果好.因为,且,所以.所以.BD EF ∥∴DFE FDC ∠=∠∴ACB FDC ∠=∠∴ACD FDC ≌△△∴AD CF =12111171121a a m +22a a am+()a a a x a m x ⋅++-222a a am mx x ++-222a m a ⎛⎫+ ⎪⎝⎭2224a ma am ++()()2222a am mx x a am mx x x m x ++--+=-=-m x >0x >()0x m x ->222a am mx x a am ++->+222a a a m a am mx x >+++-()2222222442m m m a am a am mx x mx x x ⎛⎫++-++-=-+=- ⎪⎝⎭2m x ≠202m x ⎛⎫-> ⎪⎝⎭22224m a am a am mx x ++>++-所以.即方案三比方案二的漂洗效果好.综上,在这三种方案中,方案三的漂洗效果最好.2222224a a m a am mx xa am >++-++。

人教版八年级数学上册北京市西城区北京八中第一学期

人教版八年级数学上册北京市西城区北京八中第一学期

初中数学试卷北京市西城区北京八中2014——2015学年度第一学期期中练习题年级:初二 科目:数学 班级: 姓名:________考生须知 1.本试卷共4页,共8道大题,31道小题,满分100分。

考试时间100分钟。

2.在试卷和答题纸上准确填写班级、姓名、学号。

3.答案一律填写在答题纸上,在试卷上作答无效。

4.考试结束,将试卷和答题纸一并交回。

一、选择题(每题3分,共30分,每题只有一个正确答案) 1.下列各式中,从左到右的变形是因式分解的是( ).A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2D. ax+ay+a=a (x+y ) 2.计算-23-的结果是( ). A .-9 B .9 C .19 D .19- 3.根据下列已知条件,不能唯一确定......△ABC 的大小和形状的是( ). A .AB =3,BC =4,AC =5 B .AB =4,BC =3,∠A =30º C .∠A =60º,∠B =45º,AB =4 D .∠C =90º,AB =6,AC =5 4.下列变形正确的是( ).A .11a a b b +=+B .11a a b b --=--C .221a b a ba b -=-- D .22()1()a b a b --=-+ 5.若 (x - 4)(x + 7) 是二次三项式 x 2+ ax - 28 的因式分解结果, 那么a 的值是( ). A .3 B .-3 C .11 D .-116.若分式22xx -+的值是零,则x 的值是( ).A .0x =B .2±=xC .2-=xD .2=x7.已知1a b -=,则222a b b --的值为( ). A .4 B .3 C .1D .08.不论b a ,为任何实数,3510622++-+b a b a 的值总是( ). A .非负数 B .恒为正数 C . 恒为负数 D .不等于09.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( ).A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( ).A B CD二、填空题(每题2分,共20分) 11.当x __________时,分式11x-有意义. 12.在多项式b a c ab 33812--中应提取的公因式是___________.13.如图,已知AB ⊥BD ,AB ∥ED ,AB =ED ,要说明ΔABC ≌ΔEDC ,若以“SAS ”为依据,还要添加的条件为 ;若添加条件AC =EC ,则可以用 公理(或定理)判定全等.右下折沿虚线剪开 剩余部分上右ABDC14.当a 为 时,关于x 的方程311x a x x--=-有增根. 15.已知关于x 的分式方程411=--x a 的解为非负数,则a 的取值范围是 . 16.已知21=-x x , 则=+221x x ________, =+441xx _________. 17.已知三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是 . 18.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是 .19.如图,DB ⊥AE 于B ,DC ⊥AF 于C ,且DB =DC ,∠BAC =40°,∠ADG =130°,则∠DGF = .20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 .三.将下列各式因式分解(每题4分, 共8分)21.244x y xy y -+ 22.8)3)(1(---x x 四. 计算题(每题4分,共8分) 23.2222()()(2)bb ab aa -⋅÷- 24.22211121x x x x x -÷+--+ 五.解分式方程(4分) 25.2242111a a a a a -+=-+六.作图题(4分)26.某地区要在区域..S .内.(即∠COD 内部..)建一个超市M ,如图所示,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处?(要求:尺规作图, 不写作法, 保留作图痕迹) 七.解答题(每题5分,共20分)27.如图,在△ABC 中,AD 是△ABC 的中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .ECAB D第13题图第18题图第19题图GBCAEFDF EDCBA求证:BE =CF .28.已知062=--x x ,求36232++x x x 的值.29.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6 元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?30.如图,△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,连接DE 、DF ,∠EDF +∠BAC =180°.求证:DE =DF八.解答题(共6分)31.已知:在平面直角坐标系中,△ABC 的顶点A 、C 分别在y 轴、x 轴上,且∠ACB =90°, AC =BC .(1)如图1,当A (0,-2),C (1,0),点B 在第四象限时,则点B 的坐标为 ; (2)如图2,若BO 平分∠ABC ,交AC 于D ,过A 作AE ⊥y 轴,垂足为E ,则AE 与BD 之间的数量关系是(3)如图3,当点C 在x 轴正半轴上运动,点A 在y 轴正半轴上运动,点B 在第四象限时,作BD ⊥y 轴于点D ,试判断①OA BDOC +与②OABD OC -中 是定值(只填序号), 并求..出.这个定值.CDSOAB第26题图EFD ABC第27题图yyy2014-2015学年度第一学期期中练习题答案一.选择题:二.填空题:题号 11 12 13 14 15 答案 x ≠14ab BC=DC , HLa =1a ≥-3,且a ≠1题号 16 17 18 19 20 答案6,341<x <63150°(1,5),(1,-1),(5,-1)三.将下列各式因式分解:21.244x y xy y -+ 22.8)3)(1(---x x =2)12(-x y =)1)(5(+-x x四.计算题:23.2222()()(2)b b ab aa -⋅÷- 24.22211121x x x x x -÷+--+ =824a b =x1五.解分式方程:题号 1 2 3 4 5 6 7 8 9 10 答案CDBBADCBAANMF EDCBA25. 2242111a a a a a -+=-+ 21-=a 26. AB 的垂直平分线与∠COD 平分线的交点为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市八年级上学期数学第一周考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题(每小题3分,共30分) (共10题;共30分)
1. (3分)(2020·苏州模拟) 如图,D是△ABC的边AB的延长线上一点,DE∥BC,若∠A=32°,∠D=56°.则∠C的度数是()
A . 16°
B . 20°
C . 24°
D . 28°
2. (3分) (2019七下·长沙期末) 已知点M(3,﹣2),N(3,﹣1),则线段MN与x轴()
A . 垂直
B . 平行
C . 相交
D . 不垂直
3. (3分) (2018八上·秀洲月考) 已知三角形两边长分别为4和6,则该三角形第三边的长可能是()
A . 2
B . 9
C . 10
D . 12
4. (3分)若(m﹣1)x>m﹣1的解集为x<1,则m的取值范围是()
A . m>1
B . m<1
C . m>0
D . m<0
5. (3分)二次函数y=ax2+bx+c的图像如图所示,则点Q(a,)在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
6. (3分)已知a<b,下列四个不等式中,不正确的是()
A . 2a<2b
B . -2a<-2b
C . a+2<b+2
D . a-2<b-2
7. (3分)一个正方形和两个等边三角形的位置如图所示,若∠3=60°,则∠1+∠2=()
A . 80°
B . 90°
C . 120°
D . 180°
8. (3分)不等式6x<4x-1的解集是()
A . x>
B . x>-
C . x<-
D . x<
9. (3分) (2020八上·辽阳期末) 下列命题中的假命题是()
A . 过直线外一点有且只有一条直线与这条直线平行
B . 平行于同一直线的两条直线平行
C . 直线y=2x﹣1与直线y=2x+3一定互相平行
D . 如果两个角的两边分别平行,那么这两个角相等
10. (3分) (2020七下·温州期中) 下列各式是二元一次方程的是()
A .
B .
C .
D .
二、填空题(每题3分,共24分) (共8题;共24分)
11. (3分) (2019八上·江岸月考) 在△ABC中,AC=5,中线AD=4,则边AB的取值范围是________.
12. (3分) (2018七上·云梦月考) 若|y+3|与|x-4|互为相反数,则3x-y=________
13. (3分) (2019七下·秀洲月考) 如图,已知a∥b,∠1=70°,∠2=50°,则∠3=________.
14. (3分)已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是________
15. (3分) (2019八上·浦东月考) 不等式()x≥1的解集是________.
16. (3分)(2016·太仓模拟) 已知多边形的每个内角都等于135°,求这个多边形的边数是________.(用两种方法解决问题)
17. (3分)已知,如图,DG⊥BC,AC⊥BC,CD⊥AB,EF⊥AB,则DG与AC间的距离是线段GC的长,CD与EF 间的距离是线段________的长.
18. (3分)(2020·萧山模拟) 不等式组的最大整数解为 ________。

三、解答题 (共7题;共66分)
19. (12分) (2018八上·长春开学考) 解方程或方程组.
(1)
(2)
(3)
(4)
20. (16分) (2019七下·吴江期末)
(1)解方程组: ;
(2)解不等式组: ,并将不等式组的解集在数轴上表示出来.
21. (6分) (2019八下·永川期中) 如图所示,已知△ABC中,AB=AC,D、E分别是AB、BC上的点,连结DE并延长交AC的延长线于点F,若DE=EF,求证:DB=CF.
22. (8分)设二元一次方程2x+y-4=0,x-y+3=0,x+2y-k=0有公共解.求k的值.
23. (8分) (2017七下·抚宁期末) 列不等式(组)解应用题:
一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.
24. (8分) (2016七下·房山期中) 求不等式组的整数解.
25. (8分) (2019七下·个旧期中) 在课间活动中,小英、小丽和小华在操场上画出、两个区域,一起玩投沙包游戏,沙包落在区域所得分值与落在区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.
参考答案
一、选择题(每小题3分,共30分) (共10题;共30分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题(每题3分,共24分) (共8题;共24分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共66分)
19-1、19-2、19-3、19-4、
20-1、20-2、21-1、
22-1、23-1、
24-1、25-1、。

相关文档
最新文档