2017年中考数学真题分类汇编 函数图象综合
2017中考数学复习----二次函数综合题
2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。
2017年全国中考数学真题分类 二次函数概念、性质和图象2017(解答题)
2017年全国中考数学真题分类 二次函数概念、性质和图象解答题三、解答题1. (2017山东滨州,24,14分)(本小题满分14分)如图,直线y =kx +b (k 、b 为常数)分别与x 轴、y 轴交于点A (-4,0)、B (0,3),抛物线y =-x 2+2x +1与y 轴交于点C . (1)求直线y =kx +b 的解析式;(2)若点P (x ,y )是抛物线y =-x 2+2x +1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y =-x 2+2x +1的对称轴上移动,点F 在直线AB 上移动,求CE +EF 的最小值.思路分析:(1)将A 、B 两点坐标代入y =kx +b 中,求出k 、b 的值;(2)作出点P 到直线AB的距离后,由于∠AHC =90°,考虑构造“K 形”相似,得到△MAH 、△OBA 、△NHP 三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C ′E .当C ′F ⊥AB 时,CE+EF 最小. 解:(1)∵y =kx +b 经过A (-4,0)、B (0,3),∴403k b b -+=⎧⎨=⎩,解得k =34,b =3.∴y =34x +3.(2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .设H (m ,34m +3),则M (-4,34m +3),N (x ,34m +3),P (x ,-x 2+2x +1).∵PH ⊥AB ,∴∠CHN +∠AHM =90°,∵AM ⊥MN ,∴∠MAH +∠AHM =90°.∴∠MAH =∠CHN ,∵∠AMH =∠CNH =90°,∴△AMH ∽△HNP . ∵MA ∥y 轴,∴△MAH ∽△OBA .∴△OBA ∽△NHP . ∴345NH CN CH==. ∴23(3)(21)4345m x x x m d+--++-==. 整理得:24855d x x =-+,所以当x =58,即P (58,11964).(3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1)设F (m ,34m +3)∵C ′F ⊥AB ,∠AFJ +∠C ′FK =90°,∵CK ⊥JK ,∴∠C ′+∠C ′FK =90°.∴∠C ′=∠AFJ ,∵∠J =∠K =90°,∴△AFJ ∽△FC ′K .∴'AJ JF FK C K =,∴33443224m m m m ++=-+,解得m =825或-4(不符合题意). ∴F (825,8125),∵C ′(2,1),∴FC ′=145.∴CE +EF 的最小值=C ′E =145.2. (2017江苏徐州,26,9分)如图① ,菱形ABCD 中,5AB =cm ,动点P 从点B 出发,沿折线BC CD DA --运动到点A 停止,动点Q 从点A 出发,沿线段AB 运动到点B 停止,它们运动的速度相同.设点P 出发xs 时,BPQ ∆的面积为y 2cm .已知y 与x 之间的函数关系.如图②所示,其中,OM MN 为线段,曲线NK 为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当12x <<时,BPQ ∆的面积 (填“变”或“不变”); (2)分别求出线段OM ,曲线NK 所对应的函数表达式; (3)当x 为何值时,BPQ ∆的面积是52cm ?Ds )图① 图②思路分析:(1)观察图象②可知,当1<x <2时,y =10,故△BPQ 的面积不变; (2)用待定系数法求其解析式即可;(3)把y =5分别代入(2)中的一次函数及二次函数解析式,求出x 的值即可,对x 的值注意取舍.解:(1)不变(2)设OM所在直线的函数表达式为y=kx,把M(1,10)代入,得k=10. ∴线段OM的函数表达式为y=10x(0<x<1)在曲线NK上取一点G,使它的横坐标52,由题意可得其纵坐标为52.∴曲线NK过三点N(2,10),G(52,52),K(3,0)∵曲线NK为抛物线的一部分,设其表达式为y=ax2+bx+c,可得42102555422930a b ca b ca b c++=⎧⎪⎪++=⎨⎪++=⎪⎩解得106090abc=⎧⎪=-⎨⎪=⎩∴曲线NK的函数表达式为y=10x2-60x+90(2<x<3)(3)把y=5代入y=10x,解得x=1 2,把y=5代入y=10x2-60x+90,解得x1=3-22,x2=3+22(舍去)∴当x=3-22或x=12时,BPQ∆的面积是52cm3.(2017江苏南京,26,8分)已知函数y=-x2+(m-1)x+m(m为常数)(1)该函数的图像与x轴公共点的个数是()A.0 B.1 C.2 D.1或2(2)求证∶不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)当-2≤m≤3时,求该函数的图像的顶点纵坐标的取值范围.思路分析∶(1)计算二次函数对应一元二次方程的判别式b2-4ac,判断即可;(2)先利用配方法求出(1)的函数的顶点坐标,然后代入y=(x+1)2,即可得证;(3)由(2)可知函数图像的顶点纵坐标,再表示为z=,然后分类讨论即可.解∶(1)D.二次函数对应的一元二次方程为-x2+(m-1)x+m=0,则b2-4ac=(m-1)2+4m=(m+1)2≥0,所以一元二次方程有两个相等或两个不相等的实数根,即对应的二次函数图像与x轴有1个或2个交点.(2)y=-x2+(m-1)x+m=-,所以该函数的图像的顶点坐标为(,)()211,24mm⎛⎫⎝+-⎪⎪⎭.把x=代入y=(x+1)2,得y=.因此,不论m为何值,该函数的图像的顶点都在函数y=(x+1)2的图像上.(3)设函数z=.当m=-1时,z有最小值0.当m<-1时,z随m的增大而减小;当1m>-时,z随m的增大而增大.又当2m=-时,在z=;当m=3时,z==4.因此,当-2≤m≤3时,该函数的的图像的顶点纵坐标的取值范围是0≤z≤4.4.(2017湖南衡阳,26,10分)(本小题满分10分)如图,△AOB的顶点A、B分别在x轴、y轴上,∠BAO=450,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G 向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.思路分析:(1)因为∠BAO=450,所以OA=OB,且△AOB的面积为8,所以OA=OB=4,故直接写出点A、B的坐标为(4,0),(0,4)。
2017年全国中考数学真题《函数与一次函数》分类汇编解析
2017年全国中考数学真题《函数与一次函数》分类汇编解析函数与一次函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征 点P(x ,y )在第一象限0,0>>⇔y x点P(x ,y )在第二象限0,0><⇔y x 点P(x ,y )在第三象限0,0<<⇔y x 点P(x ,y )在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x ,y )在x 轴上0=⇔y ,x 为任意实数 点P(x ,y )在y 轴上0=⇔x ,y 为任意实数点P(x ,y )既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x ,y )在第一、三象限夹角平分线上⇔x 与y 相等 点P(x ,y )在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离点P(x ,y )到坐标轴及原点的距离: (1)点P(x ,y )到x 轴的距离等于y(2)点P(x ,y )到y 轴的距离等于x(3)点P(x ,y )到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
2017年中考数学试题分项版解析汇编(解析版)专题06函数的图像与性质(原卷版)
一、选择题
1.(2017 浙江衢州市第 8 题)如图,在直角坐标系中,点 A 在函数 y = B,AB 的垂直平分线与 y 轴交于点 C,与函数 y = 四边形 ACBD 的面积等于( )
4 ( x > 0) 的图象上,AB⊥ x 轴于点 x
4 ( x > 0) 的图象交于点 D。连结 AC,CB,BD,DA,则 x
x
2-x
中自变量 x 的取值范围是(
12.(2017 江苏盐城第 6 题)如图,将函数 y= (x-2)2+1 的图象沿 y 轴向上平移得到一条新函数的图象,
其中点 A(1,m),B(4,n)平移后的对应点分别为点 A'、B'.若曲线段 AB 扫过的面积为 9(图中的阴 影部分),则新图象的函数表达式是( )
)
A.1
B.2
C.3
D.4
9.(2017 湖南怀化第 8 题)一次函数 y = - 2 x + m 的图象经过点 P ( - 2,3) ,且与 x 轴、 y 轴分别交于点 A 、 B ,
则 △ AOB 的面积是(
A.
) B.
1 2
1 4
C.4
D.8
10. (2017 湖南怀化第 10 题) 如图,A , B 两点在反比例函数 y =
达点 C 时停止运动,过点 E 做 FE ^ AE ,交 CD 于 F 点,设点 E 运动路程为 x , FC = y ,如图 2 所表示的 是 y 与 x 的函数关系的大致图象,当点 E 在 BC 上运动时, FC 的最大长度是
2 ,则矩形 ABCD 的面积是 5
(
)
图1
图2
A.
23 5
2017年中考数学真题分类解析 函数初步(含平面直角坐标系)
一、选择题1. (2017浙江丽水·10·3分)在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系图象.下列说法错误的是( ) A .乙先出发的时间为0.5小时 B .甲的速度是80千米/小时C .甲出发0.5小时后两车相遇D .甲到B 地比乙到A 地早121小时答案:D .解析:由图象可知乙先出发0.5小时后两车相距70千米,即乙的速度是60千米/小时,这样乙从B 地出发到达A 地所用时间为32160100=÷小时,由函数图形知此时两车相距不到100千米,即乙到达A 地时甲还没有到达B 地(甲到B 地比乙到A 地迟),故选项D 错误.2. .(2017四川泸州,5,3分)已知点A (a ,1)与点B (-4,b )关于原点对称,则a +b 的值为( )A .5B .-5C .3D .-3答案:C ,解析:关于原点对称的两个点的纵、横坐标均互为相反数,故a =4,b =-1,所以a +b =4-1=3. 3. (2017四川泸州,8,3分)下列曲线中不能表示y 是x 的函数的是( )答案:C ,解析:若y 是x 的函数,那么x 取一个值时,y 有唯一的一个值与x 对应,C 选项图像中,在x 轴上取一点(图像与x 轴交点除外),即确定一个 x 的值,这个点都对应图像上两个点,即一个x 的值有两个y 的值与之对应,故此图像不是y 与x 的函数图像.故选C .4. (2017山东济宁,10,3分)如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表示y 与x 的函数关系的是A .①B .④C .②或④D .①或③答案:D ,解析:根据“直径是圆中最长的弦”,点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,分两种情况:点P 顺时针运动时,BP 长先变大再变小直至0再变大选③;点P 逆时针运动时,BP 长先变小直至0再变大再变小选①.5. (2017四川攀枝花,16,4分)如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 处出发沿折线BE -ED -DC 运动到点C 停止,点Q 从点B 处出发沿BC 运动到点C 停止,它们运动的速度都是lcm /s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②S ∆ABE =48 cm 2 ;③当14<t <22时,y = 110-5t ;④在运动过程中,使得∆ABP 是等腰三角形的P 点一共有3个;⑤∆BPQ 与∆ABE 相似时,即t =14.5.其中正确结论的序号是 . 答案:①、③、⑤解析:由图8可判断出10BE =,4DE =,当P 点在ED 上运动时40BPQ S ∆=,∴此时PBQ ∆的高为8,级8AB =,∴6AE =,∴10BC AD ==,∴当0<t ≤10时,点P 在BE 上运动,BP BQ =,∴BPQ ∆是等腰三角形;所以①对;1242ABE S AB AE ∆==g ,所以②错;当14<t <22时,点P 在CD 上运动,y = 110-5t ,所以③对;ABP ∆为等腰三角形需要分类讨论,当AB AP =时,ED 存在一个P 点,当BA BP =时,BE 上存在一个P 点,当PA PB =时,点P 在AB 垂直平分线上,所以BE 和CD 上各存在一个P 点,共有4个满足条件的点,所以④错;∆BPQ 与∆ABE 相似时,只存在BPQ BAE ∆∆∽这种情况,此时Q 点与点C 重合,即34PC AE BC AB ==,所以7.5PC =,即t =14.5,所以⑤对. 6. 4.(2017江苏淮安,4,3分)点P (1,-2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(-2,1)答案:C ,解析:关于y 轴对称的点的坐标规律是“横坐标互为相反数,纵坐标不变”,可知点P (1,-2)关于y 轴对称的点的坐标是(-1,-2).7. 2.(2017江苏无锡,2,3分)函数2xy x=-中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >2答案:A .解析:由分母不为0,得2-x ≠0,∴x ≠2 .8. (2017湖南岳阳,9,4分)函数1y 7x =-中自变量x 的取值范围是 . 答案:x ≠7,解析:分母不为0有意义,则x -7≠0,解得,x ≠7.9. 7.(2017浙江义乌,7,4分)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是OthA BCA .B .C .D .答案:D ,解析:由均匀地向容器注水可知,单位时间内注水量相同.对于长方体容器,底面积越大,水面高度上升的速度越小,根据图象可得,最上面的容器底面积最小,中间的容器底面积最大.10. (2017湖南邵阳,9,3分)如图(五)所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中 x 表示时间,y 表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A .1.1 千米B .2 千米C .15 千米D .37 千米答案:A ,解析:由图知从家出发经过15分钟到达菜地.浇水时间为15——25分钟,接着用(37-25)分钟时间去玉米地,第37——第55分钟时在玉米地除草,从55分钟开始回家,故菜地离家的距离为1.1千米,故选A .11.(2017湖南邵阳,10,3分)如图(六)所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30 秒后,飞机P飞到P′ (4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′ (2,3 ),R′ ( 4,1 ) B.Q′ (2,3 ),R′ ( 2,1 )C.Q′ (2,2 ),R′ ( 4,1 ) D.Q′ (3,3 ),R′ ( 3,1 )答案:A,解析:因为保持编队不变,所以由P(-1,1)移动到P′(4,3)知是向右平移了5个单位,向上平移了2个单位,所以Q,R平移后的坐标分别为(2,3),(4,1),故选A.12. 4.(2017呼和浩特,3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大答案:D,解析:2012年的增长率最大,为100%。
2017-2021年河南中考数学真题分类汇编之二次函数
2017-2021年河南中考数学真题分类汇编之二次函数一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4 2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017-2021年河南中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】数形结合;二次函数图象及其性质.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=±4.【考点】二次函数的性质.【分析】根据二次函数顶点在x轴上得出Δ=b2﹣4ac=m2﹣4×2×2=0,即可得出答案.【解答】解:∵二次函数y=x2+bx+4的顶点在x轴上,∴Δ=b2﹣4ac=b2﹣4×1×4=0,∴b2=16,∴b=±4.故答案为:±4.【点评】本题考查了二次函数的性质以及二次函数顶点在x轴上的特点,根据题意得出Δ=b2﹣4ac=0是解决问题的关键.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【分析】(1)先求出点B,点A坐标,利用待定系数法代入解析式求出c的值,即可求解;(2)先求出点M,点N坐标,利用函数的图象即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),c>0.∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,顶点(1,4).∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴当M,N在对称轴的同侧时,﹣21≤y Q≤﹣5;当M,N在对称轴的两侧时,﹣21≤y Q≤4.∴点Q的纵坐标y Q的取值范围为﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n =5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,∴抛物线方程为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:3或;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【考点】二次函数综合题.【专题】代数综合题;分类讨论;一元一次不等式(组)及应用;数据分析观念.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得或(不符合题意,舍去),即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上所述,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【考点】二次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x ﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.【解答】解:(1)当x=0时,y=﹣x﹣2=﹣2,∴点C的坐标为(0,﹣2);当y=0时,﹣x﹣2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)①∵PM⊥x轴,∴∠PMC≠90°,∴分两种情况考虑,如图1所示.(i)当∠MPC=90°时,PC∥x轴,∴点P的纵坐标为﹣2.当y=﹣2时,x2+x﹣2=﹣2,解得:x1=﹣2,x2=0,∴点P的坐标为(﹣2,﹣2);(ii)当∠PCM=90°时,设PC与x轴交于点D.∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,∴∠OAC=∠OCD.又∵∠AOC=∠COD=90°,∴△AOC∽△COD,∴=,即=,∴OD=1,∴点D的坐标为(1,0).设直线PC的解析式为y=kx+b(k≠0),将C(0,﹣2),D(1,0)代入y=kx+b,得:,解得:,∴直线PC的解析式为y=2x﹣2.联立直线PC和抛物线的解析式成方程组,得:,解得:,,点P的坐标为(6,10).综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).②当y=0时,x2+x﹣2=0,解得:x1=﹣4,x2=2,∴点B的坐标为(2,0).∵点C的坐标为(0,﹣2),点B,B′关于点C对称,∴点B′的坐标为(﹣2,﹣4).∵点P的横坐标为m(m>0且m≠2),∴点M的坐标为(m,﹣m﹣2).利用待定系数法可求出:直线BM的解析式为y=﹣x+,直线B′M的解析式为y=x﹣,直线BB′的解析式为y=x﹣2.分三种情况考虑,如图2所示:当直线l∥BM且过点C时,直线l的解析式为y=﹣x﹣2;当直线l∥B′M且过点C时,直线l的解析式为y=x﹣2;当直线l∥BB′且过线段CM的中点N(m,﹣m﹣2)时,直线l的解析式为y=x﹣m﹣2.综上所述:直线l的解析式为y=﹣x﹣2,y=x﹣2或y=x﹣m﹣2.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)①分∠MPC=90°及∠PCM=90°两种情况求出点P的坐标;②利用待定系数法及平行线的性质,求出直线l的解析式.10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)由抛物线的顶点坐标可设抛物线的解析式为y=a(x﹣1)2+4,由点C的坐标利用待定系数法可求出抛物线的解析式,进而可得出a,b,c的值;(2)利用一次函数图象上点的坐标特征可求出点D,G的坐标,进而可求出DG的长度,分DG=DM,GD=GM两种情况考虑:①当DG=DM时,由等腰三角形的性质可得出HG=HM1,进而可得出点M1的坐标;②当GD=GM时,由等腰三角形的性质可得出GM2=GM3=,结合点G的坐标可得出点M2,M3的坐标.综上,此问得解;(3)过点E作EN⊥直线DE,交x轴于点N,则△DOE∽△DEN,利用相似三角形的性质可求出点N的坐标,由点E,N的坐标利用待定系数法可求出直线EN的解析式,设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R,设直线PQ 的解析式为y=﹣2x+m,利用一次函数图象上点的坐标特征可求出点Q的坐标,联立直线PQ和直线DE的解析式成方程组,通过解方程组可得出点R的坐标,进而可得出点P 的坐标,由点P的坐标利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可得出m的值,再将其代入点P的坐标中即可得出结论.【解答】解:(1)∵抛物线顶点F的坐标为(1,4),∴设抛物线的解析式为y=a(x﹣1)2+4.将C(0,3)代入y=a(x﹣1)2+4,得:a+4=3,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∴a=﹣1,b=2,c=3.(2)当y=0时,x+1=0,解得:x=﹣2,∴点D的坐标为(﹣2,0).当x=1时,y=x+1=,∴点G的坐标为(1,),∴DH=1﹣(﹣2)=3,GH=,∴DG==.分两种情况考虑(如图1):①当DG=DM时,HG=HM1,∴点M1的坐标为(1,﹣);②当GD=GM时,GM2=GM3=,∴点M2的坐标为(1,),点M3的坐标为(1,).综上所述:点M的坐标为(1,﹣),(1,)或(1,).(3)过点E作EN⊥直线DE,交x轴于点N,如图2所示.当x=0时,y=x+1=1,∴点E的坐标为(0,1),∴OE=1,DE==.∵∠DOE=∠DEN=90°,∠ODE=∠EDN,∴△DOE∽△DEN,∴=,即=,∴DN=,∴点N的坐标为(,0).∵点E(0,1),点N(,0),∴线段EN所在直线的解析式为y=﹣2x+1(可利用待定系数法求出).设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R.设直线PQ的解析式为y=﹣2x+m,当y=0时,﹣2x+m=0,解得:x=,∴点Q的坐标为(,0).联立直线PQ和直线DE的解析式成方程组,得:,解得:,∴点R的坐标为(,).∵点R为线段PQ的中点,∴点P的坐标为(,).∵点P在抛物线y=﹣x2+2x+3的图象上,∴﹣()2+2×+3=,整理,得:9m2﹣68m+84=0,解得:m1=6,m2=,∴点P的坐标为(1,4)或(﹣,).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、相似三角形的判定与性质、平行线的性质、中点坐标公式以及二次函数图象上点的坐标特征,解题的关键是:(1)巧设二次函数解析式,利用待定系数法求出a值;(2)分DG=DM,GD=GM两种情况,利用等腰三角形的性质求出点M的坐标;(3)利用二次函数图象上点的坐标特征,找出关于m的一元二次方程.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN 的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.考点卡片1.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
2017山东数学中考真题,分类汇编-,几何综合大题
2017山东数学中考真命题分类会哦变——几何综合大题一、选择题:1、(德州,11.)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()四边形AMFNA.2 B.3 C.4 D.52、(东营,10.)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④3、(泰安,19.)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.44、(威海,10.)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE5、(威海,12.)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C ,则该反比例函数的表达式为( ) A .y= B .y= C .y= D .y=2、填空题1、(东营,14.)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CECO ,其中正确结论的序号是 .2、(潍坊,18.)如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在AD 边上,记为B′,折痕为CE ,再将CD 边斜向下对折,使点D 落在B′C 边上,记为D′,折痕为CG ,B′D′=2,BE=BC .则矩形纸片ABCD 的面积为 .三、解答题:1、(菏泽,23.)正方形ABCD 的边长为cm 6,点M E 、分别是线段AD BD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作AF MN ,垂足为H ,交边AB 于点N .(1)如图1,若点M 与点D 重合,求证:MN AF =;(2)如图2,若点M 从点D 出发,以s cm /1的速度沿DA 向点A 运动,同时点E 从点B 出发,以s cm /2的速度沿BD 向点D 运动,运动时间为ts . ①设ycm BF =,求y 关于t 的函数表达式; ②当AN BN 2=时,连接FN ,求FN 的长.2、(德州,23.)如图1,在矩形纸片ABCD 中,AB=3cm ,AD=5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF . (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动; ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.3、(临沂,25.(11分))数学课上,张老师出示了问题:如图1,AC ,BD 是四边形ABCD 的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC ,CD ,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE=CD ,连接AE ,证得△ABE ≌△ADC ,从而容易证明△ACE 是等边三角形,故AC=CE ,所以AC=BC+CD .小亮展示了另一种正确的思路:如图3,将△ABC 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明△ACF 是等边三角形,故AC=CF ,所以AC=BC+CD . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明. (2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4、(青岛,24.)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
浙江省2017年中考数学真题分类汇编 坐标系、一次函数与反比例函数(解析版)
浙江省2017年中考数学真题分类汇编:坐标系、一次函数与反比例函数(解析版)一、单选题1、(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A、0<y1<y2B、y1<0<y2C、y1<y2<0D、y2<0<y12、(2017·台州)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是()A、B、C、D、3、(2017•绍兴)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A、B、C、D、4、(2017·丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是()A、乙先出发的时间为0.5小时B、甲的速度是80千米/小时C、甲出发0.5小时后两车相遇D、甲到B地比乙到A地早小时二、填空题5、(2017·丽水)如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是________;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.6、(2017•宁波)已知△ABC的三个顶点为A ,B ,C ,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为________.7、(2017·金华)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.8、(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为________.三、解答题9、(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.10、(2017·金华)(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ABC关于原点O成中心对称的A 1B1C1.(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在A 1B1C1的内部(不包括顶点和边界),求a的取值范围.11、(2017·台州)如图,直线:与直线:相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线与直线,分别相交于C,D,若线段CD长为2,求a的值12、(2017•宁波)如图,正比例函数的图象与反比例函数的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当时,写出自变量的取值范围.13、(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?14、(2017·嘉兴)如图,一次函数()与反比例函数()的图象交于点,.(1)求这两个函数的表达式;(2)在轴上是否存在点,使为等腰三角形?若存在,求的值;若不存在,说明理由.15、(2017·衢州)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
2017全国中考数学真题分类-二次函数几何方面的应用(选择题+解答题)解析版
2017全国中考数学真题分类知识点20二次函数几何方面的应用(选择题+填空题+解答题)解析版一、选择题1. 8.(2017江苏扬州,,3分)如图,已知△ABC 的顶点坐标分别为A (0,2)、B (1,0)、C (2,1),若二次函数21y x bx =++的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是A .2b ≤-B .2b <-C .2b ≥-D .2b >-【答案】C【解析】由二次函数系数a 、b 、c 的几何意义可知该函数的开口方向和开口大小是确定不变的,与y 轴的交点(0,1)也是确定不变的。
唯一变化的是“b”,也就是说对称轴是变化的。
若抛物线经过点(0,1)和C(2,1)这组对称点,可知其对称轴是直线12bx =-=,即b =-2时是符合题意的,所以可以排除B、D两个选择支,如果将该抛物线向右平移,此时抛物线与阴影部分就没有公共点了,向左平移才能符合题意,所以12b-≤,即2b ≥-。
二、解答题1. (2017重庆,26,12分)(本小题满分12分)如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当∆PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ',y '经过点D,y '的顶点为点F.在新抛物线y '的对称轴上,是否存在点Q,使得∆FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.思路分析:(1)首先求出A、E点的坐标,然后设出直线AE的解析式,并将A、E点的坐标代入,求得方程组的解,便可得到直线AE的解析式;(2)由抛物线解析式求得C点坐标,则可得出直线CE的解析式;过点P作PH∥x轴,交CE于点H,设出P点坐标,可推出H点坐标,根据斜三角形面积公式“2铅垂高水平宽⨯”可表示出∆PCE的面积,并可计算出其面积最大时P点的坐标;分别作K关于CP、CD的对称点的对称点K1、K2,将KM +MN+KN即可确定出转化成一条线段,由“两点之间,线段最短”及勾股定理计算出其最小值即可;(3)运用已知两定点时确定等腰三角形常用的方法“两圆一线”即可在抛物线y '的对称轴上找到符合条件的四个点,分别确定其坐标即可.解:(1)∵抛物线3332332--=xxy与x轴交于A,B两点,且点E(4,n)在抛物线上,∴03332332=--xx,解得:x1=-1,x2=3,∴A,B两点的坐标分别为(-1,0),(3,0);343324332-⨯-⨯=y=335,∴点E坐标为(4,335).设直线AE的解析式的解析式为y=kx+b,将A点、E点坐标分别代入,得:⎪⎩⎪⎨⎧+=+-=bkbk4335,解得:⎪⎪⎩⎪⎪⎨⎧==3333bk,∴y=33x+33;(2)∵令x =0,得y = 3-,∴点C (0,3-),∵点E 坐标为(4,335),∴直线CE 的解析式为y =3332-x ,过点P 作PH ∥x 轴,交CE 于点H ,如图,设点P 的坐标为(t ,3332332--t t ),则H (t ,3332-t ),∴PH =3332-t -(3332332--t t )=t t 334332+-, ∴t t t t PH x x S C E PCE 338332334334212122+-=⎪⎪⎭⎫ ⎝⎛+-⨯⨯=⋅-=∆,∵0332<-,抛物线开口向下,40<<t ,∴当⎪⎪⎭⎫⎝⎛-⨯-=3322338t =2时,PCE S ∆取得最大值,此时P 为(2,3-);∵点C (0,3-),B (3,0),由三角形中位线定理得K (23,23-),∵y C =y P =3-,∴PC ∥x 轴,作K关于CP 的对称点K 1,则K 1(23,233-);∵333tan ==∠OCB ,∴∠OCB =60゜,∵D (1,0),∴3331tan ==∠OCD ,∴∠OCD = 30゜,∴∠OCD =∠BCD =30゜,∴CD 平分∠OCB ,∴点K 关于CD 的对称点K 2在y 轴上,又∵CK =OC =3,∴点K 2与点O 重合,连接OK 1,交CD 于点N ,交CP 于点M ,如图,∴KM = K 1M ,KN =ON ,∴KM +MN +KN =K 1M +MN +ON ,根据“两点之间,线段最短”可得,此时KM +MN +KN 的值最小,∴K 1 K 2 =O K 1=32332322=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛,∴KM +MN +KN 的最小值为3;(3)点Q 的坐标为(3,321234+-),(3,321234--),(3,32),(3,332-).2. (2017浙江衢州,22,10分)(本题满分10分)定义:如图1,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,点P 在抛物线上(P 点与A 、B 两点不重合),如果△ABP 的三边需满足AP 2+BP 2=AB 2,则称点P 为抛物线y =ax 2+bx +c (a ≠0)的勾股点.(1)直接写出抛物线y =-x 2+1的勾股点坐标.(2)如图2,已知抛物线C :y =ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (13C 的勾股点,求抛物线C 的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.思路分析:(1)所谓勾股点,即以AB为直径的圆与抛物线的交点.y=-x2+1与x轴交点坐标为(1,0),(-1,0),故圆心为原点,半径为1,与抛物线交点为(0,1).(2)由P点坐标可知∠PAB=60°,又∠APB=90°,从而求得B点坐标,利用待定系数法即可求解.(3)由S△ABQ=S△ABP,故有|y Q|y Q物线解析式即可求解.解(1)勾股点的坐标(0,1).(2)抛物线y=ax2+bx(a≠0)过原点(0,0),即A为(0,0).如图,作PG⊥x轴于点G,连结PA,PB.∵点P的坐标为(1,∴AG=1,PG PA=2,tan∠PAB∴∠PAB=60°,∴Rt△PAB中,AB=cos60PA=4,∴点B(4,0).设y=ax(x-4),当x=1时,ya.∴y x(x-4x2x.(3)①当点Q在x轴上方时,由S△ABQ=S△ABP易知点Qx2x1=3,x2=1(不合题意,舍去).∴Q1(3.②当点Q在x轴下方时,由S△ABQ=S△ABP易知点Qx2解得x1=2x2=2Q2(2,Q2(2.综上,满足条件的Q点有三个:Q1(3,Q2(2,Q2(2.3.(2017山东济宁,21,9分)已知函数2(25)2y mx m x m=--+-的图象与x轴有两个公共点.(1)求m的取值范围,写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1①当1n x≤≤-时,y的取值范围是13y n≤≤-,求n的值;②函数C2:22()y x h k=-+的图象由函数C1的图象平移得到,其顶点P的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.思路分析:(1)根据函数2(25)2y mx m x m=--+-图象与x轴有两个公共点,即一元二次方程2(25)20mx m x m --+-=有两个不同的实数解,即需满足m ≠0且根的判别式△>0,解不等式组得25,12m <且0m ≠;(2)由二次函数22y x x =+性质,当14x <-时,y 随x 的增大而减小,求出n 的值为—2;(3)由图形可知当P 为射线MO 与圆的交点时,距离最大,先求出MO 的解析式,设出点P 的坐标,根据勾股定理求出点P 的坐标,继而求出PM 最大时的函数解析式为()2221y x =-+.解:(1)由题意可得:()()20,25420.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩解得:25,12m <且0,m ≠ 当2m =时,函数解析式为:22y x x =+.(2)函数22y x x =+图象开口向上,对称轴为1,4x =-∴当14x <-时,y 随x 的增大而减小.∵当1n x ≤≤-时,y 的取值范围是13y n ≤≤-, ∴ 223n n n +=-.∴ 2n =-或0n =(舍去). ∴2n =-.(3)∵221122,48y x x x ⎛⎫=+=+- ⎪⎝⎭∴图象顶点M 的坐标为11,48⎛⎫-- ⎪⎝⎭,由图形可知当P 为射线MO 与圆的交点时,距离最大.∵点P 在直线OM 上,由11(0,0),(,)48O M --可求得直线解析式为:12y x =,设P (a ,b ),则有a =2b , 根据勾股定理可得()2222PO b b =+求得2,1a b ==.∴PM 最大时的函数解析式为()2221y x =-+.4. (2017山东威海,25,12分)如图,已知抛物线y =ax ²+bx +c 过点A (-1,0),B (3,0),C (0,3).点M ,N 为抛物线上的动点,过点M 作MD ∥y 轴,交直线BC 于点D ,交x 轴于点E . (1)求二次函数y =ax ²+bx +c 的表达式;(2)过点N 作NF ⊥x 轴,垂足为点F .若四边形MNFE 为正方形(此处限定点M 在对称轴的右侧),求该正方形的面积;(3)若∠DMN =90°,MD =MN ,求点M 的横坐标.解:∵抛物线2y ax bx c =++的图像经过点A (-1,0),B (3,0),∴抛物线的函数表达式为y =a (x +1)(x -3),将点C (0,3)代入上式,得3=a (0+1)(0-3), 解得a =-1.∴所求函数表达式为y =-(x +1)(x -3)=-x 2+2x +3.(2)由(1)知,抛物线的对称轴为212(1)x ==⨯-.如图1,设M 点的坐标(m ,-m 2+2m +3),∴ME =|-m 2+2m +3|.∵M ,N 关于x =1对称,且点M 在对称轴右侧, ∴N 点横坐标为2-m . ∴MN =2m -2∵四边形MNEF 为正方形∴ME =MN . ∴22322m m m -++=- . 分两种情况:①2m - +2m +3=2m -2.解,得12m m ==不符合题意,合去).当 m ,正方形的面积为22(2224⎡⎤+-=+⎣⎦综上所述,正方形的面积为24-或24+(3)设直线BC 的函数表达式为y =kx +b .把点B (3,0),C (0,3)代入表达式,得30,3,k b b +=⎧⎨=⎩解得1,3.k b =-⎧⎨=⎩∴直线BC 的函数表达式为y =-x +3,设点M 的坐标为(a ,223a a -++), 则点D 的坐标为(a ,-a +3), ∴DM =23a a -+ ,∵DM //y 轴,DM ⊥MN ,∴MN //x 轴. ∴M ,N 关于x =1对称. ∴N 点的横坐标为2-a , ∴MN =22a -, ∵DM =MN ,∴2322a a a -+=- . 分两种情况:①如图2,2322a a a -+=- , 解,得122,1a a ==- .②如图3,2322a a a -+=-,解,得3455,22a a +-==.综上所述,M 点的横坐标为122,1a a ==-,34,a a ==5.(2017年四川绵阳,24,11分)(本题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C于直线m交于对称轴右侧的点M(t,1).直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F.求BE∶MF的值.解:(1)设抛物线方程为,因为抛物线的顶点坐标是(2,1),所以…………………………1分又抛物线经过点(4,2),所以,解得,………………2分所以抛物线的方程是.……………………………3分(2)联立,消去y,整理得,………………………4分解得,,…………………………5分代入直线方程,解得,,所以B(),D(),因为点C是BD的中点,所以点C的纵坐标为,………………………6分利用勾股定理,可算出BD=,即半径R=,即圆心C到x轴的距离等于半径R,所以圆C与x轴相切.…………………………7分(3)连接BM和DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m于点E,DF⊥m于点F,所以∠BME=∠MDF,所以△BME∽△MDF,所以,……………………………9分即,代入得,化简得,解得t =5或t =1,………………………………10分因为点M 在对称轴右侧,所以t =5,………………………11分所以…………………………………………………12分法2:过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)知CM =R =25,CH =R -1=23, 由勾股定理,得MH =2,…………………9分又HF =,所以MF =HF -MH =-2,…………………10分 又BE =y 1-1=23-25,所以MF BE =25+1,………………………………………………12分思路分析:(1)知抛物线的顶点和其它任意一点,可设出抛物线的顶点式,代入点的坐标即可求出抛物线的解析式;(2)由抛物线与直线交于B、D,联立方程组,求出点B点D坐标,求出直径BD的长度,从而求出半径,与C的纵坐标进行比较,得出结论;(3)连接BM和DM,因为BD为直径,所以∠BMD=90°,所以∠BME+∠DMF=90°,又因为BE⊥m于点E,DF⊥m于点F,所以∠BME=∠MDF,所以△BME∽△MDF,所以,即,代入得,化简得,解得t=5或t=1,因为点M在对称轴右侧,所以t=5,所以.6.(2017四川攀枝花,24,12分)如图15,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.①当∆BCD是以BC为直角边的直角三角形时,求点D的坐标;②若∆BCD是锐角三角形,求点D的纵坐标的取值范围.图1 备用图思路分析:(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式; (2)方法1:(代数法)设点的坐标转化成所求线段,找特殊角转化成所求线段,联立函数关系,代入整理成关于目标线段和的二次函数关系式,从而找到最值;方法2:(几何法)以BC 为对称轴将FCE ∆对称得到F CE '∆,作PH CF '⊥于H ,则PF +EF =PF ′= 2 PH =()()223C P P y y y -=-∴当P y 最小时,PF EF +取最大值42.(3)①先设点再分类讨论,利用勾股定理得到关于所求D 点的一元方程式,解得即为D 1和D 2;②利用直径圆周角性质构造圆,利用线段距离公式建立一元方程式,解得即为D 3和D 4.结合①中D 1和D 2的坐标,当D 在D 2D 4和D 3D 1之间时候为锐角三角形,从而得到点D 的纵坐标的取值范围.解析:(1)由题意得:⎩⎪⎨⎪⎧32+3b +c =0,c =3. 解得⎩⎨⎧b =-4,c =3.∴抛物线的解析式为:y =x 2-4x +3.(2)方法1:如图,过P 作PG ∥CF 交CB 与G ,由题意知∠BCO =∠CEF =45°,F (0,m )C (0,3), ∴∆CFE 和∆GPE 均为等腰直角三角形, ∴EF =22CF =22(3-m ) PE =22PG ,设x P =t (1<t <3), 则PE =22PG =22(-t +3-t -m )=22(-m -2t +3), t 2-4t +3=t +m ,∴PE +EF =22(3-m )+22(-m -2t +3)= 22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t )= -2(t -2)2+42,∴当t =2时,PE +EF 最大值=42.方法2:(几何法)由题易知直线BC的解析式为3y x=-+,OC=OB=3,∴∠OCB=45°.同理可知∠OFE=45°,∴△CEF为等腰直角三角形,以BC为对称轴将△FCE对称得到△F′CE,作PH⊥CF′于H点,则PF+EF=PF′= 2 PH.yxHPF'CBAOFE又PH=3C P Py y y-=-.∴当Py最小时,PF+EF取最大值,∵抛物线的顶点坐标为(2,-1),∴当1Py=-时,(PF+EF)max= 2 ×(3+1)=4 2 .(3)①由(1)知对称轴x=2,设D(2,n),如图.当∆BCD是以BC为直角边的直角三角形时,D在C上方D1位置时由勾股定理得CD2+BC2=BD2,即(2-0)2+(n-3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;当∆BCD是以BC为直角边的直角三角形时,D在C下方D2位置时由勾股定理得BD2+BC2=CD2 即(2-3)2+(n-0)2+(32)2=(2-0)2+(n-3)2 ,解得n=-1.∴当△BCD是以BC为直角边的直角三角形时,D为(2,5)或(2,-1).②如图:以BC的中点T(3,3),12BC为半径作⊙T,与对称轴x=2交于D3和D4,由直径所对的圆周角是直角得∠CD3B=∠CD2B=90°,设D(2,m),由DT=12BC32得(32-2)2+(32-m)2=2322⎛⎝⎭,解得m=173±,∴D 3(2,173+)D 4(2,173-), 又由①得D 1为(2,5),D 2(2,-1),∴若∆BCD 是锐角三角形,D 点在线段13D D 或24D D 上时(不与端点重合),则点D 的纵坐标的取值范围是-1<D y <1732-或1732+<D y <5.7. (2017四川内江,28,12分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A ,B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x =1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.思路分析:(1) 由点B 的坐标与对称轴可求得点C 的坐标,把点A ,B ,C 的坐标分别代入抛物线的解析式,列出关于系数a ,b ,c 的方程组,求解即可;(2)设运动时间为t 秒,利用三角形的面积公式列出S △MBN 与t 的函数关系式,用配方法求的最大值;(3) 根据余弦函数,可得关于t 的方程,解方程,可得答案,注意分类讨论.解:(1)∵点B 坐标为(4,0),抛物线的对称轴方程为x =1,∴A (-2,0).把点A (-2,0),B (4,0),点C (0,3),分别代入y =ax 2+bx+c (a≠0),得⎪⎩⎪⎨⎧==++=+-.3,0416,024ccbacba解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.3,43,83cba∴该抛物线的解析式为y=343832++-xx.(2) 如图1,设运动时间为t秒,则AM=3t,BN=t,∴MB=6-3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC=2243+=5.如图1,过点N作NH⊥AB于点H,∴NH∥CO,∴△BHN∽△BOC,∴BCBNOCHN=,即53tHN=,∴HN=t53.∴S△MBN=21MB·HN=21(6-3t)·t53==+-tt591092109)1(1092+--t.当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=109.∴S与t的函数关系为S=109)1(1092+--t,S的最大值为109.(3)如图2,在Rt△OBC中,cos∠B=54=BCOB,设运动时间为t秒,则AM=3t,BN=t.∴MB=6-3t.当∠MNB=90°时,cos∠B=54=BMBN,即5436=-tt,解得t=1724.当∠BM'N'=90°时,cos∠B=5436=-tt,解得t=1930.综合上所述,当t=1724或t=1930时,△MBN为直角三角形.8. (2017江苏无锡,27,10分)如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C 、D 两点(点C 在点D 的上方),直线AC 、DB 交于点E .若AC :CE =1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.思路分析:(1)过点E 作E F ⊥x 轴于F ,设P (m ,0).①由相似三角形的判定与性质证得AF =3AP ,BF =3PB ;②由关系式AF -BF =AB ,可得m =1.∴点P 的坐标(1,0).(2)①由已知证得A (-3,0),E (9,),抛物线过点(5,0);②用待定系数法可得抛物线的函数表达式.解:(1)过点E 作E F ⊥x 轴于F ,∵CD ⊥AB ,∴CD ∥EF ,PC =PD . ∴△ACP ∽△AEF ,△BPD ∽△BEF . ∵AC :CE =1:2.∴AC :AE =1:3. ∴AP AF =CP EF =13,DP EF =PB BF =13. ∴AF =3AP ,BF =3PB . ∵AF -BF =AB .又∵⊙O 的半径为3,设P (m ,0), ∴3(3+m )-3(3-m )=6 ∴m =1.∴P (1,0)(2)∵P (1,0),∴OP =1,A (-3,0). ∵OA =3,∴AP =4,BP =2.∴AF =12. 连接BC .∵AB 是直径,∴∠ACB =90°.∵CD ⊥AB ,∴△ACP∽△CBP .∴AP CP =CPBP. ∴CP 2=AP ·BP =4×2=8. ∴CP =.∴EF =3CP =. ∴E (9,).∵抛物线的顶点在直线CD 上,∴CD 是抛物线的对称轴, ∴抛物线过点(5,0).设抛物线的函数表达式为y =ax 2+bx +c .根据题意得09-30255819a b ca b c a b c ⎧⎪+⎨⎪+⎩=+,=+,+,解得8484a b c ⎧⎪⎪⎪⎪⎨⎪⎪--⎪⎪⎩==-= ∴抛物线的函数表达式为yx 2x .9. (2017山东潍坊)(本小题满分13分)如图1,抛物线y =ax 2+bx +c 经过平行四边形ABCD 的顶点A (0,3)、B (-1,0)、D (2,3),抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点F .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式;(2)当t 何值时,△PFE 的面积最大?并求最大值的立方根;(3)是否存在点P 使△PFE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.思路分析:(1)利用待定系数法列方程组求解抛物线的解析式;(2)由平行四边形的对称性可知直线l 必过其对称中心,同时利用抛物线的对称性确定E 点坐标,进而可求直线l 的解析式,结合二次函数解析式确定点F 的坐标.作PH ⊥x 轴,交l 于点M ,作FN ⊥PH ,列出PM 关于t 的解析式,最后利用三角形的面积得S △PFE 关于t 的解析式,利用二次函数的最值求得t 值,从而使问题得以解决; (3)分两种情形讨论:①若∠P 1AE =90°,作P 1G ⊥y 轴,易得P 1G =AG ,由此构建一元二次方程求t 的值;②若∠AP 2E =90°,作P 2K ⊥x 轴,AQ ⊥P 2K ,则△P 2KE ∽△AQP 2,由此利用对应边成比例构建一元二次方程求t 的值. 解:(1)将点A (0,3)、B (-1,0)、D (2,3)代入y =ax 2+bx +c ,得⎪⎩⎪⎨⎧=++=+-=,324,0,3c b a c b a c 得⎪⎩⎪⎨⎧-==-=.1,2,1c b a 所以,抛物线解析式为:y=-x 2+2x +3.(2)因为直线l 将平行四边形ABCD 分割为面积相等的两部分, 所以必过其对称中心(21,23). 由点A 、D 知,对称轴为x =1,∴E (3,0), 设直线l 的解析式为:y =kx +m ,代入点(21,23)和(3,0)得 ⎪⎩⎪⎨⎧=+=+.03,2321m k m k 解之得⎪⎪⎩⎪⎪⎨⎧=-=.59,53m k 所以直线l 的解析式为:y =53-x +59. 由⎪⎩⎪⎨⎧++-=+-=,32,59532x x y x y 解得x F =52-. 作PH ⊥x 轴,交l 于点M ,作FN ⊥PH .点P 的纵坐标为y P =-t 2+2t +3, 点M 的纵坐标为y M =53-t +59.所以PM =y P -y M =-t 2+2t +3+53t -59=-t 2+513t +56. 则S △PFE =S △PFM + S △PEM =21PM ·FN +21PM ·EH =21PM ·(FN + EH )=21·(-t 2+513t +56)(3+52) =1017-·(t -1013)2+100289×1017 所以当t =1013时,△PFE 的面积最大,最大值的立方根为31017100289⨯=1017. (3)由图可知∠PEA ≠90°.①若∠P 1AE =90°,作P 1G ⊥y 轴,因为OA =OE ,所以∠OAE =∠OEA =45°, 所以∠P 1AG =∠AP 1G =45°,所以P 1G =AG . 所以t =-t 2+2t +3-3,即-t 2+t =0, 解得t =1或t =0(舍去).②若∠AP 2E =90°,作P 2K ⊥x 轴,AQ ⊥P 2K , 则△P 2KE ∽△AQP 2,所以QP KEAQ K P 22=, 所以tt tt t t 233222+--=++-,即t 2-t -1=0,解之得t =251+或t =251-<52-(舍去).综上可知t =1或t =251+适合题意.10. (2017湖南岳阳,本题满分10分)如图,抛物线223y x bx c =++经过点()3,0B ,()0,2C -,直线l :2233y x =--交y 轴于点E ,且与抛物线交于A ,D 两点.P 为抛物线上一动点(不与A ,D 重合). (1) 求抛物线的解析式;(2) 当点P 在直线l 下方时,过点P 作PM x ∥轴交l 于点M ,PN y ∥轴交l 于点N .求PM PN +的最大值;(3) 设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.备用图解:(1)将()3,0B ,()0,2C -代入223y x bx c =++,得:6302b c c ++=⎧⎨=-⎩解得:432b c ⎧=-⎪⎨⎪=-⎩∴抛物线的解析式为:224233y x x =--;(2)设()224,21233P a a a a ⎛⎫---<< ⎪⎝⎭,则22,33N a a ⎛⎫-- ⎪⎝⎭∴222242133=3333222PN a a a ⎛⎫=-++--+≤ ⎪⎝⎭∵M ,N 在直线l :2233y x =--上,PM x ∥,PN y ∥∴23PN PM =∴51524PM PN PN +=≤即:PM PN +的最大值为:154;(3)能设22,33F m m ⎛⎫-- ⎪⎝⎭① 当EC 为边时,有224,233P m m m ⎛⎫-- ⎪⎝⎭,EC PF =即:22244=3333m m -++解得:m =,其中0m =时不成立,舍去; ② 当EC 为对角线时,PF 中点即为EC 中点(0,43-)2,23P m m ⎛⎫-- ⎪⎝⎭在抛物线上所以,224222333m m m +-=-解得:01m =-或,其中0m =时不成立,舍去;综上所述:F 点的坐标为:41,3⎛⎫- ⎪⎝⎭、()1,0-、⎝⎭、⎝⎭.11. (2017湖南常德,25,10分)如图12,已知抛物线的对称轴是y 轴,且点(2,2),(1,54)在抛物线上,点P 是抛物线上不与顶点N 重合的一动点,过点P 作PA ⊥x 轴于A ,PC ⊥y 轴于C ,延长PC 交抛物线于E ,设M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点. (1)求抛物线的解析式及顶点N 的坐标; (2)求证:四边形PMDA 是平行四边形;(3)求证:△DPE ∽△PAM P 的坐标.图12思路分析:(1)将点(2,2),(1,54)坐标代入y=ax2+k中求出解析式,即可得到顶点N的坐标;(2)根据解析式设出点P坐标,从而得到点A、C的坐标,再通过N的坐标求出点M的坐标和D的坐标,即可求出MD和PA 的长度,得出长度相等,而MD∥PA,所以四边形PMDA是平行四边形;(3)在(2)证明之后继续证明PM=PA,则四边形PMDA是菱形,∠MDP=12∠PDE=12∠ADM=12∠APM,所以∠PDE=∠APM,而△DPE和△PAM都是等腰三角形,顶角相等,则两个三角形相似.解:(1)设抛物线的解析式为:y=ax2+k,∵点(2,2),(1,54)在抛物线上,∴4254a ka k+=⎧⎪⎨+=⎪⎩,解得141ak⎧=⎪⎨⎪=⎩.∴该抛物线的解析式为:y=14x2+1,顶点N的坐标为(0,1);(2)设点P坐标为(x, 14x2+1),∵PA⊥x轴于A,PC⊥y轴于C,M是O关于抛物线顶点N的对称点,D是C点关于N的对称点.∴A(x,0),C(0,14x2+1),M(0,2),D(0,1-14x2);PA∥y轴;∴MD=2-(1-14x2)=14x2+1=PA且MD∥PA∴四边形PMDA是平行四边形;(3)由(2)得四边形PMDA是平行四边形,PC=x,CM=14x2+1-2=14x2-1;∵在Rt△PCM中,PM2114x==+=PA∴四边形PMDA 是菱形,△PAM 是等腰三角形; ∴∠APM =∠ADM ;∠MDP =12∠ADM ; 根据抛物线的对称性,PD =ED , ∴△DPE 是等腰三角形,DC 平分∠PDE , ∴∠MDP =12∠PDE , ∴∠PDE =∠APM ;又∵∠PDE ,∠APM 分别为等腰△DPE 和△PAM 的顶角; ∴△DPE ∽△PAM PE =2x ,AM =222x +∵PE :AM =3时,解得:x =23±; ∴相似比为3时P 点坐标为:(23±,4)12. 24.(2017湖北咸宁,24,12分)如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6.⑴求抛物线的解析式及点D 的坐标;⑵连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ=12MN 时,求菱形对角线MN 的长.思路分析:(1)利用OB=OC=6得到点B(6,0),C(0,-6),将其代入抛物线的解析可以求出b 、c 的值,进而得到抛物线的解析式,最后通过配方得到顶点坐标;(2)由于F 为抛物线上一动点,∠FAB=∠EDB ,可以分两种情况求解:一是点F 在x 轴上方;二是点F 在x 轴下方.每一种情况都可以作FG ⊥x 轴于点G ,构造Rt △AFG 与Rt △DBE 相似,利用对应边成比例或三角函数的定义求点F 的坐标.(3)首先根据MN 与x 轴的位置关系画出符合要求的两种图形:一是MN 在x 轴上方;二是MN 在x 轴下方.设菱形对角线的交点T 到x 轴的距离为n ,利用PQ=12MN ,得到MT=2n ,进而得到点M 的坐标为(2+2n ,n),再由点M 在抛物线上,得21(22)2(22)62n n n =+-+-, 求出n 的值,最后可以求得MN=2MT=4n 的两个值. 解:(1)∵OB=OC=6, ∴B(6,0),C(0,-6).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩, 解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--. ……2分 ∵21262y x x =--=21(2)82x --, ∴点D 的坐标为(2,-8). ……4分 (2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即21261222x xx--=+,解得17x=,22x=-(舍去).当x=7时,y=92,∴点F的坐标为(7,92). ……6分当点F在x轴下方时,设同理求得点F的坐标为(5,72-).综上所述,点F的坐标为(7,92)或(5,72-). ……8分(3)∵点P在x轴上,∴根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n).∵点M 在抛物线上, ∴21(22)2(22)62n n n =+-+-, 即2280n n --=.解得1n =,2n =(舍去).∴. ……10分当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n).∵点M 在抛物线上, ∴21(22)2(22)62n n n -=+-+-, 即22+80n n -=.解得114n -+=,214n -=(舍去).∴1-.综上所述,菱形对角线MN 1-. ……12分13. 24.(2017湖北宜昌)(本小题满分12分)已知抛物线y=ax 2+bx+c ,其中2a=b>0>c ,且a+b+c=0. (1)直接写出关于x 的一元二次方程ax 2+bx+c =0的一个根; (2)证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3)直线y= x+m 与轴,x y 轴分别相交于B,C 两点,与抛物线y=ax 2+bx+c 相交于A,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得△ADF 与△OCB 相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.xyO思路分析:(1)利用抛物线的对称轴、对称性及二次函数与方程的关系数形结合得出二次方程的根;(2)确定抛物线的顶点位置一可借助数形结合,二可借助顶点坐标的正负性;(3)借助一次函数与二次函数的关系确定与求解相关点的坐标,将坐标转化为相应的线段长,进而借助题意中的相似及面积关系等构建方程求解未知系数的值.解:(1)ax 2+bx+c =0的一个根为1(或者-3) (2)证明:∵ b =2a ,∴对称轴x=2ba-=-1,将b=2a 代入a+b+c=0.得c=-3a . 方法一:∵a=b>0>c ,∴b 2-4ac>0,∴244ac b a-<0, 所以顶点A (-1,244ac b a-)在第三象限.方法二:∵b =2a , c=-3a ,∴244ac b a -=221244a b a --=-4a <0, 所以顶点A (-1,244ac b a-)在第三象限.(3)∵b =2a , c=-3a∴242a a a -± ∴x 1=-3,x 2=1,所以函数表达式为y=ax 2+2ax-3a ,∵直线y= x+m 与x 轴、y 轴分别相交于B,C,两点,则OB=OC=m所以△BOC 是以∠BOC 为直角的等腰三角形,这时直线y=x+m 与对称轴x=-1的夹角∠BAE=45°.又因点F 在对称轴左侧的抛物线上,则∠BAE>45°,这时△BOC 与△ADF 相似,顶点A 只可能对应△BOC 中的直角顶点O ,即△ADF是以A 为直角顶点的等腰三角形,且对称轴是x =-1,设对称轴x =-1与OF 交于点G. ∵直线y=x+m 过顶点A ,所以m=1-4a ,∴直线解析式为y=x+1-4a,解方程组21423y x a y ax ax a =+-⎧⎨=+-⎩,解得1114x y a =-⎧⎨=-⎩,221114x ay a a ⎧=-⎪⎪⎨⎪=-⎪⎩, 这里的(-1,4a )即为顶点A ,点(1a -1,1a -4a )即为顶点D 的坐标(1a -1,1a -4a ) D 点到对称轴x=-1的距离为1a -1-(-1)=1a,AE =4a -=4a,S △ADE =12×1a×4a=2,即它的面积为定值.这时等腰直角△ADF 的面积为1,所以底边DF =2,而x=-1是它的对称轴,这时D,C 重合且在y 轴上,由1a-1=0,∴a=1,此时抛物线的解析式y=x 2+2x-314. (2017湖南邵阳,26,10分)(本小题满10分)如图(十六)所示,顶点(49-21,)的抛物线y =ax 2+bx+c 过点M (2,0). (1)求抛物线的解析式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =xk(k >0)图象上一点.若以点A 、B 、C 、D 为顶点的四边形是菱形,求k 的值.思路分析:(1)已知抛物线的顶点坐标,可设顶点式为 y =a (x -21)2-49,再把点M (2,0)代入,可求a =1,所以抛物线的解析式可求.(2)先分别求出A 、B 两点的坐标,及AB 线段长,再根据反比例函数y =xk(k >0),考虑点C 在x 轴下方,故点D 只能在第一、三象限.确定菱形有两种情形:①菱形以AB 为边,如图一。
中考数学真题分类汇编——几何综合题(含答案)
中考数学真题分类汇编——几何综合题(含答案)类型1 类比探究的几何综合题类型2 与图形变换有关的几何综合题类型3 与动点有关的几何综合题类型4 与实际操作有关的几何综合题类型5 其他类型的几何综合题类型1 类比探究的几何综合题(2018苏州)(2018烟台)(2018东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°, BO:OD=1:3,求DC的长.(2018长春)(第24题图1) (第24题图2) (第24题图3)(2018陕西)(2018齐齐哈尔)(2018河南)(2018仙桃)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.(2018襄阳)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值为;②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=22,则BC= .(2018淮安)(2018咸宁)(2018黄石)在△ABC 中,E 、F 分别为线段AB 、AC 上的点(不与A 、B 、C 重合). (1)如图1,若EF ∥BC ,求证:AEF ABC S AE AFS AB AC∆∆= (2)如图2,若EF 不与BC 平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF 上一点G 恰为△ABC 的重心,34AE AB =,求AEFABC S S ∆∆的值.BBB(2018山西)(2018盐城)【发现】如图①,已知等边ABC ,将直角三角形的60角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若6AB=,4AE=,2BD=,则CF=_______;(2)求证:EBD DCF∆∆.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF∠且FD平分CFE∠?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰ABC∆中,AB AC=,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON B∠=∠),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC∆的顶点重合),连接EF.设Bα∠=,则AEF∆与ABC∆的周长之比为________(用含α的表达式表示).(2018绍兴)(2018达州)(2018菏泽)(2018扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN与EC相交于点P,求tan CPN∠的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中CPN∠不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点M、N,可得∠就变换到中Rt DMN∆.∠=∠,连接DM,那么CPNMN EC,则DNM CPN//问题解决(1)直接写出图1中tan CPN ∠的值为_________;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos CPN ∠的值; 思维拓展(3)如图3,AB BC ⊥,4AB BC =,点M 在AB 上,且AM BC =,延长CB 到N ,使2BN BC =,连接AN 交CM 的延长线于点P ,用上述方法构造网格求CPN ∠的度数.(2018常德)已知正方形ABCD 中AC 与BD 交于O 点,点M 在线段BD 上,作直线AM 交直线DC 于E ,过D 作DH AE ⊥于H ,设直线DH 交AC 于N .(1)如图14,当M 在线段BO 上时,求证:MO NO =;(2)如图15,当M 在线段OD 上,连接NE ,当//EN BD 时,求证:BM AB =; (3)在图16,当M 在线段OD 上,连接NE ,当NE EC ⊥时,求证:2AN NC AC =⋅.(2018滨州)(2018湖州)(2018自贡)如图,已知AOB 60∠=,在AOB ∠的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA OB 、相交于点D E 、 .⑴当DCE ∠绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE OD +与OC 的数量关系,并说明理由;⑵当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,⑴中的结论是否成立?并说明理由; ⑶当DCE ∠绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD OE 、与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.(2018嘉兴、舟山)O BOO B图3.(2018淄博)(1)操作发现:如图①,小明画了一个等腰三角形ABC ,其中AB AC =,在ABC ∆的外侧分别以,AB AC 为腰作了两个等腰直角三角形ABD ACE ,,分别取,BD CE ,BC 的中点,,M N G ,连接,GM GN .小明发现了:线段GM 与GN 的数量关系是 ;位置关系是 . (2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形,其中AB AC >,其它条件不变,小明发现的上述结论还成立吗?请说明理由. (3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向ABC ∆的内侧分别作等腰直角三角形,ABD ACE ,其它条件不变,试判断GMN ∆的形状,并给与证明.类型2 与图形变换有关的几何综合题(2018宜昌)在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F . (1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌; (2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值; ③当BP 9=时,求BE EF 的值.图1 图2 图2备用图 23.(1)证明:在矩形ABCD 中,90,A D AB DC ∠=∠==, 如图1,又AE DE =,图1∆≅∆,ABE DCE(2)如图2,图2①在矩形ABCD中,90∠=,ABC∆沿PC折叠得到GPC∆BPC∠=∠∴∠=∠=,BPC GPC PGC PBC90⊥BE CG∴,BE PG//∴∠=∠GPF PFBBPF BFP∴∠=∠∴=BP BFAD=时,②当25∠=BEC90∴∠+∠=,90AEB CED90AEB ABE ∠+∠=,CED ABE ∴∠=∠ 又90A D ∠=∠=,ABE DEC ∴∆∆∽AB DEAE CD∴=∴设AE x =,则25DE x =-,122512xx -∴=, 解得19x =,216x =AE DE <9,16AE DE ∴==, 20,15CE BE ∴==,由折叠得BP PG =,BP BF PG ∴==,//BE PG , ECF GCP ∴∆∆∽EF CEPG CG∴=设BP BF PG y ===,152025y y -∴=253y ∴=则253BP = 在Rt PBC ∆中,PC =,cos 10BC PCB PC ∠=== ③若9BP =,解法一:连接GF ,(如图3)90GEF BAE ∠=∠=, //,BF PG BF PG =∴四边形BPGF 是平行四边形BP BF =,∴平行四边形BPGF 是菱形//BP GF ∴, GFE ABE ∴∠=∠, GEF EAB ∴∆∆∽EF ABGF BE∴=129108BE EF AB GF ∴==⨯= 解法二:如图2,90FEC PBC ∠=∠=,EFC PFB BPF ∠=∠=∠, EFC BPC ∴∆∆∽EF CEBP CB∴=又90BEC A ∠=∠=, 由//AD BC 得AEB EBC ∠=∠,AEB EBC ∴∆∆∽AB CEBE CB∴=AE EFBE BP∴=129108BE EF AE BP ∴==⨯=解法三:(如图4)过点F 作FH BC ⊥,垂足为HBPF PFEGS BF BFS EF PG BE∆==+四边形图41212BFC BEC S BF EF BC EFBE S BC ∆∆⋅===⨯ 912EFBE ∴=129108BE EF ∴=⨯=(2018邵阳)(2018永州)(2018无锡)(2018包头)(2018赤峰)(2018昆明)(2018岳阳)(2018宿迁)(2018绵阳)(2018南充)(2018徐州)类型3 与动点有关的几何综合题(2018吉林)(2018黑龙江龙东)(2018黑龙江龙东)(2018广东)已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜边OB=4,将Rt△OAB绕点O顺时针旋转60o,如图25-1图,连接BC.(1)填空:∠OBC=_______o;(2)如图25-1图,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图25-2图,点M、N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号)(2018衡阳)(2018黔东南)如图1,已知矩形AOCB,6cm s的AB cm=,动点P从点A出发,以3/=,16BC cm速度向点O运动,直到点O为止;动点Q同时从点C出发,以2/cm s的速度向点B运动,与点P同时结束运动.(1)点P 到达终点O 的运动时间是________s ,此时点Q 的运动距离是________cm ; (2)当运动时间为2s 时,P 、Q 两点的距离为________cm ; (3)请你计算出发多久时,点P 和点Q 之间的距离是10cm ;(4)如图2,以点O 为坐标原点,OC 所在直线为x 轴,OA 所在直线为y 轴,1cm 长为单位长度建立平面直角坐标系,连结AC ,与PQ 相交于点D ,若双曲线ky x=过点D ,问k 的值是否会变化?若会变化,说明理由;若不会变化,请求出k 的值.(2018青岛)已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.(2018广州)如图12,在四边形ABCD 中,∠B=60°,∠D=30°,AB=BC. (1)求∠A+∠C 的度数(2)连接BD,探究AD,BD,CD 三者之间的数量关系,并说明理由。
2017全国中考数学真题分类-二次函数概念、性质和图象(选择题+填空题+解答题)解析版
2017全国中考数学真题分类知识点18二次函数概念、性质和图象(选择题+填空题+解答题)解析版一、选择题1. .(2017四川广安,10,3分)如图所示,抛物线y =ax ²+bx +c 的顶点为B (-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b ²-4ac =0 ②a +b +c >0 ③2a -b =0 ④c -a =3A .1B .2C .3D .4答案:B ,解析:由图象可知,抛物线与x 轴有两个交点,∴b ²-4ac >0,故结论①不正确;∵抛物线的对称轴为x =-1,与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x =1时,y <0,∴a +b +c <0,故结论②不正确.∵抛物线的对称轴x =-2ba=-1,∴2a =b ,即2a -b =0,故结论③正确;∵抛物线y =ax ²+bx+c 的顶点为B (-1,3),∴a -b +c =3,∵抛物线的对称轴x =-1,∴2a =b ,∴a -2a +c =3,即c -a =3,故结论④正确;综上所述,正确的结论有2个.故选B .2. (2017浙江丽水·8·3分)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位答案:D . 解析: 选项 知识点结果 A将函数y =x 2的图象向左平移1个单位得到函数y =(x +1)2,其图象经过点(1,4).×B 将函数y =x 2的图象向右平移3个单位得到函数y =(x -3)2,其图象经过点(1,4). ×C 将函数y =x 2的图象向上平移3个单位得到函数y =x 2+3,其图象经过点(1,4). ×D 将函数y =x 2的图象向下平移1个单位得到函数y =x 2-1,其图象不经过点(1,4).√3. (2017山东枣庄12,3分)已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是A .当a =1时,函数图象经过点(-1,0)B .当a =-2时,函数图象与x 轴没有交点C .若a <0,函数图象的顶点始终在x 轴的下方D .若a >0,则当1x ≥时,y 随x 的增大而增大答案:D ,解析:A 、当a =1时,函数解析式为y =x 2-2x -1,当x =-1时,y =1+2-1=2, ∴当a =1时,函数图象经过点(-1,2),∴A 选项不符合题意; B 、当a =2时,函数解析式为y =-2x 2+4x -1,令y =-2x 2+4x -1=0,则△=42-4×(-2)×(-1)=8>0,∴当a =-2时,函数图象与x 轴有两个不同的交点,∴B 选项不符合题意;C 、∵y =ax 2-2ax -1=a (x -1)2-1-a ,∴二次函数图象的顶点坐标为(1,-1-a ),当-1-a <0时,有a >-1,∴C 选项不符合题意;D 、∵y =ax 2-2ax -1=a (x -1)2-1-a ,∴二次函数图象的对称轴为x =1.若a >0,则当x ≥1时,y 随x 的增大而增大,∴D 选项符合题意.故选D .4. (2017四川成都,10,3分)在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A .20,40abc b ac <-> B .20,40abc b ac >->C. 20,40abc b ac <-<D .20,40abc b ac >-<答案:B ,解析:由二次函数2y ax bx c =++的图象开口向上,则a >0,与y 轴交点在y 轴的负半轴上,由c <0,对称轴在y 轴的左侧,则2b a->0,所以b <0,所以0abc >;图象与x 轴有两点交点,则240b ac ->,综上,故选B .5. (2017浙江金华,6,3分)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是2 答案:B ,解析:二次函数y =-(x -1)2+2的对称轴是直线x =1. ∵-1<0,∴抛物线开口向下,有最大值,最大值是2.6. (2017安徽中考·9.4分)已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图象可能是( )答案:B .解析:由公共点的横坐标为1,且在反比例函数by x=的图象上,当x =1时,y =b ,即公共点坐标为(1,b ),又点(1,b )在抛物线2y ax bx c =++上,得a +b +c =b ,a +c =0,由a ≠0知ac <0,一次函数y bx ac =+的图象与y 轴交点在负半轴上,反比例函数by x=的图象的一支在第一象限,b >0,一次函数y bx ac =+的图象满足y 随x 增大而增大,选项B 符合条件,选B .7. (2017山东德州,7,3分)下列函数中,对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2的是( )A .y =-3x +2B .y =2x +1C .y =2x 2+1D .y =x1-答案:A ,解析:一次函数y =-3x +2中,由于k =-3<0,所以y 随着x 的增大而减小,即对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2. 8. (2017山东威海,11,3分).已知二次函数y =ax ²+bx +c (a ≠0)的图像如图所示.若正比例函数y =(b +c )x 与反比例函数y =a b cx-+在同一坐标系中的大致图像是( )答案:C,解析:由抛物线知a>0,b<0,c>0,故a-b+c>0,反比例函数过一三象限;当x=1时,y=a+b+c <0,即b+c<-a, 因为a>0,所以b+c<0,所以正比例函数过二四象限,故选C.9.(2017山东菏泽,8,3分)一次函数y=ax+b和反比例函数y=cx在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()答案:A,解析:根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,选项D不符合题意,对称轴x=-2ba>0,选项B不符合题意,与y轴的交点在y轴负半轴,选项C不符合题意,只有选项A符合题意.10. 10.(2017年四川绵阳,10,3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是A.b>8 B.b>-8 C.b≥8 D.b≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y=(x-3)2+1,再结合与一次函数y=2x+b有公共点,联立方程组,建立关于x的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b的范围.11. (2017年四川南充,10,3分)二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图5所示,下列结论错误的是( )A.4ac<b2B.abc<0 C.b+c>3a D.a<bxOy--图5(8题图) A. B. C. D答案:D 解析:(1)∵抛物线与横轴有两个交点,∴△>0,即b 2-4ac >0.∴4ac <b 2.可见选项A 中的结论正确.(2)∵抛物线的开口向下,∴a <0;∵对称轴在y 轴左边,∴-2b a<0.∴b <0;∵抛物线与y 轴的负半轴相交,∴c <0.∴abc <0.可见选项B 中的结论正确. (3)∵-2b a>-1,a <0,∴b >2a ①.∵x =-1时,y >0,∴a -b +c >0②.①+②,得c >a ③.①+③,得b +c >3a .可见选项C 中的结论正确. (4)∵-2b a<-12,a <0,∴a >b .可见选项D 中的结论错误.综上所述,选项D .12. (2017浙江舟山,10,3分)下列关于函数y =x 2-6x +10的四个命题:①当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3-n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n -4)个;④若函数图象过点(a ,y 0)和(b ,y 0+1),其中a >0,b >0,则a <b .其中真命题的序号是( ) A .① B .②C .③D .④答案:C ,解析:因为y =x 2-6x +10=(x -3)2+1,所以当x =3时,y 有最小值1,故①错误;n 为任意实数,当x =3+n 时,y =(3+n -3)2+1= n 2+1, 当x =3-n 时,y =(3-n -3)2+1= n 2+1,所以两函数值相等,故②错误;若n >3,且n 是整数,当n ≤x ≤n +1时,令x =n ,则y 1=(n -3)2+1= n 2-6n +10, 令x =n +1,则y 2=(n +1-3)2+1= n 2-4n +5, 由于y 2- y 1=2n -5,所以之间的整数值的个数是2n -5+1=2n +4个,故③正确;由二次函数的图象知④错误.令x =4,则y =(4-3)2+1=2, 令x =5,则y =(5-3)2+1=5,y 的整数值有2,3,4,5,2n -4=2×4-4=4个,令x =6,则y =(6-3)2+1=10, y 的整数值有5,6,7,8,9,10,2n -4=2×5-4=6个,令x =7,则y =(7-3)2+1=10, y 的整数值有10,11,12,13,14,15,16,17共8个,2n -4=2×6-4=8个, 13. (2017四川攀枝花,9,3分)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y =ax +c 的图像不经过第四象限C .m (am +b )+b =a (m 是任意实数)D .3b +2c >0 答案:D解析:由题意知抛物线对称轴为12b x a =-=-,即12a b =,故A 错误;a >0,c <0∴一次函数y =ax +c 的图像不经过第二象限,故B 错误;m (am +b )+b =a ,2b a =可得m =-112a b =,故C 错误;又当1x =时,0y a b c =++>,∴102b bc ++>,即320b c +>,故选D .14. (2017江苏盐城,6,3分)如图,将函数y =21(2)12x -+的图像沿y 轴向上平移得到一条新函数的图像,其中点A (1,m )、B (4,n )平移后的对应点分别为点A ′、B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图像的函数表达式是A .y =21(2)22x --B .y =21(2)72x -+C .y =21(2)52x --D .y =21(2)42x -+答案:D ,解析:连接AB 、A ′B ′,则S 阴影=S 四边形ABB ′A ′.由平移可知,AA ′=BB ′,AA ′∥BB ′,所以四边形ABB ′A ′是平行四边形.分别延长A ′A 、B ′B 交x 轴于点M 、N .因为A (1,m )、B (4,n ),所以MN =4-1=3.因为ABB A S''=AA ′·MN ,所以9=3AA ′,解得AA ′=3,即沿y 轴向上平移了3个单位,所以新图像的函数表达式y =21(2)42x -+.B 'A 'ABOyx第6题图2 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有 A .1个 B .2个 C .3个 D .4个答案:B ,解析:由表格所给出的自变量与函数值变化趋势,随x 的值增大,y 值先增大后变小可知抛物线的开口向下;由对称性知其图象的对称轴为x =32,所以当x <1时,函数值y 随x 的增大而增大正确;由表可知,方程ax 2+bx +c =0根在-1与0和3与4之间所以正确的2个.此题也可求出解析式进行判断.16.7.(2017江苏连云港,7,3分)已知抛物线20yax a 过12,Ay ,21,B y 两点,则下列关系式一定正确的是A .120y yB .210y y C .120y yD .210y y答案:C ,解析:∵20y ax a ∴抛物线的开口向上,对称轴为y 轴,12,Ay 在对称轴的左侧,21,B y 在对称轴的右侧,点A 离开对称轴的距离大于点B 离开对称轴的距离,∴120yy 因此选择C 选项.17. (2017四川达州8,3分)已知二次函数2y ax bx c =++的图象如下,则一次函数2y ax b =-与反比例函数cy x=在同一平面直角坐标系中的图象大致是( )A B C D答案C,解析:由于抛物线的开口向下,∴a<0,由于抛物线与y轴的交点在y轴的正半轴,∴c>0,由于抛物线的对称轴是x=-1∴-12ba=-,∴b=2a,∴y=ax-4a,对于方程组4y ax acyx=-⎧⎪⎨=⎪⎩,消去y,可整理成:240ax ax c--=,∆=2164a ac+,∵抛物线过点(-3,0),∴9a-3b+c=0,∴c=-3a,∴2222164=161240a ac a a a+-=>,∴直线与反比例函数有交点,故本题选C.18. 11.(2017四川眉山,11,3分)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-axA.有最大值a4B.有最大值-a4C.有最小值a4D.有最小值-a4答案:B,解析:因为一次函数y=(a+1)x+a的图象过第一、三、四象限,所以⎩⎨⎧a+1>0,a<0,因此-1<a<0,而y=ax2-ax=a(x-12)2-14a,所以二次函数有最大值-a4.19. 8.(2017四川宜宾,8,3分)如图,抛物线211(1)12y x=++与22(4)3y a x=--交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①23a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2,其中正确结论的个数是A .1个B .2个C .3个D .4个答案:C ,解析:抛物线22(4)3y a x =--过点A (1,3),∴3=9a -3,解得a =23,由题意可知E (4,﹣3),点A (1,3)、C 关于x =4对称,得到C (7,3),∴AC =6,而AE = ,故AC ≠AE ,由抛物线的对称性可知,AD =BD 显然.根据抛物线的对称性可知,AD =BD ,两个函数比较大小,首先要知道这两个函数图象的交点,则2212(1)1(4)323x x ++=--,解得x 1=1,x 2=37,所以当1<x <37时,y 1>y 2.20. (2017山东滨州,7,3分)将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-5答案:A ,解析:抛物线y =2x 2的顶点坐标为(0,0), ∵向右平移3个单位,再向下平移5个单位, ∴平移后的顶点坐标为(3,﹣5),∴平移后的抛物线解析式为y =2(x -3)2-5.故选A.21. 8.(2017江苏苏州,8,3分)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程 a (x -2)2+1=0的实数根为 A .x 1=0,x 2=4B .x 1=—2,x 2=6C . x 1=32,x 2=52D .x 1=—4,x 2=0答案:A ,解析:根据“二次函数图象上点的坐标特征”可得4a +1=0,a =-14,则21(2)104x --+=,解一元二次方程得x 1=0,x 2=4.22. 9.(2017甘肃兰州,9,4分)抛物线y =3x ²-3向右平移3个单位长度,得到新抛物线的表达式为A. y =3(x -3)²-3B. y =3x ²C. y =3(x +3)²-3D. y =3x ²-6【答案】A【解析】由题知,y =3x ²-3为顶点式,直接根据二次函数图像左加右减,上加下减的平移规律进行解答即可。
近五年(2017-2021)年浙江中考数学真题分类汇编之二次函数(含解析)
2017-2021年浙江中考数学真题分类汇编之二次函数一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)2.(2021•绍兴)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6 3.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.4.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)5.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<0 6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.7.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y =(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)9.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y 轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 11.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.12.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥13.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 14.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4 15.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值16.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④二.填空题(共4小题)17.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.18.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.19.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt ﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=.20.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a ≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是.三.解答题(共3小题)21.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.22.(2021•杭州)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a,b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.(3)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证:P+Q>6.23.(2020•金华)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.2017-2021年浙江中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【考点】二次函数的性质.【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选:A.【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.2.(2021•绍兴)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6【考点】二次函数的性质;二次函数的最值.【专题】二次函数图象及其性质;应用意识.【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数有最小值,最小值为6,然后即可判断哪个选项是正确的.【解答】解:∵二次函数y=2(x﹣4)2+6,a=2>0,∴该函数图象开口向上,有最小值,当x=4取得最小值6,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,会求函数的最值.3.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【考点】二次函数的性质;一次函数的图象.【专题】函数及其图象.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.4.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【专题】二次函数图象及其性质.【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x ﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.5.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<0【考点】二次函数图象与系数的关系.【分析】由对称轴x=﹣=1得:b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴x=﹣=1得:b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a+b=(m﹣1)a﹣2a=(m﹣3)a,(m﹣1)a+b与0无法判断.当m<1时,(m+1)a+b=(m+1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.【考点】二次函数图象与系数的关系.【专题】函数思想;应用意识.【分析】比较任意三个点组成的二次函数,比较开口方向,开口向下,则a<0,只需把开口向上的二次函数解析式求出即可.【解答】解:由图象知,A、B、D组成的二次函数图象开口向上,a>0;A、B、C组成的二次函数开口向上,a>0;B、C、D三点组成的二次函数开口向下,a<0;A、D、C三点组成的二次函数开口向下,a<0;即只需比较A、B、D组成的二次函数和A、B、C组成的二次函数即可.设A、B、C组成的二次函数为y1=a1x2+b1x+c1,把A(0,2),B(1,0),C(3,1)代入上式得,,解得a1=;设A、B、D组成的二次函数为y=ax2+bx+c,把A(0,2),B(1,0),D(2,3)代入上式得,,解得a=,即a最大的值为,也可以根据a的绝对值越大开口越小直接代入ABD三点计算,即可求求解.故选:A.【点评】本题考查待定系数法求函数解析式,解本题的关键要熟练掌握二次函数的性质和待定系数法求函数的解析式.7.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y =(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质.【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.8.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【考点】二次函数的性质.【专题】二次函数图象及其性质.【分析】由抛物线顶点式可求得答案.【解答】解:∵y=(x﹣1)2+3,∴顶点坐标为(1,3),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).9.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y 轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质;运算能力.【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据二次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解答】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误;∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;运算能力.【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.11.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】一次函数及其应用;二次函数图象及其性质.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.【解答】解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.12.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣,满足条件,可得a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵Δ>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.13.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3【考点】二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.14.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;推理能力.【分析】不妨假设a>0,利用图象法一一判断即可.【解答】解:方法一:不妨假设a>0.①如图1中,P1,P2满足x1>x2+2,∵P1P2∥AB,∴S1=S2,故①错误.②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,则S1>S2,故②错误,③∵|x1﹣2|>|x2﹣2|>1,∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,∴S1>S2,故③正确,④如图2中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.故选:A.方法二:解:∵抛物线y=ax2+bx+c与x轴的交点为A(1,0)和B(3,0),∴该抛物线对称轴为x=2,当x1>x2+2时与当x1<2﹣x2时无法确定P1(x1,y1),P2(x2,y2)在抛物线上的对应位置,故①和②都不正确;当|x1﹣2|>|x2﹣2|>1时,P1(x1,y1)比P2(x2,y2)离对称轴更远,且同在x轴上方或者下方,∴|y1|>|y2|,∴S1>S2,故③正确;当|x1﹣2|>|x2+2|>1时,即在x轴上x1到2的距离比x2到﹣2的距离大,且都大于1,可知在x轴上x1到2的距离大于1,x2到﹣2的距离大于1,但x2到2的距离不能确定,所以无法比较P1(x1,y1)比P2(x2,y2)谁离对称轴更远,故无法比较面积,故④错误;故选:A.【点评】本题考查抛物线与x轴的交点,二次函数图象上的点的特征等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.15.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【考点】二次函数的性质;二次函数的最值.【专题】函数的综合应用;几何直观;运算能力.【分析】方法1、①当b﹣a=1时,当a,b同号时,先判断出四边形BCDE是矩形,得出BC=DE=b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan∠ABC=n﹣m,再判断出45°≤∠ABC<90°,即可得出n﹣m的范围,当a,b异号时,m=0,当a=﹣,b=时,n最小=,即可得出n﹣m的范围;②当n﹣m=1时,当a,b同号时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,当a,b 异号时,m=0,则n=1,即可求出a,b,即可得出结论.方法2、根据抛物线的性质判断,即可得出结论.【解答】解:方法1、①当b﹣a=1时,当a,b同号时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADE=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC==n﹣m,∵点A,B在抛物线y=x2上,且a,b同号,∴45°≤∠ABC<90°,∴tan∠ABC≥1,∴n﹣m≥1,当a,b异号时,m=0,当a=﹣,b=时,n=,此时,n﹣m=,∴≤n﹣m<1,即n﹣m≥,即n﹣m无最大值,有最小值,最小值为,故选项C,D都错误;②当n﹣m=1时,如图2,当a,b同号时,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHN中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,当a,b异号时,m=0,∴n=1,∴a=﹣1,b=1,即b﹣a=2,∴b﹣a无最小值,有最大值,最大值为2,故选项A错误;故选:B.方法2、当n﹣m=1时,当a,b在y轴同侧时,a,b都越大时,a﹣b越接近于0,但不能取0,即b﹣a没有最小值,当a,b异号时,当a=﹣1,b=1时,b﹣a=2最大,当b﹣a=1时,当a,b在y轴同侧时,a,b离y轴越远,n﹣m越大,但取不到最大,当a,b在y轴两侧时,当a=﹣,b=时,n﹣m取到最小,最小值为,因此,只有选项B正确,故选:B.【点评】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.16.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;等腰直角三角形;一次函数图象上点的坐标特征.【专题】数形结合;二次函数图象及其性质.【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x1=m﹣,x2=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1,当m=1时,二次函数y=﹣(x﹣1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且a=﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.二.填空题(共4小题)17.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是﹣2.【考点】抛物线与x轴的交点;正方形的性质;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;矩形菱形正方形.【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形,∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B,∴﹣=a(﹣)2,解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.18.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=88πm2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.【考点】二次函数的应用;等边三角形的判定与性质;矩形的性质.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.19.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt ﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=:1.【考点】二次函数的应用;解直角三角形.【专题】二次函数的应用;推理能力.【分析】利用h=vt﹣4.9t2,求出t1,t2,再根据h1=2h2,求出v1=v2,可得结论.【解答】解:由题意,t1=,t2=,h1==,h2==,∵h1=2h2,∴v1=v2,∴t1:t2=v1:v2=:1,故答案为::1.【点评】本题考查二次函数的应用,解题的关键是求出t1,t2,证明v1=v2即可.20.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a ≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是2或﹣8.【考点】二次函数的性质;二次函数图象上点的坐标特征;勾股定理的逆定理.【专题】二次函数图象及其性质;等腰三角形与直角三角形;推理能力.【分析】由题意△AOM是直角三角形,当对称轴x≠0或x≠3时,可知一定存在两个以A,O为直角顶点的直角三角形,当对称轴x=0或x=3时,不存在满足条件的点M,当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以点M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形,利用图象法求解即可.【解答】解:∵△AOM是直角三角形,∴当对称轴x≠0或x≠3时,一定存在两个以A,O为直角顶点的直角三角形,且点M 在对称轴上的直角三角形,当对称轴x=0或x=3时,不存在满足条件的点M,∴当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形(如图所示).观察图象可知,﹣=﹣1或4,∴=2或﹣8,故答案为:2或﹣8.【点评】本题考查二次函数的性质,直角三角形的判定,圆周角定理等知识,解题的关键是判断出对称轴的位置,属于中考填空题中的压轴题.三.解答题(共3小题)21.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.。
2017中考数学真题汇编----函数(pdf版)
2017中考数学真题汇编----函数一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤33.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量4.下列各式中,能表示y是x的函数关系式是()A.y=B.y=x3 C.y=D.y=±5.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的函数关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对6.若函数,则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540 B.390 C.194 D.197二.填空题(共13小题)7.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.8.在函数y=中,自变量x的取值范围是.9.在函数y=中,自变量x的取值范围是.0.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数关系式是.11.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第象限.12.函数y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|的最小值是.三.解答题13.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(元),在乙店购(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间买的付款数为y乙的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?14.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…1245689…y… 3.92 1.950.980.78 2.44 2.440.78…小风根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=7对应的函数值y约为.②该函数的一条性质:.15.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油盘Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油盘低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.16.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.(1)根据图,将表格补充完整.白纸张数12345…纸条长度40110145…(2)设x张白纸粘合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2017cm吗?为什么?17.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费.设小丽家每月用气量为x立方米,应交煤气费为y 元.(1)若小丽家某月用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的表达式;(3)若小丽家4月份的煤气费为88元,那么她家4月份所用煤气为多少立方米?(4)已知小丽家6月份的煤气费平均每立方米0.95元,那么6月份小丽家用了多少立方米的煤气?18.甲、以两家蓝莓采摘园的蓝莓品质相同,销售价格都是每千克30元,“五一”假期,两家均推出了优惠方案:甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的蓝莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的蓝莓超过10千克后,超过部分五折优惠,优惠期间,设某游客的蓝莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).(1)当蓝莓采摘量超过10千克时,求y1、y2与x的关系式;(2)若要采摘40千克蓝莓,去哪家比较合算?请计算说明.参考答案与解析一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x 是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选C.【点评】考查了函数的概念,理解函数的定义,是解决本题的关键.2.函数y=+的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣3≠0,解得x≥1且x≠3,故选:B.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零是解题关键.3.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中()A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:∵三角形面积S=ah,∴当a为定长时,在此式中S、h是变量,,a是常量;故本题选A.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D 中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.4.下列各式中,能表示y是x的函数关系式是()A.y=B.y=x3 C.y=D.y=±【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应.【解答】解:根据函数的定义可知:只有函数y=x3,当x取值时,y有唯一的值与之对应;故选B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.一个正方形的边长为3cm,它的各边边长减少xcm后,得到的新正方形的周长为ycm,y与x间的函数关系式是()A.y=12﹣4x B.y=4x﹣12 C.y=12﹣x D.以上都不对【分析】表示出新正方形的边长,再根据正方形的周长公式列式整理即可得解.【解答】解:∵各边边长减少xcm,∴新正方形的边长为3﹣x,∴y=4(3﹣x)=12﹣4x,即y=12﹣4x.故选A.【点评】本题考查了函数关系式,熟练掌握正方形的周长公式是解题的关键.6.若函数,则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540 B.390 C.194 D.197【分析】将x2﹣100x+196分解为:(x﹣2)(x﹣98),然后可得当2≤x≤98时函数值为0,再分别求出x=1,99,100时的函数值即可.【解答】解:∵x2﹣100x+196=(x﹣2)(x﹣98)∴当2≤x≤98时,|x2﹣100x+196|=﹣(x2﹣100x+196),当自变量x取2到98时函数值为0,而当x取1,99,100时,|x2﹣100x+196|=x2﹣100x+196,所以,所求和为(1﹣2)(1﹣98)+(99﹣2)(99﹣98)+(100﹣2)(100﹣98)=97+97+196=390.故选B.【点评】本题考查函数值的知识,有一定难度,关键是将x2﹣100x+196分解为:(x﹣2)(x﹣98)进行解答.二.填空题7.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.8.在函数y=中,自变量x的取值范围是x≥1且x≠2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知x﹣1≥0;分母不等于0,可知:x﹣2≠0,则可以求出自变量x的取值范围.【解答】解:根据题意得:,解得:x≥1且x≠2.故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.在函数y=中,自变量x的取值范围是x>1.【分析】根据函数关系即可求出x的取值范围.【解答】解:由题意可知:解得:x>1故答案为:x>1【点评】本题考查自变量的取值范围,解题的关键是熟练运用二次根式有意义的条件以及分式有意义的条件,本题属于基础题型.10.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数关系式是y=3.5x.【分析】根据总价=单价×数量,单价为(3+0.5)元.【解答】解:依题意有:y=(3+0.5)x=3.5x.故y与x的函数关系式是:y=3.5x.故答案为y=3.5x.【点评】本题主要考查了列函数关系式.根据题意,找到所求量的等量关系是解决问题的关键.11.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第二象限.【分析】因为分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数大于或等于0.从而可以得到x<0,由x2>0,≥0可以得>0,∴y=>0,即求出点P所在的象限.【解答】解:∵,∴x<0,又∵x<0,∴>0,即y>0,∴P应在平面直角坐标系中的第二象限.故答案为:二.【点评】本题考查了分式和二次根式有意义的条件,难点是判断出所求的点的横、纵坐标的符号.12.函数y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|的最小值是8.【分析】根据式子特点,分x≤1,1<x≤2,2<x≤3,3<x≤4,x>4几种情况讨论.【解答】解:①x≤1时,y=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)=30﹣10x,当x=1时,y最小值=30﹣10=20;②1<x≤2时,y=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)=﹣8x+28,当x=2时,y=28﹣16=12;最小值③2<x≤3时,y=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)=﹣4x+20,当x=3时,y 最小值=20﹣12=8;④3<x≤4时,y=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)=2x+2,无最小值;⑤x>4时,y=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)=10x﹣30,无最小值.综上所述,原式的最小值为8.【点评】通过分类讨论,将原函数转化为分段函数,再根据x的取值范围求出各段的最小值,取其最小者,即为原函数最小值.三.解答题13.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?【分析】(1)因为甲商店规定每买1副乒乓球拍赠1盒乒乓球,所以y甲=30×4+5×(x﹣4)=100+5x(x≥4);因为乙商店规定所有商品9折优惠,所以y乙=30×4×0.9+5x×0.9=4.5x+108(x≥4).(2)当x=16时,在甲商店购买所需商品和在乙商店购买所需商品一样便宜;当x>16时,在甲商店购买所需商品比较便宜;当4≤x<16时,在甲商店购买所需商品比较便宜.【解答】解:(1)由题意得y甲=30×4+5×(x﹣4)=100+5x(x≥4),y乙=30×4×0.9+5x×0.9=4.5x+108(x≥4);(2)当y甲=y乙时,即100+5x=4.5x+108,解得x=16,到两店价格一样;当y甲>y乙时,即100+5x>4.5x+108,解得x>16,到乙店合算;当y甲<y乙时,即100+5x<4.5x+10,解得4≤x<16,到甲店合算.【点评】考查了函数关系式,本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.14.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…1245689…y… 3.92 1.950.980.78 2.44 2.440.78…小风根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=7对应的函数值y约为 3.0.②该函数的一条性质:该函数没有最大值.【分析】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)如图,(2)①x=7对应的函数值y约为3.0;②该函数没有最大值.故答案为3,该函数没有最大值.【点评】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.15.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油盘Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油盘低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)根据平均每千米的耗油量=总耗油量÷行驶路程即可得出该车平均每千米的耗油量,再根据剩余油量=总油量﹣平均每千米的耗油量×行驶路程即可得出Q关于x的函数关系式;(2)代入x=280求出Q值即可;(3)根据行驶的路程=耗油量÷平均每千米的耗油量即可求出报警前能行驶的路程,与景点的往返路程比较后即可得出结论.【解答】解:(1)该车平均每千米的耗油量为(45﹣30)÷150=0.1(升/千米),行驶路程x(千米)与剩余油盘Q(升)的关系式为Q=45﹣0.1x;(2)当x=280时,Q=45﹣0.1×280=17(L).答:当x=280(千米)时,剩余油量Q的值为17L.(3)(45﹣3)÷0.1=420(千米),∵420>400,∴他们能在汽车报警前回到家.【点评】本题考查了函数的关系式以及一次函数图象上点的坐标特征,根据数量关系列出函数关系式是解题的关键.16.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.(1)根据图,将表格补充完整.白纸张数12345…纸条长度4075110145180…(2)设x张白纸粘合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2017cm吗?为什么?【分析】(1)根据图形可知每增加一张白纸,长度就增加35cm;(2)有x张纸条时,则在40的基础上增加了(x﹣1)个35cm的长度;(3)依据总长等于2017列方程求得x的值,然后可作出判断.【解答】解:(1)白纸张数为2时,纸条长度=40+35=75;白纸张数为2时,纸条长度=40+4×35=180;故答案为:75;180.(2)y=40+35(x﹣1)=35x+5(3)不能.理由:根据题意得:2017=35x+5,解得:x≈57.5.∵x为整数数,∴所以不能.【点评】本题主要考查的是列函数关系式,依据题意列出y与x的关系式是解题的关键.17.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费.设小丽家每月用气量为x立方米,应交煤气费为y 元.(1)若小丽家某月用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的表达式;(3)若小丽家4月份的煤气费为88元,那么她家4月份所用煤气为多少立方米?(4)已知小丽家6月份的煤气费平均每立方米0.95元,那么6月份小丽家用了多少立方米的煤气?【分析】(1)根据题意列出算式,求出即可;(2)分为两个阶段,列出函数式即可;(3)根据题意列出方程,求出方程的解即可;(4)根据题意列出方程,求出方程的解即可.【解答】解:(1)根据题意得:小丽家该月应交煤气费为0.8×50+1.2×(80﹣50)=76(元);(2)当x≤50时,y=0.8x;当x>50时,y=0.8×50+1.2(x﹣50)=1.2x﹣20;(3)设小丽家4月份用煤气x立方米,∵0.8×50=40(元),而88元>40元,根据题意得:1.2x﹣20=88,解得:x=90,答:小丽家4月份用煤气90立方米;(4)设6月份小丽家用了a立方米的煤气,根据题意得:1.2a﹣20=0.95a,解得:a=80,答:6月份小丽家用了80立方米的煤气.【点评】本题考查了函数关系式的应用,能根据题意列出函数关系式是解此题的关键.18.甲、以两家蓝莓采摘园的蓝莓品质相同,销售价格都是每千克30元,“五一”假期,两家均推出了优惠方案:甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的蓝莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的蓝莓超过10千克后,超过部分五折优惠,优惠期间,设某游客的蓝莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).(1)当蓝莓采摘量超过10千克时,求y1、y2与x的关系式;(2)若要采摘40千克蓝莓,去哪家比较合算?请计算说明.【分析】(1)根据题意即可得到结论;(2)把x=40,代入函数关系式即可得到结论.【解答】解:(1)y1=60+30×0.6x=60+18x;y2=10×30+30×0.5(x﹣10)=150+15x;(2)当x=40时,y1=60+18×40=780,y2=150+15×40=750,因为y1>y2,所以选择乙合算.【点评】本题考查了函数关系式,正确的理解题意是解题的关键.。
2017届中考数学试题分项版解析汇编第02期专题06函数的图像与性质含解析
专题6:函数的图像与性质一、选择题1.(2017北京第9题)小苏和小林在右图所示的跑道上进行4³50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如下图所示.下列叙述正确的是( )A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度 C. 小苏前15s 跑过的路程大于小林前15s 跑过的路程 D .小林在跑最后100m 的过程中,与小苏相遇2次 【答案】D. 【解析】试题分析:由图可看出小林先到终点,错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确. 故选D. 考点:函数图象2. (2017天津第10题)若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y的大小关系是( )A .321y y y <<B .132y y y << C.123y y y << D .312y y y << 【答案】B. 【解析】试题分析:把),1(1y A -,),1(2y B ,),3(3y C 分别代入xy 3-=可得,1233,3,1,y y y ==-=-即可得132y y y <<,故选B.3.(2017天津第12题)已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x y B .122-+=x x y C.122+-=x x y D .122--=x x y 【答案】A.4.(2017福建第9题)若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .6 【答案】C【解析】由已知可得3121(1)1n km k n k m k +=++⎧⎨-=+++⎩①②,②-①得k=n-4,又0<k<2,则有0< n-4<2,解得4< n<6,因此只有选项C 的数值是符合条件的数值,故选C. 5. (2017广东广州第10题)0a ≠,函数a y x=与2y ax a =-+在同一直角坐标系中的大致图象可能是( )【答案】D考点:二次函数与反比例函数的图像的判断.6. (2017湖南长沙第8题)抛物线4)3(22+-=x y 的顶点坐标是( ) A .)4,3( B .)4,3(- C .)4,3(- D .)4,2( 【答案】A 【解析】试题分析:根据二次函数的顶点式y=a (x-h )2+k 的顶点为(h ,k ),可知此函数的顶点为(3,4). 故选:A 。
2017全国部分省市中考数学真题汇编一次函数的图像专题练习
2017全国部分省市中考数学真题汇编----一次函数的图像专题练习专题练习函数的图像一次函数的图像小题))一.选择题选择题((共18小题1.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A.1.1千米 B.2千米C.15千米D.37千米2.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y 与x之间函数关系的图象是( )A.B.C.D.3.已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是( )A.B.C.D.4.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系( )A.B.C. D.5.函数y=的大致图象是( )A.B.C.D.6.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是( )A.B.C.D.7.下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况( )A.B.C.D.8.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为( )A.5L B.3.75L C.2.5L D.1.25L9.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是( )A. B.C. D.10.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是( )A.B.C.D.11.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时12.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是( )A.B.C.D.13.b>a,将一次函数y=ax+b与y=bx+a的图象画在同一个直角坐标系内,则能有一组a、b 的取值,使得如下四个图中为正确的是( )A.B.C. D.14.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.则情境a,b所对应的函数图象分别是( )A.③、②B.②、③C.①、③D.③、①15.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是( )A.2个 B.4个 C.6个 D.8个16.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与x之间的函数图象是( )A.B.C.D.17.端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是( )A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min 18.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )A.B.C.D.小题))二.填空题填空题((共12小题19.已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为 .20.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A 时,甲还需 分钟到达终点B.21.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是 .22.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.23.甲、乙两人在一条直线道路上分别从相距1500米的A,B 两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒)之间的关系如图所示.则甲到B点时,乙距B点的距离是 米.24.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为 米.25.直线y=kx+b(k≠0)的图象如图所示,由图象可知当y<0时,x的取值范围是 .26.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是 .27.已知A.B两地相距100km,甲乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶.甲乙两人离A地的距离s(千米)与骑车时间t(小时)满足的函数关系图象如图所示.当甲乙两人相遇时,乙距离A地 km.28.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是 (按次序填写a,b,c对应的序号)29.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x时,y1>y2.30.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地 千米.三.解答题小题))解答题((共10小题“”为:※a b=31.定义运算※34;(1)计算:※y=2x的图象.(2)画出函数※32.顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1(h)到达B地,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.33.我们知道对于x轴上的任意两点A(x1,0),B(x2,0),有AB=|x1﹣x2|,而对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|称为P l,P2两点间的直角距离,记作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.(1)已知O为坐标原点,若点P坐标为(1,3),则d(O,P)=;(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(3)试求点M(2,3)到直线y=x+2的最小直角距离.34.司机小王开车从A地出发去B地送信,其行驶路s与行驶时间t之间的关系如图所示,当汽车行驶若干小时到达C地时,汽车发生了故障,需停车检修,修理了几小时后,为了按时赶到B地,汽车加快了速度,结果正好按时赶到,根据题意结合图回答下列问题:(1)上述问题中反映的是哪两个变量之间的关系?指出自变量和因变量.(2)汽车从A地到C地用了几小时?平均每小时行驶多少千米?(3)汽车停车检修了多长时间?车修好后每小时走多少千米?35.某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.36.小明的家和苏州图书馆在同一条笔直的马路(人民路)旁,周六小明准备沿着这条马路去图书馆.她先从家步行到公交车站台甲,然后乘车到公交车站台乙下车,最后步行到图书馆(假设在整个过程中小明步行的速度不变,公交车匀速行驶).图中折线ABCDE表示小明和图书馆之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)联系生活实际说出线段BC表示的实际意义;(2)求公交车的速度及图书馆与公交站台乙之间的距离.37.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?38.小明同学骑自行车去郊外春游,骑行1个小时后,自行车出现损坏,维修好后继续骑行,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的图象.(1)根据图象回答:小明到达离家最远的地方用了几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?39.李大爷按每千克 2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降 1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?40.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中 的路程与时间的关系,线段OD表示赛跑过程中 的路程与时间的关系.赛跑的全程是 米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?参考答案与解析考答案与解析小题))一.选择题选择题((共18小题1.(2017?邵阳)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A.1.1千米 B.2千米C.15千米D.37千米【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为 1.1千米.【解答】解:由图象可以看出菜地离小徐家 1.1千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.2.(2017?齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是 2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.3.(2017?宁夏)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是( )A.B.C.D.【分析】由点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.4.(2017?凉山州)小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系( )A. B. C.D.【分析】根据哥哥看了20分钟书后,用15分钟返家即可判断哥哥的离家时间与距离之间的关系.【解答】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.【点评】本题考查函数的图象,解题的关键是正确将文字语言转化为图形语言,本题属于基础题型.5.(2017?呼和浩特)函数y=的大致图象是( )A.B.C.D.【分析】本题可用排除法解答,根据y始终大于0,可排除D,再根据x的绝对值越接近于0(如x=±0.1,或x=±0.01)时,每个图象两侧都是无限上升,可排除A,根据函数y=和y=x有交点即可排除C,即可解题.【解答】解:x取±1,±2,±3,会发现最小值是x取±1时y=2,由此选项C,D错误;x的绝对值越接近于0(如x=±0.1,或x=±0.01)时,每个图象两侧都是无限上升,可排除A,∵当直线经过(0,0)和(1,1)时,直线解析式为y=x,当y=x=时,x无解,∴y=x与y=没有有交点,∴B正确;故选B.【点评】此题主要考查了函数图象的性质,考查了平方根和绝对值大于等于0的性质,本题中求得直线与函数的交点是解题的关键.6.(2017?广元)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是( )A.B. C.D.【分析】根据题意求出电费与用电量的分段函数,然后根据各分段内的函数图象即可得解.【解答】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100),=60+0.8x﹣80,=0.8x﹣20,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选C.【点评】本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.7.(2017?雅安)下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况( )A.B.C.D.【分析】根据苹果下落过程中的速度是随时间的增大逐渐增大的,对各选项分析判断后利用排除法.【解答】解:根据常识判断,苹果下落过程中的速度是随时间的增大逐渐增大的,A、速度随时间的增大变小,故本选项错误;B、速度随时间的增大而增大,故本选项正确;C、速度随时间的增大变小,故本选项错误;D、速度随时间的增大不变,故本选项错误.故选B.【点评】本题考查了函数图象的确认,根据速度随时间的增大而增大确定函数图象是解题的关键.8.(2017?南通)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为( )A.5L B.3.75L C.2.5L D.1.25L【分析】观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量﹣每分钟增加的水量”即可算出结论.【解答】解:每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=3.75(升).故选:B.【点评】本题考查了函数图象,解题的关键是根据函数图象找出数据结合数量关系列式计算.9.(2017?牡丹江)下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是( )A. B. C.D.【分析】等腰三角形的两个底角相等,由内角和定理可知:x+x+y=180,从而得y=180﹣2x,由y>0得x<90,又x>0,故0<x<90,据此可得答案.【解答】解:由等腰三角形的性质知y=180﹣2x,且0<x<90,故选:C.【点评】本题考查了三角形内角和定理,一次函数的实际应用及其图象画法,熟练掌握等腰三角形的性质及一次函数图象的画法是解题的关键.10.(2017?东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是( )A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.11.(2017?丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为 1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为: 1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.12.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是( )A.B.C.D.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.13.b>a,将一次函数y=ax+b与y=bx+a的图象画在同一个直角坐标系内,则能有一组a、b 的取值,使得如下四个图中为正确的是( )A.B.C. D.【分析】先假设y=axb正确,得出a、b的符号,再对y=bx+a的图象进行分析即可.【解答】解:A、假设y=ax+b正确,则a>0,b>0,则函数y=bx+a的图象应经过一、二、三象限,故本选项错误;B、假设y=ax+b正确,则a>0,b>0,因为b>a,所以函数y=bx+a与y轴的交点在y=ax+b 与y轴交点的下方,故本选项正确;C、假设y=ax+b正确,则a<0,b>0,则函数y=bx+a的图象过一、三、四象限,因为函数y=ax+b与y=bx+a的交点坐标为(1,a+b),由图象可知a=﹣b和b>a,两结论矛盾,故本选项错误;D、假设y=ax+b正确,则a<0,b>0,则函数y=bx+a的图象过一、三、四象限,故本选项错误.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.14.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.则情境a,b所对应的函数图象分别是( )A.③、②B.②、③C.①、③D.③、①【分析】根据图象,一段一段的分析,再一个一个的排除,即可得出答案;【解答】解:∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故选D【点评】此题考查函数图象问题,主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,但是一道比较容易出错的题目.15.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是( )A.2个 B.4个 C.6个 D.8个【分析】把所给函数解析式化为整式,进而整理为两数积的形式,根据整点的定义判断积的可能的形式,找到整点的个数即可.【解答】解:将函数表达式变形,得2xy﹣y=x+12,4xy﹣2y﹣2x=24,2y(2x﹣1)﹣(2x﹣1)=24+1,(2y﹣1)(2x﹣1)=25.∵x,y都是整数,∴(2y﹣1),(2x﹣1)也是整数.∴或或或或或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数综合一、选择题1.(2017·北京)小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如下图所示.下列叙述正确的是( )A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度 C. 小苏前15跑过的路程大于小林前15跑过的路程 D .小林在跑最后100的过程中,与小苏相遇2次 【答案】D.考点:函数图象2.(2017·甘肃)如图①,在边长为4的正方形ABCD 中,点P 以每y m ts s sm秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y (cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ的长是()A. B. C. D.【考点】E7:动点问题的函数图象.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.3.(2017·湖北荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④【考点】反比例函数图象上点的坐标特征;根的判别式;根与系数的关系;抛物线与x轴的交点.【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得(x﹣4)(x+2)=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c 与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选C.4.(2017·四川泸州)下列曲线中不能表示y是x的函数的是()【答案】C.【解析】二、填空题1.(2017·重庆B卷)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.【答案】78.考点:函数的图象.2.(2017·湖北荆州)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为3.【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k的几何意义;T7:解直角三角形.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM 中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为y=﹣,然后确定N点坐标,最后计算BN的长.【解答】解:∵S矩形OABC=32,∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE==,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM==,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入y=得k=﹣2×4=﹣8,∴反比例函数解析式为y=﹣,当x=﹣8时,y=﹣=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为3.三、解答题1.(2017·北京)如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.P AB AB P PM AB ⊥AB M MB P PN MB ⊥N 6AB cm =A P 、xcm P N、ycm P AB y y x x y(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一) 【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一) 试题解析:(1)1.6 (2)如图所示:(3)作y=x 与函数图象交点即为所求.2.2(答案不唯一)PAN APcm考点:函数图象,估算,近似数2.(2017·北京)在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点. (1)当的半径为2时,①在点中,的关联点是_______________. ②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围. 【答案】(1)①,②-≤x≤,(2)-2≤x≤1或xOy P M M Q P Q 、P M O 1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O P y x =-P O P C x 1y x =-+x y A B 、AB C C 23,P P 2试题解析:(1),点 与⊙的最小距离为 ,点 与⊙的最小距离为1,点与⊙的最小距离为,∴⊙的关联点为和.②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意;∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,,解得,当OP=3时,由距离公式可得,,,解得, ∴ 点的横坐标的取值范围为-≤x≤12315,01,22OP P OP ===1P 322P 3P 122P 3P 1=x =3=229x x +=x =2如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A 时,AC=1, C 点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt △OCB 中,由勾股定理得, C 点坐标为(2,0).=∴ C 点的横坐标的取值范围为2≤≤2 ;∴综上所述点C 的横坐标的取值范围为-≤≤≤. 考点:切线,同心圆,一次函数,新定义.3.(2017·浙江金华)如图1,在平面直角坐标系中,四边形各顶点的坐标分别为,动点与同时从点出发,运动时间为秒,点沿方向以单位长度/秒的速度向点运动,点沿折线运动,在上运动的速度分别为(单位长度/秒).当中的一点到达点时,两点同时停止运动.c x 22c x c x OABC )0,14(),35,9(),33,3(),0,0(C B A O P Q O t P OC 1C Q BC -AB -OA BC AB OA ,,2533,,Q P ,C(1)求所在直线的函数表达式;(2)如图2,当点在上运动时,求的面积关于的函数表达式及的最大值;(3)在,的运动过程中,若线段的垂直平分线经过四边形的顶点,求相应的值.【答案】;(2) ,当t=5时,S 有最大值;最大值为;(3) t 的值为.试题解析:(1)解:把A (3,3 ),B (9,5 )代入y=kx+b,得 ; AB Q AB CPQ ∆S t S P Q PQ OABCt21(146)2S tt =-+=++≤≤4732238,,4237+39k b k b ⎧+=⎪⎨+=⎪⎩解得:; ∴y=x+2 ; (2)解:在△PQC中,PC=14-t,PC 边上的高线长为; ∴ ∴当t=5时,S 有最大值;最大值为.c.当6<t≤10时,①线段PQ 的中垂线经过点C (如图3) 可得方程14-t=25-; 解得:t=. ②线段PQ 的中垂线经过点B (如图4)可得方程; 解得(舍去); 3323k b ⎧=⎪⎨⎪=⎩33323t +213353(14)(23)143(26)2S t t t t t =-+=-++≤≤81352t 2232225(53)(9)(6)2t t ⎡⎤+-=-⎢⎥⎣⎦123820238202t t +-==此时; 综上所述:t 的值为.4.(2017·贵州黔东南州)如图,⊙M 的圆心M (﹣1,2),⊙M 经过坐标原点O ,与y 轴交于点A ,经过点A 的一条直线l 解析式为:y=﹣x+4与x 轴交于点B ,以M 为顶点的抛物线经过x 轴上点D (2,0)和点C (﹣4,0). (1)求抛物线的解析式; (2)求证:直线l 是⊙M 的切线;(3)点P 为抛物线上一动点,且PE 与直线l 垂直,垂足为E ,PF ∥y 轴,交直线l 于点F ,是否存在这样的点P ,使△PEF 的面积最小?若存在,请求出此时点P 的坐标及△PEF 面积的最小值;若不存在,请说明理由.387t +=72243【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B 的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF 的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M 的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF :PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.5.(2017·江苏徐州)如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC﹣CD﹣DA运动到点A停止,动点Q从点A 出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P 出发xs时,△BPQ的面积为ycm2,已知y与x之间的函数关系如图②所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当1<x<2时,△BPQ的面积不变(填“变”或“不变”);(2)分别求出线段OM,曲线NK所对应的函数表达式;(3)当x为何值时,△BPQ的面积是5cm2?【考点】LO:四边形综合题.【分析】(1)根据函数图象即可得到结论;(2)设线段OM的函数表达式为y=kx,把(1,10)即可得到线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x ﹣3)2,把(2,10)代入得根据得到曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x或y=10(x﹣3)2即可得到结论.【解答】解:(1)由函数图象知,当1<x<2时,△BPQ的面积始终等于10,∴当1<x<2时,△BPQ的面积不变;故答案为:不变;(2)设线段OM的函数表达式为y=kx,把(1,10)代入得,k=10,∴线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得,10=a(2﹣3)2,∴a=10,∴曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x得,x=,把y=5代入y=10(x﹣3)2得,5=10(x﹣3)2,∴x=3±,∵3+>3,∴x=3﹣,∴当x=或3﹣时,△BPQ的面积是5cm2.6.(2017·江苏徐州)如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(3,0),C(0,﹣4);(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.【考点】HF:二次函数综合题.【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP 2=2,过P2作P2E⊥x轴于E,P2F⊥y 轴于F,根据相似三角形的性质得到==2,设OC=P2E=2x,CP2=OE=x,得到BE=3﹣x,CF=2x﹣4,于是得到FP2=,EP2=,求得P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图2,当PB与⊙C相切时,OE的值最大,过E作EM⊥y 轴于M,过P作PF⊥y轴于F,根据平行线等分线段定理得到ME=(OB+PF)=,OM=MF=OF=,根据勾股定理即可得到结论.【解答】解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:3,0;0,﹣4;(2)存在点P,使得△PBC为直角三角形,①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP 2⊥BP2,CP2=,∴BP 2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴==2,设OC=P2E=2x,CP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴==2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴==,∴CH=,P4H=,∴P4(,﹣﹣4);同理P3(﹣,﹣4);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣,﹣4);(3)如图(3),当PB与⊙C相切时,PB与y 轴的距离最大,OE 的值最大,∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,∴OB∥EM∥PF,∵E为PB的中点,∴ME=(OB+PF)=,OM=MF=OF=,∴OE==.故答案为:.7.(2017·江苏无锡)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D 的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=x 2﹣x ﹣. 【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出,可得,求出m 即可解决问题; (2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.84812AC PC AP CE CH HE ===144PB DP n EH DH n ===3-1264m m =+∴, ∴CH=2n ,EH=2m=6,∵CD ⊥AB ,∴PC=PD=n ,∵PB ∥HE ,∴△DPB ∽△DHE ,∴, ∴, ∴m=1,∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP ,在Rt △OCP 中,,∴12AC PC AP CE CH HE ===144PB DP n EH DH n ===3-1264m m =+=∴E (9,,∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a (x+3)(x﹣5),把E (9,a=, ∴抛物线的解析式为x+3)(x ﹣5),即y=x 2x . 考点:圆的综合题.8。