人教版九年级数学第21章同步练习题及答案全套-21.2二次根式的乘除(第一课时)

合集下载

人教版初中九年级数学上册课堂同步试题及答案 全册

人教版初中九年级数学上册课堂同步试题及答案 全册

21.1二次根式(1)中学初三数学备课组一、选择题1.下列式子中,一定是二次根式的是()A.BC D.x2.下列式子中,不是二次根式的是()A BC D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对4一定是二次根式的个数是().A.4 B.3 C.2 D.1二、填空题5.形如________的式子叫做二次根式.6.面积为a的正方形的边长为________.三、解答题7.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?8=0,求x y的值.21.1二次根式(2)中学初三数学备课组一、选择题1.下列各式中一定是二次根式的是( )A.10- B.22-aC.327D.132+x2.下列计算正确的是( ) A.()2552=B.()332-=-C.416±=D.749=3.如果a 为任意实数,那么下列各式中正确的是( ) A.a ≥0 B.a -≥0C.2a ≥0D.a -≥0二、填空题4.若a 的算式平方根是21,则a =_______________. 5.计算:(1)()=222-_______;(2)=⎪⎭⎫⎝⎛--221________. 6.已知一个直角三角形的两直角边分别为x 和y ,则斜边用代数式表示为_________________;当x =6,y =8时,斜边长为__________.三、解答题7.当x 是多少时,下列各式在实数范围内有意义? (1)x 2-;(2)121-x .8.当5=a 时,求式子221a a a +-+的值.21.2二次根式的乘除(1)中学 初三数学备课组一、选择题1.已知12)1(2-•=-x x ,则有( )A.x >1 B.x <1C.x ≥1 D.x ≤12.计算xx 2•的结果是( ) A.xB.2C.xD.23.下列计算正确的是( ) A.3163838=⨯ B.652535=⨯C.562234=⨯D.15125236=⨯二、填空题4.=⨯44__________,.__________62=⨯ 5.化简38)2(2⨯⨯-的结果是____________.三、解答题6.化简:(1)16925⨯;(2)429y x .7.若直角三角形两条直角边长分别为15cm 和12cm ,求此直角三角形的面积.21.2二次根式的乘除(2)中学 初三数学备课组一、选择题1.下列各式是最简二次根式的为( )A.12+x B.32y xC.12- D.5.22.化简231+的结果为( )A.23+B.23-C.2 D.13.已知a aa a -=-112,则a 的取值范围是( )A.a ≤0 B.a <0C.0<a ≤1D.a >0二、填空题4.__________2385=÷,___________3=÷a b a .5.___________3625=,___________3611214=⨯.三、解答题6.把下列各式化为最简二次根式(1)326-;(2)328a a.7.已知长方形的面积是48,一边长是12,则另一边长是多少?21.2二次根式的乘除(3)中学 初三数学备课组一、选择题1.下列化简中,正确的是( )A.1535925=⨯=⨯B.632=⨯C.222543=+D.33-12= 2.下列计算正确的是( )A .3232--=-- B .a a 3313=C .a a=33D .a a333= 3.把(a -1)11-a根号外的因式移入根号内,其结果是( ) A .1-a B .-1-a C .a -1 D .-a -1二、填空题4.= . 5.把aa 1-中根号外面的因式移到根号内的结果是三、解答题6.计算:(1)213675÷⨯7.已知x+y=4,xy=2.求;xyy x+的值。

二次根式同步测试题及答案

二次根式同步测试题及答案

二次根式1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。

当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根) 概念:式子a (a≥0)叫二次根式。

a (a≥0)是一个非负数。

2、二次根式有意义的条件:(1)被开方数是一个非负数。

(2)分母不能为零。

练习题1、判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y +、x y +(x≥0,y •≥0).(2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个(3)下列各式一定是二次根式的是( ) A.7- B.32m C. 21a + D.a b2、二次根式有意义的条件1.要使根式3-x 有意义,则字母x 的取值范围是______.2.当x ______时,式子121-x 有意义.3.要使根式234+-x x有意义,则字母x 的取值范围是______.4.若14+a 有意义,则a 能取得的最小整数值是______.5.若x x -+有意义,则=+1x ______.6.使等式032=-⋅+x x 成立的x 的值为______.8.使式子23+x 有意义的实数x 的取值范围是( ) (A)x ≥0 (B)32->x (C)23-≥x (D)32-≥x 9.使式子2||1+-x x 有意义的实数x 的取值范围是( )(A)x ≥1 (B)x >1且x ≠-2 (C)x ≠-2 (D)x ≥1且x ≠-210.x 为实数,下列式子一定有意义的是( )(A)21x (B)x x +2(C)112-x (D)12+x13.要使下列式子有意义,字母x 的取值必须满足什么条件?(1)1||21--x x (2)x +--21 (3)232+x (4)x x 2)1(- (5)222++x x17.(1)已知05|3|=-++y x ,求yx的值;(2)已知01442=+++++y x y y ,求y x 的值.问题探究:已知实数x 、y 满足324422+--+-=x x x y ,求9x +8y 的值.二次根式(2)掌握二次根式的三个性质:a ≥0(a ≥0);(a )2=a (a ≥0);||2a a =.填空题:1.当a ≥0时,=2a ______;当a <0时,2a =______. 2.当a ≤0时,=23a ______;=-2)23(______.3.已知2<x <5,化简=-+-22)5()2(x x ______.4.实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a ______.5.已知△ABC 的三边分别为a 、b 、c 则=+----||)(2c a b c b a ______.6.若22)()(y x y x -=-,则x 、y 应满足的条件是______.7.若0)2(|4|2=-+++x y x ,则3x +2y =______.8.直线y =mx +n 如图4所示,化简:|m -n |-2m =______.9.请你观察、思考下列计算过程: 图4 因为112=121,所以11121=,同样,因为1112=12321,所以=12321111,……由此猜想=76543211234567898______.选择题:10.36的平方根是( )(A)6(B)±6(C)6(D)±611.化简2)2(-的结果是( )(A)-2 (B)±2 (C)2(D)412.下列式子中,不成立的是( )(A)6)6(2= (B)6)6(2=--(C)6)6(2=-(D)6)6(2-=--13.代数式)0(2=/a a a 的值是( )(A)1(B)-1(C)±1(D)1(a >0时)或-1(a <0时)14.已知x <2,化简442+-x x 的结果是( )(A)x -2(B)x +2(C)-x +2(D)2-x15.如果2)2(2-=-x x ,那么x 的取值范围是( )(A)x ≤2 (B)x <2 (C)x ≥2 (D)x >216.若a a -=2,则数a 在数轴上对应的点的位置应是( )(A)原点(B)原点及原点右侧 (C)原点及原点左侧(D)任意点17.若数轴上表示数x 的点在原点的左边,则化简|3|2x x +的结果是( )(A)4x(B)-4x(C)2x(D)-2x18.不用计算器,估计13的大致范围是( )(A)1<13<2(B)2<13<3(C)3<13<4(D)4<13<519.某同学在现代信息技术课学了编程后,写出了一个关于实数运算的程序:输入一个数值后,屏幕输出的结果总比该数的平方小1,若某同学输入7后,把屏幕输出的结果再次输入,则最后屏幕输出的结果是( ) (A)6(B)8(C)35(D)37解答题: 20.计算:(1);)12(|3|)2(02---+- (2)⋅-+-|21|2)3(0221.化简:(1));1()2()1(22>++-x x x (2).||2)(2x y y x ---22.已知实数x ,y 满足04|5|=++-y x ,求代数式(x +y )2007的值.23.已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值.24.在实数范围内分解因式:(1)x 4-9; (2)3x 3-6x ; (3)8a -4a 3; (4)3x 2-5.25.阅读下面的文字后,回答问题:小明和小芳解答题目:先化简下式,再求值:221a a a +-+,其中a =9时,得出了不同的答案.小明的解答是:原式=1)1()1(2=-+=-+a a a a ;小芳的解答是:原式=1719212)1()1(2=-⨯=-=--=-+a a a a a .(1)______的解答是错误的;(2)说明错误的原因.26.细心观察图5,认真分析各式,然后解决问题.图5;21,21)1(12==+S ;22,31)2(22==+S;23,41)3(32==+S…… ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出21024232221S S S S S +++++ 的值. 27.一物体从高处自由落下,落到地面所用的时间t (单位:秒)与开始落下时的高度h (单位:米)有下面的关系式:⋅≈5ht (1)已知h =100米,求落下所用的时间t ;(结果精确到0.01)(2)一人手持一物体从五楼让它自由落到地面,约需多少时间?(每层楼高约3.5米,手拿物体高为1.5米)(结果精确到0.01)(3)如果一物体落地的时间为3.6秒,求物体开始下落时的高度.问题探究:同学们一定听过蚂蚁和大象进行举重比赛的故事吧!蚂蚁能举起比它的体重重许多倍的火柴棒,而大象举起的却是比自己体重轻许多倍的一截圆木,结果蚂蚁获得了举重冠军!我们这里谈论的话题是:蚂蚁和大象一样重吗?我们知道,即使是最大的蚂蚁与最小的大象,它们的重量明显不是一个数量级的.但是下面的推导却让你大吃一惊:蚂蚁和大象一样重!设蚂蚁重量为x 克,大象的重量为y 克,它们的重量和为2a 克,则x +y =2a . 两边同乘以(x -y ),得(x +y )(x -y )=2a (x -y ), 即x 2-y 2=2ax -2ay .可变形为x 2-2ax =y 2-2ay .两边都加上a 2,得(x -a )2=(y -a )2. 两边开平方,得x -a =y -a . 所以x =y .这里竟然得出了蚂蚁和大象一样重,岂不荒唐!那么毛病究竟出在哪里呢?亲爱的同学,你能找出来吗?二次根式的乘除理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性 填空题:1.计算:ab a ⋅=______.2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______.5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______.选择题:7.化简20的结果是( ) (A)25(B)52(C)102(D)548.化简5x -的结果是( )(A)x x2- (B)x x--2(C)x x-2(D)x x29.若a ≤0,则3)1(a -化简后为( )(A)1)1(--a a (B)a a --1)1( (C)a a --1)1((D)1)1(--a a解答题: 10.计算:(1);63⨯ (2));7(21-⨯ (3));102(53-⨯(4));804()245(-⨯- (5));25.22(321-⨯ (6);656)3122(43⨯-⨯ (7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅ (13));42(2212mn m m +-⋅ (14))12()321(123143z xy x x ⋅-⋅⋅.11.化简:(1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+- (2).425.060sin 12)21(20082008o 2⨯---13.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.图121.2 二次根式的乘除(2)理解二次根式除法运算法则,即b aba =(a ≥0,b >0)的合理性 填空题: 1.在4,21,8,6中,是最简二次根式的是______. 2.某精密仪器的一个零件上有一个矩形的孔,其面积是42cm 2,它的长为5cm ,则这个孔的宽为______cm .3.2-3的倒数是______,65+的倒数是______. 4.使式子3333+-=+-x xx x 成立的条件是______. 选择题:5.下列各式的计算中,最简二次根式是( ) (A)27(B)14(C)a1 (D)23a6.下列根式xy y x xy 53,,21,12,2+中最简二次根式的个数是( ) (A)1个 (B)2个(C)3个(D)4个7.化简273-的结果是( ) (A)27- (B)27+(C))27(3-(D))27(3+8.在化简253-时,甲的解法是:,25)25)(25()25(3253+=+-+=-乙的解法是:,2525)25)(25(253+=--+=-以下判断正确的是( )(A)甲的解法正确,乙的解法不正确 (B)甲的解法不正确,乙的解法正确(C)甲、乙的解法都正确(D)甲、乙的解法都不正确9.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ~△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( ) (A)22(B)2(C)2 (D)2210.如图1,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于()图1(A)m )13(6+ (B)m )13(6- (C)m )13(12+(D)m )13(12-11.计算)(baa b a b b a ÷的正确结果是( ) (A)ba(B)ab(C)22ba(D)112.若ab ≠0,则等式aba b a 135-⋅=--成立的条件是( ) (A)a >0,b >0(B)a <0,b >0(C)a >0,b <0(D)a <0,b <0解答题: 13.计算:(1);51 (2);208 (3);2814 (4);5)12(÷-(5));74(142-÷ (6));452()403(-÷-(7));6121(211-÷ (8);1543513÷- (9);45332b a b a ÷(10));6(322344c b a c b a -÷(11);152)1021(23÷⨯(12);521431252313⨯÷ (13);653034y xy xy ⋅÷(14);3)23(235ab b a ab b ÷-⋅ (15));1843(3211233xyxy x -÷⋅(16)⋅-÷+)2332()2332(14.已知一个圆的半径是cm,90一个矩形的长是135πcm ,若该圆的面积与矩形的面积相等,求矩形的宽是多少?15.已知b a ==20,2,用含a ,b 的代数式表示:(1);5.12(2).016.016.已知:如图2,在△ABC 中,∠A =60°,∠B =45°,AB =8.求△ABC 的面积.图217.阅读下列解题过程,根据要求回答问题:化简:)0(2323<<+--a b a ba ab b a b a解:原式a b a b ab a 2)(--= ①aba b a b a --=)(②ab aa )1(⋅=③ ab =④(1)上面解答过程是否正确?若不正确,请指出是哪几步出现了错误? (2)请你写出你认为正确的解答过程.18.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是glT π2=,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内这台座钟大约发出了多少次滴答声?(π取3.14)问题探究:借助计算器计算下列各题:(1);211- (2);221111- (3);222111111- (4).222211111111-仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?与同学交流一下想法.并用所发现的规律直接写出下面的结果:个个10012002222111⋅⋅⋅-⋅⋅⋅=______.21.3 二次根式的加减(1)学习要求:了解同类二次根式的概念,会辨别两个二次根式是否为同类二次根式.会进行简单的二次根式的加、减法运算,体会化归的思想方法.做一做: 填空题: 选择题: 7.计算312-的结果是( ) (A)3(B)3(C)32(D)338.下列二次根式中,属于最简二次根式的是( ) (A)a 4(B)4a (C)4a(D)4a9.下列二次根式中,与2是同类二次根式的是( ) (A)27(B)12(C)10(D)810.在下列各组根式中,是同类二次根式的是( )(A)3和18(B)3和31 (C)b a 2和2ab (D)1+a 和1-a11.下列各式的计算中,成立的是( )(A)5252=+(B)15354=- (C)y x y x +=+22(D)52045=-12.若121,121+=-=b a 则)(ab b a ab -的值为( ) (A)2 (B)-2(C)2(D)22解答题:13.计算:(1);2523+ (2);188+ (3);50483122+-(4);312712-+ (5);202452321+-(6);12531110845--+ (7);)33()33(22++- (8);5.0753128132-+--(9))455112()3127(+--+; (10)231)13(3-++; (11)a a a aaa a 1084333273123-+-;问题探究 教师节到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画送给老师,其中一个面积为800cm 2,另一个面积为450cm 2.他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2米金彩带,请你帮忙算一算,他的金彩带够用吗?如果不够用,还需买多长的金彩带?(2=1.414,保留整数)21.3 二次根式的加减(2)学习要求会进行简单的二次根式的加、减、乘、除四则运算的混合运算. 做一做: 填空题: 选择题:9.在二次根式16,8,4,2中同类二次根式的个数为( ) (A)4 (B)3 (C)2(D)110.下列计算中正确的是( )(A)2323182=⨯= (B)134916916=-=-=- (C)24312312=== (D)a a 242=11.下列各组式子中,不是同类二次根式的是( )(A)81与18 (B)63与2825 (C)48与8.4 (D)125.0与12812.化简)22(28+-得( )(A)-2(B)22-(C)2(D)224-13.下列计算中,正确的是( )(A)562432=+ (B)3327=÷(C)632333=⨯ (D)3)3(2-=-14.下列计算中,正确的是( )(A)14931227=-=-(B)1)52)(52(=+-(C)23226=-(D)228=-15.化简aa a a a a 149164212-+的值必定是( ) (A)正数(B)负数(C)非正数(D)非负数16.若a ,b 为实数且211441+-+-=a ab ,则22-+-++baa b b a a b 的值为( ) (A)22 (B)2(C)22-(D)32解答题:17.计算:(1))232)(232(-+; (2)2)32(+; (3)2145051183-+;(4);7232318283--+ (5)23)121543(÷-; (6)20072006)65()56()1245()31251(-⋅+++--;(7)33322)1(2mn m n m n m m n ÷-.18.如图2,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.图219.阅读下面的解答过程,然后答题:已知a 为实数,化简aa a 13---. 解:原式.)1(1a a a aa a a --=-⋅--= (1)上述解答是否有错误?答:____________;(2)若有错误,错在______步,错误的原因是____________; (3)写出正确的解答过程.20.阅读理解题:如果按一定次序排列的三个数a ,A ,b 满足A -a =b -A ,即,2ba A +=则称A 为a ,b 的等差中项.如果按一定次序排列的三个数a ,G ,b 满足,Gba G =即G 2=ab (a ,b 同号),则称G 为a ,b 的等比中项.根据前面给出的概念,求25-和25+的等差中项和等比中项.问题探究:因为223)12(2-=-,所以,12223-=- 因为223)12(2+=+,所以,12223+=+因为347)32(2-=-,所以,32347-=-请你根据以上规律,结合你的经验化简下列各式: (1)625-; (2)⋅+249复 习学习要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算和化简. 做一做: 填空题: 选择题: 10.使根式x x 1+有意义的字母x 的取值范围是( )(A)x >-1(B)x <-1(C)x ≥-1且x ≠0(D)x ≥-111.已知a <0<b ,化简2)(b a -的结果是( )(A)a -b (B)b -a (C)a +b (D)-a -b12.在32,9,,,45222xa y x xy +-中,最简二次根式的个数是( ) (A)1(B)2(C)3(D)413.下列二次根式中,与35-是同类二次根式的是( )(A)18(B)3.0(C)30(D)30014.计算28-的结果是( )(A)6(B)2(C)2(D)1.415.估算37(误差小于0.1)的大小是( ) (A)6 (B)6.0~6.1(C)6.3(D)6.816.下列运算正确的是( )(A)171251251252222=+=+=+ (B)1234949=-=-=-(C)20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯-(D)1535)3()5(22=⨯=-⨯-17.下列运算中,错误..的是( ) (A)632=⨯(B)2221=(C)252322=+ (D)32)32(2-=-18.若把aa 1-的根号外的a 适当变形后移入根号内,结果是( ) (A)a -- (B)a -(C)a -(D)a19.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⋅; ③;1.12a aa a a== ④.23a a a =-做错的题是( ) (A)①(B)②(C)③ (D)④20.若)()()(22m n m n n a a m >-=-+-成立,则a 的取值范围是( )(A)m ≤a ≤n(B)a ≥n 且a ≤m(C)a ≤m(D)a ≥n21.用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P =112--n n ,与1)1(1)1(2-+-+=n n Q ,(n 为大于1的整数)的值的大小关系为( ) (A)P <Q (B)P =Q(C)P >Q(D)不能确定解答题: 22.计算:(1);483122+ (2);7002871-+ (3);8121332+-(4))56()56(+⨯-; (5)2)2332(-; (6)25)520(-÷+;(7)m m m m m m m 3361082273223-+-; (8).123132+++23.(1)当a <0时,化简aa a a -+-2212;(2)已知x 满足的条件为⎩⎨⎧<->+0301x x ,化简;129622++++-x x x x(3)实数a ,b 在数轴上表示如图,化简:.)()2()2(222b a b a ++--+24.(1)当a =5+1,b =5-1时,求a 2b +ab 2的值;(2)当41=x ,y =0.81时,求31441y yx y x x ---的值.(3)已知154-的整数部分为a ,小数部分为b ,求a 2+b 2的值.25.若12+x 与y -2互为相反数,求x y 的值.26.已知x ,y 为实数,且499+---=x x y ,求y x +的值.第二十一章 二次根式测试题填空题:(每题2分,共24分) 1.函数1-=x xy 的自变量x 的取值范围是______.2.当x ______时,x x -+-31有意义. 3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______. 8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:=+++++++++)12007)(200620071341231121(. ______.12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ; (2)若25,21==b a ,则23≤ab ;(3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______. 选择题:(每题2分,共24分) 13.已知xy >0,化简二次根式2x yx -的正确结果为( ) (A)y (B)y - (C)y -(D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a(D)2a 或-2a15.下列二次根式中,最简二次根式为( )(A)x 9(B)32-x(C)xyx - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3(B)-3(C)1(D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0(B)1(C)-1(D)3118.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4 (B)2x +2(C)-2x -2 (D)-4 20.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --1 21.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠224.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数表达式是( ) (A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算: (1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b a b ab ab a26.若,03|9|22=--++m m n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yx y xy y x y x +-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-== ⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案第二十一章 二次根式21.1 二次根式(1)1.3≥x 2.21>x 3.34≤x 且x ≠-2 4.0 5.1 6.3 7.55+ 8.D 9.A 10.D 11.C 12.C 13.(1)⋅≤21x 且x ≠-1 (2)x <-2 (3)x 为任意实数 (4)x 为非零实数 (5)x 为任意实数 14.135+ 15.cm π 16.ab 22 17.53)1(- (2)-2 18.(1)215 (2)21% 问题探究:6注意x =2时要舍去21.1 二次根式(2)1.a ,-a 2.32,3--a 3.3 4.1 5.0 6.x ≥y7.-6 8.n 9.111111111 10.D 11.C 12.B 13.D14.D 15.C 16.C 17.D 18.C 19.C 20.(1)6 (2)25 21.(1)2x +1 (2)y -x 22.1 23.2 24.(1))3)(3)(3(2-++x x x (2))2)(2(3+-x x x (3))2)(2(4a a a +- (4))53)(53(+-x x25.(1)小明 (2)因为a =9,所以1-a <0,所以1)1(2-=-a a26.(1)2,11)(2n S n n n =+=+ (2),21012110=⨯⨯OA 所以1010=OA (3)222221024232221)210()23()22()21(S S S S S ++++=++++ 434241++=455410=++27.(1)4.47秒 (2)1.76秒 (3)64.8米问题探究:略21.2 二次根式的乘除(1)1.b a 2.y x - 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23 (2)37- (3)230- (4)30160 (5)15- (6)237- (7)1222- (8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+- (14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)013.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2)(2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF21.2 二次根式的乘除(2)1.6 2.1054 3.56,32-+ 4.-3<x ≤3 5.B 6.B 7.B 8.C 9.C 10.A 11.A 12.B13.(1)55 (2)510 (3)22 (4)5510- (5)22- (6)2 (7)-6 (8)332- (9)a a b 52 (10)cab 23- (11)23 (12)210 (13)6y 3 (14)ab b a 2- (15)x xy 22-(16)625-- 14.cm 152 15.(1)a 5或a 25 (2)b a 52或a b 25 16.31648- 17.(1)不正确,第②③步出现了错误(2)原式ab ab aa ab a b b a a a b a b a b a =-⋅-=--=--=)1()()(2 18.42问题探究:(1)3 (2)33 (3)333 (4)3333个100133321.3 二次根式的加减(1)1.23 2.略 3.2 4.23,21 5.123+ 6.10255+ 7.B 8.D 9.D 10.B 11.D 12.A 13.(1)28 (2)25 (3)2538+- (4)3314 (5)52315- (6)523316- (7)24 (8)33132413+ (9)5514334- (10)1 (11)a a 32- 问题探究:不够用,还需买78cm 21.3 二次根式的加减(2)1.3 2.0 3.1560- 4.3 5.xy x y )(- 6.x x 22-7.212- 8.12 9.C 10.A 11.C 12.A 13.B 14.D15.A 16.B 17.(1)10 (2)347+ (3)28 (4)26- (5)4523- (6)6338559--- (7)2m m n - 18.320 19.(1)有 (2)错在第一步,忽视了a <0(因为01>-a,所以a <0) (3)原式+--=--⋅---=a a a aa a a 1 a a a --=-)1( 20.25-和25+的等差中项为5,等比中项为3± 问题探究:212)2(23)1(+- 复 习1.x >5 2.x -2 3.1 4.±1 5.0 6.0 7.5 8.2-6a 9.6 10.C 11.B 12.C 13.D 14.C15.B 16.D 17.D 18.A 19.D 20.A 21.C 22.(1)316 (2)7755-(3)2411 (4)1 (5)61230- (6)1 (7)0 (8)323 23.(1)a 1- (2) 4 (3)0 24.(1)58 (2)-2.45 (3)5418- 25.41 26.5 第二十一章 二次根式测试题 1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2006 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=154441541544154415443315441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n 11)1(1111222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。

九年级数学上册 (21.2 二次根式的乘除) 同步达标训练习题(含答案)

九年级数学上册 (21.2 二次根式的乘除) 同步达标训练习题(含答案)

达标训练基础·巩固·达标 1.把x x-1根号外面的因式移到根号里面,则xx -1= . 提示:由题意知x-1>0,即x <0,∴()x xx x x x x--=-∙-=-∙--=-11122.答案:x --2.斜边的长为6.5 cm ,一条直角边长为6 cm 的直角三角形的另一条直角边长是 .提示:由勾股定理求得另一条直角边是5.225425425621365.6222====-⎪⎭⎫⎝⎛=-(cm).答案:2.5cm 3.若|a -21|+(b +1)2=0,则a 3×b -2÷ab -的值是( ) A.32 B.62C.3D.34提示:因为|a-12|≥0,(b+1)2≥0,|a-12|+(b+1)2=0, 所以a=21,b=-1.则322123221122323=⨯⨯=÷⨯=-÷-⨯ab b a .答案:A4.化简:(1)98; (2)31.提示:由b a ⨯=⨯b a (a ≥0,b ≥0) 与ba ba =(a ≥0,b >0)可求.解:(1)2724924998=⨯=⨯=.(2)339331==.5.把下列各式中根号外的数移入根号内:(1)2332; (2)2731-.提示:(2)∵根号外是-31,∴内移时,一定要将负号留在根号外.解:(1)23942332∙==322394=⨯.(2)3279127273191-=⨯-=∙-=-.6.化简:(1)303102⨯-; (2)mnn m 2142;(3)yxy 1⋅-; (4)1615;(5)013.039.0.提示:综合运用()()可求和0,00,0>≥=≥≥⨯=⨯b a baba b a b a b a .(1)36031063106310630103230310222-=⨯⨯-=⨯⨯-=⨯-=⨯⨯-=⨯-. (2)m mn n m mnnm 721421422==.(3)x yxy y xy -=⋅-=⋅-11.(4)4916811615==. (5)3013390013.039.0013.039.0===. 7.把下列各式化成最简二次根式:(1)2114; (2)3x y x . .提示:根据最简二次根式的概念化简.解:(1)62264222342342342114==⨯===.(2)xxy xx y x xy x x y x===33.8.一个直角三角形的两条直角边长分别为5 cm 45 cm ,求这个直角三角形的面积.提示:利用三角形的面积公式可求. 解:S=45521⨯⨯45521⨯⨯= ()23521⨯⨯=()25.71521cm =⨯=.答:这个三角形的面积为7.5 cm 2.9.设长方形的面积是S ,相邻两边分别是a 、b ,如果S =16 cm 2,b =6 c m ,求 a . 提示:由长方形的面积S=ab ,得a=bS .解:a=638661666616616=⨯=⨯⨯=(cm).答案:638cm综合·应用·创新10.张老师在计算机上设计了一长方形纸片,已知长方形的长是cm 140π,宽是cm 35π.他又想设计一个面积与其相等的圆,请你帮助张老师求出圆的半径.提示:长方形的面积等于长×宽,圆的面积等于πr 2(r 为圆的半径),根据圆的面积等于长方形的面积,可求出r.解:设圆的半径为r,则πr 2=22227523514035140∏⨯⨯⨯=∏⨯∏=∏⨯∏=2×5×7×π=70π.∵πr 2=70π,∴r 2=70.∴r=70(cm). 答:圆的半径是70 cm. 11.小东在学习了b aba =后,认为ba ba =也成立,因此他认为一个化简过程24545545520520==-⋅=-⨯-=--=--是正确的.你认为他的化简对吗?说说理由.提示:当a ≥0,b>0时ba ba=才成立.答案:化简不对.因为负数不能开平方. 回顾·热身·展望12.湖北武汉模拟 已知a <b ,化简二次根式b a 3-的正确结果是( ) A.ab a --B.ab a -C.ab aD.ab -提示:根据最简二次根式的概念化简.∵a<b ,-a 3b ≥0,∴a<0,b>0.∴ab a ab a b a a b a --=-⋅=⋅⋅-=-223.答案:A13.福建三明梅列区模拟 (-22)3÷2的结果是( )A.-16B. -12C.8 D .4提示:可利用积的乘方和二次根式的除法进行计算.()()()16222222333-=÷⨯-=÷-.答案:A14.(经典回放)18·8的结果是 . 提示:由)0,0(≥≥⨯=⨯b a b a b a 可求. 答案:1215.浙江嘉兴模拟 计算:ab a ⋅= .提示:由b a b a ⨯=⨯(a ≥0,b ≥0)可求,要注意隐含条件a ≥0.答案:b a。

人教版九年级数学第21章同步练习题及答案全套_4

人教版九年级数学第21章同步练习题及答案全套_4

21.3二次根式的加减(第二课时)◆随堂检测1、下列计算正确的是( )A .632=⨯B .532=+C .248=D .224=-2的值是( )A .203.23 C .23 D .2033,那么这个等腰直角三角形的周长是________.4、计算:(1) (2)()÷分析:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.5、计算:(1))( (2)))分析:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.◆典例分析已知5x =,其中a分析)=1,因此对代数式的化简,可先将分母有理化,再依据二次根式的意义求得x 的值,代入化简式得结果即可.解:原式22=2(1)x x +-+2(1)x x+-=22+ =2(1)242x x x ++=+.∵5x = ∴200820a ->且10040a ->,解得1004a =. ∴5x = ∴原式=4x+2=22.◆课下作业●拓展提高1、(-122的计算结果(用最简根式表示)是________.2、()(-()2的计算结果(用最简二次根式表示)是_______.3、若1x =,则222x x ++=________.4、已知,则22a b ab -=_________.5、计算:(1))2332)(2332(-+; (2)2)534(+;(3)2)336(-; (4))3225)(65(-+.●体验中考1、(2017年,新疆乌鲁木齐)计算:÷(提示:首先要将各二次根式正确化简,然后进行二次根式的综合运算,注意运算顺序.)2、(2008年,上海)先化简,再求值:2222211()a ab b a b a b-+÷--,其中1,1a b ==.(注意:a b +=1)1ab ==,即,a b 的和与积比较简单,容易计算.)参考答案:◆随堂检测1、A 只有A 等式成立,故选A.2、D 原式===3、 利用勾股定理计算斜边的长为2,周长为.4、解:(1).(2)(÷÷-32.5、解:(1))(-2(2)))=2-)2=10-7=3.◆课下作业●拓展提高1、1-2原式=2211()2122222--⨯⨯+=-2、原式=21(121)24---=.3、3 22222(1)111)13x x x ++=++=++=.4、﹣,ab=1,∴22()1a b ab ab a b -=-=⨯=5、解:(1)原式22)23()32(-==12-18=-6;(2)原式22424=+⋅⋅52461+=;(3)2)336(-22)33(3362)6(+⋅⋅-=21833-=;(4)原式26310310225-+-=219=.●体验中考1、解:原式=143÷==.2、解:原式=a b ab ab a b b a a b-⋅=-+-+.∵1)1ab ==,a b +==-.∴原式=。

第二十一章 二次根式训练题

第二十一章  二次根式训练题

第二十一章 二次根式训练题21.1 二次根式一、选择题1.下列各式:15,12-b ,22b a +,1202-m ,144-中,二次根式的个数是( ) A. 4个B. 3个C. 2个D. 1个 2.如果x 25-是二次根式,那么x 应满足的条件是( ) A. x ≤2.5B. x ≥2.5C. x <2.5D. x >2.5 3.()2310-等于( ) A. 30B. -300C. 300D. -304.下列各式中,一定能成立的是( )A.()()225.25.2=- B.()22a a =C.1122-=+-x x x D.3392+•-=-x x x5.下列各式中,正确的是( ) A. a a =2 B. a a ±=2C. a a =2D. 22a a =6.计算()()222112a a -+-的结果是( )A. 24-aB. 0C. a 42-D. 24-a 或a 42-7.把a a 1-的a 移入根号内,得到( )A.aB. a -C. a -D. a --8.若0<a <1则414122-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-a a a a ,结果为( ) A. a 2B. a 2-C. a 2D. a 2-9.实数a ,b 在数轴上对应位置如图,化简2a b a --的结果是( )A. -bB. bC. 2a -bD. b -2a 10.若2442=+--a a a ,则实数a 的取值范围是( ) A. a >2B. a <2C. a ≥2D. a ≤2二、填空题11.若11-+-x x 有意义,则x .12.已知522+-+-=x x y ,则=x y .13.()26= ,()26-= ,26= ,由此得出式子()22a a =成立的条件是 .14.当x = 时,19+x 取值最小,这个最小值为 . 15.已知011=-++b a ,那么20062006b a += .16.当-1<a <3时,()()=-++2231a a .17.x x x -=+-636122成立的条件是 .18.若a ,b ,c 为三角形三边,且满足012135=-+-+-c b a ,则△ABC 是 三角形.19.当a <-1时,=+--++2244121a a a a . 20.在实数范围内因式分解:=-44x . 三、解答题21.如果a a a --=++1122,求a 的取值范围.22.如果-3<x <5,求96251022++++-x x x x 的值.23.求231294a a a a -+-+--+的值.24.已知x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根.25.设x ,y 为实数,满足y <2144+-+-x x ,化简11--y y.26.已知:1-=a ,3=b . 求22222221⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+ab b a ab b a 的值.27.若x <35-. 求证:12253094942922=++-+-x x x x28.已知:实数a 满足0332=++a a a . 化简:1212+++-a a a .29.已知a 、b 、c 为△ABC 三边. 化简()()()()2222b ac c a b c b a c b a --+--+--+++.30.a 、b 为实数,且b <3133+-+-a a . 化简:13442--+-b b b .21.2 二次根式的乘除一、选择题1.化简4125等于( )A.4125 B. 2101±C. 25D. 101212.下列计算错误的是( ) A.542516=B.3836427= C.232924=D. 556517-=-3.计算227818⨯÷得( )A. 649B.66 C. 618D. 6344.若a <0,b <0,下列命题错误的是( ) A. ab 的算术平方根是ab B. b a ab •=C.b a ab •=D.b a ab -•-=5.下列等式成立的是( ) A. b a b a +=+22 B. ab a b a --=-C.ba b a =D.ab b a -=-226.下列式中计算错误的是( )A.2065946.292223.1983.181x x x x x ==••=⨯B. 70514707014141457014570==⨯⨯⨯=C. y x xy y x y x y x xy 22221111-=⎪⎪⎭⎫ ⎝⎛-=- D. ()()()()()()n m n m n m n m n m n m n m n m n m 222-=--+-=-+-7.化简:()xy y x --1得( ) A. y x - B. x y -C. y x --D. x y --8.331++x x 分母有理化,得( )A. 131+xB. 3331+xC. 1+xD. 33-x9.当3323+-=+x x x x 时,x 取值范围是( ) A. x ≤0B. x ≤-3C. x ≥-3D. -3≤x ≤010.当092=-+-y x ,则()=+1x y ( ) A. 33B. 33±C. 33-D. 23二、填空题11.二次根式x 12,a 35,y x 315,24x x +中,最简二次根式是 .12.=⨯1219 ,()()=-⨯-94 ,222425-= .13.12= ,714⨯= .14.化简=⨯83332 ,=-1973 .15.已知一个长方体的长a =6,宽b =15,高c =35,那么这个长方体的体积是 . 16.化简=⨯33832ab b a .17.下列二次根式:①21、②224041-、③28x -、④()1122 x x x +-、⑤5x 、⑥38、⑦22259y x +、⑧()()()b a b a b a +-2中最简二次根式有 (填序号). 18.若根式()y x b a --+86为最简二次根式时,x = ,y = . 19.若3<a <4,化简()()=--2243a a .20.计算=33155 ,=÷4.0324 ,=÷4312122 .三、解答题21.计算下列是中式.(1)⎪⎭⎫ ⎝⎛-••102132531(2)n m n m n m 3233•••(3)1012655÷(4)32643a a ÷22.比较下列各组中两个数的大小. (1)112-和53-(2)7232和32723.已知5=+y x ,3=xy ,求代数式yx x y +的值.24.已知实数a 满足a a a =-+-19931992,求21992-a 的值.25.已知长方形的长是π140(cm ),宽是π35(cm ),求与长方形面积相等的圆的半径.26.已知⎩⎨⎧=+=++13053y x y x 化简:x y -23.27.已知:x =1,先化简再求值334312x x xx +-.28.已知:1011+=+a a . 求221a a +及a a 1-的值.29.已知:3121122+-+-=x x y . 求yx y y x x -++的值.30.设()1123-+++=+++c b a c b a . 求222c b a ++的值.21.3 二次根式的加减一、选择题1.下列计算正确的是( ) A. 2222=+ B. 743=+ C.752863=+D.942188+=+ 2.计算47548213123-+的结果是( )A. 2B. 0C. -3D. 33.计算)93()34(3ab a b a b a a b a b +-+的结果是( )A.abB. 7abC. 0D. 13ab4.若103-=a ,则代数式262--a a 的值为( ) A. 0B. 1C. -1D. 105.若2=a ,则a a a a -+的值是( )A. 223+B. 223-C. 223+-D. 223--6.=--994411( ) A. 114B. 114-C. 0D. 112-7.计算:⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+y x y y x x xy x y x 42933(其中y >0)结果等于( )A. xy 2-B. 0C. xy xyD. xy 38.下列各组中是同类二次根式是( ) A. a a 和32aB. x x 3和xx 42 C.x 2和43xD. 33a 和a 39.已知:1018222=++a a a a ,则a=( )A. 4B. 2±C. 2D. 4±10.把()4222311xy y x x y y x -++--化简的结果是( ) A. x y -34B. y x --32 C . x y -32D. x y --32二、填空题11.二次根式加减时,可以先将二次根式化成 ,再将被开方数 的二次根式合并.12.=+212 ,=+5424 ,=-813953 .13.计算:=-32x xy ;=-21a a a .14.设三角形的三边长分别为a ,b ,c ,周长是l ,已知40=a cm ,160=c cm ,109=l cm ,那么b = . 15.计算:()()=-÷⎥⎦⎤⎢⎣⎡-+303220062736 . 16.计算:=⋅+-x x x 836212739 .17.若最简二次根式14432+a 与1622-a 是同类二次根式,则a 的值是 . 18.下列二次根式①5.0,②81,③18,④243,⑤5527y x ,⑥545,⑦3281,⑧y x 26,⑨y x 3,⑩22242y xy x ++中是同类二次根式的是 .(填序号)19.计算:=---31312231 .20.223+=a ,223-=b ,则=+22ab b a . 三、解答题 21.化简并求值:()()3323472++++x x ,其中32-=x .22.当321+=m 时,求m m m m m m m -+---+-22212121的值.23.已知34+=a ,34-=b ,求代数式ba b aba a +--的值.24.已知5152522=-+-x x ,求221525x x ---的值.25.已知()()0212=-+-x x ,求x x x x x x x x 3643122+-+÷⎪⎭⎫ ⎝⎛----的值.26.化简或计算(1)21431375518132+-+-(2)xy xy y x y x y x xy 123--+(3)()()()()y x y x y x y x 22+---+27.先化简再求值⎪⎪⎭⎫ ⎝⎛--+÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111,其中22=x .28.当91,4==y x 时,求31441y y x y x x ---的值.29.求证:⎪⎩⎪⎨⎧-=+=3232y x 是方程组⎪⎩⎪⎨⎧+=-+=+35223362y x y x 的解.30.最简根式()y x y x --221与()183216+++y x x 能是同类二次根式吗?若能是求x 、y 值;若不能,说明理由.第二十一章 单元测试(一)一、选择题(每题3分,共30分) 1.下列等式中成立的是( ) A. ()32323-=⨯- B. y x y x +=+22 C.532=+D.2332=•x x2.已知a 为实数,下列四个命题中错误的是( ) A. 若1-=aa ,则a <0 B. 若a ≠1,则111-=--a aC. 若aa 112-=-,则a >0D. 若a ≥-2,则12++a a 有意义3.下列各式中,最简二次根式为( ) A. 72B.324 C.ba D. 32b a4.下式中不是二次根式的为( ) A.12+b B. a (a <0) C. 0 D.()2b a -5.当a =1时,计算a a a 7251012-+-得( ) A. 11 B. -11 C. 3D. -36.下列各组中互为有理化因式的是( ) A. x -2和2+xB. 32+x 和x 23-C.y x +与y x --D.x 与32x7.代数式⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ab a b a b a a b a b 93243的值一定是( )A. 正数B. 负数C. 0D. 18.a 12的同类二次根式为( ) A.ab3 B. a 54C. a271-D.248a9.若x <2,化简()()2232x x -+-的正确结论是( )A. -1B. 1C. 52-xD. x 25-10.()()200620052323-+值为( )A. 0B. 23-C. 32-D. 无法确定二、填空题(每题3分,共30分)11.若式子121++-x x 在实数范围内有意义,则x 的取值范围是 ;xx x x --=--4343成立的条件是 . 12.计算:=+123 .13.23-的相反数与12-的倒数的和是 . 14.若a ,b ,c 表示三角形的三边,则()2c b a --= .15.()0332=-++b a ,则=-+11a b .16.=⎪⎭⎫ ⎝⎛+•--20063232 .17.625-的算术平方根是 . 18.化简=--yx y x ,当0<a <1时,=-+2122a a .19.分母有理化:=-2346,251+-的倒数是 . 20.()()=-+-2223323223.三、解答题21.计算(每题2分,共8分) (1)()7512231-(2)61312322÷⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-(3)()()121923121999---⨯-+- (4)261321121824--⨯÷-22.已知等腰三角形的顶角为120°,底边长为64cm ,求这个等腰三角形的面积.(3分)23.已知:,2323,2323-+=+-=y x 求22y x x y +的值.24.化简求值.ba b b a b ab b b a a b b a -÷⎪⎪⎭⎫ ⎝⎛+--++1,其中,53-=a ,53+=b .(3分)25.已知()2234-=x ,()2322-=y ,求(1)x+y 的值;(2)()27+-y x 的值.(4分)26.已知37+=x ,37-=x . 求233++xy y x 的值.27.解方程:()x x 3123=+.(4分)28.化简:(4分)()⎪⎪⎭⎫ ⎝⎛---b a a b a b a a b b a 22329.某船在点O 处测得小岛上的电视塔A 在北偏西60°的方向上,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问向西航行多少海里船离电视塔最近?(5分)30.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m. 假设拖拉机行驶时,周围100m 内会受到噪声影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由. 如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?(5分)第二十一章 单元测试(二)一、选择题(每题3分,共30分)1.以下判断正确的是( )A. 无限小数是无理数B. 平方是3的数是3C. 1的平方根和立方根相等D. 27-无平方根 2.若a <-3,则()212a +-=( )A. a -1B. 1-aC. a +3D. a --3 3.651+与65-的关系是( )A. 互为相反数B. 互为倒数C. 互为有理化因式D. 相等4.把aa 1--根号外因式移到根号内,则原式=( ) A. a B. a - C. a -- D. a -5.计算:()()()2623535+-+-的值为( ) A. 7- B. 327-- C. 347-- D. 346--6.已知35-=+y x ,35+=xy ,则x+y 的值等于( )A. 2B. 5C. 1528-D. 52321528--- 7.若()x x -=-222,则x 是( ) A. x <2B. x >2C. x ≤2D. x ≥2 8.已知-1<x <2()()=--+2223x x ( ) A. 5 B. -5 C. 12--xD. 12+x 9.矩形面积为24,一边长23+,则另一边长是( ) A. ()3224+ B. ()2324- C. ()23724+ D. ()23724- 10.已知x 、y 是正数,且有()()x y y x y x-=-3,则=x y ( ) A. 9 B. 91 C. 1 D. 1或9二、填空题(每小题3分,共30分)11.当x 时,x x 2112-++有意义.12.若最简根式()2334++a b a 和452++b a 是同类根式,则a = ,b = .13.当a <-2时,化简()=++-122a a .14.若a a =2,则a . 若a a -=2,则a . 若a a =2,则a .15.比较大小:①23-,②22+,③52-53-.16.当x = 时,xx -1有意义.17.若25-=x ,25+=x ,则=+÷⎪⎪⎭⎫ ⎝⎛-xy y x y x x y . 18.使式子122---a a 有意义的a 取值范围是 .19.当a >2b >0时,=+-a b ab b a 32244 .20. ()()()=+-+÷++a b b a b ab a 2 .三、解答题21.计算(每小题2分,共6分)(1)⎪⎪⎭⎫⎝⎛----5431813225.024(2)ab b a ab b 3123235÷⎪⎭⎫ ⎝⎛-(a >0,b >0)(3)132121231+-+++22.化简求值(每小题3分,共6分)(1)已知2352+=x . 求⎪⎪⎭⎫⎝⎛-++÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111的值.(2)已知23-=x ,求4434234--++x x x x 的值.23.已知321+=a ,求aa a a a a a -+-+-+-22212121的值.(4分)24.设x a -=8,43+=x b ,2+=x b .(6分)(1)当x 取何实数时,a 、b 、c 均有意义.(2)当a 、b 、c 为直角△ABC 三边,求x 值.25.化简:424242422222-++--++--+-++n n n n n n n n (n >2).(4分)26.已知:32+=-b a ,32-=-c b . 求bc ac ab c b a ---++222的值.(4分)27.已知a a 1=,5=b ,求1025102522222222-+-++a b b a a b b a 的值.(4分)28.已知代数式333--+-x x x ,(1)试确定x 的值;(2)利用(1)的结果求32637522++-x x 的值.(6分)。

2020-2021学年数学人教版九年级上册同步练习:21.2-二次根式的乘除

2020-2021学年数学人教版九年级上册同步练习:21.2-二次根式的乘除

2020-2021学年数学人教版九年级上册同步练习21.2二次根式基础训练1.等式2111x x x -=+⋅-成立的条件是 .2.计算:(1)1625= ;(2)(15)(27)-⨯-= .(3)5614= ; (4) 1.530.17= .3.化简:(1)3227a b = ;(2)32418a a ⋅= .4.计算:(1)23649y x = ;(2)3227= . 5.把18a化简的结果应是( )(A )32a (B )32a a (C )32a a (D )23a a6.下列计算中,正确的是( )(A )355344= (B )5539335777== (C )19131716254520+=+= (D )224832(4832)(4832)165-=+-=7.如果3222a a a a +=-+,则实数a 的取值范围是( )(A )0a ≥ (B )02a ≤≤ (C )20a -≤≤ (D )2a ≤-8.下列二次根式中,最简二次根式是( )(A )12 (B )2x - (C )32 (D )324a b 能力提升1. 计算:(1)48300⨯ (2)641449169⨯ (3)11904032(4)3515 (5)18(3222)÷⨯ (6) 2.7331.1-2. 化简: (1)221917-- (2)1834 (3)34y x (4)3118(2)2a a -- 3. 已知: 1.69,x =求2331234xx x x-+的值。

发展创新 1.同学们已经学习了不少关于二次根式的知识,老师为了解同学们掌握知识的情况,请同学们根据所给条件求式子222515x x -+-的值,可达达却把题目看错了,根据条件他得到222515x x ---=2,你能利用达达的结论求出222515x x -+-的值吗?2.如图,直线l 表示草原上一条河,在附近有A 、B 两个村庄,A 、B 到l 的距离分别为AC =30km,BD=40km ,A 、B 两个村庄之间的距离为50k m.有一牧民骑马从A 村出发到B 村,途中要到河边给马饮一次水。

人教版九年级数学第21章同步练习题及答案全套-21.3二次根式的加减(第一课时)

人教版九年级数学第21章同步练习题及答案全套-21.3二次根式的加减(第一课时)

3 y 3 x xy 3 )-(4y + + 36 xy ) ,其中 x= ,y=27. 2 x y y
◆典例分析
要焊接如图所示的钢架,大约需要多少米钢材(精确到 0.1m)? 分析:此框架是由 AB、BC、BD、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度,在求这四段的 长度和时,要先化为最简的精确值,再取近似结果. 解:由勾股定理得,AB=
2 2 2 2
∴4x -4x+1+y -6y+9=0, ∴x=
2
2
1 ,y=3. 2
∴原式=
2 x 9 x +y2 3
y x 2 1 -x +5x 3 x x y
=2x x + xy -x ∴当 x=
x +5 xy =x x +6 xy
1 1 1 3 2 ,y=3 时,原式= × +6 = +3 6 . 2 2 2 2 4
D
◆课下作业
●拓展提高
1、 下列各式: ①3 3 +3=6 3 ; ② A.3 个 B.2 个
3
1 7
③ 2 + 6 = 8 =2 2 ; ④ 7 =1; D.0 个
24 =2 2 .其中正确的有 ( 3
) .
C.1 个
2、计算: 8+(-1) -2×
2 =_____________. 2
3、已知 5 ≈2.236,求( 80 - 1
1 , y=3. 其 2
●体验中考
1、 (2009 年,泰安)化简: 3 8 5 32 的结果为____________. 2、 (2009 年,临沂)计算 27 A.1 B.-1
1 18 12 的结果是( 3

人教版九年级数学第21章同步练习题及答案全套_6

人教版九年级数学第21章同步练习题及答案全套_6

第21章 二次根式(复习课)◆随堂检测1、下列各式有意义的范围是x>3的为( ) A.3+x B.3-x C.31+x D.31-x2 )A .1B .2C .3D .43、mm m m m m 15462-+的值( ) A.是正数 B.是负数 C.是非负数 D.可为正也可为负4、已知y<0.5、比较大小: ◆典例分析观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,,…… 从计算结果中找出规律,并利用这一规律计算:+)的值. 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=+……)=))=2017-1=2008.◆课下作业●拓展提高1、下列二次根式中,最简二次根式是( )2、下列化简中,正确的是( )3、计算:20082009⋅=_________. 4点拨:利用1=,可将分母化为有理式.5a ,小数部分为b ,求22a ab b ++的值. 注意:正确求出a 和b 是解好本题的关键.6、已知a b b c -=-=222a b c ab bc ca ++---的值.提示:由已知可先求出a c -(或c a -)的值,再将222a b c a b b c c a ++---转化为2222221()()()2a b c a b b c c a a b b c c a⎡⎤++---=-+-+-⎣⎦代入即可得解. ●体验中考1、(2008年,荆州)已知a 为实数,.(提示:首先要依据二次根式有意义的条件判定a 的值,然后再进行二次根式的加减运算.)2、(2008年,烟台)已知2,2a b ==,的值为( )A .3B .4C .5D . 6(点拨:222()2a b a b ab +=+-,而a b +=2)1ab ==,即,a b 的和与积比较简单,容易计算.)参考答案:◆随堂检测1、1、D 综合考虑被开方数是非负数且分母不为零,故选D.2、A 利用平方差公式即可.3、B 由题意得:0m >,∴原式350==-,故选B.4、23x y - ∵y<02323x y x y ===-.5、解:=====∵3314172<<,∴<< ◆课下作业●拓展提高1、B 只有B 符合最简二次根式的要求.2、D 选项A 中0a <时不成立;选项B 和C 中,等号两边的值不相等.只有选项D 正确,故选D.3原式2008⎡⎤=⎣⎦=2008(1)-⋅=4、解:原式=+=52==又∵324<<,∴3,(231a b ==+-=.∴2222()(21)433)10a ab b a b ab ++=+-=+-=+-=6、解:∵a b b c -=-=∴()()a b b c -+-=+=a c -=∴2222221()()()2a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦ =22211((53)(53)201822⎡⎤⎡⎤++-=++-+=⎣⎦⎣⎦. ●体验中考1、解:∵20a +≥且840a -≥且20a -≥,∴0a =,∴原式==2、C ∵a b +=2)1ab ==,∴2222()22118a b a b ab +=+-=-⨯=,5==.故选C.。

第21章二次根式章节复习(难点练)解析版

第21章二次根式章节复习(难点练)解析版

第21章二次根式章节复习(难点练)一、单选题1.(2021·四川省遂宁市第二中学校九年级月考)下列二次根式中,是最简二次根式的是( ).A.BCD【答案】A【详解】根据最简二次根式的意义,可知=,不是最简二次根式.故选A.2.(2021·上海九年级专题练习)当4x =-的值为( )A .1BC .2D .3【答案】A=--=1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.3.(2021·浙江九年级期末)如图1,矩形方框内是一副现代智力七巧板,它由两个半圆①和⑦、O e ⑥、等腰直角三角形②和都含45°角的角不规图形③、直角梯形④、圆不规图形⑤组成,已知2AB BC AI ==.如图2,在矩形PQMN 内,这个智力七巧板恰好能拼成一个滑滑梯,若O e 的直径是2,则矩形PQMN 的周长为( )A .32B .28+C .22+D .24+【答案】C【分析】根据勾股定理得出AI ,BG ,进而利用四边形的周长解答.【详解】解:如图,2AI ==Q ,2BG ==,2AB AI ==,4c \=,4a \==-28PQ a \=++=+,123PN =++=+,\四边形PQMN 的周长2()16622PQ PN =´+=+++=+,故选:C .【点睛】此题考查矩形的性质,关键是根据矩形的性质利用勾股定理解答.4.(2021·山东淄博市·九年级期中)如图,正方形ABCD 边长为2,从各边往外作等边三角形ABE 、BCF 、CDG 、DAH ,则四边形AFGD 的周长为( )A .4++B .2++C .4+D .2++【答案】A【分析】分别求出∠ABF 和∠FCG 的度数,再利用正方形与等边三角形的性质,证明△ABF ≌△FCG ,可得AF =FG ,同理AF =AG BG =,设AB 中点为K ,连接AG ,GK ,,BG GK 交CD 于,N 可得△AKG 为直角三角形,再利用由勾股定理求得AG ,然后即可求得四边形AFGD 的周长.【详解】解: Q 正方形ABCD 边长为2,等边三角形BCF 、CDG 、2,90,60,AB BC BF FC CD CG ABC FBC \======Ð=°Ð=° 150,15,ABF BAF BFA \Ð=°Ð=Ð=°同理可得:360906060150,FCG Ð=°-°-°-°=° 所以△ABF ≌△FCG ,∴AF =FG .设AB 中点为K ,连接AG ,GK ,,BG GK 交CD 于,N同理AF =AG ,BG = 则,GK AB ^ ,GK CD ^ 1,1,DN CN AK BK ==== 2,KN BC ==\ △AKG 为直角三角形,由三角形DCG 为等边三角形,则2,DG CG DC ===GN \==∴2KG =+由勾股定理得:AG ====+四边形AFGD 的周长为:AF +FG +GD +DA =2+2´故选:A .【点睛】本题主要考查勾股定理,全等三角形的判定与性质,等边三角形的性质,正方形的性质,二次根式的化简,二次根式的运算等知识点,此题有一定难度,属于难题.二、填空题5.(2021·湖北武汉市·九年级专题练习)化简并计算:...++=________.(结果中分母不含根式)【详解】解:原式=--==..【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.6.(2021·山东淄博市·九年级期中)如图,在△ABC 中,D 是AC 边的中点,连接BD ,把△BDC 沿BD 翻折,得到△BD C ¢,联结AC ¢.若AD =AC ¢=2,BD =3,则点D 到BC ¢的距离为 __________.【分析】连接CC ¢,交BD 于点M ,过点D 作DH BC ¢^于点H ,由翻折知,△BDC ≌△BDC ¢,BD 垂直平分CC ¢,证△ADC ¢为等边三角形,利用解直角三角形求出DM =1,C M ¢=,BM =2,在Rt △BMC ¢中,利用勾股定理求出BC ¢的长,在△BDC ¢中利用面积法求出DH 的长,则可得出答案.【详解】解:如图,连接CC ¢,交BD 于点M ,过点D 作DH BC ¢^于点H ,∵AD AC ¢==2,D 是AC 边上的中点, ∴DC =AD =2,由翻折知,△BDC ≌△BDC ¢,,,DC DC BC BC ¢¢\==\ BD 垂直平分CC ¢,∴2,,DC DC CM C M ¢¢===∴2AD AC DC ¢¢===, ∴△ADC ¢为等边三角形,∴60,ADC AC D C AC ¢¢¢Ð=Ð=Ð=° ∵DC DC ¢=, ∴16030,2DCC DC C ¢¢Ð=Ð=´°=° 在Rt △C DM ¢中, 30,2,DC C DC ¢¢Ð=°=∴1,DM C M ¢=== ∴BM =BD -DM =3-1=2,在Rt △BMC ¢中,BC ¢==∵11,22BDC S BC DH BD C M ¢¢¢==V g g3=∴DH =∴点D 到BC'.【点睛】本题考查了轴对称的性质,解直角三角形,勾股定理的应用,二次根式的乘除运算等,解题关键是会通过面积法求线段的长度.7.(2021·江苏南通市·九年级二模)如图,在边长为2的正方形ABCD 中,点M 在边AB 上,点N 在对角线AC 上,连接DM ,DN .若AM =CN ,则(DM +DN )2的最小值为____.【答案】8+【分析】过点C 作CH ⊥AC ,使得CH =AD ,连接NH ,由题意易得∠NCH =∠MAD =90°,进而可得△NCH ≌△MAD ,然后可得DM =NH ,要使()2DM DN +的值为最小,只需DM +DN 的值为最小,即NH +DN的值为最小,所以可得D 、N 、H 三点共线时最小,则过点H 作HE ⊥DC 于点E ,然后根据勾股定理可求解.【详解】解:过点C 作CH ⊥AC ,使得CH =AD ,连接NH ,如图所示:∵四边形ABCD 是正方形,AB =2,∴∠MAD =∠DCB =90°,∠DCA =45°,AD =CH =AB =CD =2,∴∠NCH =∠MAD =90°,∵AM =CN ,∴△NCH ≌△MAD (SAS ),∴DM =NH ,若使()2DM DN +的值为最小,只需DM +DN 的值为最小,即NH +DN 的值为最小,所以可得D 、N 、H 三点共线时最小,则过点H 作HE ⊥DC 于点E ,如图所示:∴∠DCA =∠ECH =45°,∴△CEH 为等腰直角三角形,∴CE EH ===,∴2DE DC CE =+=+,∴在Rt △DEH 中,()(22222228DH DM DN DE EH =+=+=+=+∴()2DM DN +的最小值为8+;故答案为8+.【点睛】本题主要考查正方形的性质、等腰直角三角形的性质与判定、勾股定理及二次根式的运算,熟练掌握正方形的性质、等腰直角三角形的性质与判定、勾股定理及二次根式的运算是解题的关键.三、解答题8.(2021·全国九年级专题练习)阅读下面的解答过程,然后作答:化简,若你能找到两个数 m 和n ,使m 2+n 2=a 且,则a+2可变为m 2+n 2+2mn ,即变成(m+n )2化简.例如:∵=2+)2=)2请你仿照上例将下列各式化简(1,(2.【答案】(1);(2-.【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=++=+,1=(2)∵2227-=-=,==.9.(2021·广东九年级专题练习)先化简,再求值:24211326x x x x -+æö-¸ç÷++èø,其中1x =..【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+æöæö¸=×=ç÷ç÷+++--èøèø.将1x =+=【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.10.(2021·全国九年级专题练习)阅读材料,请回答下列问题材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:S …①(其中a ,b ,c 为三角形的三边长,S 为面积)而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S p =2a b c++)材料二:对于平方差公式:a 2﹣b 2=(a +b )(a ﹣b )公式逆用可得:(a +b )(a ﹣b )=a 2﹣b 2,例:a 2﹣(b +c )2=(a +b +c )(a ﹣b ﹣c )(1)若已知三角形的三边长分别为3、4、5,请试分别运用公式①和公式②,计算该三角形的面积;(2)你能否由公式①推导出公式②?请试试.【答案】(1)三角形的面积为6;(2)见解析.【分析】(1)根据材料,代入公式即可求解;(2)根据平方差公式和完全平方公式即可推导.【详解】解:(1)设a =3,b =4,c =5,∵32+42=25,52=25,∴a 2+b 2=c 2,a 2b 2=144,∴S =3452++=6;∵p =2a b c++=3452++=6,p ﹣a =6﹣3=3,p ﹣b =6﹣4=2,p ﹣c =6﹣5=1,S=6.∴三角形的面积为6.(2)∵14[a 2b 2﹣(2222a b c +-)2]=14[2244a b ﹣2222()4a b c +-]=116[(a+b )2﹣c 2][c 2﹣(a ﹣b )2]=116(a+b+c )(a+b ﹣c )(a+c ﹣b )(b+c ﹣a )=116×2p•(2p ﹣2c )(2p ﹣2b )(2p ﹣2a )=p (p ﹣a )(p ﹣b )(p ﹣c )【点睛】本题考查了二次根式的应用、平方差公式和完全平方公式,解决本题的关键是熟练应用公式.11.(2021·上海九年级专题练习)请阅读下列材料,并完成相应的任务.古希腊几何学家海伦,在数学史上以解决几何测量问题而闻名.在他的著作《度量》一书中,给出了三角形面积的计算公式(海伦公式):如果一个三角形的三边长分别为,,a b c ,记2a b cp ++=,那么三角形的面积是S =.印度算术家波罗摩笈多和婆什迦罗还给出了四边形面积的计算公式:如果一个四边形的四边长分别为a b c d ,,,,记2a b c dp +++=,那么四边形的面积是S =其中,A 和C 表示四边形的一组对角的度数)根据上述信息解决下列问题:(1)已知三角形的三边是4,6,8,则这个三角形的面积是 (2)小明的父亲是工程师,设计的某个零件的平面图是如图的四边形ABCD ,已知8AB =,12AD =,10BC =10CD =+,75B °Ð=,45D °=∠.求出这个零件平面图的面积.【答案】(1);(2)【分析】(1)根据三角形的面积公式直接代入数据计算即可;【详解】(1)p=46892++=,∴三角形的面积是:S ====(2) 75,45B D °°Ð=Ð=Q ,∴2222754511coscos cos 60()2224B D Ð+а+°==°==,8,12,1010AB AD BC CD ===-=+Q ,∴20p ==,∴()()()()p p a p b p c p d ----20(208)(2012)(2010=---´(2010172800--=,又21cos812(10216024A C abcd +=´´´=,∴S ==,∴这个零件平面图的面积是.【点睛】本题主要考查了二次根式的应用,平方差公式的应用,解题的关键是熟练掌握二次根式的性质并根据题目给出的公式代入计算.还考查了计算能力.12.(2021·广东九年级专题练习)先化简,再求值:2222421121a a a a a a a ---¸+--+,其中1a =-.【答案】21a +【详解】解:原式222(2)21(1)(1)(1)a a a a a a a --=-¸++--222(2)(1)1(1)(1)2a a a a a a a --=-×++--22(1)11a a a a -=-++2=1a +,把1a =代入,原式==13.(2021·黄山市黄山第二中学九年级月考)如图,在△ABC 中,∠ACB=30°,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接CD ,CE .(1)求证:AB=CD ;(2)若BC=10,∠ABC=45°,连接BE ,求△BCE 的面积.【答案】(1)证明见解析;(2)-50【分析】(1)结合题意,根据旋转的性质得AD=AB,AC=AE.∠CAE=60°,∠AED=∠ACB=30°,从而得到△ACE是等边三角形、∠AED=∠CED=30°;再通过证明△AED≌△CED,得AD=CD,结合AD=AB,即可完成证明;(2)过点A作AF⊥BC于点F,设BF=x,根据∠ABC=45°,AF⊥BC,得BF=AF=x;根据∠ACB=30°,∠ACE=60°,AF⊥BC得CF;根据BF+CF=BC=10,列方程并求解,即可得到CE,经计算从而得到答案.【详解】(1)∵将△ABC绕点A逆时针旋转60°,得到△ADE,∴AD=AB,AC=AE.∠CAE=60°,∠AED=∠ACB=30°,∴△ACE是等边三角形,∴AC=AE=CE,∠ACE=∠AEC=60°,∴∠AED=∠CED=30°又∵DE=DE,AE=CE,∴△AED≌△CED(SAS),∴AD=CD又∵AD=AB,∴AB=CD(2)如图,过点A作AF⊥BC于点F设BF=x∵∠ABC=45°,AF⊥BC,∴∠ABC=∠BAF=45°,∴BF=AF=x∵∠ACB=30°,∠ACE=60°,AF⊥BC,∴∠BCE=∠ACB +∠ACE =90°,AC=2x,∴==x∴CE=AC=2x.∵BF+CF=BC=10,∴x=10,∴,∴,∴△BCE的面积=12BC×CE=12´10´().【点睛】本题考查了旋转、等边三角形、全等三角形、勾股定理、直角三角形、一元一次方程、二次根式的知识;解题的关键是熟练掌握旋转、等边三角形、全等三角形、勾股定理、直角三角形、一元一次方程、二次根式的性质,从而完成求解.14.(======请回答下列问题:(1=______;(2)利用上面的解法,请化简:+++×××++(3【答案】(1-21-;(3>,见解析【分析】(1)把分子分母都乘以+,然后利用平方差公式计算;(2)先分母有理化,然后合并即可;(3)由(1-=-=<【详解】解:(1=(2+×××+)1=+++×××++1=-+++×××+1=-(3)由(1)的方法可得,-==<>>.【点睛】本题考查了分母有理化和二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.15.(2021·全国九年级专题练习)若三个实数x,y,z满足xyz≠0,且x+y+z=0,则有:=|1x+1y+1z|.|12+13+()15-|=1930请解决下列问题:(1的值.(2)设S S的整数部分.(3)已知x+y+z=0(xyz≠0,x>0),且y+z=3yz+|1x﹣1y﹣1z|取得最小值时,求x的取值范围.【答案】(1)712;(2)2019;(3)0<x≤13【分析】(1)根据范例中提供的计算方法进行计算即可;(2)将原式进行化简,再确定整数部分;(3)将原式化简为|13x+|+|13x-|,再根据|13x+|+|13x-|取最小值时,确定x的取值范围.【详解】解:(1=|12+14+16-|=712;(2)S,=|1+1﹣12|+|1+12﹣13|+…+|1+12019﹣12020|,=1+1﹣12+1+12﹣13+1+13﹣14+ (1)12019﹣12020,=2019+2019 2020,故整数部分为2019;(3)由题意得,+|1x﹣1y﹣1z|,=|1x+1y+1z|+|1x﹣1y﹣1z|,=|1y zx yz++|+|1y zx yz+-|,又y+z=3yz,原式=|13x+|+|13x-|,因为|13x+|+|13x-|取最小值,所以﹣3≤1x≤3,而x>0,因此,0<x≤13,答:x的取值范围为0<x≤13.【点睛】本题考查了分式的加减法、实数的运算、二次根式的运算,解题关键是掌握数字间的变化规律,准确计算.16.(2021·北京九年级专题练习)已知x =,y =,求22x y y x +的值.【答案】970【分析】首先把x 和y 进行分母有理化,然后将其化简后的结果代入计算即可.【详解】解:∵5x ===-,5y ===+∴原式===+245240245240=--++++970=.【点睛】本题主要考查二次根式的化简求值,解答本题的关键是对x 和y 进行分母有理化及掌握二次根式的运算法则.17.(2021·全国九年级专题练习)阅读下列解题过程:;;=;…解答下列各题:(1= ;(2= .(3+)×+1).-;(2+;(3)2020【答案】(13【分析】(1-,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2到答案;(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.-3-;3==++(3×+1)1+-)×+1)-)×+1)1-=20211=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.18.(2021·北京九年级二模)如图,在等腰直角△ABC 中,AB =AC ,∠BAC =90°,点D 是CA 延长线上一点,点E 是AB 延长线上一点,且AD =BE ,过点A 作DE 的垂线交DE 于点F ,交BC 的延长线于点G(1)依题意补全图形;(2)当∠AED =α,请你用含α的式子表示∠AGC ;(3)用等式表示线段CG 与AD 之间的数量关系,并写出证明思路【答案】(1)见解析;(2)45AGC Ð=°-a ;(3)CG =,见解析【分析】(1)根据题意补全图形即可;(2)先证45ABC ACB Ð=Ð=°,再根据90ADE AED Ð+Ð=°与90ADE DAF Ð+Ð=°可得DAF AED a Ð=Ð=,则DAF CAG a Ð=Ð=,又因为45ACB CAG AGC Ð=Ð+Ð=°可得45AGC Ð=°-a ;(3)在AE 上截取AM AD =,连接DM .先证BAC V 与ADM △是等腰直角三角形,接下来证ACG EMD △≌△,所以可得DM CG =,则可求CG DM ==.【详解】(1)根据题意补全图形如下:过点A 作DE 的垂线交DE 于点F ,交BC 的延长线于点G .(2)证明:当AED a Ð=时,45AGC Ð=°-a .推理如下:AB AC =Q ,90BAC Ð=°,45ABC ACB \Ð=Ð=°.90EAD Ð=°Q ,90ADE AED \Ð+Ð=°AF DE ^Q ,90DFA \Ð=°,90ADE DAF \Ð+Ð=°DAF AED a \Ð=Ð=,DAF CAG a \Ð=Ð=,45ACB CAG AGC Ð=Ð+Ð=°Q 45AGC a \Ð=°-.(3)CG =.证明:在AE 上截取AM AD =,连接DM .∵=AM AD ,90BAC а=∴ADM △是等腰直角三角形∴45AMD Ð=°∴180********DME AMD Ð=°-Ð=°-°=°∵=AB AC ,90BAC а=∴BAC V 是等腰直角三角形∴45ACB Ð=°∴180********ACG ACB Ð=°-Ð=°-°=°∴135ACG DME Ð=Ð=°∵=AD BE ∴=AM BE∴+=+AM BM BE BM 即=AB EM ∵=AB AC ∴=EM AC∵FG DE ^,90BAC а=∴90FAE E Ð+а=,90FAE CAG Ð+а=∴CAG EÐ=Ð又∵=AB EM ,135ACG DME Ð=Ð=°∴ACG EMD △≌△∴DM CG=又∵90BAC а= ,=AD AM∴利用勾股定理可得:DM ===∴DM CG ==.【点睛】此题是三角形综合题,主要根据等腰直角三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形解答.。

新人教版九年级数学第二十一章二次根式测试题及答案(2套)范文

新人教版九年级数学第二十一章二次根式测试题及答案(2套)范文

一、选择题(每小题2分,共20分) 1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 5.(2005·岳阳)下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .baD .44+a 8.化简6151+的结果为( ) A .3011B .33030C .30330D .11309.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 10.(2005·江西)化简)22(28+-得( ) A .—2 B .22- C .2 D . 224- 二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( 。

12.二次根式31-x 有意义的条件是 。

16.=∙y xy 82 ,=∙2712 。

17.计算3393aa a a-+= 。

18.23231+-与的关系是 。

19.若35-=x ,则562++x x 的值为 。

20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 。

11.若5-x 不是二次根式,则x 的取值范围是 。

12.已知a<2,=-2)2(a 。

13.当x= 时,二次根式1+x 取最小值,其最小值为 。

14.计算:=⨯÷182712 ;=÷-)32274483( 。

16.若433+-+-=x x y ,则=+y x 。

试求:(1)671+的值; (2)17231+的值;下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 1.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=2.若1762+--x x x 的值等于零,则x 的值是( ) A 。

人教版数学九年级上册全册含课后练习

人教版数学九年级上册全册含课后练习

21.1 二次根式(1)(民中)第一课时一、教学目标: (a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题.三、 教学过程:例1. 下列式子,哪些是二次根式,、1x x>0)、、、1x y+(x ≥0,y•≥0).例2. 当x 在实数范围内有意义?四、应用拓展:例3.当x +11x +在实数范围内有意义?例4(1)已知,求x y的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1(a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、课后作业:(一)选择题:1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是( )A B C D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对 (二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根.(三)综合提高题:1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?+x2在实数范围内有意义?2.当x是多少时,x3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.21.1 二次根式(2)(民中)第二课时一、教学目标:a≥02=a(a≥0),并利用它们进行计算和化简.二、教学重难点:1a≥0)是一个非负数;)2=a(a≥0)及其运用.2.难点:a≥0)是一个非负数;用探究的方法导出)2=a (a≥0).三、教学过程:例1计算)21.22.(23.24.(2四、应用拓展:例2 计算1.2(x≥0)2.23.24.2例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P9 7.七、课后作业:(一)选择题:1二次根式的个数是( ). A .4 B .3 C .2 D .12.数a 没有算术平方根,则a 的取值范围是( ).A .a>0B .a ≥0C .a<0D .a=0(二)填空题1.()2=______. 2_______数.(三)综合提高题1.计算(1)2 (2)-2 (3)(12)2(4)( 2 (5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式(3)(民中)第三课时一、教学目标: (a ≥0)并利用它进行计算和化简.二、教学重难点:1a (a ≥0). 2.难点:探究结论.三、教学过程:例1 化简(1 (2 (3 (4四、应用拓展:例2、填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3),则a 可以是什么数?五、归纳小结:(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业: 1.教材P 8习题21.1 3、4、6、8.七、课后作业:(一)选择题:1).A.0 B.23C.423D.以上都不对2.a≥0).A BC D.(二)填空题:1=________.2.则正整数m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│21.2 二次根式的乘除(1)(民中)第四课时一、教学目标:a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:(a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4六、归纳小结:本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.七、布置作业:1.课本P151,4,5,6.(1)(2).八、课后作业:(一)选择题1和,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简)A B C.D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.×B.×C.D.×(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)(民中)第五课时一、教学目标:a ≥0,b>0(a ≥0,b>0)及利用它们进行运算. 二、教学重难点:1a ≥0,b>0)a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.三、教学过程:例1.计算:(1(2 (3 (4例2.化简:(1 (2 (3 (4 四、巩固练习: 教材P14 练习1.五、应用拓展:例3.=,且x 为偶数,求(1+x六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9.八、课后作业:(一)选择题: 1.的结果是( )A .27B .27C D .723==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”)A .2B .6C .13 D (二)填空题:1.分母有理化:(1)=_________;(2) =______.2.已知x=3,y=4,z=5_______.(三)综合提高题:1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1·(m>0,n>0)(2)(a>0)21.2 二次根式的乘除(3)(民中)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.三、教学过程:例1.(1)(2) ;(3)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.四、巩固练习:教材P14练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,从计算结果中找出规律,并利用这一规律计算+)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用.七、布置作业:1.教材P15习题21.2 3、7、10.八、课后作业:(一)选择题:1y>0)是二次根式,那么,化为最简二次根BAC式是( ). A(y>0) B .y>0) C (y>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A B C . D .3.在下列各式中,化简正确的是( )A B ±12 C 2 D .4的结果是( ) A .-3 B . C . D . (二)填空题:1.化简=_________.(x ≥0) 2.a 化简二次根式号后的结果是_________.(三)综合提高题:1.已知a 确,•请写出正确的解答过程:2.若x 、y 为实数,且y x y -的值.21.3 二次根式的加减(1)(民中)第七课时一、教学目标:理解和掌握二次根式加减的方法.二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式.三、教学过程:例1.计算:(1 (2例2.计算:(1) (2))+ 四、巩固练习:教材P 19 练习1、2.五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值. 六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5.八、课后作业:(一)选择题:1.以下二次根式:;( ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17=1,其中错误的有( ). A .3个 B .2个 C .1个 D .0个(二)填空题:1是同类二次根式的有________.2.计算二次根式的最后结果是________.(三)综合提高题:1≈2.236-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 21.3 二次根式的加减(2)(民中)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.三、教学过程:例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3a是同类二次根式,求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.BC.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.BC.D.(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)(三)综合提高题:1.n是同类二次根式,求m、n21.3 二次根式的加减(3)(民中)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.三、教学过程:例1.计算:(1)(2)()÷例2.计算:(1))((2)))四、巩固练习:课本P20练习1、2.BACQPBA C2m1m4m D五、应用拓展:例3.已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0, 六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.七、布置作业: 1.教材P 21 习题21.3 1、8、9.八、课后作业:(一)选择题1.的值是( ).A .203B .23C .23D .2032 ).A .2B .3C .4D .1(二)填空题:1.(-12+2)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.(三)综合提高题: 12.当时,(结果用最简二次根式表示) 第二十二章 一元二次方程(民中)第十课时一、教学目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念。

人教版九年级上册数学同步练习及答案合集

人教版九年级上册数学同步练习及答案合集

21.3 二次根式的加减同步测试题 一、选择题(本题共10小题,每题3分,共30分)
1.与 2 3 是同类二次根式的是( )
A. 18
B. 2 3
2.下列运算正确的是( )
C. 9
A. x 5x 6x B. 3 2 2 2 1
D. 27
C. 2 5 2 5
D. 5 x b x (5 b) x
( 1 3 ) (3) 2
3x y 9 y 22. 解: 5x 2 6 y
3x 5x
2y 9 y8
x y
1 3
23.原式=( 5 3 )2- ( 2 )2 =5-2 15 +3-2=6-2 15 .
( 2 7 4)2 ( 2 7 4)2 22
24.解:( 菱形的边长)2= 2
2
22,面积 1 (2 7 4)(2 7 4) 6
∴菱形的边长=
2
10
人教版九年级上册数学同步练习题及答案
25. 5
26.解:原式=(2 5 +1)( 2 1 + 3 2 + 4 3 +…+ 100 99 )
12.在 8, 12, 18, 20 中,与 2 是同类二次根式的 是

13. 5- 5 的整数部分是_________
14.计算: 12 3 3
15.方程 2 (x-1)=x+1 的解是____________.
x 1
x1
16.已知
5 2 ,则 x 的值等于

17.如图,矩形内两相邻正方形的面积分别是 2 和 6,那么矩形内阴影部分的面积

.(结果可用根号表示)
2
6
18.图 7 是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从 A→B →C 所走的路程为_______m.(结果保留根号)

九年级数学上册 21.2《二次根式的乘除》(第1课时)教案 新人教版

九年级数学上册 21.2《二次根式的乘除》(第1课时)教案 新人教版

21.2 二次根式的乘除教案第一课时教学内容a≥0,b≥0)a≥0,b≥0)及其运用.教学目标a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简(a≥0,b≥0)并运用它进行计算;•a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0)a≥0,b≥0)及它们的运用.a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(3(4(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3(4例2 化简(1(2(3(4(5a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5×三、巩固练习(1)计算(学生练习,老师点评)①×②(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4=4解:(1)不正确.×3=6(2)不正确.=五、归纳小结本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.六、布置作业1.课本P15 1,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是().A...9cm D.27cm2.化简).A..3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是().A..C..二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:===(2)验证:==同理可得:==通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1..12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,2.验证:==。

九年级上第二十一章二次根式测试题参考答案.doc

九年级上第二十一章二次根式测试题参考答案.doc

学校班别座号姓名人教版九年级上册第二十一章二次根式测试数学试卷(时间120分满分120分)一、填空题(每小题2分,共20分)1.在a、2a b、1x+、21x+、3中是二次根式的个数有______个.2.当x= 时,二次根式1+x取最小值,其最小值为。

3.化简82-的结果是_____________4.计算:23·=5.实数a在数轴上的位置如图所示:化简:21(2)______a a-+-=.6.已知三角形底边的边长是6cm,面积是12cm2,则此边的高线长.7.若()22340a b c-+-+-=,则=+-cba.8.计算:20102010)23()23(+-=9.已知2310x x-+=,则2212xx+-=10.观察下列各式:111233+=,112344+=,113455+=,……,请你将猜想到的规律用含自然数(1)n n≥的代数式表示出来是.二、选择题(每小题3分,共24分)11.下列式子一定是二次根式的是()题号一二三总分19 20 21 22 23 24 25 26得分密线封1-012aA .2--xB .xC .22+xD .22-x12. 下列二次根式中,x 的取值范围是2≥x 的是( )A .2-xB .x+2C .x -2D .1x -213. 实数a b c,,在数轴上的对应点的位置如图所示,式子①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个 C.3个 D.4个14. 下列根式中,是最简二次根式的是( ) A .0.2b B . 1212a b - C. 22x y - D . 25ab15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1122-=+-x x x D .3392-∙+=-x x x16.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A.212-B.2 C.212+D.2-17. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m -C .m --D .m -18. 若代数式22(2)(4)a a -+-的值是常数2,则a 的取值范围是( ) A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =三、解答题(76分) 19. (12分)计算:(1) 21418122-+- (2) 2)352(-2- 1- 0 1 2 3 c b a(3) 14510811253++- (4)284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。

人教版九年级数学上册第二十一单元二次根式同步练习2带答案

人教版九年级数学上册第二十一单元二次根式同步练习2带答案

人教版九年级数学上册第二十一单元《二次根式》同步练习2带答案1数是( ).A .4B .3C .2D .1知识点:二次根式的概念a ≥0)•的式子叫做二次根式,根号.从形式上看,二次根式必需具有以下两个条件:( 1 ) 必需有二次根号;( 2 ) 被开方数不能小于0 。

解:是二次根式.答:B一、以下各式必然是二次根式的是( )A. B.C. D.解:21a +>0必然是二次根式. -7小于0指数是3;当a b ≥0 答:C2.当x +x 2在实数范围内成心义?( ) A. x ≥32- B. x ≠0 C. x ≥32-且x ≠0 D. x >32-且x ≠0 知识点:二次根式成心义的条件知识点的描述:由于二次根式的被开方数只能取非负值,因此要使二次根式在实数范围内成心义就必需被开方数大于等于0。

分析:由二次根式的概念可知,被开方数必然要大于或等于0,因此2x+3≥0,且x ≠0•时,+x 2才能成心义. 解: 依题意得:当2300x x +≥⎧⎨≠⎩2在实数范围内成心义. 由2x+3≥0,得:x ≥32-∴320x x ⎧≥-⎪⎨⎪≠⎩∴当x ≥-32且x ≠0x 2在实数范围内没成心义. 答:C2.函数y =x 的取值范围是( ). A. 12x ≤ B. 12x ≤且x ≠-1 C. x ≥12且x ≠1 D. x ≠-1 解:变量x 的取值范围,须使120x -≥(即被开方熟大于或等于零)且10x +≠(即分母不等于零),即12x ≤且x ≠-1. 因此 12x ≤且x ≠-1. 评注:①考虑二次根式成心义;②考虑分式成心义,只有同时成心义,才能求出自变量的取值范围.答:B中,最简二次根式的个数是( ). (A)4个 (B)3个 (C)2个 (D)1个知识点:最简二次根式知识点的描述:咱们把知足条件:①被开方数不含有分母②被开方数中不含能开方开得尽的因数或因式,如此的二次根式叫最简二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2二次根式的乘除(第一课时)
◆随堂检测
1、判断下列各式是否正确,不正确的请予以改正:
(1=
(2=4
2= )
A .1x ≥
B .1x ≥-
C .11x -≤≤
D .1x ≥或1x ≥-
3、计算:(1)2000 (20,0)a b ≥≥ (3)224y x x +
4、计算:(1)714⨯ (2)10253⨯ (3xy 3
1 ◆典例分析
化简 )
A ..分析:本题是同学们在做题时常感困惑,容易糊涂的问题.很多同学觉得选项
B 形式最简单,所以选B;还有
的同学觉得应有一个负号和原式对应,所以选A 或D;这些都是错误的.本题对概念的要求是较高的,题中隐含着0a <这个条件,因此原式的结果应该是负值,并且被开方数必须为非值.
解:A. 理由如下: ∵二次根式有意义的条件是10a
-≥,即0a <,
∴原式=(a --==.故选A. ◆课下作业
●拓展提高
1、下列各等式成立的是( )
A ..
C ..
2n 为( )
A .5
B .4
C .3
D .2
3.
4b <a <0)得____________________.
5、比较下列各组中两个数的大小:
(1)(2)--
6、 一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米?
●体验中考
1、(2008年,钦州)下列计算结果正确的是( )
A .122-=-
B .2235x x x +=
C ,0)x o y =≥≥
D x y =+
(注意:各种运算规律要掌握准确.)
2、(2008年,大连)若运算程序为:输出的数比输入的数的平方小1,则输入输出的结果应为( )
A .10
B .11
C .12
D .13
(提示:首先要正确写出输出数据和输入数据之间的关系式,然后须认真进行二次根式的乘法运算.)
参考答案:
◆随堂检测
1、解:(1×3=6.
(2)不正确.改正:
=2、A. ∵二次根式有意义的条件是1x ≥-且1x ≥,∴等式成立的条件是1x ≥.故选A.
3、解:(1)2000=521022⨯⨯=210×22×5=10×2×5=205.
(2)324b a =b b a ⨯⨯⨯2222=22×2a ×2b ×b =2ab b .
(3)224y x x +=)(222y x x +=2x ×22y x +=22y x x +.
注意:如果一个二次根式的被开方数中所有的因式(或因数)能开的尽方,可以利用积的算数平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简.
4、解:(1)714⨯
(2)10253⨯=36⨯==⨯=.
(3xy 31===◆课下作业
●拓展提高
1、D. 根据二次根式的乘法法则,只有选项D 符合法则,故选D.
2、A. ==,
∴只有当5n =,故选A.
3、==
4、2222)(b a a b +- 理由如下:
=2222)(b a a b +-
5、解:(1)24728=⨯=,216232=⨯=,
∵2832<,∴<
(2)29218=⨯=,24520=⨯=,
∵1820<,∴->-
6、解:设底面正方形铁桶的底面边长为x ,则2x ×10=30×30×20,2
x =30×30×2, x=
答:正方形铁桶的底面边长是.
●体验中考
1、C ∵C 选项正确表达了二次根式的乘法法则,等式总成立,故选C.
2、B ∵输出数据y 和输入数据x 之间的关系式为21y x =-,∴代入数据计算输出数据为
2143111y =-=⨯-=,故选B.)。

相关文档
最新文档