磁性材料 第7章 铁氧体材料解析
软磁铁氧体材料
铁氧体磁性材料可用化学分子式 MFe2O4表示。式中M代表锰、镍、锌、铜等二价金属离子。铁氧体是由这些金属化合物的混合物烧结而成。铁氧体的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体能应用于高频领域。
在NCD,铁氧体是通过下列过程生产出来的
首先,按照预定的配方称重,把高纯度,粉状的氧化物 (如 Fe2O3、Mn3O4、ZnO、NiO等 ) 混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温 (1100℃—1400℃)下烧结。烧结出的铁氧体制品通过磨削加工获得成品尺寸。上述各道工序均受严格的控制,以使产品的所有特性符合规定的指标
各种不同的用途要选择不同的铁氧体材料。NCD主要生产锰锌软磁铁氧体,包括以低磁芯损耗、高磁通密度为特征的LP系列功率材料和以高磁导率为特征的HP 系列高μ材料。
NCD的LP系列材料制成的磁芯主要适用于功率转换领域,如开关电源主变压器和输出平滑扼流圈、DC-DC变换器、照明用电子镇流器等。按适用频率范围分为LP2、LP3和LP4等三种材料牌号。LP2材料适用于20kHz —150kHz中低频率。LP3材料是目前应用最广泛的中高频段(100kHz — 500kHz) 优秀材料。LP4材料则是为适应开关电源高频化发展趋势而开发的超高频功率材料,它主要适用于500kHz — 1000kHz谐振式开关电源。LP系列的各个材料在各自适用频段内均具有很低的磁芯损耗,且从室温至实际工作温度( 80℃— 100℃ ),损耗呈负温度系数,因而可有效抑制变压器等器件的温升。
软磁铁氧体材料基本知识特性参数和定义
软磁铁氧体材料基本知识特性参数和定义准确,有一定深度
一、什么是软磁铁氧体?
软磁铁氧体(Soft Magnetic Ferrite)是一种特殊材料,属于磁性材料的一种。它具有以下四个特点:一是具有较强的电磁吸收能力;二是具有较高的磁阻率;三是具有较强的电磁传导能力;四是具有较低的损耗。
二、软磁铁氧体的特性参数
1、磁导率(Magnetic Conductivity)
磁导率是一种物理量,它表示一个物质对于一定的电磁场有多大的磁导能力,被定义为电磁场导致的电流强度单位时间的变化比例。电磁场通过材料时,磁导率决定了材料的磁导能力,磁导率越小,材料的磁导能力就越弱。
2、磁滞回线(Hysteresis Loop)
磁滞回线是指磁体在外加的相应磁场的作用下,由抗磁性材料的逆磁化向磁化的过程,然后由磁化向逆磁化的过程,构成的曲线。它可以完全反映其中一种磁性材料在多次循环变化中的全部特性,因此,磁滞回线也被称为磁体的“心脏”。
3、电感(Inductance)
铁氧体磁性材料的性质分类,以及制备工艺分析
铁氧体磁性材料的性质分类,以及制备工艺分析
铁氧体是一种广泛应用的磁性材料,具有高磁导率、高饱和磁化强度和较低的磁滞损
耗等优点。根据其微观结构和性质表现,可以将铁氧体材料大致分为软磁铁氧体和硬磁铁
氧体两类。
(一)软磁铁氧体
软磁铁氧体具有高导磁率、低矫顽力和低涡流损耗等优点。其主要应用于高频变压器、电感器、传感器、驱动器等场合。软磁铁氧体制备的一般工艺流程如下:
1.化学分解法制备前驱体,通常采用水热合成法、溶胶-凝胶法、坩埚熔融法等方法
制备铁氧体纳米粒子。
2.制备磁性高分子复合材料,采用溶液吸附法、浸渍法、共混法等方法将纳米铁氧体
粒子分散在基体材料中,如聚合物、高分子树脂等。
3.加工成型,可以采用挤出成型、压制成型、注塑成型等方式。
4.烧结热处理,将成型件进行高温烧结处理,使铁氧体颗粒间形成高度排列的晶粒结构,提高其导磁率。
2.球磨混合,将纳米粒子与其他添加剂按一定比例混合均匀。
4.模具制备,将混合料置于模具中进行成型。
综上所述,铁氧体磁性材料的制备工艺涉及化学分解、高分子复合、加工成型和烧结
处理等多个环节,不同的应用领域需要不同的物理和化学性质表现,因此制备工艺也会有
所差异。随着科技的发展,铁氧体磁性材料的性能和应用领域将不断拓展。
软磁铁氧体材料基本知识
软磁铁氧体材料基本知识
软磁铁氧体材料是一种具有良好磁导性能的特殊材料,被广泛应用于电子和电磁设备中。软磁铁氧体材料具有较高的磁导率和低的磁滞损耗,可以有效地吸收和传导磁场。本文将从软磁铁氧体的定义、结构、性质和应用等方面进行介绍。
一、定义
软磁铁氧体是一类具有高磁导率和低磁滞损耗的磁性材料。它通常由铁氧体和添加剂组成,其中铁氧体是主要的磁性成分,添加剂的作用是调节材料的性能。
二、结构
软磁铁氧体材料的晶体结构是六方最密堆积结构,每个晶胞由32个氧原子和24个铁原子组成。这种结构使得软磁铁氧体具有良好的磁导率和低的磁滞损耗。
三、性质
1. 高磁导率:软磁铁氧体材料具有较高的磁导率,即对磁场的导磁能力很强。这使得它在电感器、变压器等电磁设备中得到广泛应用。
2. 低磁滞损耗:软磁铁氧体材料具有较低的磁滞损耗,即在磁化和去磁化过程中能量损失较小。这使得它在高频电路中具有优异的性能。
3. 高饱和磁感应强度:软磁铁氧体材料具有较高的饱和磁感应强度,
即在饱和磁场下仍然能够保持较高的磁感应强度。这使得它在电机和发电设备中具有重要应用。
4. 低磁化场强度:软磁铁氧体材料具有较低的磁化场强度,即在较小的磁场下即可实现较大的磁化。这使得它在电磁设备中具有较低的功耗和较高的能效。
四、应用
软磁铁氧体材料广泛应用于电子和电磁设备中,包括以下方面:1. 电感器:软磁铁氧体材料的高磁导率和低磁滞损耗使其成为电感器的理想材料。电感器是电子电路中常用的元器件,用于储存和释放电能。
2. 变压器:软磁铁氧体材料的高磁导率和低磁滞损耗使其成为变压器的重要材料。变压器是电力系统中常用的设备,用于将电能从一电压等级转换到另一电压等级。
磁性-铁氧体磁性材料及尖晶石铁氧体
2. Inversed Spinel Structure
v NiFe2O4
5µ B
Fe3+
特 点:
M占据的是 8面体间隙; 部分Fe占据的是4面体间隙
8个4面体间隙
Fe3+ 8个8面体间隙
2µ B
Ni2+ 8个8面体间隙
所以, Magnetic moment/unit cell = 8×2µ B =16µ B
一般而言,ϖ ba = ϖ ab,由于A位和B位离子数不等, Hab ≠ Hba;
Ma和 Mb分别是1 克分子磁性离子在A 位和B位上的磁矩。 在A位和B位上总的分子场分别为:
Hamf = ϖ aaMa - ϖ abMb ( 2) 式 Hbmf = -ϖ baMa + ϖ bbMb ( 2) ’式 令之比α。= ϖ aa / ϖ ab, β = ϖ bb / ϖ ba, α, β分别是次晶格内部相互作用与次晶格之间 相互作用强度
Fundamentals of Ferrimagnetic Materials & Spinel Ferrites
铁氧体磁性材料基础及尖晶石铁氧体
韩满贵
2008
思考如下问题
v 世界上第一个被发现的磁性材料是什么? v 铁氧体磁性材料有些什么主要的特征? v 如果铁氧体材料按晶体结构分类,主要有哪
几种? v 请举出几种软磁铁氧体材料?几种硬磁铁
铁氧体磁性材料
第一节铁氧体磁性材料概述
铁氧体磁性材料可用化学分子式MFe 2O 4表示。式中M 代表锰、镍、锌、铜等二价金属离子。铁氧体磁性是通过烧结这些金属化合物的混合物而制造出来的。铁氧体磁性的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体磁性能应用于高频领域。
首先,按照预定的配方比重,把高纯、粉状的氧化物(如Fe 2O 4、Mn 3O 4、ZnO 、NiO 等)混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温(1000~1400℃)下进行烧结。烧结出的铁氧体制品通过机械加工获得成品尺寸。上述各道工序均受到严格的控制,以使产品的所有特性符合规定的指标。
不同的用途要选择不同的铁氧体材料。有适用于低损耗、高频特性好的系列,有磁导率的线性材料。按照不同的适用频率范围分为:中低频段(20~150kHz )、中高频段(100~500kHz )、超高频段(500~1MHz )。
第二节铁氧体磁性材料的各项物理特性定义与计算公式 01) 初始磁导率μi
初始磁导率是磁性材料的磁导率(B/H )在磁性曲线始端的极限值,即
H
B H i 00lim 1→μ=μ 式中
μ0:真空磁导率(4π×10-7H/m );
H : 交流磁场强度(A/m ); B : 交流磁通密度(T )。
02) 有效磁导率μe
在闭合磁路中(漏磁可以忽略),磁芯的有效磁导率可表示为:
μe 72104××=
e e A l N L π 式中
L :装有磁芯的线圈的自感量;
N :线圈匝数; e
e A l =C 1=磁芯常数(mm -1) 03) 饱和磁通密度B s
铁氧体磁性材料
铁氧体材料的烧结温度,一般约为1000~1400℃。由于铁氧体烧结时周围气氛对性能影响很大。如前所述, 铁氧体生成时的固相化学反应,不能在还原气氛中进行。因此通常铁氧体材料的烧结在硅碳棒加热的电炉(窑) 内进行。对于某些有特殊要求的铁氧体材料,必须在特殊的炉子中烧结,如高磁导率的锰锌铁氧体,必须在真空 炉中烧结,钇铁石榴石多晶铁氧体必须在1400℃以上的炉子中烧结。烧结过程中均要发生化学变化和物理变 化。
图4矩磁性示意图
这类材料主要用作各种类型电子计算机的存储器磁芯,在自动控制、雷达导航、宇宙航行、信息显示等方面 也得到不少的应用。
尽管新出现的存储器种类很多,但是由于铁氧体矩磁材料的原料丰富、工艺简便、性能稳定、成本低廉,所 以磁性存储器(尤其是磁芯存储器)在计算技术中仍占有极重要的地位。
压磁材料是指磁化时能在磁场方向作机械伸长或缩短(磁致伸缩)的铁氧体材料(图5)。目前应用最多的是 镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4和镍镁铁氧体Ni-MgFe2O4等等。
铁氧体材料的特性
铁氧体材料的特性
MnZn系铁氧体具有高的起始磁导率,较高的饱和磁感应强度,在无线电中
频或低频范围有低的损耗,它是1兆赫兹以下频段范围磁性能最优良的铁氧体
材料。常用的MnZn系铁氧体起始磁导率μi=400-20000,饱和磁感应强度
Bs=400-530mT。
NiZn系铁氧体使用频率100kHz~100MHz,最高可使用到300MHz。这类材料
磁导率较低,电阻率很高,一般为105~107Ωcm。因此,高频涡流损耗小,是
1MHz以上高频段磁性能最优良材料。常用NiZn系材料的磁导率μi=5-1500,
饱和磁感应强度Bs=250-400mT。
MgZn系铁氧体材料的电阻率较高,主要应用于制作显像管或显示管的偏转
线圈磁芯。
5.1.1.2磁粉芯材料的特性
磁粉芯是由颗粒直径很小(0.5~5mm)的铁磁性粉粒与绝缘介质混合压制而成的磁芯,一般为环形,也有压制成E形的。磁粉芯的电磁特性取决于金属粉粒
材料的导磁率、粉粒的大小与形状、填充系数、绝缘介质的含量、成型压力、
热处理工艺等。磁粉芯主要用于电感铁芯,由于金属软磁粉末被绝缘材料包围,形成分散气隙,大大降低了金属软磁材料的高频涡流损耗,使磁粉芯具有抗饱
和特性与宽频响应特性,特别适用于制作谐振电感、功率因数校正电感、输出
滤波电感、EMI滤波器电感等。
常用磁粉芯主要有铁粉芯、铁硅铝粉芯、高磁通量(HighFlux)粉芯、坡莫
合金粉芯(MPP)。
铁粉芯由碳基铁磁粉及树脂碳基铁磁粉构成,由于价格低廉,铁粉芯至今
仍然是用量最大的磁粉芯,磁导率为10~100。
铁硅铝粉芯的典型成分为:9%Al、55Si、85%Fe。由于在纯铁中加入了硅和铝,使材料的磁滞伸缩系数接近零,降低了材料将电磁能转化为机械能的能力,同时也降低了材料的损耗,使铁硅铝粉芯的损耗比铁粉芯的损耗低。铁硅铝粉
maxwell中铁氧体材料
maxwell中铁氧体材料
Maxwell中的铁氧体材料是一种具有特殊磁性能的材料,它在现代科技领域中扮演着重要的角色。铁氧体材料的独特性质使其在许多应用中发挥着关键作用,例如电磁波吸收、电磁传感、医学成像等领域。
铁氧体材料的磁性来源于其晶格结构中的铁离子和氧离子之间的相互作用。这种相互作用使得铁氧体材料具有高磁感应强度和低磁导率的特点。由于其良好的磁性能,铁氧体材料被广泛应用于电子设备、通信技术和能源领域。
在电子设备中,铁氧体材料被用作磁芯材料。磁芯是电子设备中的重要部件,用于储存和传输电磁能量。铁氧体材料的高磁感应强度和低磁导率使得磁芯能够有效地储存和传输电磁信号,从而提高设备的性能和效率。
铁氧体材料在电磁波吸收和电磁传感方面也发挥着重要作用。电磁波吸收是指材料对电磁波的能量吸收能力。铁氧体材料具有优异的电磁波吸收性能,可以有效地吸收电磁波的能量,减少电磁辐射对人体的影响。因此,在电磁波辐射防护和电磁传感器方面,铁氧体材料被广泛应用。
铁氧体材料还在医学成像领域发挥着重要作用。医学成像是一种通过使用不同的物理方法来获取人体内部结构和功能信息的技术。铁
氧体材料可以作为造影剂用于磁共振成像(MRI)技术中,通过对铁氧体材料的磁性进行控制,可以增强磁共振信号,从而提高图像的清晰度和对比度。
Maxwell中的铁氧体材料在现代科技领域中具有重要的应用价值。它的独特磁性能使其在电子设备、通信技术和医学成像等领域发挥着关键作用。铁氧体材料的应用不仅提高了设备的性能和效率,还改善了人们的生活质量。相信随着科技的不断进步,铁氧体材料的应用前景将更加广阔。
铁氧体磁性材料
铁氧体磁性材料
铁氧体是一种重要的磁性材料,具有广泛的应用领域,包括电子、通讯、医疗和磁记录等。铁氧体磁性材料具有优异的磁性能和化学稳定性,因此备受关注。本文将重点介绍铁氧体磁性材料的基本特性、制备方法、应用领域和未来发展方向。
铁氧体是一种由铁离子和氧离子构成的化合物,具有典型的磁性特性。铁氧体材料通常具有高磁饱和感应强度、低矫顽力和良好的化学稳定性。这些特性使得铁氧体材料在电磁设备、电子器件和磁记录领域具有重要的应用价值。
铁氧体磁性材料的制备方法多种多样,常见的方法包括化学共沉淀法、溶胶-凝胶法、固相反应法和物理气相沉积法等。这些方法可以制备出不同形貌和粒径的铁氧体磁性材料,满足不同应用领域的需求。
铁氧体磁性材料在电子领域有着广泛的应用,例如在变压器、电感器和微波器件中起着重要作用。此外,铁氧体材料还被广泛应用于磁记录领域,如磁盘驱动器和磁带等。在医疗领域,铁氧体磁性材料也被用于磁共振成像和磁导航等方面。
未来,铁氧体磁性材料有望在新能源、信息存储和生物医学领
域发挥更大的作用。随着科学技术的不断进步,铁氧体磁性材料的
制备方法将更加精细化和智能化,其在微纳米尺度上的应用也将得
到进一步拓展。同时,铁氧体磁性材料的磁性能将得到进一步提升,为其在新领域的应用奠定更加坚实的基础。
总之,铁氧体磁性材料具有重要的应用价值,其在电子、通讯、医疗和磁记录等领域发挥着重要作用。随着科学技术的不断发展,
铁氧体磁性材料的制备方法将不断改进,其应用领域也将不断拓展。相信在不久的将来,铁氧体磁性材料将会有更广阔的发展空间,为
铁氧体磁性材料的性质分类,以及制备工艺分析
铁氧体磁性材料的性质分类,以及制备工艺分析
铁氧体是一种重要的磁性材料,具有广泛的应用领域,包括电子、通信、电机、仪器仪表等。根据不同的性质,铁氧体可以分为硬磁铁氧体和软磁铁氧体。
硬磁铁氧体具有较高的剩磁和矫顽力,主要用于制造永磁材料,如磁铁等。软磁铁氧体具有高的磁导率和低的剩磁和矫顽力,主要用于制造变压器、电感器等电磁元件。根据铁氧体的晶体结构、化学组成和制备工艺的不同,硬磁铁氧体和软磁铁氧体又可以细分为多种类型。
硬磁铁氧体主要有氧化铁、钬铁氧体和钕铁硼磁铁氧体等。氧化铁是最早使用的硬磁铁氧体材料,具有较高的矫顽力和抗磁蚀性,但其剩磁较低。钬铁氧体是目前应用最广泛的硬磁铁氧体材料,具有较高的矫顽力和剩磁,且耐热性好。钕铁硼材料是新一代的硬磁铁氧体材料,具有高矫顽力、高矫顽力和低温系数等优点。
制备铁氧体的工艺通常包括化学法、烧结法和溶胶-凝胶法等。化学法主要指化学共沉淀法和湿式化学法。化学共沉淀法通过在溶液中添加化学沉淀剂,将金属阳离子转化为沉淀,再进行烧结得到铁氧体。湿式化学法则是通过溶液中的化学反应生成铁氧体粉末,然后进行热处理得到目标材料。烧结法是将已经制备好的铁氧体粉末在高温下进行加热烧结,使粉末颗粒间形成结合力,形成致密的材料。溶胶-凝胶法是将金属盐溶解在适当的溶剂中,通过胶体反应生成溶胶,然后经过凝胶和热处理得到铁氧体。
不同的制备工艺可用于制备不同种类的铁氧体材料,以满足不同应用领域对铁氧体材料的要求。随着科技的进步和创新,铁氧体磁性材料的制备工艺将继续发展,以提高材料的性能和应用效果。
07.磁性材料第一部分-软磁铁氧体材料
教学内容和要求
5.熟悉尖晶石铁氧体的晶体结构与基本特性;掌握软磁铁氧体
的特性要求与参数、软磁铁氧体的磁谱特性、软磁铁氧体
损耗特性、软磁铁氧体的稳定性。 (14) 6.熟悉石榴石铁氧体的晶体结构、石榴石铁氧体的饱和磁化 强度、石榴石铁氧体的磁晶各向异性、石榴石铁氧体的光 特性、钙钛石型铁氧体。掌握旋磁铁氧体材料的特性要求
§1-3
软磁铁氧体的磁谱
一、软磁铁氧体磁谱及形状 磁谱:软磁材料在弱交变磁场中,复磁导率µ = r µ ' - µ " 随频率变化的曲线 r r
µ µ' r
1
µ" r
2
3
4
f
一般软磁铁氧体材料的磁谱
铁氧体磁谱分区: 1.低频( f<104Hz): 复磁导率µ 大, µ 小,损耗小, r r 磁导率随频率变化不大; 2.中频(f=104 106Hz):与低频相似,可能出现尺寸 共振和磁力共振; µ 下降, µ 出现峰值 ; r r
µ = µ 转+ µ i i i位
对于一般烧结铁氧体:
1.如内部气孔较多,密度低,壁移难, µ 转为主; i
2.如晶粒大,气孔少,密度高,以壁移为主. 磁化的难易程度决定于磁化动力(MsH)与阻滞之比,比值 高则易磁化;反之难磁化.
i
3 23 k1 2 s d
铁氧体
铁氧体
中文名称:铁氧体
英文名称:ferrite
定义:由以三价铁离子作为主要正离子成分的若干种氧化物组成,并
呈现亚铁磁性或反铁磁性的材料。
铁氧体是一种具有铁磁性的金属氧化物。就电特性来说,铁氧体的电阻率比金属、合金磁性材料大得多,而且还有较高的介电性能。铁氧体的磁性能还表现在高频时具有较高的磁导率。因而,铁氧体已成为高频弱电领域用途广泛的非金属磁性材料。由于铁氧体单位体积中储存的磁能较低,饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因而限制了它在要求较高磁能密度的低频强电和大功率领域的应用。
简介
铁氧体(ferrites)铁氧体是一种非金属磁性材料,又叫铁淦氧。它是由三氧化二铁和一种或几种其他金属氧化物(例如:氧化镍、氧化锌、氧化锰、氧化镁、氧化钡、氧化锶等)配制烧结而成。它的相对磁导率可高达几千,电阻率是金属的1011倍,涡流损耗小,适合于制作高频电磁器件。铁氧体有硬磁、软磁、矩磁、旋磁和压磁五类。旧称铁淦氧磁物或铁淦氧,其生产过程和外观类似陶瓷,因而也称为磁性瓷。铁氧体是铁和其他一种或多种适当的金属元素的复合氧化物。性质属于半导体,通常作为磁性介质应用,铁氧体磁性材料与金属或合金磁性材料之间最重要的区别在于导电性。通常前者的电阻率为102~108Ω·cm,而后者只有
10-6~10-4Ω·cm。
历史沿革
中国最早接触到的铁氧体是公元前 4世纪发现的天然铁氧体,即磁铁矿(Fe3O4),中国所发明的指南针就是利用这种天然磁铁矿制成的。到20世纪30年代无线电技术的发展,迫切地要求高频损耗小的铁磁性材料。而四氧化三铁的电阻率很低,不能满足这一要求。1933年日本东京工业大学首先创制出含钴铁氧体的永磁材料,当时被称为OP磁石。30~40年代,法国、日本、德国、荷兰等国相继开展了铁氧体的研究工作,其中荷兰菲利浦实验室物理学家J.L.斯诺克于1935年研究出各种具有优良性能尖晶石结构的含锌软磁铁氧体,于1946年实现工业化生产。1952年,该室J.J.文特等人曾经研制成了以 BaFe12O19为主要成分的永磁性铁氧体。这种铁氧体与1956年该室的G.H.永克尔等人所研究的四种甚高频磁性铁氧体具有类似的六角结构。1956年E.F.贝尔托和F.福拉又报道了亚铁磁性的Y3Fe5O12的研究结果。其中代换离子Y有Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、 Tm、Yb和Lu等稀土离子。由于这类磁性化合物的晶体结构与天
铁氧体——精选推荐
1.引言
1.1铁氧体的种类及特性[1、2]
铁氧体为一种具有软磁性的金属氧化物。是由铁和其它一种或多种金属合成的金氧化物。尖晶石型铁氧体的化学分子式为MeFe2O4或MeO·Fe2O3,Me是指离子半与二价铁离子相近的二价金属离子(Mn2+﹑Zn2+﹑Cu2+ Ni2+﹑Mg2+)或平均化学价为二价的多种金属离子组成。使用不同的替代金属,可以合成不同类型的铁氧体。以Mn2+替代Fe2+所合成的复合氧化物MnOFe2O3(MnFe2O4)称为锰铁氧体,以Zn2+替代Fe2+所组成的复合物ZnO.Fe2O3(ZnFe2O4)称为锌铁氧体。通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体为单组分铁氧体;由两种或两种以上的金属离子替代可以合成出双组分铁氧体和多组分铁氧体。锰锌铁氧体(Mn-ZnFe2O4)和镍锌铁氧体(Ni-ZnFe2O4)就是双组分铁氧体,而锰镁铁氧体(Mn-Mg-ZnFe2O4))则是多组分铁氧体。
1.2软磁铁氧体现状与发展
由于我国的电子信息产业取得空前的发展,作为软磁铁氧体的重要应用领域无论是传统消费的电子音像产品,还是新崛起的移动通信设施和家用电脑及外部设备,都处于蓬勃发展的状态;而基础设施建设的大规模开展使节能照明产品的需求也在快速增长;由于电磁兼容要求的提高,EMI 专用器件需求猛增。这些都对软磁铁氧体产业提出更高的要求。纵观电子信息产业发展的态势,可以得到一个结论:当前软磁铁氧体的最大市场在中国,市场增长最快的地区也是中国国内电子工业产品需求量将会以15%左右年增长率向前发展,高档产品和出口产品的比率将会很快提高,国内需要高档产品量也不断增加。据统计,珠江三角洲地区磁环年需量30亿只左右,磁芯约2亿只,美国的PULSE,台商YCL等在大陆办厂的企业用量也比较大,仅美国PULSE公司一年要用1亿美元进口高磁导率铁氧体系列产品,还有国内华为、中兴、大唐、东方通讯等程控交换机生产厂,也需要高档软磁铁氧体产品代替进口产品。今年国内电子产品需要软磁铁氧体3.8万吨,其中长虹公司仅彩电需要的软磁铁氧体磁芯用量6000吨,还有联想、长城等公司电脑和显示器和
铁氧体材料磁特性与应用
铁氧体材料磁特性与应用
铁氧体材料是一类常见的磁性材料,具有独特的磁特性和广泛的应用。本文将重点探讨铁氧体材料的磁特性、制备方法以及在不同领域的应用。
一、铁氧体材料的磁特性
铁氧体材料具有优异的磁性能,广泛应用于各个领域。其磁特性主要包括矫顽力、剩余磁感应强度、矫顽力和磁导率。
首先,矫顽力是指施加在铁氧体材料上的外磁场强度,使其磁感应强度从饱和状态降至零所需的磁场强度。高矫顽力的铁氧体材料在磁场变化较大的环境下具有较好的稳定性。
其次,剩余磁感应强度是在铁氧体材料去除外磁场后,仍保持的磁感应强度。高剩余磁感应强度的铁氧体材料具有较大的磁化量,可以被用于制造永磁材料。
再次,矫顽力是指在铁氧体材料磁场从一种方向变化到另一种方向时,所需的外磁场强度。高矫顽力的铁氧体材料具有较小的磁滞损耗,适用于高频磁性元件。
最后,磁导率是指铁氧体材料在外磁场作用下的磁化强度与外磁场强度之比。高磁导率的铁氧体材料表现出良好的磁化响应,可以用于制造电感器和变压器等电子元器件。
二、铁氧体材料的制备方法
铁氧体材料的制备方法主要包括陶瓷法、溶胶-凝胶法和化学共沉淀法等。
陶瓷法是铁氧体材料常用的制备方法之一。该方法首先将铁氧体的原料粉末进行混合,并进行球磨处理。然后将混合粉末进行成型,通常通过压制或注射成型的方式。最后,将成型体进行烧结,使其形成致密的晶体结构。
溶胶-凝胶法是一种制备纳米铁氧体材料的有效方法。该方法首先将金属盐和
配位剂溶解在溶剂中,形成溶胶。接着,通过水解和凝胶化反应使溶胶转变为凝胶体。最后,将凝胶体进行干燥和煅烧,得到纳米铁氧体材料。
软磁铁氧体材料
软磁铁氧体材料
软磁铁氧体材料是一类具有良好磁性能的材料,具有高磁导率、低磁滞、低铁损等优良特性,被广泛应用于电子电器、通讯、医疗、汽车等领域。软磁铁氧体材料的发展历程、特性及应用领域是当前研究的热点之一。
软磁铁氧体材料最早出现在20世纪50年代,经过几十年的发展,已经成为了一类非常成熟的材料。软磁铁氧体材料具有高磁导率、低磁滞、低铁损等特点,使其在电子电器领域得到了广泛的应用。在电力变压器、电感器、传感器、磁记录等领域,软磁铁氧体材料都有着重要的作用。
软磁铁氧体材料的特性主要包括磁饱和磁感应强度、磁导率、矫顽力、磁滞和铁损等指标。其中,磁导率是衡量软磁铁氧体材料性能的重要参数之一,它决定了材料在磁场中的响应速度和磁化强度。磁滞和铁损则是衡量材料在磁场中能量损耗的重要指标,低磁滞和低铁损是软磁铁氧体材料的重要特点之一。
软磁铁氧体材料在电子电器领域有着广泛的应用。在电力变压器中,软磁铁氧体材料可以有效降低变压器的铁损,提高变压器的效率;在电感器中,软磁铁氧体材料可以提高电感器的灵敏度和稳定性;在磁记录领域,软磁铁氧体材料可以提高磁记录介质的存储密度和稳定性。
除了电子电器领域,软磁铁氧体材料还在通讯、医疗、汽车等领域有着重要的应用。在通讯领域,软磁铁氧体材料可以用于制造天线、滤波器等器件,提高通讯设备的性能;在医疗领域,软磁铁氧体材料可以用于制造医疗影像设备、医疗器械等;在汽车领域,软磁铁氧体材料可以用于制造发动机、传动系统等部件,提高汽车的性能和节能环保性。
总的来说,软磁铁氧体材料具有良好的磁性能和广泛的应用前景,在未来的发展中,将会继续发挥重要作用。随着科学技术的不断进步,软磁铁氧体材料的性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、铁氧体的生产工艺
铁氧体材料的生产工艺主要分为2种:
将氧化物原料直接球磨混合,经成型和高温烧结制成铁氧体,
即所谓的干法。这种方法工艺简单,配方准确,应用较为普遍。
但采用氧化物作原料,烧结活性和混合的均性受到限制 ,制约了
产品性能的进一步提高;
另一种以化学共沉淀法为主的湿法工艺,此工艺制备的铁氧
构成八面体----B位;
理论上单位晶胞中有A位64个, B位32 个,实际上只有A位8个, B位16个,这 为金属离子的扩散提供了条件; ∴单位晶胞含有8个尖晶石铁氧体分 子MeFe2O4
三、铁氧体磁性材料的分类和应用
1、软磁铁氧体:在较弱的磁场下,易磁
化也易退磁的一种铁氧体材料
是目前各种铁氧体中用途最广、数 量最大、品种较多、产值较高的
应用领域:各种电感元件如滤波器磁
芯、变压器磁芯以及磁带录音和录象 磁头、多路通讯等的记录磁头
结构类型:立方晶系的尖晶石型(应用于音频甚至高频频段
1000Hz~300MHz);六角晶系的磁铅石型(用于更高的频段,如吸 波材料等)
第来自百度文库章
铁氧体磁性材料
西南科技大学材料科学与工程学院
第一节 铁氧体磁性材料的概述 第二节 尖晶石型铁氧体的晶体结构和基本特性 第三节 石榴石型铁氧体的晶体结构和基本特性 第四节 六角晶系铁氧体的晶体结构和基本特性
第一节 铁氧体磁性材料的概述
Generals of Ferrite Magnetic Materials
体粉烧结活性和均匀性好,但是湿法的工艺路线长、条件敏感、
稳定性较差。
第二节 尖晶石型铁氧体的晶 体结构和基本特性
Crystal structure and basic characteristics of Spinel ferrites
一、尖晶石型铁氧体的晶体结构
1、单位晶胞:
面心立方结构,以O2-为骨架构成面心立方,以 [111] 轴为密堆积方
遥测、遥控等电子设备
4、矩磁铁氧体:具有矩形磁滞回线的铁氧体 应用领域:各种类型电子计算机的存储器 磁芯,同时在自动控制、雷达导航、宇宙 航行、信息显示等方面也有不少的应用;
代表性铁氧体:Mg-Mn铁氧体,Li-Mn铁
氧体等
5、压磁铁氧体:指磁化时能在磁场方向作机械 伸长或缩短(磁滞伸缩)的铁氧体材料 代表性铁氧体:Ni-Zn铁氧体, Ni-Cu铁氧体,Ni-Mg铁氧体 应用领域:需要将电磁能和机械能相互转 换的超声和水声器件、磁声器件以及电讯 器件、水下电视和自动控制器件等方面 备注:压磁铁氧体与压电陶瓷(如BaTiO3)有几乎相似的应用领域, 但各自的特点不同,一般认为铁氧体压磁材料只适用于几万 Hz的频 段内,而压电陶瓷的适用频段却高得多
2、永磁铁氧体:磁化后不易退磁,而能
长期保留磁性的一种铁氧体材料
结构类型:六角晶系的磁铅石型(如典 型代表BaFe12O19) 应用领域:电讯器件中的录音器、微音器、电 话机以及各种仪表的磁铁,同时在污染处理、 医学生物和印刷显示等方面 备注:永磁铁氧体是继Al-Ni-Co系永磁金属材料后的第二种主要永 磁材料,且为永磁材料在高频段(如微波器件、其他国防器件)的 应用开辟了新的途径
铁氧体)如Mn-Zn铁氧体,Ni-Zn铁氧体,Mn-Mg-Zn铁氧体; 电特性:其电阻率较大(与金属材料相比),且有较高的介电 性能及多铁性材料的发现; 磁特性:可视为具有铁磁性的金属氧化物,高频时具有较高的磁 导率;
生产工艺与一般陶瓷工艺相似,因此操作方面易于控制; 它是高频弱电领域很有发展前途的一种非金属磁性材料; 缺点:饱和磁化强度MS较低,一般只有金属合金的1/3~1/5, 说明单位体积材料中储存的磁能较低,无法在较高磁能密度 的低频、强电和大功率领域内应用
3、旋磁铁氧体(微波铁氧体):在两个互相垂直的直流磁场和电 磁波磁场的作用下,具有平面偏振性的电磁波在材料内部按一定方 向的传播过程中,其偏振面会不断绕传播方向旋转的现象 Mg-Mn铁氧体,Ni-
Cu铁氧体,Ni-Zn铁
氧体以及钇石榴石铁 氧体3Me2O3· 5Fe2O3 应用领域:100~100000MHz(米波到毫米波),多用于与输送微 波的波导管或传输线等组成各种微波器件,如雷达、通讯、导航、
二、铁氧体磁性材料及其特性
铁氧体:是由铁和其他一种或多种金属组成的复合氧化物;
如尖晶石型铁氧体分子式MeFe2O4或MeO· Fe2O3,其中Me指离子
半径与Fe2+相近的二价金属离子(如Mn2+、Zn2+、Co2+等)或平均 化合价为二价的多种金属离子组(如Li+0.5Fe3+0.5);
单组分铁氧体,如锰铁氧体、镍铁氧体等和多组分铁氧体(复合
我国第一篇Mn-Zn铁氧体材料的试验研究报告由付柏生、白琏 如等先生在归国博士胡汉泉指导下于1956年完成,解决了载波频 带所用Mn-Zn铁氧体磁芯的制造工艺与技术,全文共75页,直到 今天,该报告仍有很强的现实生产指导意义; 1959年,我国第一届以铁氧体为主科的磁性材料及器件专业本 科大学生在成都电讯工程学院毕业,这批毕业生后来成为了新中 国的铁氧体磁性材料发展的骨干
一、铁氧体磁性材料的发展情况
磁铁矿(Fe3O4)是世界上最早得到应用的一种铁氧体磁性材 料;
1909年才第一次出现人工合成的铁氧体,1932和1933年,加藤
和武井两人研制出Cu-Zn系软磁铁氧体和Co-Fe系永磁铁氧体; 二战期间,荷兰菲利普公司系统的研究了各种尖晶石铁氧体, 1946年软磁铁氧体商品生产,1950年立方系软磁铁氧体商品化; 1952年出现磁铅石型钡铁氧体,1953~1954年出现矩磁铁氧体, 1956年出现石榴石型铁氧体并发现平面型超高频铁氧体; 1952年日本冈村敏彦发明了Mn-Zn系铁氧体,并先后在广播、 电视和彩色电视偏转、行输出系统得到广泛应用;
向,重复按ABC、ABC……,其它金属离子在O2-构成的空隙中;
单位晶胞由8个小立方(子晶格)组成;共边的子晶格离子分布
相同,而共面的则不同。每个小立方含有4个O2-,则48=32;O2分布在对角线的1/4、3/4处, 而O2-间隙中嵌入A, B离子; 由氧离子构成的空隙分两种: 4个O2-构成四面体----A位; 6个O2-