2018年全国中考数学分类汇编:二次函数专题(共173页)

合集下载

最新-2018年中考数学试题分类汇编--二次函数专题人教新课标版精品

最新-2018年中考数学试题分类汇编--二次函数专题人教新课标版精品

( 3) △ AOB与△ DBE是否相似?如果相似,请给以证明;如果不相
似,请说明理由。
23. ( 2018 泰安)如图,△ OAB 是边长为 2 的等边三角形,过点
y
3 x m与 x轴交于点 E。
3
( 1) 求 点 E 的坐标;
A 的直线
y
2
y x2 2 x 1
1
1 O1 2 3 x 1 2 A
( 2) 求 过 A 、 O、 E 三点的抛物线解析式;
28( 2018 遂宁)如图,二次函数的图象经过点
C、 y= 1 x 2 2
1 x
1
2
B 、 y= 1 x 2 1 1
2
2
学科网
D 、 y= x 2 x 2 学科网
4. (2018 南充 ) 抛物线 y a( x 1)(x 3)(a 0) 的对称轴是直线(

A. x 1
B. x 1
5. ( 2018 莆田)二次函数 y
C. x 3
D. x 3
2x2 4x 1的图象如何平移就得以到 y
14. ( 2018 义乌)如图,抛物线 y ax2 bx c 与 x 轴的一个交点 A 在点( -2 ,
0)和( -1 , 0)之间(包括这两点) ,顶点 C 是矩形 DEFG上(包括边界和 内部)的一个动点,则
(1)abc ----- 0 ( 填“ ”或“ ” ) ; a 的取值范围是 --------
四边形?若存在,求出 P 点的坐标;若不存在,试说明理由 .
25. ( 2018 广州)如图 13,二次函数 y x 2 px q( p 0) 的图象与 x 轴交于 A、 B 两点,与 y 轴交于 5
点 C(0, -1 ),Δ ABC的面积为 。

2018年全国各地中考数学真题汇编:二次函数(含答案)-数学备课大师【全免费】

2018年全国各地中考数学真题汇编:二次函数(含答案)-数学备课大师【全免费】

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

完整word版,2018年中考数学试题分类汇编二次函数

完整word版,2018年中考数学试题分类汇编二次函数

2018 中考数学试题分类汇编:考点16 二次函数一.选择题(共 33 小题)1.( 2018?青岛)已知一次函数 y= x+c 的图象如图,则二次函数 y=ax 2+bx+c 在平面直角坐标 系中的图象可能是()A .B .C .D .2.( 2018?德州)如图,函数 y=ax 2﹣2x+1 和 y=ax ﹣ a (a 是常数,且 a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D ..( 临安区)抛物线y=3( x ﹣ 1) 2+1 的极点坐标是( )3 2018?A .( 1, 1)B .(﹣ 1,1)C .(﹣ 1,﹣ 1)D .( 1,﹣ 1).( 上海)以下对二次函数 2﹣x 的图象的描绘,正确的选项是( )4 2018? y=xA .张口向下B .对称轴是 y 轴C .经过原点D .在对称轴右边部分是降落的22ax 3a 23(此中 x 是自变量),当 x ≥2 时, y 随 x 的 5.( 2018?泸州)已知二次函数 y=ax + + + 增大而增大,且﹣ 2≤x ≤ 1 时, y 的最大值为 9,则 a 的值为( )A .1 或﹣ 2B . 或C .D .1.( 岳阳)抛物线 y=3(x ﹣2) 2+5 的极点坐标是()6 2018?A .(﹣ 2,5)B .(﹣ 2,﹣ 5)C .( 2,5)D .( 2,﹣ 5)7.(2018?遂宁)已知二次函数 y=ax 2+bx+c (a ≠0)的图象以下图,则以下结论同时成立的是()A.B.C.D.8.( 2018?滨州)如图,若二次函数2 bx c(a≠0)图象的对称轴为 x=1,与 y 轴交于点y=ax + +C,与 x 轴交于点 A、点 B(﹣ 1,0),则①二次函数的最大值为a+b+c;② a﹣b+c<0;③ b2﹣ 4ac<0;④当 y> 0 时,﹣ 1< x<3,此中正确的个数是()A.1 B.2 C.3 D.49.( 2018?白银)如图是二次函数y=ax2+bx+c(a, b,c 是常数, a≠0)图象的一部分,与 x 轴的交点 A 在点( 2,0)和(3,0)之间,对称轴是 x=1.对于以下说法:① ab<0;②2a+b=0;③ 3a+c>0;④ a+b≥m(am+b)(m 为实数);⑤当﹣ 1< x<3 时,y> 0,此中正确的选项是()A.①②④B.①②⑤C.②③④D.③④⑤10.( 2018?达州)如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于点 A(﹣ 1,0),与 y 轴的交点 B 在( 0,2)与( 0,3)之间(不包含这两点),对称轴为直线 x=2.以下结论:① abc<0;② 9a+3b+c>0;③若点 M(,y1),点N(,y2)是函数图象上的两点,则 y1<y2;④﹣<a<﹣.此中正确结论有()A.1 个 B.2 个 C.3 个 D.4 个.11.( 2018?恩施州)抛物线y=ax2+bx+c 的对称轴为直线x=﹣1,部分图象以下图,以下判断中:① abc>0;② b2﹣ 4ac> 0;③ 9a﹣ 3b+c=0;④若点(﹣ 0.5,y1),(﹣ 2, y2)均在抛物线上,则 y1>y2;⑤ 5a﹣ 2b+c<0.此中正确的个数有()A.2B.3C.4D.512.( 2018?衡阳)如图,抛物线 y=ax2+bx+c 与 x 轴交于点 A(﹣ 1, 0),极点坐标( 1, n)与 y 轴的交点在( 0,2),( 0,3)之间(包含端点),则以下结论:① 3a+b<0;②﹣ 1≤a ≤﹣;③对于随意实数 m,a+b≥am2+bm 总成立;④对于 x 的方程 ax2+bx+c=n﹣1 有两个不相等的实数根.此中结论正确的个数为()A.1 个 B.2 个 C.3 个 D.4 个13.(2018?荆门)二次函数 y=ax2 +bx+c(a≠0)的大概图象以下图,极点坐标为(﹣2,﹣和 x2,且 x1< x2,则﹣ 5<x1<x2< 1;④若方程 | ax2 +bx+c| =1 有四个根,则这四个根的和为﹣ 4.其中正确的结论有()A.1 个 B.2 个 C.3 个 D.4 个14.( 2018?枣庄)如图是二次函数y=ax2+bx+c 图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,以下结论正确的选项是()A.b2<4ac B.ac> 0C.2a﹣ b=0 D.a﹣b+c=015.(2018?湖州)在平面直角坐标系xOy 中,已知点 M,N 的坐标分别为(﹣ 1, 2),( 2,),若抛物线2﹣x+2(a≠0)与线段 MN 有两个不一样的交点,则 a 的取值范围是()1y=axA.a≤﹣ 1 或≤a< B.≤ a< C. a≤或 a>D. a≤﹣ 1 或 a≥16.( 2018?深圳)二次函数y=ax2+bx+c(a≠0)的图象以下图,以下结论正确是()A.abc> 0B.2a b<02 bx c﹣3=0有两个不相等的实数根C.3a c<0 D. ax + +++17.( 2018?河北)对于题目“一段抛物线 L:y=﹣ x( x﹣ 3) c(0≤x≤ 3)与直线 l: y=x 2有++独一公共点,若 c 为整数,确立所有 c 的值,”甲的结果是 c=1,乙的结果是 c=3 或 4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一同才正确D.甲、乙的结果合在一同也不正确18.( 2018?长沙)若对于随意非零实数a,抛物线 y=ax2+ax﹣2a 总不经过点 P( x0﹣ 3,x02﹣16),则切合条件的点P()A.有且只有 1 个B.有且只有 2 个C.有且只有 3 个D.有无量多个19(.2018?广西)将抛物线 y=x2﹣ 6x+21 向左平移2 个单位后,获取新抛物线的分析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2 +5 C.y=(x﹣8)2+3 D.y=( x﹣4)2+3 20.(2018?哈尔滨)将抛物线 y=﹣ 5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位长度,所获取的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣ 5( x﹣ 1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 21.(2018?广安)抛物线 y=(x﹣2)2﹣ 1 能够由抛物线 y=x2平移而获取,以下平移正确的选项是()A.先向左平移 2 个单位长度,而后向上平移 1 个单位长度B.先向左平移 2 个单位长度,而后向下平移 1 个单位长度C.先向右平移 2 个单位长度,而后向上平移 1 个单位长度D.先向右平移 2 个单位长度,而后向下平移 1 个单位长度22.( 2018?潍坊)已知二次函数y=﹣( x﹣ h)2(h 为常数),当自变量 x 的值知足 2≤x≤5时,与其对应的函数值y 的最大值为﹣ 1,则 h 的值为()A.3或6 B.1或 6 C.1或3 D.4或6223.( 2018?黄冈)当 a≤x≤a+1 时,函数 y=x ﹣2x+1 的最小值为1,则a 的值为()A.﹣ 1 B.2C.0或2D.﹣1 或 2.(山西)用配方法将二次函数2﹣8x﹣ 9 化为 y=a(x﹣ h)2+k 的形式为()242018?y=xA.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C. y=(x+4)2+7D.y=( x+4)2﹣ 25 25.(2018?杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣ 1 是方程 x2+bx+c=0 的一个根;丙发现函数的最小值为 3;丁发现当 x=2时, y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁26.( 2018?贵阳)已知二次函数y=﹣x2+x+6 及一次函数 y=﹣ x+m,将该二次函数在x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其他部分不变,获取一个新函数(以下图),请你在图中画出这个新图象,当直线y=﹣x m 与新图象有 4个交点时, m 的取值范围是()+A.﹣<m<3B.﹣<m<2C.﹣ 2< m<3 D.﹣ 6<m<﹣ 227.(2018?大庆)如图,二次函数y=ax2+bx+c 的图象经过点 A(﹣ 1,0)、点 B(3,0)、点 C(4,y1),若点 D( x2,y2)是抛物线上随意一点,有以下结论:①二次函数 y=ax2+bx+c 的最小值为﹣ 4a;②若﹣ 1≤x2≤4,则 0≤y2≤5a;③若y2> y1,则 x2>4;④一元二次方程 cx2+bx+a=0 的两个根为﹣ 1 和此中正确结论的个数是()A.1B.2C.3D.428.(2018?天津)已知抛物线y=ax2+bx+c( a,b,c 为常数, a≠0)经过点(﹣ 1,0),(0,3),其对称轴在y 轴右边.有以下结论:①抛物线经过点( 1,0);②方程 ax2+bx+c=2 有两个不相等的实数根;③﹣3<a+b<3此中,正确结论的个数为()A.0B.1C.2D.329.(2018?陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当 x=1 时, y>0,则这条抛物线的顶点必定在()A.第一象限B.第二象限C.第三象限D.第四象限30.(2018?绍兴)若抛物线 y=x2+ax+b 与 x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获取的抛物线过点()A.(﹣ 3,﹣ 6)B.(﹣ 3,0) C.(﹣3,﹣ 5)D.(﹣ 3,﹣ 1)31.( 2018?随州)以下图,已知二次函数2 bx c 的图象与 x 轴交于 A、B 两点,与 y y=ax + +轴交于点C 对称轴为直线 x=1.直线 y=﹣x c 与抛物线y=ax2 bx c 交于 C、 D 两点, D 点在 x++ +轴下方且横坐标小于3,则以下结论:①2a+b+c> 0;② a﹣b+c<0;③ x(ax+b)≤ a+b;④ a<﹣ 1.此中正确的有()A.4 个 B.3 个 C.2 个 D.1 个二.填空题(共 2 小题)1.( 2018?乌鲁木齐)把拋物线y=2x2﹣4x+3 向左平移 1 个单位长度,获取的抛物线的分析式为.2.(2018?淮安)将二次函数y=x2﹣1 的图象向上平移 3 个单位长度,获取的图象所对应的函数表达式是.三.解答题(共15 小题)1.( 2018?淮安)某景区商铺销售一种纪念品,每件的进货价为40 元.经市场调研,当该纪念品每件的销售价为50 元时,每日可销售200 件;当每件的销售价每增添 1 元,每日的销售数目将减少10 件.( 1)当每件的销售价为52 元时,该纪念品每日的销售数目为件;( 2)当每件的销售价x 为多少时,销售该纪念品每日获取的收益y 最大?并求出最大收益.2.(2018?天门)绿色生态农场生产并销售某种有机产品,假定生产出的产品能所有售出.如图,线段 EF、折线 ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本 y2(元)与产量 x(kg)之间的函数关系.(1)求该产品销售价 y1(元)与产量 x(kg)之间的函数关系式;(2)直接写出生产成本 y2(元)与产量 x( kg)之间的函数关系式;(3)当产量为多少时,这类产品获取的收益最大?最大收益为多少?3.( 2018?扬州)“扬州漆器”名扬天下,某网店特意销售某种品牌的漆器笔筒,成本为30 元/件,每日销售 y(件)与销售单价 x(元)之间存在一次函数关系,以下图.(1)求 y 与 x 之间的函数关系式;(2)假如规定每日漆器笔筒的销售量不低于 240 件,当销售单价为多少元时,每日获取的收益最大,最大收益是多少?( 3)该网店店东热情公益事业,决定从每日的销售收益中捐出150 元给希望工程,为了保证捐钱后每日节余收益不低于3600 元,试确立该漆器笔筒销售单价的范围.4.( 2018?衢州)某游玩园有一个直径为 16 米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心 3 米处达到最高,高度为 5 米,且各方向喷出的水柱恰幸亏喷水池中心的装修物处集合.以下图,以水平方向为 x 轴,喷水池中心为原点成立直角坐标系.( 1)求水柱所在抛物线(第一象限部分)的函数表达式;( 2)王师傅在喷水池内维修设备时期,喷水管不测喷水,为了不被淋湿,身高 1.8 米的王师傅站即刻一定在离水池中心多少米之内?(3)经检修评估,游玩园决定对喷水设备做以下设计改良:在喷出水柱的形状不变的前提下,把水池的直径扩大到 32 米,各方向喷出的水柱仍在喷水池中心保存的原装修物(高度不变)处集合,请研究扩建改造后喷水池水柱的最大高度.5.( 2018?威海)为了支持大学生创业,某市政府出台了一项优惠政策:供给10 万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收 5 名职工,销售一种火爆的电子产品,并商定用该网店经营的收益,逐月归还这笔无息贷款.已知该产品的成本为每件 4 元,员工每人每个月的薪资为4 千元,该网店还需每个月支付其他花费1 万元.该产品每个月销售量y(万件)与销售单价x(元)万件之间的函数关系以下图.( 1)求该网店每个月收益w(万元)与销售单价x(元)之间的函数表达式;( 2)小王自网店开业起,最快在第几个月可还清10 万元的无息贷款?6.( 2018?福建)如图,在足够大的空地上有一段长为 a 米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,此中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100 米木栏.( 1)若 a=20,所围成的矩形菜园的面积为450 平方米,求所利用旧墙AD 的长;( 2)求矩形菜园 ABCD面积的最大值.7.(2018?十堰)为早日实现脱贫奔小康的雄伟目标,我市联合当地丰富的山川资源,鼎力发展旅行业,王家庄在当地政府的支持下,办起了民宿合作社,特意招待旅客,合作社共有80间客房.依据合作社供给的房间单价x(元)和游旅居住宅间数y(间)的信息,乐乐绘制出y 与 x 的函数图象以下图:(1)求 y 与 x 之间的函数关系式;(2)合作社规定每个房间价钱不低于 60 元且不超出 150 元,对于旅客所居住的每个房间,合作社每日需支出 20 元的各样花费,房价定为多少时,合作社每日赢利最大?最大收益是多少?8.(2018?眉山)传统的端午节马上到临,某公司接到一批粽子生产任务,商定这批粽子的出厂价为每只 4 元,按要求在 20 天内达成.为了准时达成任务,该公司招收了新工人,设新工人李明第 x 天生产的粽子数目为y 只, y 与 x 知足以下关系:y=( 1)李明第几日生产的粽子数目为280 只?( 2)如图,设第 x 天生产的每只粽子的成本是 p 元, p 与 x 之间的关系可用图中的函数图象来刻画.若李明第 x 天创建的收益为 w 元,求 w 与 x 之间的函数表达式,并求出第几日的收益最大?最大收益是多少元?(收益 =出厂价﹣成本)9.( 2018?青岛)某公司投入研发花费 80 万元( 80 万元只计入第一年景本),成功研发出一种产品.公司按订单生产(产量 =销售量),第一年该产品正式投产后,生产成本为 6 元/ 件.此产品年销售量 y(万件)与售价 x(元 / 件)之间知足函数关系式 y=﹣ x+26.(1)求这类产品第一年的收益 W1(万元)与售价 x(元 / 件)知足的函数关系式;(2)该产品第一年的收益为 20 万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的收益 20 万元( 20 万元只计入第二年景本)再次投入研发,使产品的生产成本降为 5 元/ 件.为保持市场据有率,公司规定第二年产品售价不超出第一年的售价,此外受产能限制,销售量没法超出12 万件.请计算该公司第二年的收益W2起码为多少万元.10.(2018?温州)温州某公司安排65 名工人生产甲、乙两种产品,每人每日生产 2 件甲或1件乙,甲产品每件可赢利15 元.依据市场需乞降生产经验,乙产品每日产量许多于 5 件,当每日生产 5 件时,每件可赢利 120 元,每增添 1 件,当日均匀每件收益减少 2 元.设每日安排x人生产乙产品.( 1)依据信息填表产品种类每日工人数每日产量每件产品可获收益(人)(件)(元)甲15乙x x( 2)若每日生产甲产品可获取的收益比生产乙产品可获取的收益多550 元,求每件乙产品可获取的收益.( 3)该公司在不增添工人的状况下,增添生产丙产品,要求每日甲、丙两种产品的产量相等.已知每人每日可生产 1 件丙(每人每日只好生产一件产品),丙产品每件可赢利 30 元,求每日生产三种产品可获取的总收益 W(元)的最大值及相应的 x 值.ABACD CCBAD BDBDA. CABDA.DBDBB DBCCB.Ay=2x2+1 ;y=x2+2;1.【解答】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为: 180;(2)由题意得: y=( x﹣ 40)[ 200﹣10(x﹣ 50)] =﹣10x2+1100x﹣ 280002250∴每件销售价为 55元时,获取最大收益;最大收益为2250 元.2=﹣10(x﹣55)+【解答】解:( 1)设 y1与 x 之间的函数关系式为y1=kx b,+∵经过点( 0,168)与( 180,60),∴,解得:,∴产品销售价 y1(元)与产量 x( kg)之间的函数关系式为y1=﹣x+168(0≤x≤ 180);(2)由题意,可适当 0≤x≤50 时, y2=70;当 130≤x≤180 时, y2=54;当 50< x< 130 时,设 y2与 x 之间的函数关系式为 y2=mx+n,∵直线 y2=mx+n 经过点( 50, 70)与( 130,54),∴,解得,∴当 50<x<130 时, y2=﹣x+80.综上所述,生产成本y2(元)与产量 x(kg)之间的函数关系式为y2=;( 3)设产量为xkg 时,获取的收益为W 元,①当0≤x≤50 时, W=x(﹣x+168﹣70) =﹣(x﹣) 2+,∴当x=50 时, W 的值最大,最大值为3400;②当50<x<130 时, W=x[ (﹣x+168)﹣(﹣x+80)] =﹣(x﹣ 110)2+4840,∴当x=110 时, W 的值最大,最大值为4840;③当 130≤ x≤180 时, W=x(﹣x+168﹣54) =﹣(x﹣95)2+5415,∴当 x=130 时, W 的值最大,最大值为4680.所以当该产品产量为 110kg 时,获取的收益最大,最大值为4840 元.【解答】解:( 1)由题意得:,解得:.故 y 与 x 之间的函数关系式为: y=﹣10x+700,( 2)由题意,得﹣ 10x+700≥ 240,解得 x≤46,设收益为 w=(x﹣ 30)?y=( x﹣30)(﹣ 10x+700),w=﹣10x2 +1000x﹣ 21000=﹣10( x﹣ 50)2+4000,∵﹣ 10< 0,∴x< 50 时, w 随 x 的增大而增大,∴x=46 时, w 大 =﹣10( 46﹣50)2+4000=3840,答:当销售单价为46 元时,每日获取的收益最大,最大收益是3840 元;(3) w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣ 10(x﹣50)2=﹣250,x﹣50=± 5,x1=55, x2 =45,以下图,由图象得:当 45≤ x≤ 55 时,捐钱后每日节余收益不低于3600 元.【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2 5(a+≠ 0),将( 8,0)代入 y=a(x﹣3)2+5,得: 25a+5=0,解得: a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当 y=1.8时,有﹣(x﹣3)2 5=1.8,+解得: x1=﹣1,x2=7,∴为了不被淋湿,身高 1.8 米的王师傅站即刻一定在离水池中心7 米之内.(3)当 x=0时, y=﹣(x﹣3)2 5=.+设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴ 0=﹣× 162+16b+,解得: b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.【解答】解:( 1)设直线 AB 的分析式为: y=kx+b,代入 A(4,4), B( 6, 2)得:,解得:,∴直线 AB 的分析式为: y=﹣x+8,( 2 分)同理代入 B(6,2), C(8,1)可得直线 BC的分析式为: y=﹣x+5,( 3 分)∵薪资及其他花费为:0.4×5+1=3 万元,∴当 4≤x≤6 时, w1=(x﹣4)(﹣ x+8)﹣ 3=﹣ x2+12x﹣ 35,( 5 分)当 6≤x≤8 时, w2 =(x﹣ 4)(﹣ x+5)﹣ 3=﹣ x2+7x﹣ 23;( 6 分)( 2)当 4≤x≤6 时,w1=﹣ x2+12x﹣ 35=﹣( x﹣6)2+1,∴当 x=6 时, w1取最大值是 1,( 8 分)当 6≤x≤8 时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当 x=7 时, w2取最大值是 1.5,( 9 分)∴==6,即最快在第 7 个月可还清 10 万元的无息贷款.( 10 分)【解答】解:( 1)设 AB=xm,则 BC=(100﹣ 2x)m,依据题意得 x(100﹣2x)=450,解得 x1=5, x2=45,当x=5 时,100﹣2x=90>20,不合题意舍去;当 x=45 时, 100﹣ 2x=10,答: AD 的长为 10m;(2)设 AD=xm,∴S= x(100﹣x)=﹣(x﹣50)2+1250,当 a≥50 时,则 x=50 时, S 的最大值为 1250;当 0<a<50 时,则当 0<x≤a 时, S 随 x 的增大而增大,当 x=a 时, S 的最大值为 50a﹣ a2,综上所述,当 a≥ 50 时, S 的最大值为 1250;当 0<a<50 时, S 的最大值为 50a﹣a2.【解答】解:( 1)设 y 与 x 之间的函数关系式为 y=kx+b,,得,即 y 与 x 之间的函数关系式是 y=﹣0.5x+110;( 2)设合作社每日获取的收益为 w 元,w=x(0.5x+110)﹣ 20(0.5x+110)=0.5x2+100x﹣2200=0.5(x+100)2﹣ 7200,∵60≤x≤150,∴当 x=150 时, w 获得最大值,此时w=24050,答:房价定为 150 元时,合作社每日赢利最大,最大收益是24050 元.【解答】解:( 1)设李明第 x 天生产的粽子数目为280 只,由题意可知: 20x+80=280,解得 x=10.答:第 10 天生产的粽子数目为420 只.(2)由图象得,当 0≤ x< 10 时, p=2;当 10≤ x≤ 20 时,设 P=kx+b,把点( 10,2),( 20,3)代入得,,解得,∴p=0.1x+1,①0≤ x≤6 时, w=(4﹣2)× 34x=68x,当 x=6 时, w 最大 =408(元);② 6< x≤10 时, w=( 4﹣ 2)×( 20x+80)=40x+160,∵ x 是整数,∴当 x=10 时, w 最大 =560(元);③ 10<x≤20 时, w=(4﹣0.1x﹣1)×( 20x+80) =﹣ 2x2+52x+240,∵ a=﹣3<0,∴当 x=﹣=13 时, w 最大 =578(元);综上,当 x=13 时, w 有最大值,最大值为578.【解答】解:( 1)W1=(x﹣6)(﹣ x+26)﹣ 80=﹣x2+32x﹣236.(2)由题意: 20=﹣x2+32x﹣236.解得: x=16,答:该产品第一年的售价是16 元.( 3)由题意: 14≤ x≤16,W2=(x﹣ 5)(﹣ x+26)﹣ 20=﹣x2+31x﹣ 150,∵14≤x≤16,∴x=14 或16 时,W2有最小值,最小值=88(万元),答:该公司第二年的收益 W2起码为 88 万元.【解答】解:( 1)由已知,每日安排 x 人生产乙产品时,生产甲产品的有( 65﹣x)人,共生产甲产品 2(65﹣x)件.在乙每件 120 元赢利的基础上,增添 x 人,收益减少 2x 元每件,则乙产品的每件收益为( 130﹣ 2x)元.故答案为: 65﹣ x;2(65﹣x); 130﹣ 2x( 2)由题意15×2(65﹣ x)=x(130﹣2x)+550∴x2﹣80x+700=0 解得 x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获取的收益是110 元.( 3)设生产甲产品m 人W=x(130﹣2x)+15×2m+30(65﹣x﹣ m)=﹣2(x﹣25)2+3200∵2m=65﹣ x﹣ m∴m=∵ x、 m 都是非负数∴取 x=26 时, m=13,65﹣x﹣ m=26即当 x=26 时, W 最大值 =3198答:安排 26 人生产乙产品时,可获取的最大收益为3198 元.。

2018年中考数学试题分类汇编之二次函数

2018年中考数学试题分类汇编之二次函数

2018年中考数学试题分类汇编之二次函数(2018山东德州)25. 如图1,在平面直角坐标系中,直线与抛物线交于、两点,其中,.该抛物线与轴交于点,与轴交于另一点.(1)求、的值及该抛物线的解析式;(2)如图2.若点为线段上的一动点(不与、重合).分别以、为斜边,在直线的同侧作等腰直角△ 和等腰直角△ ,连接,试确定△ 面积最大时点的坐标. (3)如图3.连接、,在线段上是否存在点,使得以、、为顶点的三角形与△ 相似,若存在,请直接写出点的坐标;若不存在,请说明理由.(2018四川成都)28.如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为、是抛物线上位于对称轴右侧的一点,若,且与面积相等,求点的坐标;(3)若在轴上有且仅有一点,使,求的值.26.(12018年山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan ∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.(2018内蒙古通辽)26.(12.00分)如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.(2018四川资阳)24.(12.00分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A (0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE ,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(2018四川达州)25.(12分)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.28.(9.00分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.25.(2018年山东省威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;25.(2018山东省东营市,25,12分) 如图,抛物线13()()y a x x =--(0a >)与x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.(2018 年山东省济宁市)(11.00 分)如图,已知抛物线 y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点 A 为圆心的圆与直线 BC 相切于点 M,求切点 M 的坐标;(3)若点 Q 在 x 轴上,点 P 在抛物线上,是否存在以点 B,C,Q,P 为顶点的四边形是平行四边形?若存在,求点 P 的坐标;若不存在,请说明理由.24.(2018年山东省淄博市)(9分)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.(11分)(2018•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B (2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.25.(2018年潍坊市)如图1,抛物线与轴交于点和点,与轴交于点,抛物线的顶点为轴于点.将抛物线平移后得到顶点为且对称轴为直的抛物线.(1)求抛物线的解析式;(2)如图2,在直线上是否存在点,使是等腰三角形?若存在,请求出所有点的坐标:若不存在,请说明理由;(3)点为抛物线上一动点,过点作轴的平行线交抛物线于点,点关于直线的对称点为,若以为顶点的三角形与三角形AMG全等,求直线的解析式.25.(2018山东烟台)(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.25.(2018山东聊城)(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(1 0,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD ,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5)(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t 为何值时S有最大值,最大值是多少?24.(2018山东菏泽)(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.23.(2018年广东省)(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.26.(2018年广西玉林)(12.00分)如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.23.(2018年河南)(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线B C于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.24.(2018江苏泰州)(10分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.24.(2018年海南)(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.25.(2018湖南永州)(12分)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PO N的面积.26.(2018娄底)如图,抛物线与两坐标轴相交于点,是抛物线的顶点,是线段的中点.(1)求抛物线的解析式,并写出点的坐标;(2) 是抛物线上的动点;①当时,求的面积的最大值;②当时,求点的坐标.25.(2018湖南常德)(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B ,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q 为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.25.(2018湖南郴州)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDP M是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.28.(2018甘肃定西)(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A ,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形A CPB的最大面积.25.(2018四川绵阳)(14分)如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P 为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC=S△?若存在,求出点Q的坐标;若不存在,请说明理由.AOQ(2018四川自贡)如图,抛物线过、,直线AD交抛物线于点D,点D的横坐标为,点是线段AD上的动点.求直线AD及抛物线的解析式;过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?在平面内是否存在整点横、纵坐标都为整数,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.25.(2018湖南衡阳)(10分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.26. (2018贵州安顺) 如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.27.(2018贵州遵义)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形C OEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.25.(2018贵州铜仁)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△B OD相似?若存在,求出点Q的坐标;若不存在,请说明理由.24.(2018黑龙江齐齐哈尔)如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由..(2018黑龙江龙东)(6.00分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.25.(2018湖北黄石)(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.(2018包头)26.如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD .当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.(2018嘉兴)23.已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B。

2018年中考数学真题汇编 二次函数试题答案

2018年中考数学真题汇编 二次函数试题答案

2018中考数学真题汇编:二次函数试题1-8页+试题答案8-25页一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B.C. D.3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-34.二次函数的图像如图所示,下列结论正确是( )A. B.C. D. 有两个不相等的实数根5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 49.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. B.C. D.二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2018年中考数学真题汇编:二次函数(含答案)(2)

2018年中考数学真题汇编:二次函数(含答案)(2)

2018年中考数学真题汇编:二次函数(含答案)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年中考数学真题汇编:二次函数(含答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年中考数学真题汇编:二次函数(含答案)(2)(word版可编辑修改)的全部内容。

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A。

①③ B。

③④ C。

②④ D. ②③【答案】B2.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )A。

B。

C。

D.【答案】B3。

关于二次函数,下列说法正确的是( )A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4。

二次函数的图像如图所示,下列结论正确是( )A。

B. C。

D。

有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A。

B. C.D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A。

(-3,-6) B. (—3,0) C。

(—3,-5) D。

2018年中考数学真题汇编 二次函数

2018年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B.C.D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0) C. (-3,-5) D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139m D. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是(). 乙 C.丙 D.丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C.D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

【精编】2018年中考数学真题汇编 二次函数

【精编】2018年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B.B.C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6) B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t +1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2018年全国中考数学真题汇编:二次函数(含答案)

2018年全国中考数学真题汇编:二次函数(含答案)

中考數學真題彙編:二次函數一、選擇題1. 已知學校航模組設計製作の火箭の升空高度h(m)與飛行時間t(s)滿足函數運算式h=﹣t2+24t+1.則下列說法中正確の是()A. 點火後9s和點火後13sの升空高度相同B. 點火後24s火箭落於地面C. 點火後10sの升空高度為139mD. 火箭升空の最大高度為145m【答案】D2. 關於二次函數,下列說法正確の是()A . 圖像與軸の交點座標為 B. 圖像の對稱軸在軸の右側C. 當時,の值隨值の增大而減小D. の最小值為-3【答案】D3. 如圖,函數和( 是常數,且)在同一平面直角坐標系の圖象可能是()A. B. C. D.【答案】B4.二次函數の圖像如圖所示,下列結論正確是( )A. B. C. D. 有兩個不相等の實數根【答案】C5. 給出下列函數:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函數中符合條作“當x>1時,函數值y隨引數x增大而增大“の是()A. ①③B. ③④C. ②④D. ②③【答案】B6.若拋物線y=x2+ax+b與x軸兩個交點間の距離為2,稱此拋物線為定弦拋物線。

已知某定弦拋物線の對稱軸為直線x=1,將此拋物線向左平移2個單位,再向下平移3個單位,得到の拋物線過點()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7. 如圖,若二次函數y=ax2+bx+c(a≠0)圖象の對稱軸為x=1,與y軸交於點C,與x軸交於點A、點B(﹣1,0),則①二次函數の最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確の個數是()A. 1B. 2C. 3D. 4 【答案】B8. 若拋物線與軸兩個交點間の距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線の對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到の拋物線過點( )A. B. C. D.【答案】B9.如圖是二次函數(,,是常數,)圖象の一部分,與軸の交點在點和之間,對稱軸是.對於下列說法:①;②;③;④(為實數);⑤當時,,其中正確の是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如圖,二次函數y=ax2+bxの圖象開口向下,且經過第三象限の點P.若點Pの橫坐標為-1,則一次函數y=(a-b)x+bの圖象大致是()A. B. C. D.【答案】D11.四位同學在研究函數(b,c是常數)時,甲發現當時,函數有最小值;乙發現是方程の一個根;丙發現函數の最小值為3;丁發現當時,.已知這四位同學中只有一位發現の結論是錯誤の,則該同學是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如圖所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜邊DF上一動點,過B作AB⊥DF於B,交邊DE(或邊EF)於點A,設BD=x,△ABDの面積為y,則y與x之間の函數圖象大致為()A. (B.C. D. (【答案】B二、填空題13.已知二次函數,當x>0時,y隨xの增大而________(填“增大”或“減小”)【答案】增大14.右圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加________m。

2018年全国中考试题分类汇编——二次函数图象与系数的关系(无答案)

2018年全国中考试题分类汇编——二次函数图象与系数的关系(无答案)

2018年全国中考试题分类汇编——二次函数图象与系数的关系(无答案)D15.(2018烟台)如图,二次函数c bx ax y ++=2的图象与x 轴交于点A (-1,0),B(3,0),下列结论:①02=-b a ;②()22b c a <+;③当31<<-x 时,0<y ;④当1=a 时,将抛物线先向上评议2个单位,再向右平移1个单位,得到抛物线()222--=x y ,其中正确的时( ) A. ①③ B. ②③ C. ②④ D. ③④16.(2018襄阳)已知二次函数1412-+-=m x x y 的图象与x 轴有交点,则m 的取值范围是( ) A. 5≤m B. 2≥m C.5<m D. 2>m 17.(2018阜新)如图,抛物线c bx ax y ++=2交轴于点(-1,0)和(4,0),那么下列说法正确的是( )A.0>ac B. 042<-ac b C. 对称轴是直线5.2=x D. 0>b18. (2018资阳)已知二次函数c bx ax y ++=2的图象如图所示,OA=OC ,则由抛物线的特征写出如下含有c b a ,,三个字母的等式或不等式:①1442-=-a b ac ;②01=++b ac ;③0>abc ;④0>+-c b a ,其中正确的个数是( )A. 4个B. 3个C. 2个D. 1个19.(2018深圳)二次函数c bx ax y ++=2(0≠a )的图象如图所示,下列结论正确的是( ) A.0>abc B. 02<+b a C. 03<+c a D. 032=-++c bx ax 有两个不相等的实数根20.(2018安顺)已知二次函数c bx ax y ++=2(0≠a )的图象如图,分析下列四个结论: ①0<abc ;②042>-ac b ;③03>+c a ;④()22b c a <+,其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个21.(2018兰州)如图,已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,有下列5个结论: ①0>abc ;②c a b >-;③024>++c b a ;④c a ->3;⑤)(b am m b a +>+(1≠m 的实数),其中正确的结论有( )A. ①②③B. ②③⑤C. ②③④D. ③④⑤22.(2018绥化)抛物线c bx ax y ++=2(0≠a )的部分图象如图所示,与轴的一个交点坐标为(4,0),抛物线的对称轴是1=x ,下列结论中: ①0>abc ;②02=+b a ;③方程32=++c bx ax有两个不相等的实数根;④抛物线与轴的另一个交点坐标为(-2,0);⑤若点A 在抛物线上,c b a c bm am ++≤++2,其中正确的有( ) A. 5个 B. 4个 C. 3个 D. 2个23. (2018日照)已知二次函数c bx ax y ++=2(0≠a )图象如图所示,下列结论: ①0<abc ;②02<-b a ;③()22c a b +>;④点()1,3y -,()21y ,都在抛物线上,则有21y y >,其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个24.(2018济南)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”,例如:P (1,0)、Q (2,-2)都是“整点”,抛物线2442-+-=m mx mx y (0>m )与轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A. 121<≤m B. 121≤<m C. 21≤<m D.21<<m25.(2018牡丹江)如图,抛物线c bx ax y ++=2(0≠a )的对称轴为直线1-=x ,下列结论中:①0<abc ;②039<+-c b a ;③042>-ac b;④b a >, 正确的结论是 (只填序号) 26. (2018南充)如图,抛物线c bx ax y ++=2(c b a ,,是常数,0≠a )与x 轴交于A ,B 两点,顶点P ()n m ,,给出下列结论:①02<+c a ;②若),23(1y -,),21(2y -,),21(3y 在抛物线上,则321y y y >>;③关于x 的方程02=++k bx ax 有实数解,则n c k ->;④当an 1-=时,△ABP 为等腰直角三角形,其中正确结论是 (填写序号) 27.(2018镇江)已知二次函数k x x y +-=42的图象的顶点在x 轴下方,则实数k 的取值范围是28.(2018广安)已知二次函数c bx ax y ++=2的图象如图所示,对称轴为直线1=x ,则下列结论正确的有 (填序号) ①0>abc ;②方程02=++c bx ax的两个根是 11-=x ,32=x ;③02=+b a ;④当0>x 时,y 随x 的增大而减小29. (2018北京)在平面直角坐标系xOy 中,直线44+=x y 与x 轴,y 轴分别交于点A ,B ,抛物线经过点A ,将点B 享有平移5个单位长度,得到点C.(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.30. (2018南通)在平面直角坐标系xOy 中,已知抛物线k k x k x y 25)1(222-+--=(k 为常数) (1)若抛物线经过点()21k ,,求k 的值;(2)若抛物线经过点()12y k ,和点()22y ,,且21y y >,求k 的取值范围; (3)若将抛物线向右平移1个单位长度得到新抛物线,当21≤≤x 时,新抛物线对应函数有最小值23-, 求k 的值.。

2018年中考数学试题分类汇编解析(16)二次函数

2018年中考数学试题分类汇编解析(16)二次函数

2018中考数学试题分类汇编:考点16 二次函数一.选择题(共33小题)1.(2018•青岛)已知一次函数y=x +c 的图象如图,则二次函数y=ax 2+bx +c 在平面直角坐标系中的图象可能是( )A .B .C .D .【分析】根据一次函数图象经过的象限,即可得出<0、c >0,由此即可得出:二次函数y=ax 2+bx +c 的图象对称轴x=﹣>0,与y 轴的交点在y 轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c >0,∴二次函数y=ax 2+bx +c 的图象对称轴x=﹣>0,与y 轴的交点在y 轴负正半轴. 故选:A .2.(2018•德州)如图,函数y=ax 2﹣2x +1和y=ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.3.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.(2018•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而减小,选的D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而减小,选的D不正确.故选:C.5.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.6.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.7.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c <0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.故选:C.8.(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.9.(2018•白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.10.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个 B.2个 C.3个 D.4个【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a<﹣,故④正确故选:D.11.(2018•恩施州)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.12.(2018•衡阳)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①正确;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:D.13.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线的顶点坐标(﹣2a,﹣9a),∴﹣=﹣2a,=﹣9a,∴b=4a,c=5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.14.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.15.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a ≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.16.(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b >0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.17.(2018•河北)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】两函数组成一个方程组,得出一个方程,求出方程中的△=﹣4+4c=0,求出即可.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.18.(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.19.(2018•长沙)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P (x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.20.(2018•广西)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.21.(2018•哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.22.(2018•广安)抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选:D.23.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或6【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.24.(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或2【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x ≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.25.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.26.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.27.(2018•贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m 与新图象有4个交点时,m的取值范围.【解答】解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线•y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x ﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故选:D.28.(2018•大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x ﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a•5•1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【解答】解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.29.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3【分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y >0,结论①错误;②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.【解答】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当a=﹣1时,y=0,即a﹣b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴﹣3<a+b<3,结论③正确.故选:C.30.(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.31.(2018•玉林)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤12【分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题;【解答】解:翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,∵设x1,x2,x3均为正数,∴点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12即10≤t≤12,故选:D.32.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.33.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个 B.3个 C.2个 D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D 点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.二.填空题(共2小题)34.(2018•乌鲁木齐)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为y=2x2+1.【分析】将原抛物线配方成顶点式,再根据“左加右减、上加下减”的规律求解可得.【解答】解:∵y=2x2﹣4x+3=2(x﹣1)2+1,∴向左平移1个单位长度得到的抛物线的解析式为y=2(x+1﹣1)2+1=2x2+1,故答案为:y=2x2+1.35.(2018•淮安)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是y=x2+2.【分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.三.解答题(共15小题)36.(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC==S△AOC+S△BOC∴S△AOB=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=37.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.38.(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.39.(2018•徐州)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)=×(2+5)×9﹣×2×4﹣×5×5=15.∴S△OA′B′40.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).41.(2018•淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为180件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.42.(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;。

全国2018年中考数学真题分类汇编 第12讲 二次函数 第1课时 二次函数的图象与性质(无答案)

全国2018年中考数学真题分类汇编 第12讲 二次函数 第1课时 二次函数的图象与性质(无答案)

第12讲 二次函数第1课时 二次函数的图象与性质知识点1 二次函数的概念 (2018·连云港)知识点2 二次函数的图象与性质 (2018·陕西)(2018·淮安)(2018·哈尔滨)(2018·广安)(2018·乌鲁木齐)(2018·哈尔滨)(2018·黔南)18.已知:二次函数2y ax bx c =++图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是 .(2018·深圳)11.二次函数2(0)y ax bx c a =++≠的图像如图4所示,则下列结论正确的是( ) A .0abc >B .20a b +<C .30a c +<D .方程230ax bx c ++-= 有两个不相等的实数根(2018·广安)(2018·山西)(2018·潍坊)(2018·黄冈)(2018·岳阳)(2018·杭州)(2018·广州)15.(2018·自贡)若函数2y x 2x m =+-的图象与x 轴有且只有一个交点,则m 的值为 .(2018·成都)(2018·滨州)(2018·枣庄)(2018·天津)(2018·大庆)11.(2018·深圳)二次函数2(0)y ax bx c a =++≠的图像如图4所示,则下列结论正确的是 A .0abc >B .20a b +<C .30a c +<D .方程230ax bx c ++-= 有两个不相等的实数根 (2018·玉林)(2018·齐齐哈尔)(答案:B )(2018·建设兵团)(2018·泸州)12.已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或2-B. D.1 (2018·德阳)(2018·南京)(2018·昆明)知识点3 二次函数图象的平移7.(2018·毕节)将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A.()522-+=x y B.()522++=x y C.()522--=x y D.()522+-=x y(2018·广西六市)(2018·绍兴)16. (2018·淄博)已知抛物线223y x x =+-与x 轴交于,A B 两点(点A 在点B 的左侧),将这条抛物线向右平移()0m m >个单位,平移后的抛物线于x 轴交于,C D 两点(点C 在点D 的左侧),若,B C 是线段AD 的三等分点,则m 的值为 . (2018·宁波)26.(2018·北京)在平面直角坐标系xOy中,直线y=4x+4与x轴y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.(2018·泰州)知识点4 确定二次函数的解析式(2018·湖州)(2018·杭州)27.(2018·徐州)已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5) ①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积. 解:(1)223y x x =--+ (2)(0,3),(-3,0),(1,0) (3)略 (2018·无锡)(2018·温州)(2018·龙东)(2018·绍兴)(2018·陕西)知识点5 二次函数与方程、不等式(2018·襄阳)(2018·孝感)(2018·河北)(2018·湖州)(答案:A)(2018·六市)(2018·兰州)(2018·长沙)(答案:B)(2018·长春)(2018·舟山)(2018·云南)其他:(2018·湖州)(2018·遵义)12.(2018·桂林)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为),(121,(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AC AB ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( B )A. 141-≤≤b B. 145-≤≤b C.2149-≤≤b D.149-≤≤b24.(2018·北京)如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB于点C ,连接AC.已知AB=6cm ,设A ,P 两点间的距离为xcm ,P ,C 两点间的距离为y 1cm ,A ,C 两点间的距离为y 2cm.小腾根据学习函数的经验,分别对函数y 1,y 2,随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1)并画出(x ,y 2)函数 y 1,y 2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为 cm.。

2018数学中考二次函数分类汇编

2018数学中考二次函数分类汇编

2018数学中考二次函数分类汇编一、单选题1.【浙江省湖州市2018年中考数学试题】在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.2.【山东省威海市2018年中考数学试题】抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【答案】D【解析】分析:根据二次函数的图象与系数的关系即可求出答案.详解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.点睛:本题考查二次函数的综合问题,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.3.【山东省威海市2018年中考数学试题】如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【答案】A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.学科&网4.【湖北省恩施州2018年中考数学试题】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【答案】B【解析】分析:根据二次函数的性质一一判断即可.详解:∵抛物线对称轴x=-1,经过(1,0),∴-=-1,a+b+c=0,∴b=2a,c=-3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2-4ac>0,故②正确,∵抛物线与x轴交于(-3,0),∴9a-3b+c=0,故③正确,∵点(-0.5,y1),(-2,y2)均在抛物线上,-1.5>-2,则y1<y2;故④错误,∵5a-2b+c=5a-4a-3a=-2a<0,故⑤正确,故选:B.点睛:本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【台湾省2018年中考数学试卷】已知坐标平面上有一直线L,其方程式为y+2=0,且L 与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D 两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【答案】A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.6.【湖北省襄阳市2018年中考数学试卷】已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5 D.m>2【答案】A【点睛】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点个数与△=b2-4ac的关系,△>0抛物线y=ax2+bx+c(a≠0)的图象与x轴有2个交点;△=0抛物线y=ax2+bx+c(a≠0)的图象与x轴有1个交点;△<0抛物线y=ax2+bx+c(a≠0)的图象与x轴没有交点.7.【北京市2018年中考数学试卷】跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A.B.C.D.【答案】B【解析】分析:根据抛物线的对称性即可判断出对称轴的范围.详解:设对称轴为,由(,)和(,)可知,,由(,)和(,)可知,,∴,故选B.点睛:考查抛物线的对称性,熟练运用抛物线的对称性质是解题的关键.8.【山东省烟台市2018年中考数学试卷】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④【答案】D【解析】分析:根据二次函数图象与系数之间的关系即可求出答案.详解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1,∴=1,∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.点睛:本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.9.【四川省达州市2018年中考数学试题】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:根据二次函数的图象与系数的关系即可求出答案.详解:①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;④∵−=2,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵2<c<3,∴2<-5a<3,∴-<a<-,故④正确故选:D.点睛:本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.10.【湖北省荆门市2018年中考数学试卷】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据抛物线的顶点坐标(﹣2,﹣9a),根据顶点坐标公式可求得b=4a,c=-5a,从而可得抛物线的解析式为y=ax2+4ax﹣5a,然后根据二次函数的性质一一判断即可.【详解】∵抛物线的开口向上,∴a>0,∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=-5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选B.【点睛】本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识,根据顶点坐标确定出抛物线的解析式为y=ax2+4ax﹣5a是解题的关键.学科&网11.【广西钦州市2018年中考数学试卷】将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3D.y=(x﹣4)2+3【答案】D【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选D.【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.12.【河北省2018年中考数学试卷】对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【答案】A【解析】【分析】两函数组成一个方程组,得出一个方程,根据题可知方程中的△=﹣4+4c=0,求出即可.【详解】把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,∵一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确,乙的结果成为,故选A.【点睛】本题考查了二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点,能得出一个关于x的一元二次方程是解此题的关键.13.【山东省东营市2018年中考数学试题】如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【答案】D所以根据相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.点睛:此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.二、填空题14.【江苏省淮安市2018年中考数学试题】将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.【答案】y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.【山东省淄博市2018年中考数学试题】已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.【答案】2【解析】分析:先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,从而得结论.详解:如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.点睛:本题考查了抛物线与x轴的交点问题、抛物线的平移及解一元二次方程的问题,利用数形结合的思想和三等分点的定义解决问题是关键.16.【湖北省孝感市2018年中考数学试题】如图,抛物线与直线的两个交点坐标分别为,,则方程的解是__________.【答案】,【解析】分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2-bx-c=0的解.详解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2-bx-c=0的解为x1=-2,x2=1.所以方程ax2=bx+c的解是x1=-2,x2=1,故答案为x1=-2,x2=1.点睛:本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题17.【黑龙江省哈尔滨市2018年中考数学试题】抛物线y=2(x+2)2+4的顶点坐标为_____.【答案】(﹣2,4).【解析】分析:根据题目中二次函数的顶点式可以直接写出它的顶点坐标.详解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(-2,4),故答案为:(-2,4).点睛:本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.18.【吉林省长春市2018年中考数学试卷】如图,在平面直角坐标系中,抛物线y=x2+mx 交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.【答案】3【详解】当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3,故答案为:3.【点睛】本题考查了二次函数图象上点的坐标特征、坐标平面内关于某点对称的两点间坐标的关系以及抛物线与x轴的交点,解题的关键是把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.学科&网19.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】已知:二次函数y=ax2+bx+c 图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.【答案】(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为:(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.20.【新疆自治区2018年中考数学试题】如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).【答案】②③【解析】分析:①观察函数图象,可知:当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=-x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+,结论④错误.此题得解.详解:①当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=-x2+4x=-(x-2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有-x2+4x=2,解得:x1=2-(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确的结论有②③.故答案为:②③.点睛:本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.21.【湖北省武汉市2018年中考数学试卷】飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.【答案】216【解析】【分析】先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.【详解】y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,当t=20-4=16时,y=576,600-576=24,即最后4s滑行的距离是24m,故答案为:24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.22.【浙江省湖州市2018年中考数学试题】如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.三、解答题23.【浙江省宁波市2018年中考数学试卷】已知抛物线经过点,求该抛物线的函数表达式;将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】抛物线解析式为;具体见解析.【解析】【分析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.【详解】把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.24.【江苏省徐州巿2018年中考数学试卷】已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15. 【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.25.【河北省2018年中考数学试卷】如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【答案】(1)k=18,h=5t2;(2)x=5t+1,y=﹣5t2+18,y=,当y=13时,运动员在与正下方滑道的竖直距离是10米;(3)t=1.8,v乙>7.5【解析】【分析】(1)用待定系数法解题即可;(2)根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;(3)求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.(2)∵v=5,AB=1,∴x=5t+1,∵h=5t2,OB=18,∴y=﹣5t2+18,由x=5t+1,则t=(x-1),∴y=﹣(x-1)2+18=,当y=13时,13=﹣(x-1)2+18,解得x=6或﹣4,∵x≥1,∴x=6,把x=6代入y=,y=3,∴运动员在与正下方滑道的竖直距离是13﹣3=10(米);(3)把y=1.8代入y=﹣5t2+18得t2=,解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰号落在滑道y=上,此时,乙的坐标为(1+1.8v乙,1.8),由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.【点睛】本题考查了二次函数的应用,反比例函数的应用,综合性较强,有一定的难度,读懂题意,正确应用反比例函数和二次函数的知识解决问题是关键.本题也考查了函数图象上的临界点问题.26.【湖北省荆门市2018年中考数学试卷】随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)【答案】(1)m=600,n=160000;(2);(3)该龙虾养殖大户将这批小龙虾放养25天后一次性出售所得利润最大,最大利润是108500元.【解析】【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.【详解】(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:∴y=t+16;当20<t≤50时,设y=k2t+b2,由图象得:,解得:,∴y=﹣t+32,综上,;(3)W=ya﹣mt﹣n,当0≤t≤20时,W=10000(t+16)﹣600t﹣160000=5400t,∵5400>0,∴当t=20时,W最大=5400×20=108000,当20<t≤50时,W=(﹣t+32)(100t+8000)﹣600t﹣160000=﹣20t2+1000t+96000=﹣20(t﹣25)2+10850 0,∵﹣20<0,抛物线开口向下,∴当t=25,W最大=108500,∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.【点睛】本题考查了二次函数的应用,具体考查了待定系数法确定函数解析式,利用二次函数的性质确定最值,熟练掌握二次函数的性质是解本题的关键.学科&网27.【四川省达州市2018年中考数学试题】“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?【答案】(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.详解:(1)设进价为x元,则标价是1.5x元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a元,利润为w元,由题意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴当a=80时,w最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.28.【湖北省随州市2018年中考数学试卷】为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【答案】(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】【分析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p与x之间的函数关系式为p=kx+b,则有,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.29.【江苏省无锡市2018年中考数学试题】一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?【答案】(1)当2 000≤x≤2 600时,y=16x﹣15600;当2 600<x≤3 000时,y=26000;(2)当A酒店本月对这种水果的需求量小于等于3000,不少于2350kg时,该水果店销售这批水果所获的利润不少于22000元.(2)由题意得:16x-15600≥22000解得:x≥2350∴当A酒店本月对这种水果的需求量小于等于3000,不少于2350kg时,该水果店销售这批水果所获的利润不少于22000元.点睛:本题考查一次函数和一元一次不等式,求函数关系式和列不等式时,要注意理解题意.30.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】某种蔬菜的销售单价y1与销。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档