半导体光电子学课件》绪论
合集下载
半导体基础知识PPT幻灯片课件
流为Izmax 。
i
I zmax
U ZW RL
25mA
1.2ui iR U zW 25R 10
——方程1
(1-37)
令输入电压降到下限 时,流过稳压管的电 流为Izmin 。
i
iL
R
ui
DZ
iZRL uo
i
I
zm in
U ZW RL
10mA
0.8ui iR U zW 10R 10
在常温下,由于热激发,使一些价电子获 得足够的能量而脱离共价键的束缚,成为自由电 子,同时共价键上留下一个空位,称为空穴。
(1-9)
空穴
+4
+4
+4
+4
自由电子 束缚电子
(1-10)
2.本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
(1-43)
1.4.2 电流放大原理
基区空穴
向发射区
的扩散可
忽略。
B
进 少部入分P区与R的B基电区子的
空穴复合,形成
电流IBEE,B 多数
扩散到集电结。
C
N
P
IBE
N
E IE
发射结正 偏,发射 区电子不 断向基区 扩散,形 成发射极
电流EICE。
(1-44)
集电结反偏, 有少子形成的
《半导体光电子学》课件
探测器性能测试
演示光电探测器的响应度、速度和线性范围 等测试方法。
实验四:光子集成回路的制备与性能测试
总结词
掌握光子集成回路的基本原理、制备工艺和性能测试方法
光子集成回路基本原理
介绍光子晶体、光波导和光子器件等基本概念。
光子集成回路制备工艺
介绍微纳加工、耦合和封装等关键工艺流程。
回路性能测试
演示光子集成回路的传输损耗、器件特性和系统性能等测试方法。
发展历程与现状
发展历程
从20世纪初的初步研究到现在的广 泛应用,经历了基础研究、技术突破 和应用拓展等阶段。
现状
随着光电子器件的快速发展,半导体 光电子学在通信、能源、医疗等领域 发挥着越来越重要的作用。
半导体光电子学的应用领域
通信领域
利用半导体光电子器件实现高 速、大容量的信息传输,如光 纤通信系统中的激光器、调制
太阳能电池
提高太阳能电池的光电转换效率和稳 定性,降低成本,推动其在可再生能 源领域的应用。
光子集成回路的研究
光子晶体
研究新型光子晶体结构和材料,实现光 子器件的小型化、集技术,制作高性能的光子器 件,推动光子集成回路的发展。
半导体光电子学的未来展望
新材料、新结构的研究
导带是电子填充的能级, 价带是空穴填充的能级, 禁带是导带和价带之间的 能量间隙。
不同类型和性质的半导体 具有不同的能带结构。
半导体的光学性质
半导体的光学性质与材料的能带结构和光学常 数有关。
光电效应是太阳能电池等光电器件工作的基础。
半导体对光的吸收、反射、折射和散射等行为 具有特定的规律。
半导体的光电效应是指光子照射在半导体表面时 ,半导体吸收光子能量并产生电子-空穴对的现 象。
光电子技术第一章 绪论 PPT课件
• 1 2 3 代表材料对外场的响应;
• P代表外场作用下对传播规律的影响; • P ~ E 关系是非线性的。
7
2光电子技术的主要领域及应用
8
光电子技术的主要领域及应用
9
光电子技术的主要领域及应用
主要应用
信息获取
信息传输
信息处理
其它应用
位移、振动 温度、压力 应变、应力 电流、电压 电场、磁场 流量、浓度 可以测量70 多 个物理化学量
17
•激光冷却和捕获原子技术
获得低温是科学家长期以来不断追求的一种技 术,它不但给人类带来实惠,如超导的发现和 应用,而且为研究物质的结构和性质创造了独 特的条件。在低温条件下,分子,原子热运动 的影响可以大大的减弱,原子更容易暴露出它 们的性质。20世纪80年代,借助激光技术获得 了中性气体分子的极低温状态。这种获得低温 的方法就叫激光冷却。
光学 电子学
光电子学
3
光电子技术 是光电子学在信息、能源、材料、航空航天、
生命科学和环境科学等领域的应用
4
光电子学与光电子技术
光电子学
激光与红外物理学 非线性光学
强 光 光
电 光
磁 光
()
弹 声
学效效光
效应应效
应
应
半导体光电子学
光 电 转 换 效 应
发 光 效 应
非 线 性 光 学 效 应
6
共同的基本规律
数学描述 波动方程:
电磁波源:
E
o o
2E t 2
o
E t
o
2P t 2
通常(线性)情况下
有外场作用(非线 性)情况下:
P oE
P o 1E 2EE 3EEE
• P代表外场作用下对传播规律的影响; • P ~ E 关系是非线性的。
7
2光电子技术的主要领域及应用
8
光电子技术的主要领域及应用
9
光电子技术的主要领域及应用
主要应用
信息获取
信息传输
信息处理
其它应用
位移、振动 温度、压力 应变、应力 电流、电压 电场、磁场 流量、浓度 可以测量70 多 个物理化学量
17
•激光冷却和捕获原子技术
获得低温是科学家长期以来不断追求的一种技 术,它不但给人类带来实惠,如超导的发现和 应用,而且为研究物质的结构和性质创造了独 特的条件。在低温条件下,分子,原子热运动 的影响可以大大的减弱,原子更容易暴露出它 们的性质。20世纪80年代,借助激光技术获得 了中性气体分子的极低温状态。这种获得低温 的方法就叫激光冷却。
光学 电子学
光电子学
3
光电子技术 是光电子学在信息、能源、材料、航空航天、
生命科学和环境科学等领域的应用
4
光电子学与光电子技术
光电子学
激光与红外物理学 非线性光学
强 光 光
电 光
磁 光
()
弹 声
学效效光
效应应效
应
应
半导体光电子学
光 电 转 换 效 应
发 光 效 应
非 线 性 光 学 效 应
6
共同的基本规律
数学描述 波动方程:
电磁波源:
E
o o
2E t 2
o
E t
o
2P t 2
通常(线性)情况下
有外场作用(非线 性)情况下:
P oE
P o 1E 2EE 3EEE
半导体材料绪论通用课件
半导体材料的分类
总结词
半导体材料可根据其元素组成、能带结构、载流子类 型等不同特征进行分类。
详细描述
根据元素组成,半导体材料可分为元素半导体和化合 物半导体两大类。元素半导体是由单一元素组成的, 如硅、锗等;化合物半导体则是由两种或两种以上元 素组成的化合物,如砷化镓、磷化铟等。根据能带结 构,半导体材料可分为直接跃迁型和间接跃迁型半导 体。根据载流子类型,半导体材料可分为n型和p型半 导体,分别指电子导电和空穴导电的半态的化学原料在衬底上沉 积成膜。
具体技术
包括热丝化学气相沉积、等离子体增强化学气相沉积、 金属有机物化学气相沉积等。
溶胶-凝胶法
定义
将固体材料溶解在有机溶剂中, 形成溶胶,再通过凝胶化过程形 成凝胶,最后经过热处理得到所 需材料。
优点
可制备高纯度、高均匀性的薄膜 材料,适用于制备多种类型的半 导体材料。
半导体材料的应用领域
总结词
半导体材料广泛应用于电子、通信、能源、医疗等领域。
详细描述
在电子领域,半导体材料被用于制造集成电路、微电子 器件等,实现电子产品的微型化、高效化和智能化。在 通信领域,半导体材料被用于制造光电子器件、激光器、 探测器等,实现高速、大容量信息传输和处理。在能源 领域,半导体材料被用于制造太阳能电池、风力发电设 备等,实现可再生能源的转换和利用。在医疗领域,半 导体材料被用于制造医疗设备、生物传感器等,实现疾 病的早期诊断和治疗。
自组装与生物功能化半导体材料
自组装技术
自组装技术是一种利用分子间的相互作 用力,将分子自发地聚集在一起形成有 序结构的技术。在半导体领域,自组装 技术可用于制备具有特定功能的纳米结构。
VS
生物功能化
将生物分子或生物活性物质与半导体材料 结合,实现半导体的生物功能化是当前研 究的热点。这种生物功能化的半导体材料 在生物传感器、生物成像和药物输送等领 域具有广泛的应用前景。
《半导体光电子学课件》绪论
04
半导体光电子学的技术挑 战
材料制备与表征技术
材料纯度与缺陷控制
为了获得高性能的光电子器件,需要制备高纯度、低缺陷的材料。
晶体生长技术
晶体生长是光电子器件制造的基础,需要发展先进的晶体生长技术, 以获得大尺寸、高质量的晶体。
材料表征技术
对材料的物理、化学和光学性质进行准确测量和表征,是评估材料 质量和性能的关键。
《半导体光电子学课 件》绪论
目录
• 半导体光电子学的定义与重要性 • 半导体光电子学的发展历程 • 半导体光电子学的核心概念
目录
• 半导体光电子学的技术挑战 • 半导体光电子学的未来展望
01
半导体光电子学的定学是一门研究半导体中光与物质相互作用的科学,主要涉及光子在半 导体材料中的产生、传播和吸收等过程。
光电器件的工作原理
1
光电器件是指利用光子与电子相互作用原理制成 的器件,其工作原理主要基于半导体的光电效应。
2
光电器件可以分为光电导器件、光生伏特器件和 光电发射器件等类型,它们分别利用不同机制实 现光能与电能的转换。
3
光电器件的性能参数包括光谱响应范围、响应速 度、量子效率等,这些参数决定了器件在不同领 域的应用价值。
半导体光电子学的交叉学科研究
物理与化学
将物理和化学的理论与技术应用于半导体光电子学的研究,以深入理解光电子现 象的本质和规律。
生物与医学
将生物和医学的理论与技术应用于半导体光电子学的研究,以开发新型的光电子 生物传感器和医疗设备。
THANKS
感谢观看
新器件
研究新型光电器件,如光子晶体器件 、表面等离子体激元器件等,以实现 更高效、更紧凑的光电子器件。
光电器件的高效化与小型化
《半导体光电子学》课件
原理
通过受激辐射产生的一束相干光,实现信息传输或 高精度切割。
应用
医疗、通信、材料加工、激光雷达和光谱学等领域 的关键技术。
光通信中的半导体器件
1 光纤收发模块
将电信号转换为光信号并 通过光纤传输,实现远距 离高速通信。
2 光开关
通过控制光信号的传输路 径和光的开关,实现网络 的快速切换和重构。
3 光放大器
应用
住宅和商业建筑的能源供应、太阳能车、太空探索 和户外充电等。
形成了半导体器件的基础, 如二极管和太阳能电池。
了解能带之间的能级间隙 和激子的形成,有助于设 计电子器件。
LED (发光二极管)工作原理及其应用
原理
通过注入P型和N型半导体内的载流子复合释放出能 量,产生可见光。
应用
照明、显示屏、指示灯和满足复杂颜色需求的装饰 等各行各业。
激光器工作原理及其应用
III-V族化合物
在高频率、高功率和高温环境下表现出色,常 用于雷达和通信系统。
镓化物
优良的光电特性,广泛应用于激光器、LED等器 件。
有机半导体
灵活的分子结构,使其适用于柔性显示和光电 传感器等领域。
光电子物理基础知识
1 能带理论
描述了半导体中电子能级 的分布和载流子运动的机 制。
2 PN结
3 半导体能级
放大光信号强度,以确保 信号在传输过程中不衰减。
光电探测器及其应用
1
光电二极管
将光能转换为电能,并常用ห้องสมุดไป่ตู้光电信号检测与光通信系统。
2
光电倍增管(PMT)
高增益和灵敏度使其适用于低能光子探测和高精度测量。
3
光电二极管阵列
在光谱测量、光学成像和医学诊断方面有广泛应用。
半导体光电子学第五章第九章-PPT
大家好 15
J th
4.5 103
i
d
20
i
d
[
(1
)
out
1 ln L
1 R
fc ]
GaAlAs/GaAs特征温度120-180℃ InGaAsP/InP T0=65K
大家好 16
四、阈值特性关系小结
1、低维量子材料 2、增益介质 3、侧向折射率波导
大家好 17
作业: 教材181页第1、2题
大家好 13
Ith e(WdL)Nth / s
大家好 14
三、温度对阈值电流的影响
J th
(T
)
J
th
(Tr
)
T exp(
Tr T0
)
T0为一个表征半导体激 光器温度稳定性的重要
参数称为特征温度,T0
与材料和结构相关,由 式看出T0越高LD的温度 稳定性越高,T0趋于无 穷则Jth不随温度而变化
1、名词解释:
功率效率、內量子效率、外量子效率、外微分量子效率
2、写出外微分量子效率的表达式,并指出哪些具体措施能提 高半导体激光器的微分量子效率。
大家好 27
5.3 半导体激光器的远场特性
大家好 28
LD输出光场分近场与远场。近场分布是指光强在解
理面上或解理面一个光波长范围内的分布(与横模,
侧模有关)。远场是指距输出这常常与光束的发散
12分钟→数十万小时
对LD可靠性研究包括其长期工作后性能退化和突然 失效的机理和提高可靠性的方法、途径,以提高工作寿命。 LD的可靠性与工作方式(连续或脉冲),有源区的材料, 有源区与限制层材料的晶格匹配、热沉,腔面情况等多种 因素有关,高可靠性的激光器是上述诸因素的综合效果。
《半导体光电子》课件
子的基本概念、材料、器件以及应用。探 索光电子学的发展历程和未来发展前景。
概述
光电子学在现代科学和技术中起着重要作用。通过本节课,您将了解光电子 学的基本概念,并探索半导体光电子的发展历程。
半导体光电子材料
硅
作为最常见的半导体材料之一,硅在光电子学中有 广泛的应用。
未来发展方向
如半导体材料的性能优化、新材料的探索和创新器件 的设计。
总结
1 半导体光电子的重要性
2 未来发展前景
在通信、能源和医学等领域发挥着关键的作用。
随着技术的不断进步,半导体光电子将在更多领 域创造出更多可能性。
锗
在红外和太阳能电池等领域有重要应用。
氮化镓
具有优异的光电性能,常用于高能效LED和激光器。
硒化铟
用于红外探测器和太阳能电池。
半导体光电子器件
1
光电晶体管
2
具有放大光信号的功能,用于光通信和传感
器。
3
光电二极管
将光能转化为电能,广泛应用于通信和探测 领域。
光电子鼓
将光信号转化为电信号,并能放大信号,用 于图像传输和光通信。
半导体光电子应用
光纤通信
通过光信号传输数据,具有高速和大容量的优势。
激光器
能产生高强度、高单色性和准直性的激光光束,广泛 应用于医学、制造和科研领域。
光学成像
使用光学设备进行图像捕捉和处理,应用于医学成像、
太阳能电池
通过半导体光电子材料将阳光转化为可再生的电能。
半导体材料的研究和发展
研究方法
包括实验室合成、材料表征和器件测试等多个研究步 骤。
概述
光电子学在现代科学和技术中起着重要作用。通过本节课,您将了解光电子 学的基本概念,并探索半导体光电子的发展历程。
半导体光电子材料
硅
作为最常见的半导体材料之一,硅在光电子学中有 广泛的应用。
未来发展方向
如半导体材料的性能优化、新材料的探索和创新器件 的设计。
总结
1 半导体光电子的重要性
2 未来发展前景
在通信、能源和医学等领域发挥着关键的作用。
随着技术的不断进步,半导体光电子将在更多领 域创造出更多可能性。
锗
在红外和太阳能电池等领域有重要应用。
氮化镓
具有优异的光电性能,常用于高能效LED和激光器。
硒化铟
用于红外探测器和太阳能电池。
半导体光电子器件
1
光电晶体管
2
具有放大光信号的功能,用于光通信和传感
器。
3
光电二极管
将光能转化为电能,广泛应用于通信和探测 领域。
光电子鼓
将光信号转化为电信号,并能放大信号,用 于图像传输和光通信。
半导体光电子应用
光纤通信
通过光信号传输数据,具有高速和大容量的优势。
激光器
能产生高强度、高单色性和准直性的激光光束,广泛 应用于医学、制造和科研领域。
光学成像
使用光学设备进行图像捕捉和处理,应用于医学成像、
太阳能电池
通过半导体光电子材料将阳光转化为可再生的电能。
半导体材料的研究和发展
研究方法
包括实验室合成、材料表征和器件测试等多个研究步 骤。
半导体光电子器件讲解ppt
包括外延生长型、集成型、混合型等。
按制造工艺分
半导体光电子器件的结构
常见的半导体光电子器件结构包括:衬底、活性层、电极等。
衬底通常选用半导体材料,如硅、锗、三五族化合物等。
活性层是光电子器件的核心部分,用于实现光吸收、载流子产生、光电器件的作用。
电极的作用是收集和导出活性层产生的载流子。
半导体光电子器件的工作原理是当加电压时,即势垒降低,有大量电子从N区注入到P区,形成一定的电流,当没有光照时,只有热平衡反向电流,当有光照时,会形成附加的光生电流,从而实现了光电转换。
半导体光电子器件的工作原理
04
半导体光电子器件的性能参数
03
迁移率
指半导体材料中载流子的平均漂移速度,反映了半导体材料导电性能的好坏。
半导体光电子器件的电学参数
01
载流子浓度
指半导体材料中自由电子和空穴的浓度,可以反映半导体材料的导电性能。
02
电阻率
指半导体材料电阻的大小,通常与材料的载流子浓度和迁移率有关。
xx年xx月xx日
半导体光电子器件讲解ppt
CATALOGUE
目录
引言半导体光电子器件的基本原理半导体光电子器件的种类与结构半导体光电子器件的性能参数半导体光电子器件的生产与制造半导体光电子器件的应用案例
0器件简介
2
3
半导体光电子器件是利用半导体材料和器件实现光-电信号转换的器件。
半导体材料通常包括硅、锗、砷化镓、磷化铟等。
半导体光电子器件具有体积小、重量轻、稳定性好、寿命长等特点。
半导体光电子器件的历史发展
半导体光电子器件的起源可以追溯到20世纪60年代。
20世纪80年代,随着光纤通信技术的发展,半导体光电子器件在光纤通信领域得到广泛应用。
按制造工艺分
半导体光电子器件的结构
常见的半导体光电子器件结构包括:衬底、活性层、电极等。
衬底通常选用半导体材料,如硅、锗、三五族化合物等。
活性层是光电子器件的核心部分,用于实现光吸收、载流子产生、光电器件的作用。
电极的作用是收集和导出活性层产生的载流子。
半导体光电子器件的工作原理是当加电压时,即势垒降低,有大量电子从N区注入到P区,形成一定的电流,当没有光照时,只有热平衡反向电流,当有光照时,会形成附加的光生电流,从而实现了光电转换。
半导体光电子器件的工作原理
04
半导体光电子器件的性能参数
03
迁移率
指半导体材料中载流子的平均漂移速度,反映了半导体材料导电性能的好坏。
半导体光电子器件的电学参数
01
载流子浓度
指半导体材料中自由电子和空穴的浓度,可以反映半导体材料的导电性能。
02
电阻率
指半导体材料电阻的大小,通常与材料的载流子浓度和迁移率有关。
xx年xx月xx日
半导体光电子器件讲解ppt
CATALOGUE
目录
引言半导体光电子器件的基本原理半导体光电子器件的种类与结构半导体光电子器件的性能参数半导体光电子器件的生产与制造半导体光电子器件的应用案例
0器件简介
2
3
半导体光电子器件是利用半导体材料和器件实现光-电信号转换的器件。
半导体材料通常包括硅、锗、砷化镓、磷化铟等。
半导体光电子器件具有体积小、重量轻、稳定性好、寿命长等特点。
半导体光电子器件的历史发展
半导体光电子器件的起源可以追溯到20世纪60年代。
20世纪80年代,随着光纤通信技术的发展,半导体光电子器件在光纤通信领域得到广泛应用。
《半导体光电子学课件》2.2手推版
新型封装材料。
可靠性测试
通过加强可靠性测试和寿命评估, 确保光电子器件在实际应用中的
稳定性和可靠性。
降低光电子器件的成本与能耗
01
02
03
成本控制
通过优化制造工艺和降低 材料成本,实现光电子器 件的低成本化生产。
能耗降低
通过优化电路设计和采用 低功耗技术,降低光电子 器件的能耗,提高能源利 用效率。
详细描述
PD由一个光敏表面和一个电极组成,当光照射到光敏表面时,光子与表面原子相互作用产生电子-空穴对,形成 光生电流。PD在探测、测量、通信等领域有广泛应用。
其他光电子器件
总结词
除了LED、LD和PD外,还有许多 其他类型的光电子器件,如光电 晶体管、光电倍增管等。
详细描述
这些器件在功能和应用上有所不 同,但基本原理相似,都是利用 光与半导体的相互作用实现光能 与电能的转换。
信息通信
光电子器件在光纤通信、网络设 备和数据中心等领域具有广泛应 用,如光调制器、光放大器、光
探测器等。
能源与环境
光电子器件在太阳能光伏发电、激 光雷达和环境监测等领域也有重要 应用,如太阳能电池、激光器等。
医疗与生物技术
光电子器件在医疗诊断和治疗、生 物检测和成像等领域具有广泛的应 用前景,如光学显微镜、光谱仪等。
感谢观看
半导体的能带结构
总结词
半导体的能带结构由价带、导带和禁带组成,其能带结构决定了半导体的导电特性和光 学特性。
详细描述
价带是半导体内电子占据的能量范围,导带是电子未被占据的能量范围,禁带宽度则是 指价带顶到导带底的能量间隔。半导体的导电能力取决于禁带宽度的大小,禁带宽度越 大,电子跃迁到导带所需的能量越高,电阻率越大。同时,半导体的光学特性也与其能
可靠性测试
通过加强可靠性测试和寿命评估, 确保光电子器件在实际应用中的
稳定性和可靠性。
降低光电子器件的成本与能耗
01
02
03
成本控制
通过优化制造工艺和降低 材料成本,实现光电子器 件的低成本化生产。
能耗降低
通过优化电路设计和采用 低功耗技术,降低光电子 器件的能耗,提高能源利 用效率。
详细描述
PD由一个光敏表面和一个电极组成,当光照射到光敏表面时,光子与表面原子相互作用产生电子-空穴对,形成 光生电流。PD在探测、测量、通信等领域有广泛应用。
其他光电子器件
总结词
除了LED、LD和PD外,还有许多 其他类型的光电子器件,如光电 晶体管、光电倍增管等。
详细描述
这些器件在功能和应用上有所不 同,但基本原理相似,都是利用 光与半导体的相互作用实现光能 与电能的转换。
信息通信
光电子器件在光纤通信、网络设 备和数据中心等领域具有广泛应 用,如光调制器、光放大器、光
探测器等。
能源与环境
光电子器件在太阳能光伏发电、激 光雷达和环境监测等领域也有重要 应用,如太阳能电池、激光器等。
医疗与生物技术
光电子器件在医疗诊断和治疗、生 物检测和成像等领域具有广泛的应 用前景,如光学显微镜、光谱仪等。
感谢观看
半导体的能带结构
总结词
半导体的能带结构由价带、导带和禁带组成,其能带结构决定了半导体的导电特性和光 学特性。
详细描述
价带是半导体内电子占据的能量范围,导带是电子未被占据的能量范围,禁带宽度则是 指价带顶到导带底的能量间隔。半导体的导电能力取决于禁带宽度的大小,禁带宽度越 大,电子跃迁到导带所需的能量越高,电阻率越大。同时,半导体的光学特性也与其能
半导体光电子器课件
《半导体光电子器》PPT课件
内部电场产生与扩散相反方向的漂移运动,直到P区和N 区的Ef 相同,两种运动处于平衡状态为止,结果能带发生倾 斜,见图4.5(b)。
能量
p
Ec
P区
p
E
v
n
E
c
势垒
E
f
N区
n
E
v
(b) 零偏压时P - N结的能带倾斜图;
《半导体光电子器》PPT课件
PN结:
耗 尽区
扩散电子
-
+
-
+
-
+
pn结
内建电场
电势
U
Ef
n
p
1. 浓度的差别导致载流子的扩散运动 2. 内建电场的驱动导致《半载导体流光电子子做器》反PP向T课漂件 移运动
P-N结施加反向电压
VCC
当PN结两端加上反向偏置电压时,耗尽区加宽,势垒加强。
《半导体光电子器》PPT课件
(a) 反向偏压使耗尽区加宽
少数载流子漂移
特点: - 同质结两边具有相同的带隙结构和光学性能 - pn结区的完全由载流子的扩散形成
存在的问题: • 增益区太厚(1~10 mm),很难把载流子约束在相对小的区域,
无法形成较高的载流子密度 1. 无法对产生的光进行有效约束
n
p
《半导体光电子器》PPT课件
典型的GaAlAs双异质结
异质结:
为提高辐射功率,需 要对载流子和辐射光 产生有效约束
注入电子 ---
电子能量 空穴势垒
电子势垒 电子-空穴复合
++
注入空穴
1. 不连续的带隙结构 2. 折射率不连续分布
内部电场产生与扩散相反方向的漂移运动,直到P区和N 区的Ef 相同,两种运动处于平衡状态为止,结果能带发生倾 斜,见图4.5(b)。
能量
p
Ec
P区
p
E
v
n
E
c
势垒
E
f
N区
n
E
v
(b) 零偏压时P - N结的能带倾斜图;
《半导体光电子器》PPT课件
PN结:
耗 尽区
扩散电子
-
+
-
+
-
+
pn结
内建电场
电势
U
Ef
n
p
1. 浓度的差别导致载流子的扩散运动 2. 内建电场的驱动导致《半载导体流光电子子做器》反PP向T课漂件 移运动
P-N结施加反向电压
VCC
当PN结两端加上反向偏置电压时,耗尽区加宽,势垒加强。
《半导体光电子器》PPT课件
(a) 反向偏压使耗尽区加宽
少数载流子漂移
特点: - 同质结两边具有相同的带隙结构和光学性能 - pn结区的完全由载流子的扩散形成
存在的问题: • 增益区太厚(1~10 mm),很难把载流子约束在相对小的区域,
无法形成较高的载流子密度 1. 无法对产生的光进行有效约束
n
p
《半导体光电子器》PPT课件
典型的GaAlAs双异质结
异质结:
为提高辐射功率,需 要对载流子和辐射光 产生有效约束
注入电子 ---
电子能量 空穴势垒
电子势垒 电子-空穴复合
++
注入空穴
1. 不连续的带隙结构 2. 折射率不连续分布
半导体光电子PPT课件
2 2
3/ 2
导带底有效状态密度,单位为: / m3
同理有
p Nv exp Ev EF / kBT
Nv
2
mhkBT
2 2
3/ 2
第11页/共25页
【例题】计算300K时,GaAs导带底的有效状态 密度。
第12页/共25页
非平衡系统
在有载流子注入时,半导体中的电子将不是前面提到的平 衡系统。 在这种非平衡态时,电子的分布用电子准费米能级来表述。 电子在导带处于平衡态,空穴在价带处于平衡态,电子-空 穴相互之间,以及与晶格之间不发生能量交换。
第18页/共25页
【例题】对于一般的半导体。光电子器件,与电子作用的 光子的能量为1~2电子伏特。分别计算2个电子伏特能量
的光子与电子的波矢 k
第19页/共25页
通过计算可以发现,相对于电子的波矢,光子的波矢可以忽 略不计,因此电子在跃迁前后
k f ki k ph ki
在能量与波矢色散关系图中,这种跃迁就是一种垂直跃迁。 由于跃迁的这种垂直特性,我们有
A 0 0
得到关于矢势的方程
1 2A 2A 0
0
t 2
矢势 A
Ar,t A0exp ik r t c.c.
满足矢势的方程
k
v
0
第5页/共25页
根据定义式,电场与磁场则为:
F 2A0 sink r t
B 2k A0 sink r t
Poynting矢量的定义为
S F H kˆ 4k | A0 |2 sin2 k r t
第13页/共25页
准费米能级
n
Ec
Ne
E
f
e
EdE
p
3/ 2
导带底有效状态密度,单位为: / m3
同理有
p Nv exp Ev EF / kBT
Nv
2
mhkBT
2 2
3/ 2
第11页/共25页
【例题】计算300K时,GaAs导带底的有效状态 密度。
第12页/共25页
非平衡系统
在有载流子注入时,半导体中的电子将不是前面提到的平 衡系统。 在这种非平衡态时,电子的分布用电子准费米能级来表述。 电子在导带处于平衡态,空穴在价带处于平衡态,电子-空 穴相互之间,以及与晶格之间不发生能量交换。
第18页/共25页
【例题】对于一般的半导体。光电子器件,与电子作用的 光子的能量为1~2电子伏特。分别计算2个电子伏特能量
的光子与电子的波矢 k
第19页/共25页
通过计算可以发现,相对于电子的波矢,光子的波矢可以忽 略不计,因此电子在跃迁前后
k f ki k ph ki
在能量与波矢色散关系图中,这种跃迁就是一种垂直跃迁。 由于跃迁的这种垂直特性,我们有
A 0 0
得到关于矢势的方程
1 2A 2A 0
0
t 2
矢势 A
Ar,t A0exp ik r t c.c.
满足矢势的方程
k
v
0
第5页/共25页
根据定义式,电场与磁场则为:
F 2A0 sink r t
B 2k A0 sink r t
Poynting矢量的定义为
S F H kˆ 4k | A0 |2 sin2 k r t
第13页/共25页
准费米能级
n
Ec
Ne
E
f
e
EdE
p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子点半导体光放大器 在全光信号处理中的应用
光子晶体类EIT全光开关
光盘存储技术得到迅猛发展415nm的蓝绿 光已取代630nm的读出光源,GaN ﹑ZnSe 蓝绿光激光器(415nm波长)可使存储密度 加大很多。
70年代发展起来的光纤通信促使了半导 体光电子学的发展,光发射机中有电-光转换 的半导体激光器和发光二极管,光接受机中 有量子效率高的光-电转换光电探测器。 LD泵浦的固体激光器、光纤激光器。 光电子技术促进了光复印,光计算、信息 处理技术的发展。
80年代以来由于晶体外延生长新工艺,分 子束外延(MBE) ﹑金属有机化学气相沉积 (MOCVD)和化学束外延(CBE)的发展, 出现了各类量子阱激光器﹑应变量子激光器﹑ 垂直腔面发射激光器。 70年代末展开了光电子集成电路(OEIC) 和光子集成电路(PIC)的研究,研制出光外 差PIC接收机﹑超高速(PS量级)激光光源﹑ 双稳态光开关面阵列。
半导体光电子学
WANGTAO@
绪
论
1897年汤姆逊发现电子,1905年爱因斯坦提 出电子学说——为半导体光电子学奠定了基础。 1953年9月,美国冯•纽曼预言在半导体中产生受 激发射的可能。20世纪60年代伯纳德(Bernard) 和杜拉福格(Duraffourg)给出了半导体中实现受 激辐射时的必要条件——非平衡电子,空穴浓度 的准费米能级差必须大于受激发射能量。 杜姆克(Dmuke)提出采用直接隙半导体作激 射媒质。
P-GaAs半导体夹在N-Alx Ga1-xAs和P-AlxGa1-xAs 之间。工作 特点:把载流子和光场限制在P-GaAs薄层有源区中。室温下J=4× 10 ³A/cm² 。
美国的潘尼希又报道300K Jth=2.3 ×10² A/cm² 。
双异质结构发展的主要标志: 1)为了降低阈值电流,研究出侧向增益波导和折 射率波导结构 2)输出功率从几毫瓦~几瓦 3) 570~1600nm 室温连续工作 InGaN多量子阱—417nm ZnSe蓝绿光—480nm 4)获单模、窄线宽、波长可调(动态单模) DBR-LD 和 DFB-LD 目前从570nm到1600nm波长范围内均有室温 连续工作的激光器。
半导体发射接收光谱分布及应用图 目前半导体光电子发展的重点 专业知识背景 如何学
参考文献
1.黄昆 《固体物理学》高等教育出版社 2.方俊鑫 陆栋 《固体物理学 》 上海出版社 3.刘恩科 《半导体物理学》国防工业出版 4.刘文明 《半导体物理学 》吉林人民出版社 5.H.克雷西歇尔 J.K已特勒 《半导体激光器与异 质结发光二极管 》国防工业出版 6.周世勋 《量子力学教程》 高等教育出版社 7.黄德修 《半导体激光器及应用 》电子工业出 版社2013年版 8.王长安 《半导体物理基础》 上海科技出版社 9.汪剑平 《半导体激光器》 电子工业出版社
半导体光子晶体激光器 光子带隙效应导致反射镜的反射率提高 高Q 值光子晶体微腔的应用导致阈值的降低 光子晶体可以压缩自发辐射模导致β值增大 光子晶体的带边群速度反常引起光增益的提高 利用非对称的光子晶体可以控制出射光的偏振态
可调谐半导体激光器
单片集成可调谐半导体激光器 多功能高度集成: 采用光电子集成技术就可以将 调制功能与宽范围可 调谐半导体激光器相集成
1962年,GE公司的霍尔(Hall)用谐振腔观 察到GaAs P-N结正向偏置的相干光发射。 1968-1970年,贝尔实验室的潘尼希 (Panish)研究成功AlGaAs/GaAs单异质结激光 器 Jth =8.6 ×10 ³A/c㎡。 1970年苏联科学院的约飞扬物理研究所阿尔 费洛夫研制成功双异质结构半导体激光器(DHLD)