高中数学必修综合测试题人教版
新课标人教版必修5高中数学_综合检测试卷 附答案解析
新课标人教版必修5高中数学 综合检测试卷1.如果33log log 4m n +=,那么n m +的最小值是( )A .4B .34C .9D .18 2、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )A .7B .8C .9D .103、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( ) A .a =﹣8 b =﹣10 B .a =﹣4 b =﹣9 C .a =﹣1 b =9D .a =﹣1 b =2 4、△ABC 中,若2cos c a B =,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .锐角三角形5、在首项为21,公比为12的等比数列中,最接近1的项是( )A .第三项B .第四项C .第五项D .第六项6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a等于( )A .32 B .23C .23或32D .﹣32或﹣237、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120B .60C .150D .30 8、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是( )A .2221a aB .2322a aC .2423a aD .2524a a9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )A .41.1B .51.1C .610(1.11)⨯-D . 511(1.11)⨯- 10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于( ) A .2 B .2-π C .4 D .24-π 11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2lg(12)y x x =+-的定义域是13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15、《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。
人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)
人教版高中数学必修第二册第九章~第十章综合测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现要完成下列两项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①抽签法,②比例分配的分层随机抽样B.①随机数法,②比例分配的分层随机抽样C.①随机数法,②抽签法D.①抽签法,②随机数法2.若A,B为对立事件,则下列式子中成立的是()A.P(A)+P(B)<1B.P(A)+P(B)>1C.P(A)+P(B)=0D.P(A)+P(B)=13.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.2B.0.35C.0.3D.0.44.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图C6-1所示,则这30只宠物狗体重的平均值大约为()图C6-1A.15.5千克B.15.6千克C.15.7千克D.16千克5.以下数据为参加数学竞赛决赛的15人的成绩(单位:分):78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90分B.91.5分C.91分D.90.5分6.一组样本数据a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这组样本数据的标准差是()A.1B.2C.3D.27.我国历史上有田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上、中、下等马各1匹,双方各随机选1匹马进行1场比赛,则齐王的马获胜的概率为()A.23B.13C.12D.568.在发生某公共卫生事件期间,有专业机构认为在一段时间内没有发生规模群体感染的标志为“连续10天,每天新增疑似病例数量不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体的平均数为3,中位数为4B.乙地:总体的平均数为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体的平均数为2,总体方差为3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.给出下列四个说法,其中正确的说法有()A.做100次抛硬币的试验,结果有51次出现正面朝上,因此,出现正面朝上的概率是51100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率10.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图C6-2所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()图C6-2A.成绩在[70,80)内的考生人数最多B.不及格的考生人数为1000C.考生竞赛成绩的平均数约为70.5分D.考生竞赛成绩的中位数为75分11.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图C6-3(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况:图C6-3对比数据,关于这20名肥胖者,下面结论正确的是()A.健身后,体重在区间[90,100)内的人数较健身前增加了2B.健身后,体重原在区间[100,110)内的人员一定无变化C.健身后,20人的平均体重大约减少了8kgD.健身后,原来体重在区间(110,120]内的肥胖者体重都有减少12.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为12请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查的结果如下:甲:3,4,5,6,8,8,8,10;乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别采用了平均数、众数、中位数中的哪一个特征数:甲:,乙:.14.如图C6-4是容量为100的样本数据的频率分布直方图,则样本数据落在区间[6,18)内的频数为.图C6-415.已知甲、乙、丙3名运动员射击一次击中目标的概率分别为0.7,0.8,0.85,若这3人向目标各射击一次,则目标没有被击中的概率为.16.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…,9}.若|a-b|≤1,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率0.10.16x y0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,获奖人数最少为3的概率为0.44,求y,z的值.18.(12分)甲、乙两台机床同时加工直径为100cm的零件,为检验质量,各从中抽取6个零件测量其直径,所得数据如下.甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.19.(12分)某校高一年级举行了一次数学竞赛,为了了解参加本次竞赛的学生的成绩情况,从中抽取了部分学生的成绩(取正整数,单位:分)作为样本(样本量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图C6-5所示,已知成绩在[50,60),[90,100]内的频数分别为8,2.(1)求样本量n和频率分布直方图中的x,y的值;(2)估计参加本次竞赛的学生成绩的众数、中位数、平均数.图C6-520.(12分)生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲、乙机床生产的产品中各任取1件,求:(1)至少有1件废品的概率;(2)恰有1件废品的概率.21.(12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图C6-6所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯的概率与获得饮料的概率的大小,并说明理由.图C6-622.(12分)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分).根据调查数据制成如下表格和如图C6-7所示的频率分布直方图.已知评分在[80,100]内的居民有600人.满意度评分[40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及参与评分的总人数.(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大的调整,否则不需要进行大调整.根据所学知识判断该区防疫工作是否需要进行大调整.(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50),[50,60)内)中用比例分配的分层随机抽样的方法抽取6位居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有1人对防疫工作的评分在[40,50)内的概率.图C6-7参考答案与解析1.A[解析]①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.故选A.2.D[解析]若事件A与事件B是对立事件,则P(A)+P(B)=1.故选D.3.B[解析]∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.4.B[解析]由频率分布直方图可以计算出各组的频率分别为0.1,0.2,0.3,0.2,0.1,0.1,故各组的频数分别为3,6,9,6,3,3,则这30只宠物狗体重的平均值为11×3+13×6+15×9+17×6+19×3+21×330=15.6(千克),故选B.5.D[解析]将这15人的成绩(单位:分)由小到大依次排列为56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,第12,13个数据分别为90分、91分,所以这15人成绩的第80百分位数是90.5分.故选D.6.B[解析]由题意得a+3+4+5+6=5b,a+b=6,解得a=2,b=4,所以样本数据的方差s2=15×[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,所以标准差s=2.故答案为B.7.A[解析]依题意,记田忌的上等马、中等马、下等马分别为a,b,c,齐王的上等马、中等马、下等马分别为A,B,C.由题意可知,样本空间Ω={aA,bA,cA,aB,bB,cB,aC,bC,cC},共有9个样本点,其中事件“田忌可以获胜”包含的样本点为aB,aC,bC,共3个,则齐王的马获胜的概率P=1-39=23.故选A.8.D[解析]由于甲地总体数据的平均数为3,中位数为4,即按从小到大排序后,中间两个数据的平均数为4,因此后面的数据可以大于7,故甲地不一定符合.乙地总体数据的平均数为1,因此这10天的新增疑似病例总数为10,又由于方差大于0,故这10天中新增疑似病例数量不可能每天都是1,可以有一天大于7,故乙地不一定符合.丙地总体数据的中位数为2,众数为3,故数据中可以出现8,故丙地不一定符合.丁地总体数据的平均数为2,方差为3,故丁地一定符合.9.CD[解析]对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B 错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选CD.10.ABC [解析]由频率分布直方图可得,成绩在[70,80)内的频率最高,考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)内的频率为0.25,则不及格的考生人数为4000×0.25=1000,故B 正确;由频率分布直方图可得,平均数为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分),故C 正确;因为成绩在[40,70)内的频率为0.45,在[70,80)内的频率为0.3,所以中位数为70+10×0.050.3≈71.67(分),故D 错误.故选ABC .11.AD[解析]体重在区间[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A 正确;健身后,体重在区间[100,110)内的频率没有变,但人员组成可能改变,故B 错误;健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)-(0.1×85+0.4×95+0.5×105)=5(kg),故C 错误;因为图(2)中没有体重在区间(110,120]内的人员,所以原来体重在区间(110,120]内的肥胖者体重都有减少,故D 正确.故选AD .12.ACD[解析]设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,“2个球都是红球”为事件A 1A 2,其概率为13×12=16,A 正确;在B中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,“2个球中至少有1个红球”的概率为1-P ( )P ( )=1-23×12=23,C 正确;在D 中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .13.众数中位数[解析]对甲厂的数据进行分析:该组数据中8年出现的次数最多,故广告中采用了众数;对乙厂的数据进行分析:该组数据最中间的是7年与9年,故中位数是7+92=8(年),故广告中采用了中位数.14.80[解析]由题图知,样本数据落在区间[6,18)内的频数为100×0.8=80.15.0.009[解析]由相互独立事件的概率计算公式知,3人向目标各射击一次,目标没有被击中的概率P=(1-0.7)×(1-0.8)×(1-0.85)=0.3×0.2×0.15=0.009.16.725[解析]从{0,1,2,…,9}中任意取两个数(可重复),该试验共有100个样本点,事件“|a-b|≤1”包含的样本点为(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,1),(1,0),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6),(7,8),(8,7),(8,9),(9,8),共有28个,所以所求概率P=28100=725.17.解:记事件“在竞赛中,有k 人获奖”为A k (k ∈N,k ≤5),则事件A k 彼此互斥.(1)∵获奖人数不超过2的概率为0.56,∴P (A 0)+P (A 1)+P (A 2)=0.1+0.16+x=0.56,解得x=0.3.(2)由获奖人数最多为4的概率为0.96,得P (A 5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,得P (A 3)+P (A 4)+P (A 5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.18.解:(1)由题中数据可得 甲=16×(99+100+98+100+100+103)=100(cm); 乙=16×(99+100+102+99+100+100)=100(cm).甲2=16×(1+0+4+0+0+9)=73, 乙2=16×(1+0+4+1+0+0)=1.(2)由(1)知两台机床所加工零件的直径的平均数相同,又 甲2> 乙2,所以乙机床加工零件的质量更稳定.19.解:(1)由题意可知,样本量n=80.016×10=50,y=250×10=0.004,x=0.1-0.016-0.04-0.01-0.004=0.03.(2)由频率分布直方图可估计,参加本次竞赛的学生成绩的众数为75分.设样本数据的中位数为m ,因为(0.016+0.03)×10<0.5<(0.016+0.03+0.04)×10,所以m ∈[70,80),所以(0.016+0.03)×10+(m-70)×0.04=0.5,解得m=71,故估计参加本次竞赛的学生成绩的中位数为71分.由频率分布直方图可估计,参加本次竞赛的学生成绩的平均数为55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6(分).20.解:记从甲、乙机床生产的产品中取1件是废品分别为事件A ,B ,则事件A ,B 相互独立,且P (A )=0.04,P (B )=0.05.(1)设“至少有1件废品”为事件C ,则P (C )=1-P ( )=1-P ( )P ( )=1-(1-0.04)×(1-0.05)=0.088.(2)设“恰有1件废品”为事件D ,则P (D )=P (A )+P ( B )=0.04×(1-0.05)+(1-0.04)×0.05=0.086.21.解:(1)试验的所有样本点为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),( 4,3),(4,4),共16个.事件“xy≤3”包含的样本点有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516.(2)事件“xy≥8”包含的样本点有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为38,小亮获得饮料的概率为1-516-38=516,所以小亮获得水杯的概率大于获得饮料的概率.22.解:(1)由频率分布直方图知(0.002+0.004+0.014+0.02+0.035+a)×10=1,即10×(0.075+a)=1,解得a=0.025,设共有n人参与评分,则600 =(0.035+0.025)×10,解得n=1000,即参与评分的总人数为1000.(2)由频率分布直方图知各组的频率分别为0.02,0.04,0.14,0.2,0.35,0.25,所以η=45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25100=0.807>0.8,所以该区防疫工作不需要进行大调整.(3)因为0.002×10×1000=20,0.004×10×1000=40,所以评分在[40,50),[50,60)内的居民人数分别为20,40,所以所抽取的评分在[40,50)内的居民人数为20×660=2,将这2人分别记为a,b,所抽取的评分在[50,60)内的居民人数为40×660=4,将这4人分别记为A,B,C,D.从这6人中抽取2人,试验的样本点有ab,aA,aB,aC,aD,bA,bB,bC,bD,AB,AC,AD,BC,BD,CD,共15个.而“仅有1人对防疫工作的评分在[40,50)内”包含的样本点有aA,aB,aC,aD,bA,bB,bC,bD,共8个,则所求事件的概率为815.。
人教版高中数学必修一综合测试题与答案
人教版高中数学必修一测试题一一、选择题<本大题共10小题,每小题5分,共60分> 1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 〔A.{x |x ∈R }B.{y |y ≥0}C.{<0,0>,<1,1>}D.∅2. 函数2x y -=的单调递增区间为 〔A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 3. 下列四个函数中,在<0,+∞>上为增函数的是 〔A.f <x >=3-xB.f <x >=x 2-3xC.f <x >=-11+xD.f <x >=-|x |4.函数f <x >=x 2+2<a -1>x +2在区间<-∞,4]上递减,则a 的取值范围是 〔A.[-3,+∞]B.<-∞,-3>C.<-∞,5]D.[3,+∞>5..当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是 〔.A.y =x 2-2x +2<x x 2-2x +2<x ≥1> C.y =x 2-2x <x <1> D.y =x 2-2x <x ≥1>7. 已知函数f <x >=12++mx mx 的定义域是一切实数,则m 的取值范围是 〔A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤4 8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:<1>如果不超过200元,则不给予优惠;<2>如果超过200元但不超过500元,则按标价给予9折优惠;<3>如果超过500元,其500元内的按第<2>条给予优惠,超过500元的部分给予7折 优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 〔A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y =ax 2+bx 与指数函数y =<ab >x的图象只可能是 〔 10. 已知函数f <n >=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f <8>等于 〔A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图, 则a,b,c,d 的大小顺序〔 A 、a<b<c<d B 、a<b<d<c C 、b<a<d<c D 、b<a<c<d12.已知0<a<1,b<-1,函数f<x>=a x +bA.第一象限;B.第二象限;C.第三象限;D.第四象限二、填空题<本大题共4小题,每小题5分,共20分> 13.已知f <x >=x 2-1<x <0>,则f -1<3>=_______. 14.函数)23(log 32-=x y 的定义域为______________15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______. 三、解答题。
高中数学人教A版必修第一册综合检测试题
综合检测试题选题明细表一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|2x-1≥1},B={y|y=log3x,x∈A},则∁B A等于( B )A.(0,1)B.[0,1)C.(0,1]D.[0,1]解析:由题得A={x|2x-1≥20}={x|x≥1},B={y|y≥0},所以∁B A={x|0≤x<1}.故选B.2.若a=0.60.7,b=0.70.6,c=lg 3,则下列结论正确的是( D )A.b>c>aB.c>a>bC.a>b>cD.b>a>c解析:因为y=x0.6为增函数,y=0.6x为减函数,所以0.70.6>0.60.6>0.60.7>0.61,c=lg 3<lg √10=0.5, 所以b>a>c.故选D.3.已知正实数x ,y 满足x+2y=2xy ,则x+y 的最小值为( D ) A.4 B.√2 C.√3 D.√2+32解析:因为正实数x ,y 满足x+2y=2xy , 所以x+2y xy=2,即1y +2x =2,所以x+y=(x+y 2)·(1y +2x )=x 2y +1+12+y x ≥32+2√x 2y ·y x =32+√2,当且仅当x 2=2y 2时,等号成立. 故选D.4.已知函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=a ,则f(7)等于( B ) A.12B.-12C.log 23D.2解析:因为函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=-f(3)=a ,所以f(3)=-a ,即2+3a=-a ,所以a=-12,则f(7)=log 28+7a=3-72=-12.故选B.5.已知2sin 2α=1+cos 2α,则tan 2α等于( D ) A.-43 B.43C.-43或0 D.43或0解析:因为{2sin2α=1+cos2α,sin 22α+cos 22α=1,所以{sin2α=0,cos2α=-1或{sin2α=45,cos2α=35.所以tan 2α=0或tan 2α=43.故选D.6.将函数f(x)=sin(2x+π6)的图象分别向左、向右平移ϕ(ϕ>0)个单位长度后,所得的图象都关于y 轴对称,则ϕ的最小值分别为( A ) A.π6,π3B.π3,π6C.2π3,5π6D.π6,π12解析:函数f(x)的图象向左平移ϕ个单位长度得到函数g(x)= sin(2x+2ϕ+π6)的图象,因为g(x)图象关于y 轴对称,则2ϕ+π6=π2+k π,k ∈Z ,即ϕ=π6+kπ2,k∈Z ,而ϕ>0, 则ϕmin =π6;函数f(x)的图象向右平移ϕ个单位长度得函数h(x)=sin(2x-2ϕ+π6)的图象,因为函数h(x)关于y 轴对称,则有-2ϕ+π6=π2+k π,k ∈Z ,即ϕ=-π6-kπ2,k ∈Z ,而ϕ>0,则ϕmin =π3,所以ϕ的最小值分别为π6,π3.故选A.7.如图所示,其对应的函数解析式可能是( B )A.f(x)=1|x -1|B.f(x)=1||x |-1|C.f(x)=11-x2D.f(x)=11+x 2解析:函数的定义域为{x|x ≠±1},排除选项A 和D ,当x ∈(1,+∞)时,f(x)>0,可排除选项C.故选B. 8.已知函数f(x)=ln(1+x 2)-11+|x |,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),则a 的取值范围是( D ) A.[1,3] B.(0,13)C.(0,3]D.[13,3]解析:函数f(x)=ln(1+x 2)-11+|x |,故函数f(x)在(0,+∞)上单调递增,且f(x)为偶函数,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),即f(log 3a)+f(-log 3a)≤2f(1),f(log 3a)≤f(1),所以|log 3a|≤1,即-1≤log 3a ≤1,故13≤a ≤3.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知f(x)={log 3x ,x >0,2x ,x ≤0,角α的终边经过点(1,2√2),则下列结论正确的是( AC )A.f(cos α)=-1B.f(sin α)=1C.f(f(cos α))=12D.f(f(sin α))=2解析:因为角α的终边经过点(1,2√2), 所以sin α=2√23,cos α=13, 所以f(cos α)=f(13)=log 313=-1, f(sin α)=f(2√23)=log 32√23<0, 所以f(f(cos α))=f(-1)=2-1=12, f(f(sin α))=2log 32√23.故选AC.10.下列命题正确的是( ABD ) A.函数f(x)=x+1x (x>0)的最小值为2B.函数y=2-x-4x(x>0)的最大值为-2C.函数f(x)=2x+1x的最小值为2√2D.函数f(x)=2√x 2+1的最小值为3解析:因为x>0,所以f(x)=x+1x≥2√1=2,当且仅当x=1x,即x=1时,取等号,所以函数的最小值为2,所以A 正确;因为x>0,所以f(x)=x+4x≥2√4=4,当且仅当x=4x,即x=2时,取等号,所以函数f(x)的最小值为4,所以函数y 的最大值为-2,所以B 正确;当x=-1时,f(-1)=-3,所以C 错误; 设√x 2+1=t(t ≥1),则x 2=t 2-1,则f(t)=2t 2+1t=2t+1t,在[1,+∞)上任取t 1,t 2.令t 1<t 2,则f(t 1)-f(t 2)=2(t 1-t 2)+(1t 1-1t 2)=(t 1-t 2)·(2-1t 1t 2).因为1≤t 1<t 2,所以t 1-t 2<0,2-1t 1t 2>0,所以f(t 1)<f(t 2).则f(t)=2t+1t在[1,+∞)上为增函数,所以当t=1时,f(t)的最小值为f(1)=3, 所以D 正确.故选ABD.11.已知直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,则( ACD ) A.f(x+π8)是偶函数B.x=3π8是f(x)的一条对称轴C.f(x)在[π8,π2]上单调递减D.y=f(x)与g(x)=sin(2x-π4)的图象关于直线x=π4对称解析:直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,所以2×π8+ϕ=k π+π2,k ∈Z ,所以ϕ=π4,所以f(x+π8)=sin(2x+π2)=cos 2x ,是偶函数,故A 正确;由2x+π4=k π+π2(k ∈Z),解得x=kπ2+π8(k ∈Z),所以f(x)的对称轴方程为x=kπ2+π8(k ∈Z),而x=3π8不能满足上式,故B 错误;当x ∈[π8,π2],2x+π4∈[π2,5π4],此时函数f(x)单调递减,故C 正确;显然,f(x)=sin(2x+π4)与g(x)=sin(2x-π4)的图象关于直线x=π4对称,故D 正确.故选ACD.12.高斯是德国著名的数学家,用其名字命名的“高斯函数”为设 x ∈R ,用[x]表示不超过x 的最大整数,则y=[x]称为高斯函数,例如:[-1.5]=-2,[2.1]=2.已知函数f(x)=2x -11+2x,则关于函数g(x)=[f(x)]的叙述正确的是( BCD ) A.g(x)是奇函数 B.f(x)是奇函数 C.f(x)在R 上是增函数 D.g(x)的值域是{-1,0}解析:因为函数g(x)=[f(x)],且f(x)=2x -11+2x ,所以g(1)=[f(1)]=0, g(-1)=[f(-1)]=-1, 所以g(-1)≠-g(1),则g(x)不是奇函数,故选项A 错误; 因为f(x)=2x -11+2x,则f(-x)=2-x -11+2-x =1-2x2x +1=-f(x),所以f(x)为奇函数,故选项B 正确; 因为f(x)=2x -11+2x=1+-22x +1,又y=2x +1在R 上为单调递增函数, 则y=-22x +1在R 上为单调递增函数,所以f(x)在R 上为单调递增函数,故选项C 正确; 因为2x >0,则-1<1+-22x +1<1,所以-1<f(x)<1,当-1<f(x)<0时,则g(x)=[f(x)]=-1;当0≤f(x)<1时,则g(x)=[f(x)]=0,所以g(x)∈{-1,0},则g(x)的值域为{-1,0},故选项D正确.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=(m2+m-1)x m+1是幂函数,且该函数在第一象限是增函数,则m的值是.解析:由函数f(x)=(m2+m-1)x m+1是幂函数,则m2+m-1=1,解得m=-2或m=1;当m=-2时,f(x)=x-1在第一象限内不是增函数,不符合题意;当m=1时,f(x)=x2在第一象限内是增函数,满足题意.所以m的值是1.答案:114.已知函数y=2x,当x>0时,函数值的取值范围构成集合A,函数y=x k,在x∈A时,函数值的取值范围构成集合B,则A∩B=∅的充要条件是.解析:已知函数y=2x,当x>0时,函数值的取值范围构成集合A=(1,+∞),当x∈(1,+∞)时,函数y=x k∈(0,+∞),由于A∩B=∅,故x k≤1=x0,故k≤0.故A ∩B= 的充要条件是k ≤0. 答案:k ≤015.已知函数y=f(x)满足f(2)>5,且以(1,1)点为对称中心,写出一个符合条件的函数y= . 解析:因为函数的对称中心为(1,1), 所以不妨设为分式函数f(x)=a x -1+1,因为f(2)>5,所以f(2)=a+1>5,解得a>4, 不妨取a=5,即y=5x -1+1.答案:y=5x -1+1(答案不唯一)16.已知f(x)=2sin(2x+π3),若∃x 1,x 2,x 3∈[0,3π2],且x 1<x 2<x 3,使得f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的最小值为 ,最大值为 .解析:作出f(x)图象如图所示,当f(x)图象与y=√3图象相交时,前三个交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最小;x 1+x 2=π12×2=π6,f(π)=2sin(2π+π3)=√3,x 3=π,所以最小值为π6+π=7π6;当f(x)图象与y=-√3图象相交时,交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最大,x 1+x 2=7π12×2=7π6,f(3π2)=2sin(3π+π3)=-√3,x 3=3π2,最大值为7π6+3π2=8π3.答案:7π68π3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)若函数y=lg(√3-2sin x)+√1-x 2的定义域为A. (1)求集合A;(2)当x ∈A 时,求函数y=cos 2x+sin x 的最大值. 解:(1)由题意可得{√3-2sinx >0,1-x 2≥0, 解得-1≤x ≤1, 即集合A=[-1,1].(2)y=cos 2x+sin x=-sin 2x+sin x+1,x ∈[-1,1], 令t=sin x ∈[-sin 1,sin 1], 则y=-t 2+t+1=-(t -12)2+54,故当t=12时,函数取得最大值为54.18.(本小题满分12分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA=10,OB= x(0<x<10),线段BA ,CD 与BC ⏜,AD ⏜的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问:x 取何值时,y 的值最大?并求出最 大值.解:根据题意,可得BC ⏜=x ·θ,AD ⏜=10θ. 又BA+CD+BC⏜+AD ⏜=30, 所以10-x+10-x+x ·θ+10θ=30, 所以θ=2x+10x+10(0<x<10).(2)y=S 扇形OAD -S 扇形OBC =12θ×102-12θx 2=12θ×(102-x 2)=12θ×(10+x) (10-x),化简得y=-x 2+5x+50=-(x -52)2+2254.于是,当x=52(满足条件0<x<10)时,y max =2254.所以当x=52时,铭牌的截面面积最大,且最大面积为2254.19.(本小题满分12分) 已知函数f(x)=log 3(3x+1)-12x.若不等式f(x)-12x-a ≥0对x ∈(-∞,0]恒成立,求实数a 的取值范围.解:因为不等式f(x)-12x-a ≥0在区间(-∞,0]上恒成立,即a ≤log 3(3x +1)-x 在区间(-∞,0]上恒成立, 令g(x)=log 3(3x +1)-x=log 3(1+13x ),因为x ∈(-∞,0],所以1+13x ≥2,所以g(x)=log 3(1+13x )≥log 32,所以a ≤log 32,所以a 的取值范围是(-∞,log 32]. 20.(本小题满分12分)已知α∈(0,π2),β∈(π2,π),cos β=-13,sin(α+β)=79.(1)求tan β2的值;(2)求sin α的值.解:(1)因为cos β=cos 2β2-sin 2β2=cos 2β2-sin 2β2cos 2β2+sin 2β2=1-tan 2β21+tan 2β2,且cos β=-13,所以1-tan 2β21+tan 2β2=-13,解得tan 2β2=2,因为β∈(π2,π),所以β2∈(π4,π2),所以tan β2>0,所以tan β2=√2.(2)因为β∈(π2,π),cos β=-13,所以sin β=√1-cos 2β=√1-(-13) 2=2√23, 又α∈(0,π2), 故α+β∈(π2,3π2),又sin(α+β)=79,所以cos(α+β)=-√1-sin 2(α+β)=-√1-(79)2=-4√29.所以sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β =79×(-13)-(-4√29)×2√23=13.21.(本小题满分12分)在①f(x)的图象关于直线x=5π6对称,②f(x)的图象关于点(5π18,0)对称,③f(x)在[-π4,π4]上单调递增,这三个条件中任选一个,补充在下面的问题中,若问题中的正实数a 存在,求出a 的值;若a 不存在,说明理由.已知函数f(x)=4sin(ωx+π6)+a(ω∈N *)的最小正周期不小于π3,且 ,是否存在正实数a ,使得函数f(x)在[0,π12]上有最大值3?解:由于函数f(x)的最小正周期不小于π3,所以2πω≥π3,所以1≤ω≤6,ω∈N *,若选择①,即f(x)的图象关于直线x=5π6对称,有5π6ω+π6=k π+π2(k ∈Z),解得ω=65k+25(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=3,ω=4, 此时,f(x)=4sin(4x+π6)+a ,由x ∈[0,π12],得4x+π6∈[π6,π2],因此当4x+π6=π2,即x=π12时,f(x)取得最大值4+a ,令4+a=3,解得a=-1<0,不符合题意.故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择②,即f(x)的图象关于点(5π18,0)对称,则有5π18ω+π6=k π(k ∈Z),解得ω=185k-35(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=1,ω=3. 此时,f(x)=4sin(3x+π6)+a.由x ∈[0,π12],得3x+π6∈[π6,5π12],因此当3x+π6=5π12,即x=π12时,f(x)取得最大值4sin 5π12+a=√6+√2+a ,令√6+√2+a=3,解得a=3-√6-√2<0,不符合题意. 故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择③,即f(x)在[-π4,π4]上单调递增,则有{-ωπ4+π6≥2kπ-π2,ωπ4+π6≤2kπ+π2(k ∈Z),解得{ω≤-8k +83,ω≤8k +43(k ∈Z), 由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=0,ω=1. 此时,f(x)=4sin(x+π6)+a.由x ∈[0,π12],得x+π6∈[π6,π4],因此,当x+π6=π4,即x=π12时,f(x)取得最大值2√2+a ,令2√2+a=3,解得a=3-2√2,符合题意.故存在正实数a=3-2√2,使得函数f(x)在[0,π12]上有最大值3.22.(本小题满分12分)设函数f(x)=ka x -a -x (a>0,且a ≠1)是定义域为R 上的奇函数. (1)求k 的值;(2)若f(1)>0,试求不等式f(x 2+2x)+f(x-4)>0的解集;(3)若f(1)=32,且g(x)=a 2x +a -2x -2mf(x)在[1,+∞)上的最小值为-2,求m 的值.解:(1)因为f(x)是定义域为R 上的奇函数,所以f(0)=0,所以k-1=0,所以k=1,经检验k=1符合题意. (2)因为f(1)>0,所以a-1a >0,又a>0,且a ≠1,所以a>1, 易知f(x)在R 上单调递增, 原不等式化为f(x 2+2x)>f(4-x), 所以x 2+2x>4-x ,即x 2+3x-4>0, 所以x>1或x<-4,所以不等式的解集为{x|x>1或x<-4}. (3)因为f(1)=32,所以a-1a =32,即2a 2-3a-2=0,解得a=2或a=-12(舍去),所以g(x)=22x +2-2x -2m(2x -2-x )=(2x -2-x )2-2m(2x -2-x )+2.令t=f(x)=2x -2-x ,因为x ≥1,所以t ≥f(1)=32,所以g(t)=t 2-2mt+2=(t-m)2+2-m 2, 当m ≥32时,当t=m 时,g(t)min =2-m 2=-2,所以m=2,符合题意; 当m<32时,当t=32时,g(t)min =174-3m=-2,解得m=2512>32,舍去.综上可知,m=2.。
人教版高中数学必修4综合测试试题含答案(原创,难度适中)
人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。
一、选择题:(共12小题,每小题5分,共60分。
)1.sin300°的值为A。
-31 B。
3 C。
22 D。
1/22.角α的终边过点P(4,-3),则cosα的值为A。
4 B。
-3 C。
2/5 D。
-4/53.cos25°cos35°-sin25°sin35°的值等于A。
3/11 B。
3/4 C。
2/11 D。
-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。
AB+BC=AC B。
AB-AC=BCC。
AB-BC=BC D。
AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。
[0,π] B。
[π,2π] C。
[-π/2,π/2] D。
[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。
4/3 B。
-3/5 C。
-5/3 D。
-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。
y=sin(2x+π/3) B。
y=sin(2x+2π/3)C。
y=sin(2x-π/3) D。
y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。
1个 B。
2个 C。
3个 D。
4个9.下列命题中,正确的是A。
|a|=|b|→a=b B。
|a|>|b|→a>bC。
|a|=0→a=0 D。
a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。
(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)
(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。
人教版高中数学选择性必修第一册-综合检测卷(含解析)
人教版高中数学选择性必修第一册综合检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π32.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +cD .-12a +b -12c4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 26.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =07.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427B.77C.33D.638.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya=1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为111.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为25512.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)15.已知点F2为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=23,则双曲线C的虚轴长为________.16.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤3,则e的取值范围为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三角形的顶点A(2,3),B(0,-1),C(-2,1).(1)求直线AC的方程;(2)从①,②这两个问题中选择一个作答.①求点B关于直线AC的对称点D的坐标.②若直线l过点B且与直线AC交于点E,|BE|=3,求直线l的方程.18.(12分)已知圆C经过三点O(0,0),A(1,3),B(4,0).(1)求圆C的方程;(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.19.(12分)(2019·课标全国Ⅱ,文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>0,b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.20.(12分)如图,在四棱锥P-ABCD中,平面PCD⊥平面ABCD,且△PCD是边长为2的等边三角形,四边形ABCD是矩形,BC=22,M为BC的中点.(1)求证:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离.21.(12分)如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1;(2)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求平面EBD与平面ABC1夹角的余弦值.22.(12分)已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.1.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为()A.54B.52C.32D.542.已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为()A .8B .9C .10D .113.如图,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2.下列结论中正确的是()A.SA →+SB →+SC →+SD →=0B.SA →-SB →+SC →-SD →=0C.SA →·SB →+SC →·SD →=0D.SA →·SC →=04.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .56.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .167.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .228.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为411.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π312.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足|PA||PB|=12.设点P的轨迹为C,下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得|PD||PE|=1 2C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得|MO|=2|MA|13.已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m的值为________,动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为________.14.已知M(-2,0),N(2,0),点P(x,y)为坐标平面内的动点,满足|MN→|·|MP→|+MN→·NP→=0,则动点P的轨迹方程为________.15.已知直线l:4x-3y+6=0,抛物线C:y2=4x上一动点P到直线l与到y轴距离之和的最小值为________,P到直线l距离的最小值为________.16.已知直线l:y=-x+1与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l的对称点在圆x2+y2=5上,求此椭圆的方程.17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成的,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22318.如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.19.如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC ∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.20.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,若|PM|=|PO|,求|PM|的最小值及使得|PM|取得最小值的点P的坐标.21.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求△OMN的面积.22.如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2,椭圆C上的点到右焦点距离的最大值为2+ 3.过点P(m,0)作斜率为k的直线l交椭圆C于A,B两点,其中m>0,k>0,D是线段AB的中点,直线OD交椭圆C于M,N两点.(1)求椭圆C的标准方程;(2)若m=1,OM→+3OD→=0,求k的值;(3)若存在直线l,使得四边形OANB为平行四边形,求m的取值范围.人教版高中数学选择性必修第一册综合检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π3答案A解析设直线的倾斜角为α,则tan α=3+3-34-1=33,∴α=π6.故选A.2.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案B 解析椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2.故选B.3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +c D .-12a +b -12c答案A解析OD →=OA →+AD →=OA →+12AC →=OA →+12(OC →-OA →)=12OA →+12OC →,因此BD →=OD →-OB →=12OA→-OB →+12OC →=12a -b +12c .4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)答案B解析设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).将y =x -1代入y 2=4x ,整理得x 2-6x +1=0.由根与系数的关系得x 1+x 2=6,则x 1+x 22=3,y 1+y 22=x 1+x 2-22=6-22=2,所以所求点的坐标为(3,2).故选B.5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 2答案B解析在正四面体ABCD 中,点E ,F 分别是BC ,AD 的中点,AE →=AB →+BE →,AF →=12AD →,所以AE →·AF →=(AB →+BE →)·12→=12AB →·AD →+12BE →·AD →.因为ABCD 是正四面体,所以BE ⊥AD ,∠BAD =π3,即BE →·AD →=0,AB →·AD →=|AB →|·|AD →|cos π3=12a 2,所以AE →·AF →=14a 2.故选B.6.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案D解析由题意设圆心坐标为C (a ,0)(a >0),∵圆C 与直线3x +4y +4=0相切,∴|3a +0+4|9+16=2,解得a =2.∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选D.7.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427 B.77C.33D.63答案B解析建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,3,0).PB →=(2,0,-2),CD →=(-2,1,0),PD →=(0,3,-2).设平面PCD 的一个法向量为n =(x ,y ,z ),2x +y =0,y -2z =0.取x =1得n =(1,2,3).cos 〈PB →,n 〉=PB →·n |PB →||n |=-422×14=-77,可得PB 与平面PCD 所成角的正弦值为77.故选B.8.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5答案A解析如图,由题意知以OF +y 2=c 24①,将x 2+y 2=a 2记为②式,①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=由|PQ |=|OF |,得c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e = 2.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya =1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)答案BD 解析对于A ,若直线过原点,则在两坐标轴上的截距都为零,故不能用方程x a +ya=1表示,所以A 错误;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,故不能用y -1=tan θ(x -1)表示,所以C 错误;对于D y =x +1上,且(0,2),(1,1)连线的斜率为-1,所以D 正确.故选BD.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为1答案AC解析对于A ,因为E ,F 分别是A 1D 1和C 1D 1的中点,所以EF ∥A 1C 1,且EF ⊂平面CEF ,故A 1C 1∥平面CEF 成立,A 正确;对于B ,以点D 为坐标原点,DA →,DC →,DD 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设正方形ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),C (0,2,0),A (2,0,0,),B 1(2,2,2),D 1(0,0,2),E (1,0,2),F (0,1,2),B 1D →=(-2,-2,-2),FC →=(0,1,-2),因为B 1D →·FC →=0-2+4=2≠0,所以B 1D →与FC →不垂直,又CF ⊂平面CEF ,所以B 1D 与平面CEF 不垂直,B 错误;对于C ,12DA →+DD 1→-DC →=12(2,0,0)+(0,0,2)-(0,2,0)=(1,-2,2),又CE →=(1,-2,2),所以CE →=12DA→+DD 1→-DC →成立,C 正确;对于D ,连接B 1E ,EF →=(-1,1,0),EC →=(-1,2,-2),设平面EFC 的法向量为n =(x ,y ,z )·n =0,·n =0,x +y =0,x +2y -2z =0,令x =2,得n =(2,2,1),又B 1E →=(-1,-2,0),所以点B 1到平面CEF 的距离d =|B 1E →·n ||n |=63=2,D 错误.故选AC.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为255答案BC解析∵x 26+y 2=1,∴a =6,b =1,∴c =a 2-b 2=6-1=5,则C 的焦距为25,e =ca=56=306.设P (x ,y )(-6≤x ≤6),则|PD |2=(x +1)2+y 2=(x +1)2+1-x 26=+45≥45>15,可知圆D 在C 的内部,且|PQ |的最小值为45-15=55.故选BC.12.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内答案BCD解析设点P 的坐标为(x ,y ),由题意可得(x +2)2+y 2·(x -2)2+y 2=16.对于A ,将原点坐标(0,0)代入方程得2×2=4≠16,故A 错误;对于B ,设点P 关于x 轴、y 轴的对称点分别为P 1(x ,-y ),P 2(-x ,y ),因为(x +2)2+(-y )2·(x -2)2+(-y )2=(x +2)2+y 2·(x -2)2+y 2=16,(-x +2)2+y 2·(-x -2)2+y 2=(x -2)2+y 2·(x +2)2+y 2=16,所以点P 1,P 2都在曲线C 上,所以曲线C 关于x 轴、y 轴对称,故B 正确;对于C ,设|PM |=a ,|PN |=b ,∠MPN =θ(0<θ<π),则ab =16,由余弦定理得cos θ=a 2+b 2-162ab =a 2+b 2-1632≥2ab -1632=12,当且仅当a =b =4时等号成立,则θ,π3,所以sin θ≤32,则△MPN 的面积S △MPN =12ab sin θ≤12×16×32=43,故C正确;对于D ,由16=(x +2)2+y 2·(x -2)2+y 2≥(x +2)2·(x -2)2=|x 2-4|,可得-16≤x 2-4≤16,得0≤x 2≤20,解得-25≤x ≤25,由C 知,S △MPN =12|MN |·|y |=12×4×|y |≤43,得|y |≤23,因为45×43=1615<64,所以曲线C 在一个面积为64的矩形内,故D 正确.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.答案23a -13b +23c 解析PG →=PB →+BG→=PB →+23BD→=PB →+23(BA →+BC →)=PB →+23[(PA →-PB →)+(PC →-PB →)]=PB →+23(PA →-2PB →+PC →)=23PA →-13PB →+23PC →=23a -13b +23c .14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)答案(x -2)2+(y -1)2=12x +y -4=0解析设M (x ,y ),P (x 1,y 1),=x 1+42,=y 1+22,1=2x -4,1=2y -2.因为x 12+y 12=4,所以(2x -4)2+(2y -2)2=4.整理得(x -2)2+(y -1)2=1.①又圆C :x 2+y 2=4,②由①-②得2x +y -4=0,即为所求直线方程.15.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交双曲线C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则双曲线C 的虚轴长为________.答案22解析由题意知点B 与点A 关于原点对称,设双曲线的左焦点为F 1,连接AF 1,BF 1,由对称性可知四边形AF 1BF 2是平行四边形,所以∠F 1AF 2=π3,设|AF 2|=m ,不妨设点A 在点B 右侧,则|AF 1|=2a +m .在△AF 1F 2中,由余弦定理可得4c 2=m 2+(m +2a )2-m (m +2a ),化简得4c 2-4a 2=m 2+2ma ,即4b 2=m (m +2a ).又S △AF 2B =12m (m +2a )·32=23,所以b 2=2,所以2b =2 2.16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.答案[3-1,1)解析设A (m ,n ),则B (-m ,-n ),则k =nm,因为原点O 在以线段MN 为直径的圆上,所以OM ⊥ON ,又因为M 为AF 1的中点,所以OM ∥BF 1,同理ON ∥AF 1,所以四边形OMF 1N 是矩形,即AF 1⊥BF 1,而AF 1→=(1-m ,-n ),BF 1→=(1+m ,n ),所以(1-m )(1+m )-n 2=0,即m 2+n 2=1,又m 2a 2+n 2b 2=1,于是有m 2a 2+n 2b 2=m 2+n 2,从而1a 2-11-1b 2=n 2m 2=k 2≤3,即1a 2+3b2≥4,将b 2=a 2-1代入上式,整理得4a 4-8a 2+1≤0,解得2-32≤a 2≤2+32,又a >c =1,所以4-23≤1a2<1,即3-1≤e <1.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知三角形的顶点A (2,3),B (0,-1),C (-2,1).(1)求直线AC 的方程;(2)从①,②这两个问题中选择一个作答.①求点B 关于直线AC 的对称点D 的坐标.②若直线l 过点B 且与直线AC 交于点E ,|BE |=3,求直线l 的方程.思路分析(1)由A (2,3),C (-2,1),可求出直线AC 的斜率,由点斜式即可写出直线的方程;(2)选①由对称点的性质即可求出;选②设出E ,12t +t 的值,根据B ,E 两点的坐标即可求出直线的方程.解析(1)因为直线AC 的斜率为k AC =12,所以直线AC 的方程为y -3=12(x -2),即直线AC 的方程为x -2y +4=0.(2)选择问题①:设D 的坐标为(m ,n ),·12=-1,2·n -12+4=0,=-125,=195.所以点D -125,选择问题②:设E,12t +|BE |=33,解得t =0或t =-125.所以E 的坐标为(0,2)-125,所以直线l 的方程为x =0或3x +4y +4=0.18.(12分)已知圆C 经过三点O (0,0),A (1,3),B (4,0).(1)求圆C 的方程;(2)求过点P (3,6)且被圆C 截得弦长为4的直线的方程.解析(1)由题意,设圆C 的方程为x 2+y 2+Dx +Ey +F =0,=0,+9+D +3E +F =0+4D +F =0,=-4,=-2,=0.所以圆C 的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由(1)知圆心坐标为C (2,1),半径为5,弦长为4时,圆心C 到直线的距离为1.①若直线斜率不存在,则直线方程为x =3,经检验符合题意;②若直线斜率存在,设直线斜率为k ,则直线方程为y -6=k (x -3),即kx -y -3k +6=0,则|5-k |1+k 2=1,解得k =125,所以直线方程为y -6=125(x -3),即12x -5y -6=0.综上可知,直线方程为x =3或12x -5y -6=0.19.(12分)(2019·课标全国Ⅱ,文)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.解析(1)若△POF 2为等边三角形,则P ,±32c ,代入方程x 2a 2+y 2b 2=1,可得c 24a2+3c 24b2=1,解得e 2=4±23,所以e =3-1(3+1已舍去).(2)由题意可得|PF 1→|+|PF 2→|=2a ,因为PF 1⊥PF 2,所以|PF 1→|2+|PF 2→|2=4c 2,所以(|PF 1→|+|PF 2→|)2-2|PF 1→|·|PF 2→|=4c 2,所以2|PF 1→|·|PF 2→|=4a 2-4c 2=4b 2,所以|PF 1→|·|PF 2→|=2b 2,所以S △PF 1F 2=12|PF 1→|·|PF 2→|=b 2=16,解得b =4.因为(|PF 1→|+|PF 2→|)2≥4|PF 1→|·|PF 2→|,即(2a )2≥4|PF 1→|·|PF 2→|,即a 2≥|PF 1→|·|PF 2→|,所以a 2≥32,所以a ≥42,即a 的取值范围为[42,+∞).20.(12分)如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,且△PCD 是边长为2的等边三角形,四边形ABCD 是矩形,BC =22,M 为BC 的中点.(1)求证:AM ⊥PM ;(2)求二面角P -AM -D 的大小;(3)求点D 到平面AMP 的距离.解析以点D 为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),A (22,0,0),M (2,2,0),PM →=(2,1,-3),AM →=(-2,2,0).(1)证明:∵PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量,·PM →=0,·AM →=0,y -3z =0,+2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∵cos 〈n ,p 〉=n ·p |n ||p |=36=22,∴二面角P -AM -D 的大小为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)为平面AMP 的一个法向量,∴d =|DA →·n ||n |=|22×2|2+1+3=263,即点D 到平面AMP 的距离为263.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1;(2)设点E 是直线B 1C 1上一点,且DE ∥平面AA 1B 1B ,求平面EBD 与平面ABC 1夹角的余弦值.解析(1)证明:由已知得侧面AA 1C 1C 是菱形,D 是AC 1的中点.∵BA =BC 1,∴BD ⊥AC 1.∵平面ABC 1⊥平面AA 1C 1C ,且BD ⊂平面ABC 1,平面ABC 1∩平面AA 1C 1C =AC 1,∴BD ⊥平面AA 1C 1C .(2)设点F 是A 1C 1的中点,连接DF ,EF ,∵点D 是AC 1的中点,∴DF ∥平面AA 1B 1B .又∵DE ∥平面AA 1B 1B ,∴平面DEF ∥平面AA 1B 1B .又∵平面DEF ∩平面A 1B 1C 1=EF ,平面AA 1B 1B ∩平面A 1B 1C 1=A 1B 1,∴EF ∥A 1B 1.∴点E 是B 1C 1的中点.如图,以D 为原点,以DA 1,DA ,DB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得AC 1=2,AD =1,BD =A 1D =DC =3,BC =6,∴D (0,0,0),A (0,1,0),A 1(3,0,0),B (0,0,3),C 1(0,-1,0).设平面EBD 的法向量是m =(x ,y ,z ),由m ⊥DB →,得3z =0⇒z =0.又DE →=12(DC 1→+DB 1→)=12(DC 1→+DB →+AA 1→)1由m ⊥DE →,得(x ,y ,z10⇒32x -y =0.令x =1,得y =32,∴m ,32,∵平面ABC 1⊥平面AA 1C 1C ,DA 1⊥AC 1,∴DA 1⊥平面ABC 1.∴DA 1→是平面ABC 1的一个法向量,DA 1→=(3,0,0).∴cos 〈m ,DA 1→〉=31+34×3=277,∴平面EBD 与平面ABC 1夹角的余弦值是277.22.(12分)已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.解析(1)由题意知P 为线段MN 的中点,设N (x ,y ),则M (-x ,0),由PM →·PF →=0x,∴(-x )·10,∴y 2=4x (x >0),∴点N 的轨迹方程为y 2=4x (x >0).(2)设l 与抛物线交于点A (x 1,y 1),B (x 2,y 2).当l 与x 轴垂直时,则由OA →·OB →=-4,得y 1=22,y 2=-22,|AB |=42<46,不合题意.故l 与x 轴不垂直.可设直线l 的方程为y =kx +b (k ≠0),则由OA →·OB →=-4,得x 1x 2+y 1y 2=-4.由点A ,B 在抛物线y 2=4x (x >0)上有y 12=4x 1,y 22=4x 2,故y 1y 2=-8.又2=4x ,=kx +b ,联立消x ,得ky 2-4y +4b =0.∴4bk =-8,b =-2k.∴Δ=16(1+2k 2),|AB |2y1-y 2)2∵46≤|AB |≤430,∴96480.解得直线l的斜率取值范围为-1,-12∪12,1.1.若椭圆x2a2+y2b2=1(a>b>0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为()A.54B.52C.32D.54答案B2.已知四面体顶点A(2,3,1),B(4,1,-2),C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC的距离为()A.8B.9C.10D.11答案D解析设平面ABC的一个法向量为n=(x,y,z),则·AB→=0,·AC→=0,x,y,z)·(2,-2,-3)=0,x,y,z)·(4,0,6)=0.x-2y-3z=0,x+6z=0=2x,=-23x,令x=1,则n,2AD→=(-7,-7,7),故所求距离为|AD→·n||n|=|-7-14-143|1+4+49=11.3.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SA=SB=SC=SD=2.下列结论中正确的是()A.SA→+SB→+SC→+SD→=0B.SA→-SB→+SC→-SD→=0C.SA→·SB→+SC→·SD→=0D.SA→·SC→=0答案B解析本题考查空间向量的加减运算和数量积.由题意易知A错误;因为SA→-SB→+SC→-SD→=BA→+DC→=0,所以B正确;因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →≠0,所以C 错误;连接AC ,在△SAC 中,SA =SC =2,AC =2,所以∠ASC ≠90°,所以cos ∠ASC ≠0,又SA →·SC →=2×2×cos ∠ASC ,所以SA →·SC →≠0,所以D 错误.故选B.4.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)答案B解析由题意得,A (-a ,0),F (-2a ,0),不妨设0,ba x AP →⊥FP →,得AP →·FP →=0⇒0+a ,b a x 0+2a ,ba x 0⇒c 2a 2x 02+3ax 0+2a 2=0.因为在双曲线E 的渐近线上存在点P ,所以Δ≥0,即9a 2-4×2a 2×c 2a 2≥0,9a 2≥8c 2⇒e 2≤98⇒-324≤e ≤324,又因为E 为双曲线,所以1<e ≤324.故选B.5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .5答案C解析连接AC 交BD 于点O ,以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系.设PA =AB =2,则A (2,0,0),D (0,-2,0),P (0,0,2),0B (0,2,0),∴BD →=(0,-22,0),设N (0,b ,0),则BN →=(0,b -2,0).∵BD=λBN →,∴-22=λ(b -2),∴b =2λ-22λ,∴N,2λ-22λ,,→-22,2λ-22λ,-AD →=(-2,-2,0),∵AD ⊥MN ,∴AD →·MN →=1-2λ-4λ=0,解得λ=4.故选C.6.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .16答案B解析设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2.∵F 1是MA 的中点,D 是MN 的中点,∴F 1D 是△MAN 的中位线,∴|DF 1|=12|AN |,同理|DF 2|=12|BN |,∴|AN |+|BN |=2(|DF 1|+|DF 2|).∵点D 在椭圆上,根据椭圆的标准方程及椭圆的定义知,|DF 1|+|DF 2|=4,∴|AN |+|BN |=8.故选B.7.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .22答案A解析设点P (x 0,y 0),则x 02+y 02=2,所以|PB |2|PA |2=(x 0-1)2+(y 0+1)2x 02+(y 0+2)2=x 02+y 02-2x 0+2y 0+2x 02+y 02+4y 0+4=-2x 0+2y 0+44y 0+6=-x 0+y 0+22y 0+3,令λ=-x 0+y 0+22y 0+3,则λ≠0,x 0+(2λ-1)y 0+3λ-2=0,由题意,知直线x +(2λ-1)y +3λ-2=0与圆x 2+y 2=2有公共点,所以|3λ-2|1+(2λ-1)2≤2,得λ2-4λ≤0,得0<λ≤4,所以|PB ||PA |的最大值为2.8.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面答案BCD解析易知b +c ,b -c ,a 不共面;因为2b =(b +c )+(b -c ),所以b +c ,b -c ,2b 共面;因为a +b +c =(b +c )+a ,所以b +c ,a ,a +b +c 共面;因为a +c =(a -2c )+3c ,所以a +c ,a -2c ,c 共面.故选BCD.9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP答案ACD解析在长方体ABCD -A 1B 1C 1D 1中,连接AC ,以点D 为坐标原点,建立如图所示的空间直角坐标系,因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,3,0),C 1(0,3,1),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1),DC 1→=(0,3,1),DB →=(1,3,0),A 1D 1→=(-1,0,0).当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,可知P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P ,D 三点共线,故A 正确;当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,因为S △A 1AC =12AA 1·AC =12A 1C ·AP ,所以AP =255,所以A 1P =55,即点P 为靠近点A 1的五等分点,所以,35,D 1P →,35,-AP →=-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误;当A 1C →=3A 1P →时,A 1P →=13A 1C →-13,33,-BDC 1的一个法向量为n =(x ,y ,z ),·DC 1→=0,·DB →=0,+z =0,+3y =0,令y =1,可得n =(-3,1,-3),又D 1P →=A 1P →-A 1D 1→=,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P →∥平面BDC 1,故C 正确;当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P →=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A =D 1,所以A 1C ⊥平面D 1AP ,故D 正确.故选ACD.10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为4答案AC解析如图,过点M 向准线l 作垂线,垂足为N ,F (1,0),设A (x 1,y 1),B (x 2,y 2),因为|AF |=|AC |,所以∠AFC =∠ACF ,又因为∠OFC =∠ACF ,所以∠OFC =∠AFC ,所以FC 平分∠OFA ,同理可知FD 平分∠OFB ,所以∠CFD =90°,故A 正确;假设△CMD 为等腰直角三角形,则∠CFD =∠CMD =90°,则C ,D ,F ,M 四点共圆且圆的半径为12|CD |=|MN |,又因为|AF |=3|BF |,所以|AB |=|AF |+|BF |=|AC |+|BD |=2|MN |=4|BF |,所以|MN |=2|BF |,所以|CD |=2|MN |=4|BF |,所以|CD |=|AB |,显然不成立,故B 错误;设直线AB的方程为x =my +12=4x ,+1,所以y 2-4my -4=01+y 2=4m ,1y 2=-4,又因为|AF |=3|BF |,所以y 1=-3y 22y 2=4m ,3y 22=-4,所以m 2=13,所以1m =±3,所以直线AB 的斜率为±3,故C 正确;取m =331+y 2=433,1y 2=-4,所以|y 1-y 2|=833,所以S △AOB =12·|OF |·|y 1-y 2|=12×1×833=433D 错误.故选AC.11.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π3答案AD解析由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,BC 长为半径的圆,设CB 旋转到直线a 上时为CE ,旋转到直线b 上时为CD ,以C 为坐标原点,以CD 所在直线为x 轴,CE 所在直线为y 轴,CA 所在直线为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),设B 点在运动过程中的坐标为(cos θ,sin θ,0),其中θ为射线CD 绕端点C 旋转到CB 形成的角,θ∈[0,2π),∴AB 在运动过程中对应的向量AB →=(cos θ,sin θ,-1),|AB →|=2,设AB 与a 所成的角为α,α∈0,π2,则cos α=22|sin θ|∈0,22,∴α∈π4,π2,故A 正确,B错误;设AB 与b 所成的角为β,β∈0,π2,则cos β=22|cos θ|,当AB 与a 所成的角为π3,即α=π3时,|sin θ|=2cos α=2cos π3=22,∵cos 2θ+sin 2θ=1,∴cos β=22|cos θ|=12,∵β∈0,π2,∴β=π3,此时AB 与b所成的角为π3,故D 正确,C 错误.故选AD.12.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足|PA ||PB |=12.设点P 的轨迹为C ,下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得|MO |=2|MA |答案BC解析设P (x ,y ),则(x +2)2+y 2(x -4)2+y 2=12,化简得(x +4)2+y 2=16,所以A 错误;假设在x轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12,设D (m ,0),E (n ,0),则(x -n )2+y 2=2(x -m )2+y 2,化简得3x 2+3y 2-(8m -2n )x +4m 2-n 2=0,由轨迹C 的方程为x 2+y 2+8x =0,可得8m -2n =-24,4m 2-n 2=0,解得m =-6,n =-12或m =-2,n =4(舍去),即在x 轴上存在异于A ,B 的两点D ,E 使|PD ||PE |=12,所以B 正确;当A ,B ,P 三点不共线时,由|OA ||OB |=12=|PA ||PB |,可得射线PO 是∠APB 的平分线,所以C 正确;假设在C 上存在点M ,使得|MO |=2|MA |,可设M (x ,y ),则有x 2+y 2=2(x +2)2+y 2,化简得x 2+y 2+163x +163=0,与x 2+y 2+8x =0联立,得x =2,不合题意,故不存在点M ,所以D 错误.故选BC.13.已知直线l :mx -y =1,若直线l 与直线x -my -1=0平行,则实数m 的值为________,动直线l 被圆C :x 2+y 2+2x -24=0截得弦长的最小值为________.答案-1223解析由题得m ×(-m )-(-1)×1=0,所以m =±1.当m =1时,两直线重合,舍去,故m =-1.因为圆C 的方程x 2+y 2+2x -24=0可化为(x +1)2+y 2=25,所以圆心为C (-1,0),半径为5.由于直线l :mx -y -1=0过定点P (0,-1),所以过点P 且与PC 垂直的弦的弦长最短,且最短弦长为2×52-(2)2=223.14.已知M (-2,0),N (2,0),点P (x ,y )为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P 的轨迹方程为________.答案y 2=-8x 解析由题意,知MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ).由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理,得y 2=-8x .15.已知直线l :4x -3y +6=0,抛物线C :y 2=4x 上一动点P 到直线l 与到y 轴距离之和的最小值为________,P 到直线l 距离的最小值为________.答案134解析设抛物线C :y 2=4x 上的点P 到直线4x -3y +6=0的距离为d 1,到准线的距离为d 2,到y 轴的距离为d 3,由抛物线方程可得焦点坐标为F (1,0),准线方程为x =-1,则d 3=d 2-1,|PF |=d 2,因此d 1+d 3=d 1+d 2-1=d 1+|PF |-1,因为d 1+|PF |的最小值是焦点F 到直线4x -3y +6=0的距离,即|4+6|42+(-3)2=2,所以d 1+d 3=d 1+|PF |-1的最小值为2-1=1;设平行于直线l 且与抛物线C :y 2=4x 相切的直线方程为4x -3y +m =0,由x -3y +m =0,2=4x ,得y 2-3y +m =0,因为直线4x -3y +m =0与抛物线C :y 2=4x 相切,所以Δ=(-3)2-4m =0,解得m =94,因此该切线方程为4x -3y +94=0,所以两平行线间的距离为6-9442+(-3)2=34,即P 到直线l 距离的最小值为34.16.已知直线l :y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且线段AB 的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点在圆x 2+y 2=5上,求此椭圆的方程.解析(1)x +1,+y 2b 2=1,得(b 2+a 2)x 2-2a 2x +a 2-a 2b 2=0,∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0⇒a 2+b 2>1.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2a 2b 2+a 2.∵线段AB ,∴2a 2b 2+a 2=43,得a 2=2b 2.又a 2=b 2+c 2,∴a 2=2c 2,∴e =22.(2)设椭圆的右焦点为F (c ,0),则点F 关于直线l :y =-x +1的对称点为P (1,1-c ).∵点P 在圆x 2+y 2=5上,∴1+(1-c )2=5,即c 2-2c -3=0.∵c >0,∴c =3,又a 2=2c 2且a 2=b 2+c 2,∴a =32,b =3,∴椭圆的方程为x 218+y 29=1.17.如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成的,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223解析(1)证明:在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE ,所以AD ⊥平面ABFE .因为AD ⊂平面PAD ,所以平面PAD ⊥平面ABFE .(2)由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),AF →=(2,2,0),AC →=(2,0,2),AP →=(1,-h ,1).设平面AFC 的一个法向量为m =(x 1,y 1,z 1),·AF →=2x 1+2y 1=0,·AC →=2x 1+2z 1=0,取x 1=1,则y 1=z 1=-1,所以m =(1,-1,-1).设平面AFP 的一个法向量为n =(x 2,y 2,z 2),·AF →=2x 2+2y 2=0,·AP →=x 2-hy 2+z 2=0,取x 2=1,则y 2=-1,z 2=-1-h ,所以n =(1,-1,-1-h ).因为二面角C -AF -P 的余弦值为223,所以|cos 〈m ·n 〉|=|m ·n ||m |·|n |=|1+1+1+h |3×2+(h +1)2=223,解得h =1或h =-35(舍),所以正四棱锥P -ABCD 的高h =1.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.。
人教版数学必修一综合测试(含答案)
人教版数学必修一一、单选题1.已知集合A ={x |x =2sin nπ3,n ∈N ∗},B ={x |x 2―2x ―3<0},则A ∩B =( )A .{―3,0,3}B .{0,3}C .{―3,0}D .{―1,0,3}2.函数f (x )=log 2(3―x )+1x ―1的定义域为( )A .[1,3]B .[1,3)C .[1,+∞)D .(1,3)3.函数 y =2x ―1的定义域为 (―∞,1)∪[2,5) , 则其值域是( ) A .(0,+∞)B .(―∞,2]C .(―∞,12)∪[2,+∞)D .(―∞,0)∪(12,2]4.函数f (x )=|x -2|·(x -4)的单调递减区间是( )A .[2,4]B .[2,3]C .[2,+∞)D .[3,+∞)5.已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且存在0≤x 1<x 2≤π,满足f(x 1)=f (x 2)=―45,则cos(x 2―x 1)=( )A .―35B .35C .45D .―456.函数 f (x )=3―x 2+4x +3 的单调递增区间为( )A .(―∞,2)B .(2,+∞)C .(―3,2)D .(2,7)7.已知函数f (x )={x 2+2x ,x⩽0,ln 1x ,x >0.若函数g (x )=f (x )―a |x |恰有三个零点,则实数a 的取值范围是( )A .(―2,―1e )∪[0,+∞)B .[―2,―1e ]∪(0,+∞)C .(―e ,0)∪[2,+∞)D .{―1e}∪[0,+∞)8.已知a =5log 56―log 29×lo g 32,b =log 56+log 3025,5b +12b =13c ,则( )A.c<b<a B.b<c<a C.a<c<b D.a<b<c二、多选题9.图中阴影部分用集合符号可以表示为( )A.∁U B∩(A∪C)B.∁U((A∩B)∪(B∩C))C.A∪(C∩∁U B)D.(A∩∁U B)∪(C∩∁U B)10.下列命题中正确的是( )A.函数y=1―sin2x的周期是πB.函数y=1―co s2x的图像关于直线x=π4对称C.函数y=2―sinx―cosx在[π4,π]上是减函数D.函数y=cos(2022x―π3)+3sin(2022x+π6)的最大值为1+311.已知抛物线C1:y=x2与抛物线C2:y=a x2+1―a(0<a<13)在第一象限交于M点,过M点的直线l 分别与C1,C2交于P,Q两点,且M为线段PQ的中点,O为坐标原点,则( )A.|PQ|>2|OP|B.|PQ|<|OQ|C.tan∠POQ+2>0D.tan∠POQ+1<012.定义在(―1,1)上的函数f(x)满足f(x)―f(y)=f(x―y1―xy),且当x∈(―1,0)时,f(x)<0,则有( )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)三、填空题13.(lg5)2+lg2×lg50= .14.不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是 .15.已知函数f(x)=3sinωx+cosωx(ω>0),若函数f(x)在区间(π3,π2)内没有零点,则实数ω的最大值是 .16.设正数x,y满足a≥x+yx+y恒成立,则a的最小值是 .四、解答题17.计算下列各式的值:(1)(14)―1+log23;(2)2723+(5)2―1614+(e―1)0.18.已知方程ax2+x+b=0.(1)若方程的解集为{1},求实数a,b的值;(2)若方程的解集为{1,3},求实数a,b的值.19.如图,在直角坐标系xOy中,角α的顶点是原点,始边与轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2),将角α的终边按照逆时针方向旋转π3,交单位圆于点B,记A(x1,y1),B(x2,y2)(1)若x1=13,求x2;(2)分别过A、B做x轴的垂线,垂足依次为C、D,记ΔAOC的面积为S1,ΔBOD的面积为S2,若S1=2S2,求角α的值.20.已知函数f(x)满足2f(x)+f(―x)=x+2x(x≠0).(1)求y=f(x)的解析式;(2)若对∀x1、x2∈(2,4)且x1≠x2,都有f(x2)―f(x1)x2―x1>kx2⋅x1(k∈R)成立,求实数k的取值范围.21.已知定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x <0时,f(x)>0且f(1)=―3.(1)求证:f(x)是奇函数;(2)解不等式f(2x―2)―f(x)≥―12.22.已知函数f(x)=2x+ab⋅2x+1是定义域为R的奇函数.(1)求函数f(x)的解析式;(2)若存在x∈[―2,2]使不等式f(m⋅4x)+f(1―2x+1)≥0成立,求m的最小值.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】A,D10.【答案】A,D11.【答案】A,D12.【答案】A,B,C13.【答案】114.【答案】(2,+∞)15.【答案】17316.【答案】217.【答案】(1)解:原式=(14)―1⋅(2―2)log23=4×3―2=49.(2)解:原式=33×23+5―24×14+1=32+5―2+1=13. 18.【答案】(1)解:若方程的解集为{1},则①若a=0,则1+b=0,解得a=0,b=﹣1;②若a≠0,则a+1+b=0且1﹣4ab=0,解得a=b=﹣12.综上所述,a=0,b=﹣1或a=b=﹣12(2)解:依题意得:1+3=﹣1a ,1×3= ba,解得a=﹣14,b=﹣3419.【答案】(1)解:由三角函数定义,得x1=cosα,x2=cos(α+π3).因为 α∈(π6,π2) , cos α=13 ,所以 sin α=1―cos 2α=223.所以 x 2=cos(α+π3)=12cos α―32sin α=1―266 .(2)解:依题意得 y 1=sin α , y 2=sin(α+π3) . 所以 S 1=12x 1y 1=12cos α·sin α=14sin2α ,S 2=12|x 2|y 2=12[―cos(α+π3)]·sin(α+π3)=―14sin(2α+2π3) .依题意 S 1=2S 2 得 sin2α=―2sin(2α+2π3) ,即 sin2α=―2[sin2αcos 2π3+cos2αsin 2π3]=sin2α―3cos2α ,整理得 cos2α=0 .因为 π6<α<π2 ,所以 π3<2α<π ,所以 2α=π2 ,即 α=π4 .20.【答案】(1)解:由条件2f (x )+f (―x )=x +2x,可知函数f (x )的定义域为{x |x ≠0},所以,2f (―x )+f (x )=―x ―2x,可得{2f (x )+f (―x )=x +2x2f (―x )+f (x )=―x ―2x,解得f (x )=x +2x(x ≠0).(2)解:对∀x 1、x 2∈(2,4),x 1≠x 2,都有f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1(k ∈R ),不妨设2<x 1<x 2<4,由f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1,则f (x 2)―f (x 1)>k (x 2―x 1)x 2⋅x 1=k x 1―k x 2,可得f (x 2)+k x 2>f (x 1)+k x 1,也即可得函数g (x )=f (x )+k x =x +k +2x 在区间(2,4)上递增;g ′(x )=1―k +2x2≥0对任意的x ∈(2,4)恒成立,即k +2≤x 2,当x ∈(2,4)时,4<x 2<16,故k +2≤4,解得k ≤2.因此,实数k 的取值范围是(―∞,2].21.【答案】(1)证明:令 x =y =0 , f (0)=f (0)+f (0) ,∴ f (0)=0 ,令 y =―x , ∴ f (0)=f (―x )+f (x )=0∴f(x)=―f(―x).∴函数f(x)是奇函数.(2)解:设x1<x2,则x1―x2<0,∴f(x1)―f(x2)=f(x1)+f(―x2)=f(x1―x2)>0∴f(x)为R上减函数.∵f(2x―2)―f(x)=f(2x―2)+f(―x)=f(x―2)≥―12,―12=4f(1)=f(4).∴x―2≤4即x≤6.∴不等式f(2x―2)―f(x)≥―12的解集为{x|x≤6}.22.【答案】(1)解:因为函数f(x)是定义域为R的奇函数,可知f(0)=0, ∴a=-1,又f(―x)=―f(x),则2―x―1b⋅2―x+1=- 2x―1b⋅2x+1,∴1―2x b+2x =- 2x―1b⋅2x+1,∴b=1,∴f(x)=2x―12x+1(2)解:∵f(x)=2x―12x+1=1- 22x+1,所以f(x)在[―2,2]上单调递增;由f(m⋅4x)≥―f(1―2x+1)=f(2x+1―1)可得m⋅4x≥2x+1―1在[―2,2]有解分参得m≥2x+1―14x =2⋅12x―14x,设t=12x ,t∈[14,4], m≥―t2+2t=―(t―1)2+1,所以m≥―8,则m的最小值为―8。
人教版高中数学选择性必修第二册 全册模块综合检测1(含解析)
人教版高中数学选择性必修第二册全册模块综合检测1(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.数列{a n}满足a n+1=3a n+1,a1=1,则此数列的第3项是()A.13B.10C.7D.42.{a n}为等差数列,且a7-2a4=-1,a3=0,则公差d=()A.-2B.-12D.2C.123.已知函数f(x)=3x2+2,则f′(5)=()A.15B.30C.32D.774.设等比数列{a n}满足a1+a2=-1,a1-a3=-3,则S6=()A.-63B.-21C.21D.635.函数f(x)=xx2+1的单调递增区间是()A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)和(1,+∞)6.数列{a n}满足a1=1,log2a n+1=log2a n+1(n∈N*),它的前n项和为S n,则满足S n>1025的最小n值是()A.9B.10C.11D.127.函数f(x)=ln xx+1的图象大致是()8.函数f (x )=ln x +ax 有小于1的极值点,则实数a 的取值范围是()A .(0,1)B .(-∞,-1)C .(-1,0)D .(-∞,-1)∪(0,+∞)二、多项选择题(本题共4小题,每小题5分,共20分)9.过点P (2,-6)作曲线f (x )=x 3-3x 的切线,则切线方程可能是()A .3x +y =0B .24x -y -54=0C .9x -y -24=0D .12x -y -24=010.记S n 为等差数列{a n }的前n 项和.若a 1+3a 5=S 7,则以下结论一定正确的是()A .a 4=0B .S n 的最大值为S 3C .S 1=S 6D .|a 3|<|a 5|11.在数列{a n }中,若a 2n -a 2n -1=p (n ≥2,n ∈N *,p 为常数),则{a n }称为“等方差数列”.下列对“等方差数列”的判断,其中正确的为()A .若{a n }是等方差数列,则{a 2n }是等差数列B .若{a n }是等方差数列,则{a 2n }是等方差数列C .{(-1)n }是等方差数列D .若{a n }是等方差数列,则{a kn }(k ∈N *,k 为常数)也是等方差数列12.设f (x )=x a ·cos x ,x ∈π6,π3的最大值为M ,则()A .当a =-1时,M <3B .当a =2时,M <33C .当a =1时,M >32D .当a =3时,M <12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则a n =________.14.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (1,f (1))处的切线方程为x +y =0,则实数a =________.15.已知等差数列{a n }的前n 项和为S n =pn 2-2n +q (p ,q ∈R ,n ∈N *),则q =______;若a 1与a 5的等差中项为8,则p +q =________.16.设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab 等于________.四、解答题(本题共6小题,共70分)17.(10分)在等差数列{a n}中,已知a1+a2+a3=21,a1a2a3=231.(1)求该数列中a2的值;(2)求该数列的通项公式a n.18.(12分)(1)求曲线y=1x在点(-1,-1)处的切线方程;(2)求经过点(4,0)且与曲线y=1x相切的直线方程.19.(12分)设f(x)=a ln x+12x-32x+1,曲线y=f(x)在点(1,f(1))处取得极值.(1)求a的值;(2)求函数f(x)的单调区间和极值.20.(12分)设数列{a n}满足:a1=1,且2a n=a n+1+a n-1(n≥2),a3+a4=12.(1)求{a n}的通项公式;(2)n项和.21.(12分)已知数列{a n}的前n项和为S n,a1=1,a2=13,a na n+1=2a n+1(n∈N*且n≥2).(1)(2)n项和T n.22.(12分)已知a∈R,函数f(x)=(-x2+ax)e x(x∈R).(1)当a=2时,求函数f(x)的单调区间;(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.人教版高中数学选择性必修第二册全册模块综合检测1(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.数列{a n }满足a n +1=3a n +1,a 1=1,则此数列的第3项是()A .13B .10C .7D .4A解析:因为a n +1=3a n +1,a 1=1,所以a 2=3a 1+1=3×1+1=4,所以a 3=3a 2+1=3×4+1=13.故选A .2.{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =()A .-2B .-12C .12D .2B解析:∵a 7-2a 4=-1,∴a 3+4d -2(a 3+d )=-1,∴4d -2d =-1,∴d =-12.3.已知函数f (x )=3x 2+2,则f ′(5)=()A .15B .30C .32D .77B解析:依题意f ′(x )=6x ,所以f ′(5)=30.故选B .4.设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则S 6=()A .-63B .-21C .21D .63B解析:设数列{a n }的公比为q ,∵a 1+a 2=-1,a 1-a 3=-3,1+a 1q =-1,1-a 1q 2=-3,1=1,=-2,∴S 6=a 1(1-q 6)1-q =1-643=-21.故选B .5.函数f (x )=xx 2+1的单调递增区间是()A .(-∞,-1)B .(-1,1)C .(1,+∞)D .(-∞,-1)和(1,+∞)B解析:f (x )的定义域为R ,且f ′(x )=x 2+1-2x ·x (x 2+1)2=1-x 2(x 2+1)2=(1+x )(1-x )(x 2+1)2,所以当-1<x <1时,f ′(x )>0,f (x )单调递增,所以f (x )的单调递增区间为(-1,1).故选B .6.数列{a n }满足a 1=1,log 2a n +1=log 2a n +1(n ∈N *),它的前n 项和为S n ,则满足S n >1025的最小n 值是()A .9B .10C .11D .12C 解析:数列{log 2a n }是以0为首项,公差为1的等差数列,log 2a n =0+(n -1)×1=n -1,a n=2n -1,Sn=1+2+22+23+…+2n -1=1-2n1-2=2n -1>1025,2n >1026.因为210=1024,211=2048,所以,最小n 值是11.选C .7.函数f (x )=ln xx +1的图象大致是()C解析:由f (x )=ln xx +1,得f ′(x )=1+1x -ln x(x +1)2(x >0).令g (x )=1+1x-ln x ,则g ′(x )=-1x 2-1x =-1+x x 2<0,所以g (x )在(0,+∞)上单调递减.又g (e)=1e >0,g (e 2)=1+1e 2-ln e 2=1e 2-1<0,所以存在x 0∈(e ,e 2),使得g (x 0)=0,所以当x ∈(0,x 0)时,g (x )>0,f ′(x )>0;当x ∈(x 0,+∞)时,g (x )<0,f ′(x )<0.所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.故选C .8.函数f (x )=ln x +ax 有小于1的极值点,则实数a 的取值范围是()A .(0,1)B .(-∞,-1)C .(-1,0)D .(-∞,-1)∪(0,+∞)B解析:因为f(x)=ln x+ax,所以函数定义域为{x|x>0}.由f′(x)=1x+a=0,得a≠0,x=-1a.又函数f(x)=ln x+ax有小于1的极值点,所以-1a<1且a<0,所以a<-1.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.过点P(2,-6)作曲线f(x)=x3-3x的切线,则切线方程可能是()A.3x+y=0B.24x-y-54=0C.9x-y-24=0D.12x-y-24=0AB解析:∵y′=3x2-3.设曲线的切点为(x0,y0),则k=3x20-3,y0=x30-3x0.∴切线方程为y-(x30-3x0)=(3x20-3)(x-x0).又切线经过点P(2,-6),则-6-(x30-3x0)=(3x20-3)(2-x0),解得x0=0或x0=3,∴切点为(0,0)时,切线方程为3x+y=0;切点为(3,18)时,切线方程为24x-y-54=0.10.记S n为等差数列{a n}的前n项和.若a1+3a5=S7,则以下结论一定正确的是() A.a4=0B.S n的最大值为S3C.S1=S6D.|a3|<|a5|AC解析:设等差数列{a n}的公差为d,则a1+3(a1+4d)=7a1+21d,解得a1=-3d,所以a n=a1+(n-1)d=(n-4)d,所以a4=0,故A正确;因为S6-S1=5a4=0,所以S1=S6,故C正确;由于无法确定d的正负,故S3可能为最大值,也可能为最小值,故B不正确;因为a3+a5=2a4=0,所以a3=-a5,即|a3|=|a5|,故D不正确.故选AC.11.在数列{a n}中,若a2n-a2n-1=p(n≥2,n∈N*,p为常数),则{a n}称为“等方差数列”.下列对“等方差数列”的判断,其中正确的为()A.若{a n}是等方差数列,则{a2n}是等差数列B.若{a n}是等方差数列,则{a2n}是等方差数列C.{(-1)n}是等方差数列D.若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)也是等方差数列ACD解析:对于A,{a n}是等方差数列,可得a2n-a2n-1=p(n≥2,n∈N*,p为常数),即有{a2n}是首项为a21,公差为d的等差数列,故正确;对于B,例如:数列{n}是等方差数列,但是数列{n}不是等方差数列,所以B不正确;对于C,数列{(-1)n}中,a2n-a2n-1=[(-1)n]2-[(-1)n-1]2=0(n≥2,n∈N),所以数列{(-1)n}是等方差数列,故C正确;对于D,数列{a n}中的项列举出来是:a1,a2,…,a k…,a2k,…,数列{a kn}中的项列举出来是:a k,a2k,a3k,….∵a2kn+k-a2kn+k-1=a2kn+k-1-a2kn+k-2=…=a2kn+1-a2kn=p,∴a2kn+k-a2kn=(a2kn+k-a2kn+k-1)+(a2kn+k-1-a2kn+k-2)+…+(a2kn+1-a2kn)=kp,∴a2k(n+1)-a2kn=kp,所以,数列{a kn}是等方差数列,故D 正确.故选ACD.12.设f(x)=x a·cos x,x∈π6,π3的最大值为M,则()A.当a=-1时,M<3B.当a=2时,M<33C.当a=1时,M>32D.当a=3时,M<12AB解析:对于选项A,当a=-1时,f(x)=cos xx在区间π6,π3上递减,所以M=cosπ6π6=33π<3,故选项A正确.对于选项B,当a=2时,f(x)=x2·cos x,则f′(x)=x cos x(2-xtanx)>0,∴f(x)在区间π6,π3上递增,即M=π218<33,故选项B正确.对于选项C,当a=1时,x<tan x恒成立,所以f(x)=x cos x<tan x cos x=sin x≤32,所以M<32,故选项C 错误.对于选项D,当a=3时,f(x)=x3·cos x,则f′(x)=x2cos x(3-xtan x)>0,∴f(x)在区间π6,π3上递增,∴M=12·>12,故选项D错误.故选AB.三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}的前n项和为S n,a1=9,S99-S55=-4,则a n=________.-2n+11解析:设公差为d,因为S99-S55=-4,所以4d-2d=-4,即d=-2.所以a n=a1+(n-1)d=9-2(n-1)=-2n+11.14.设函数f(x)=x3+ax2,若曲线y=f(x)在点P(1,f(1))处的切线方程为x+y=0,则实数a=________.-2解析:因为点P(1,f(1))在该切线上,所以f(1)=-1,则f(1)=1+a=-1,解得a=-2.15.已知等差数列{a n}的前n项和为S n=pn2-2n+q(p,q∈R,n∈N*),则q=______;若a1与a5的等差中项为8,则p+q=________.02解析:由等差数列的性质可得q=0.又a1与a5的等差中项为8,所以a1+a5=16,即S5=(a1+a5)×52=40,所以25p-10=40,解得p=2,即p+q=2+0=2.16.设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab 等于________.-1解析:验证发现,当x =1时,将1代入不等式有0≤a +b ≤0,所以a +b =0,当x =0时,可得0≤b ≤1,结合a +b =0可得-1≤a ≤0.令f (x )=x 4-x 3+ax +b ,即f (1)=a +b =0.又f ′(x )=4x 3-3x 2+a ,f ′′(x )=12x 2-6x ,令f ′′(x )>0,可得x >12,则f ′(x )=4x 3-3x 2+a 在0,12上递减,在12,+∞上递增.又-1≤a ≤0,所以f ′(0)=a <0,f ′(1)=1+a ≥0.又x ≥0时恒有0≤x 4-x 3+ax +b ,结合f (1)=a +b =0知,1必为函数f (x )=x 4-x 3+ax +b 的极小值点,也是最小值点.故有f ′(1)=1+a =0,由此得a =-1,b =1.所以ab =-1.四、解答题(本题共6小题,共70分)17.(10分)在等差数列{a n }中,已知a 1+a 2+a 3=21,a 1a 2a 3=231.(1)求该数列中a 2的值;(2)求该数列的通项公式a n .解:(1)由等差数列性质得a 1+a 2+a 3=3a 2=21,∴a 2=7.(2)设等差数列公差为d ,∴a 1a 2a 3=(a 2-d )a 2·(a 2+d )=7(7-d )(7+d )=7(49-d 2)=231.解得d =±4,∴a n =a 2+(n -2)d ,即a n =4n -1或a n =-4n +15.18.(12分)(1)求曲线y =1x在点(-1,-1)处的切线方程;(2)求经过点(4,0)且与曲线y =1x 相切的直线方程.解:∵y =1x ,∴y ′=-1x2.(1)当x =-1时,得在点(-1,-1)处的切线的斜率为-1,∴切线方程为y +1=-(x +1),即x +y +2=0.(2)设切点为x 0,1x 0,则切线的斜率为-1x 20,∴切线方程为y -1x 0=-1x 20(x -x 0),∵切线过点(4,0),∴-1x 0=-1x 20(4-x 0),解得x 0=2,∴所求切线方程为y -12=-14(x -2),即x +4y -4=0.19.(12分)设f (x )=a ln x +12x -32x +1,曲线y =f (x )在点(1,f (1))处取得极值.(1)求a 的值;(2)求函数f (x )的单调区间和极值.解:(1)因为f (x )=a ln x +12x -32x +1,所以f ′(x )=a x -12x 2-32.由f ′(1)=0,可得a -2=0,解得a =2.(2)由(1)可知,f (x )=2ln x +12x -32x +1,f ′(x )=-(3x -1)(x -1)2x 2.令f ′(x )=0,解得x 1=13,x 2=1,又因为函数f (x )定义域为(0,+∞),所以f (x )(1,+∞)故f (x )的极大值为f (1)=0,f (x )的极小值为2-2ln 3.20.(12分)设数列{a n }满足:a 1=1,且2a n =a n +1+a n -1(n ≥2),a 3+a 4=12.(1)求{a n }的通项公式;(2)n 项和.解:(1)由2a n =a n +1+a n -1(n ≥2)可知数列{a n }是等差数列,设公差为d ,因为a 1=1,所以a 3+a 4=a 1+2d +a 1+3d =12,解得d =2,所以{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)知1a n a n +2=1(2n -1)(2n +3)=n 项和S n …++13-12n +1-=13-n +1(2n +1)(2n +3).21.(12分)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=13,a na n +1=2a n +1(n ∈N *且n ≥2).(1)(2)n 项和T n .(1)证明:因为a na n +1=2a n +1,所以a n =a n +1+2a n a n +1,即a n -a n +1=2a n a n +1,等式两边同时除以a n a n +1,得1a n +1-1a n=2(n ≥2),且1a 2-1a 1=2,1,公差为2的等差数列.(2)解:由(1)得1a n =2n -1,3na n =(2n -1)3n ,则T n =1×3+3×32+…+(2n -1)3n ①,3T n =1×32+…+(2n -3)3n +(2n -1)3n +1②,①-②得-2T n =3+2(32+…+3n )-(2n -1)3n +1=3+2×9×(1-3n -1)1-3-(2n -1)3n +1=2(1-n )3n +1-6,故T n =(n -1)3n +1+3.22.(12分)已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ).(1)当a =2时,求函数f (x )的单调区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.解:(1)a =2时,f (x )=(-x 2+2x )·e x 的导数为f ′(x )=e x (2-x 2).由f′(x)>0,解得-2<x<2,由f′(x)<0,解得x<-2或x> 2.即有函数f(x)的单调递减区间为(-∞,-2),(2,+∞),单调递增区间为(-2,2).(2)函数f(x)=(-x2+ax)·e x的导数为f′(x)=e x[a-x2+(a-2)x].由函数f(x)在(-1,1)上单调递增,则有f′(x)≥0在(-1,1)上恒成立,即为a-x2+(a-2)x≥0,即有x2-(a-2)x-a≤0,则有1+(a-2)-a≤0且1-(a-2)-a≤0,解得a≥3 2,则a的取值范围为3 2,+。
人教A版高中数学必修一综合检测试卷(含解析)
人教A版高中数学必修一综合检测试卷(含解析)综合检测时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设全集I={x|-3<x<3,x∈Z},A={1,2},B={-2,-1,2},则A∪∁IB等于( ) A.{1}B.{1,2} C.{2} D.{0,1,2} 解析:∵x∈Z,∴I={-2,-1,0,1,2} ∴∁IB={0,1} ∴A∪∁IB={0,1,2}.答案:D 2.函数y=1x+log2(x +3)的定义域是( ) A.R B.(-3,+∞) C.(-∞,-3) D.(-3,0)∪(0,+∞) 解析:函数定义域x≠0x+3>0∴-3<x<0或x>0. 答案:D 3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A.y=1x B.y=e-x C.y=-x2+1 D.y=lg |x| 解析:偶函数的有C、D两项,当x>0时,y=lg |x|单调递增,故选C. 答案:C 4.设x0是方程ln x+x=4的解,则x0属于区间( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:设f(x)=ln x+x-4,则有f(1)=ln 1+1-4=-3<0.f(2)=ln 2+2-4= ln 2-2<1-2=-1<0,f(3)=ln 3+3-4=ln 3-1>1-1=0. ∴x0∈(2,3).答案:C 5.3log34-27 -lg 0.01+ln e3=( ) A.14 B.0 C.1 D.6 解析:原式=4-3272-lg 0.01+3=7--lg 10-2=9-9=0. 答案:B 6.若y=log3x的反函数是y=g(x),则g(-1)=( ) A.3 B.-3 C.13 D.-13 解析:由题设可知g(x)=3x,∴g(-1)=3-1=13. 答案:C 7.若实数x,y满足|x|-ln1y=0,则y关于x的函数的图象大致是( ) 解析:由|x|=ln1y,则y=1ex,x≥0ex,x<0. 答案:B 8.已知f(x)=log x,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数为( ) A.0 B.1 C.2 D.不确定解析:在同一坐标系中作函数f(x),g(x)的图象(图略),从而判断两函数交点个数.答案:B 9.函数f(x)=--的零点的个数为( ) A.0 B.1 C.2 D.3 解析:函数的定义域为{x|x≠1},当x>1时f(x)<0,当x<1时f(x)>0,所以函数没有零点,故选A. 答案:A 10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售700台,则下列函数模型中能较好地反映销量y与投放市场月数x之间的关系的是( ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:代入验证即可.答案:B 11.若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为( ) A.1 B.2 C.3 D.4 解析:设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0. 因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A. 答案:A 12.某公司在甲、乙两地销售一种品牌车,利润(单价:万元)分别为L1=5.06x -0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在两地共销售15辆车,则能获得的最大利润为( ) A.45.666万元 B.45.6万元 C.45.56万元 D.45.51万元解析:设在甲地销售x辆,在乙地则销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x) =-0.15x2+3.06x+30(0≤x≤15) ∴当x=10时,S有最大值45.6万元.答案:B 二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=2x-3,则f(-2)=________. 解析:∵f(x)为定义在R上的偶函数,∴f(-x)=f(x),∴f(-2)=f(2)=22-3=1. 答案:1 14.已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围为________.解析:集合A有为∅和A中只有一个元素两种情况, a=0时,A={23}满足题意,a≠0时,则由Δ=9-8a≤0得a≥98. 答案:a≥98或a=0 15.用二分法求方程ln x=1x在[1,2]上的近似解时,取中点c=1.5,则下一个有根区间为________.解析:令f(x)=ln x-1x,则f(1)=-1<0,f(2)=ln 2-12=ln 2-ln e12>0, f(1.5)=f(32)=ln32-23=ln32-ln e23 e23=3e2>32,∴ln e23>ln32,即f(1.5)<0. ∴下一个有根区间为(1.5,2).答案:(1.5,2) 16. 给出下列四个命题:①a>0且a≠1时函数y=logaax与函数y=alogax表示同一个函数.②奇函数的图象一定通过直角坐标系的原点.③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到.④若函数f(x)的定义域为[0,2],则函数f(2x)定义域为[0,4].其中正确命题的序号是________(填上所有正确命题的序号) 解析:①两函数定义域不同,y =logaax定义域为R,y=alogax定义域(0,+∞).②如果函数在x=0处没有定义,图象就不过原点,如y=1x. ③正确.④f(x)定义域[0,2]∴f(2x)定义域0≤2x≤2即0≤x≤1,∴f(2x)定义域为[0,1].答案:③ 三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知A={x|x2+2x-8=0}, B={x|log2(x2-5x+8)=1}, C={x|x2-ax+a2-19=0}.若A∩C=∅,B∩C≠∅,求a的值.解析:A={2,-4},B={2,3},由A∩C=∅知2∉C,-4∉C,又由B∩C≠∅知3∈C,∴32-3a+a2-19=0解得a=-2或a=5,当a=-2时,C={3,-5},满足A∩C=∅,当a=5时,C={3,2},A∩C={2}≠∅,(舍去),∴a=-2. 18.(本小题满分12分)已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R) (1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式. (2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.解析:(1)因为f(-1)=0,所以a-b+1=0 因为方程f(x)=0有且只有一个根,∴Δ=b2-4a=0,∴b2-4(b-1)=0,即b=2,a=1,∴f(x)=(x+1)2. (2)∵g(x)=f(x)-kx=x2+2x+1-kx =x2-(k-2)x+1 =(x-k-22)2+1--当k-22≥2或k-22≤-2时即k≥6或k≤-2时,g(x)是单调函数. 19.(本小题满分12分)已知f(x)是定义在(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)-f(y). (1)求f(1)的值; (2)若f(6)=1,解不等式f(x+3)+f1x≤2. 解析:(1)∵f(x)是(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f xy=f(x)-f(y),∴f(1)=f(11)=f(1)-f(1)=0. (2)若f(6)=1,则f(x+3)+f 1x≤2=1+1=f(6)+f(6),∴f(x+3)-f(6)≤f (6)-f 1x,即f x+36≤f(6x),∴0<x+36≤6x,解得x≥335. ∴原不等式的解集为{x|x≥335}. 20.(本小题满分12分)已知函数f(x)=mx+n1+x2是定义在(-1,1)上的奇函数,且f(12)=25. (1)求实数m,n的值; (2)用定义证明f(x)在(-1,1)上为增函数; (3)解关于t的不等式f(t-1)+f(t)<0. 解析:(1)∵f(x)为奇函数,∴f(-x)=-f(x),即-+n1+-=-mx+n1+x2. ∴n=0. 又∵f12=12m1+122=25,∴m=1.(2)由(1)得,f(x)=x1+x2. 设-1<x1<x2<1,则f(x1)-f(x2) =x11+x21-x21+x22=+-+++=--++-1<x1<x2<1,∴x1-x2<0,1-x1x2>0,1+x21>0,1+x22>0,∴f(x1)-f(x2)<0. ∴f(x)在(-1,1)上为增函数.(3)∵f(x)是定义在(-1,1)上的奇函数,由f(t-1)+f(t)<0,得f(t)<-f(t-1)=f(1-t).又∵f(x)在(-1,1)上为增函数,∴-1<t<1,-1<1-t<1,t<1-t,解得0<t<12. 21.(本小题满分13分)某医疗研究所开发了一种新药,如果成人按规定的剂量服用,则服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线. (1)写出服药后y 与t之间的函数关系式; (2)据测定,每毫升血液中含药量不少于4μg时治疗痢疾有效.假设某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药时间(共4次)效果更佳?解析:(1)依题意,得y=6t,0≤t≤1,-23t+203,1<t≤10. (2)设第二次服药在第一次服药后t1小时,则-23t1+203=4. 解得t1=4,因而第二次服药应在11:00. 设第三次服药在第一次服药后t2小时,则此时血液中含药量应为前两次服药后的含药量的和,即-23t2+203-23(t2-4)+203=4. 解得t2=9小时,故第三次服药应在16:00. 设第四次服药在第一次服药后t3小时(t3>10),则此时第一次服进的药已吸收完,血液中含药量为第二、三次的和,即-23(t3-4)+203-23(t3-9)+203=4. 解得t3=13.5小时,故第四次服药应在20:30. 22.(本小题满分13分)已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0, (1)证明: f(x)为奇函数; (2)证明:f(x)在[-1,1]上是增加的. (3)设f(1)=1,若f(x)<m-2am+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.解析:(1)令x=y=0,∴f(0)=0 令y=-x,f(x)+f(-x)=0 ∴f(-x)=-f(x),∴f(x)为奇函数.(2)∵f(x)是定义在[-1,1]上的奇函数,令-1≤x1<x2≤1,则f(x2)-f(x1)=f(x2-x1)>0,∴f(x)在[-1,1]上是增加的. (3)f(x)在[-1,1]上是增加的,f(x)max=f(1)=1,使f(x)<m-2am+2对所有x∈[-1,1]恒成立,只要m-2am+2>1,即m-2am+1>0,令g(a)=m-2am+1=-2am+m+1,要使g(a)>0时,a∈[-1,1]恒成立,则-,,即1+3m>0,1-m>0,∴-13<m<1. ∴实数m的取值范围是(-13,1).。
人教版高中数学新教材必修第一册综合测试题(基础,含多选题)
人教版高中数学新教材必修第一册综合测试题第一部分选择题(共60分)一、单项选择题:(共8小题,每题5分,共40分. 在每个小题给出的四个选项中,只有一项是符合题目要求的 )1.设集合{}1,2,3,4,5U =,,{1,3,5}A =,{2,3,5}B =,则()U C A B 等于( )A .{3, 5}B .{ 4 }C .{1,2,4}D .∅2.设x∈R,则“05x <<” 是“02x <<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.在下列四组函数中,()f x 与()g x 表示同一函数的是( )A .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩B .2(),()x f x x g x x==C .()1(),()1()f x x x g x x x =+∈=+∈R ZD .2(),()f x x g x ==4. 若c b a >>,则下列不等式成立的是( )A .22a b >B .a c b c +>+C .bc ac >D .bc ac <5. 函数(){}1,1,1,2f x x x =+∈-的值域是 ( ).A ( 0,2,3 ) .B 03y ≤≤ .C {}0,2,3 .D []0,36.若不等式x 2+kx +1<0的解集为空集,则k 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)7. 若0,0>>y x ,且28x y +=,则xy 的最大值是( )A .2B .4C .8D .16 8.甲、乙两同学同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均分别相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定 二、 多项选择题: (共4题,每题5分,共20分. 在每个小题给出的四个选项中,有多个项符合题目要求. 全部选对的得5分,选对但不全的得3分,未选或有选错的得0分)9.已知集合}01|{2=-=x x A ,则下列式子表述正确的有( )A .A ∈1B .A ∈-}1{C .A ⊆φD .A ⊆-}1,1{ 10.下列命题为真命题的是( )A .2,x R x x ∀∈≥B .0,0a b a ==若则C .0,0a a b ==若则D .菱形的对角线互相平分 11. 以下四个不等式, 其中是a 1<b1成立的充分条件的是( ) A .a<0<b B .b<a<0 C .b<0<a D .0<b<a ,12.下列结论正确的是( ) A. 1+2x x ≥ B. 11+3-1x x x >时,的最小值是 C. +y=4x 时,y x 的最大值4 D. 0 a ≠时,2212a a ≥+第二部分非选择题(90分)三.填空题: (本题共4个小题,每小题5分,共20分)13. 函数11y x =-的定义域是__________. 14. 满足{}{}1,21,2,3B =的集合B 的个数为15. 不等式225413x x x -+<-+的解集是__________.16. 已知函数()32,f x x =+若()8,f a = 则实数a 的值是_________.四、解答题(共70分,解答必须写出必要的文字说明、证明过程或演算步骤)(){}{}17. 10 121,25P x a x a Q x x =+≤≤+=-≤<分若(1)当a =3时,求(C R P) ∩Q ;(2)0,a P Q a >⊆若,求的取值范围18.(12分) 已知命题P: 2,2,x R x x m ∀∈≠-+命题q: 2,210x R x x m ∃∈+--=(1) 写出命题P ⌝(2)若命题P 为假命题,命题q 为真命题,求实数m 的取值范围19.(12分) 已知集合{}{}2A 22,-8+15=0x a x a B x x x =-≤≤+=(1)当3a =时,A B 判断集合与的关系;(2)x B ∈若“”是x A ∈“”的充分不必要条件,求实数a 的取值范围20.(12分) 已知两个正实数,x y 满足141x y+= (1) 求4y x +的最小值; (2) 若不等式234y x m m +≥-恒成立,求实数m 的取值范围21.(12分)已知函数2()4f x x ax =-++,()5g x x =-+.(1)当1a =时,比较()()f x g x 与的大小;(2)若不等式()()f x g x ≥的解集包含[1,2],求a 的取值范围。
(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案
第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。
人教版高一数学必修一期末综合练习题(含答案)
人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。
a>b>cB。
a>c>bC。
c>a>bD。
c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。
0B。
1C。
2D。
-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。
存在实数x,使得x^2+x≤0B。
对于任意实数x,x^2+x≤0C。
存在实数x,使得x^2+x<0D。
对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。
-1/3B。
-2/3C。
1/3D。
2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。
(0,π/12]B。
(0,π/6]C。
(0,π/4]D。
(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。
向右平移π个单位B。
向左平移π个单位C。
向右平移π/2个单位D。
向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。
y=1/xB。
y=x^2C。
y=√xD。
y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。
-8/9B。
-7/9C。
7/9D。
8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。
充分必要条件B。
必要不充分条件C。
充分不必要条件D。
既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。
(-1,2]B。
[0,2]C。
(0,∞)D。
(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。
新课标人教版必修5高中数学综合检测试卷附答案解析
解题技巧
认真审题,理解 题意
运用所学知识, 分析问题
结合实际,联系 生活
细心计算,确保 答案准确
易错点提醒
计算错误:学生可 能因为粗心或计算 能力不足而犯错
概念混淆:学生对 相关概念理解不清 晰,导致填空题答 案错误
逻辑推理错误:学生 在解题过程中,可能 因为逻辑推理不严密 而导致答案错误
审题不清:学生可能因 为审题不仔细,导致理 解题意出现偏差,从而 影响答案的准确性
难度分布:试卷难度适中,注重基础知识的考查,同时也有一定的难度和区分度。
题型设计:本试卷包括选择题、填空题、解答题等多种题型,考查学生的不同能力。
考查重点:本试卷重点考查学生的数学基础知识和应用能力,以及学生的数学思维和解题技 巧。
难度分析
基础题占比: 40%
中档题占比: 40%
难题占比:20%
题目设计注重考查 学生的数学析
题目类型:单项选择题
题目数量:10道
题目难度:中等
解析:对每道题目进行详细的 解析,包括解题思路、方法、 答案等
解题技巧
掌握基础知识:选择题通常考察基础知识点,应熟练掌握相关概念和公式。 仔细审题:读懂题目要求,找出关键信息,避免因误解而选错答案。
排除法:对于一些难以确定答案的选择题,可以采用排除法,排除明显错误的选项。
善于利用选项:有些选择题的答案可以通过代入选项进行验证,从而快速找到正确答案。
易错点提醒
选项中涉及到的知识点是否准确掌握 选项中的陷阱和迷惑性词语是否能够识别 计算和分析过程中是否有遗漏或错误 解题思路和方法是否正确且符合题意
题目类型及解析
题目类型:填空题 题目难度:中等 题目数量:10道 解析:针对每道题目给出详细的解题思路和答案解析
(人教版B版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)
(人教版B 版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B =U ð( ) A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是( ) A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( )A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且厔,则N 中元素的个数为( ) A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+„的否定是( ) A .32,10x x x ∃∈-+R „B .32,10x x x ∃∈-+R …C .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是( ) A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =…,则M N =I ( ) A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞U9.设集合{|0}M x x m =-„,{}2|(1)1,N y y x x ==--∈R .若M N =∅I ,则实数m 的取值范围是( ) A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-UC .(2,1)[0,1]--UD .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为( )A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是( ) A .01a 剟B .1a <C .1a „D .01a <„或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ð,则x A ∈是x sB ∈ð的条件是__________. 15.关于x 的不等式2043x ax x +++>的解集为(3,1)(2,)--+∞U 的充要条件是__________. 16.已知集合{|||1}A x x a =-„,{}2|540B x x x =-+…,若A B =∅I ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<. (1)当2a =时,求A B ⋂; (2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B =I ,且A B A =U ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-„. (1)若()P S P ⊆U ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、 1.【答案】A【解析】由题意得uA {0,4}=ð,又{2,4}B =,所以(){0,2,4}uA B =U ð,故选A . 2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=. 3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性). 4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-,1ba=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”. 7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确. 又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞I .故选B . 9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅I ,1m ∴-<,故选D . 10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =-U ,[1,0)A B =-I ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃U I ð,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、 13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分【解析】由已知得S A B ⊆ð,两边取补集,有()S S S A B ⊇痧?,即S A B ⊇ð,所以S x B x A ∈⇒∈ð,反之,不一定成立,故x ∈A 是S x B ∈ð的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞U .故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或剠,A B =∅Q I ,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x =I ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩…„此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在; 当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩…„此时13a <„.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}-U .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴ 5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=, 显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a„,||1a ∴…. “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<. 20.【答案】A B A =U ∵,B A ⊆∴, 又A B =∅I ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得m „∴实数m的取值范围是|m m ⎧⎪⎨⎪⎪⎩⎭„21.【答案】{}2|320{|12}B x x x x x =∈-+=R 剟?,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩…剟……解得22a -<„. 22.【答案】由28200x x --≤,得210x -剟,所以{|210P x x =-≤≤. 由|1|x m -≤,得11m x m -+剟.所以{|11}S x m x m =-+≤≤. (1)要使()P S P ⊆U ,则S P ⊆ ①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩……„解得03m 剟.综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23A a ab =+,24B ab b =-,则A ,B 的大小关系是( ) A .A B „B .A B …C .A B <或A B >D .A B >2.下列结论正确的是( ) A .若ac bc >,则a b > B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D .a b <3.下列变形是根据等式的性质的是( ) A .由213x -=得24x = B .由2x x =得1x = C .由29x =得x=3 D .由213x x -=得51x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <5.已知||a b a <<,则( )A .11a b> B .1ab <C .1ab> D .22a b >6.若41x -<<,则222()1x x f x x -+=-( ) A .有最小值2B .有最大值2C .有最小值2-D .有最大值2-7.已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .58.已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121234x x x x +-=,那么b 的值为( ) A .5B .5-C .4D .4-9.不等式22120x ax a --<(其中0a <)的解集为( ) A .(3,4)a a -B .(4,3)a a -C .(3,4)-D .(2,6)a a10.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数()*x x ∈N 为二次函数的关系(如图),则每辆客车营运_____年,营运的年平均利润最大( )A .3B .4C .5D .611.若正数x ,y 满足35x y xy +=,则34x y +的最小值是( ) A .245B .285C .5D .612.已知a b >,二次三项式220ax x b ++…对于一切实数x 恒成立,又0x ∃∈R ,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.当1x >时,不等式11x a x +-≥恒成立,则实数a 的取值范围为__________. 14.若0a b <<,则1a b -与1a的大小关系为__________.15.若正数a ,b 满足3ab a b =++,则ab 的取值范围是__________.16.已知关于x 的一元二次方程2320x x m -+=有两个不相等的实数根1x 、2x .若1226x x -=,则实数m 的值为__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式(组):(1)2(2)01x x x +⎧⎨⎩>,<;(2)262318x x x --<„.18.(本小题满分12分)已知a ,b ,c 为不全相等的正实数,且1abc =.111a b c++<.19.(本小题满分12分)已知21()1f x x a x a ⎛⎫=-++ ⎪⎝⎭.(1)当12a =时,解不等式()0f x „; (2)若0a >,解关于x 的不等式()0f x „.20.(本小题满分12分)某镇计划建造一个室内面积为2800 m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?21.(未小题满分12分)设函数2()3(0)f x ax bx a =++≠. (1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值; (2)若(1)4f =,0a >,0b >,求14a b+的最小值.22.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)()(2)0a x a x -->.第二章综合测试答案解析一、 1.【答案】B【解析】()2222334240b A B a ab ab b a b ⎛⎫-=+--=-+ ⎪⎝⎭∵…,A B ∴….2.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误. 3.【答案】A【解析】A .根据等式的性质1,在等式213x -=的左右两边同时加上1,可得24x =,故本选项正确;B .在等式2x x =的左右两边同时除以x ,可得1x =,但是当0x =时,不成立,故本选项错误;C .将等式29x =的左右两边开平方,可得3x =±,故本选项错误;D .根据等式的性质1,在等式213x x -=的左右两边同时加上(31)x +,可得561x x =+,故本选项错误. 4.【答案】D【解析】根据题图可知,21a --<<,01b <<,所以||||b a <. 5.【答案】D【解析】由||a b a <<,可知0||||b a <„,由不等式的性质可知22||||b a <,所以22a b >. 6.【答案】D【解析】2221()(1)11x x f x x x x -+==-+--.又41x -∴<<,10x -∴<,(1)0x --∴> 1()(1)2(1)f x x x ⎡⎤=---+-⎢⎥--⎣⎦∴„当且仅当111x x -=-,即0x =时等号成立.7.【答案】C【解析】2a b +=∵,12a b+=∴∴14142a bab a b +⎛⎫+=+⋅⎪⎝⎭52592222a b b a ⎛⎫=+++= ⎪⎝⎭… (当且仅当22a b b a =,即423b a ==时,等号成立) 故14y a b=+的最小值为92.8.【答案】A【解析】12,x x ∵是关于x 的方程230x bx +-=的两根,12x x b +=-∴,123x x =-, 121234x x x x +-=∵,94b -+=∴,解得5b =.9.【答案】B【解析】方程22120x ax a --=的两根为4a ,3a -,且43a a -<,43a x a <<-∴. 10.【答案】C【解析】求得函数式为2(6)11y x =--+,则营运的年平均利润2512122y x x x ⎛⎫=-+-= ⎪⎝⎭„, 当且仅当25x x=时,取“=”号,解得5x =. 11.【答案】C【解析】35x y xy +=∵,13155y x+=∴1334(34)1(34)55x y x y x y y x ⎛⎫+=+⨯=++ ⎪⎝⎭∴3941213555555x y y x =++++=…当且仅当31255x y y x =,即1x =,12y =时等号成立. 12.【答案】D【解析】a b ∵>,二次三项式220ax x b ++≥对于一切实数x 恒成立, 0a ∴>,且440ab ∆=-„,1ab ≥∴.再由0x ∃∈R ,使20020ax x b ++=成立,可得0∆…,1ab ∴…,又a b >,1a >.2224231101a a b a a a b a a a a+++==---∴> 2242484243624222211*********a a a a a a a a a a a a a a a a ⎛⎫+++ ⎪⎛⎫+++⎝⎭=== ⎪-+-⎛⎫⎝⎭+-+- ⎪⎝⎭ 22222221124412a a a a a a ⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+- ⎪⎝⎭令22112a a +=>,则24231(2)4(2)44(2)444822a t t t a a t t ⎛⎫+-+-+==-+++= ⎪---⎝⎭…, 当且仅当4t =,即a 时取等.故2431a a a ⎛⎫+ ⎪-⎝⎭的最小值为8,故22a b a b +-二、13.【答案】(,3]-∞ 【解析】1x ∵>,11(1)11311x x x x +=-++=--∴….3a ∴„. 14.【答案】11a b a-< 【解析】110()()a ab ba b a a a b a a b -+-==---∵<. 11a b a-∴< 15.【答案】[9,)+∞【解析】33ab a b =++…,所以1)0…,3,所以9ab ….16.【答案】2-【解析】由题意知123x x +=,1226x x -=∵,即12236x x x +-=, 2336x -=∴,解得21x =-,代入到方程中,得1320m ++=,解得2m =-. 三、17.【答案】(1)原不等式组可化为 2 0,11,x x x -⎧⎨-⎩<或><<即01x <<,所以原不等式组的解集为{|01}x x <<. (2)原不等式等价于22623,318,x x x x x ⎧--⎨-⎩≤<即2260,3180,x x x x ⎧--⎨--⎩<…因式分解,得(3)(2)0,(6)(3)0,x x x x -+⎧⎨-+⎩<…所以 2 3,36,x x -⎧⎨-⎩或<<剠所以132x --<≤或36x <„.所以不等式的解集为{|3236}x x x --<≤或≤<.18.【答案】证明:因为a ,b ,c 都是正实数,且1abc =,所以112a b +…11b c +=…11a c +=…以上三个不等式相加,得1112a b c ⎛⎫++ ⎪⎝⎭…,即111a b c++因为a,b,c不全相等,所以上述三个不等式中的“=”不同时成立.111a b c++<.19.【答案】(1)当12a=时,有不等式25()102f x x x=-+≤,1(2)02x x⎛⎫--⎪⎝⎭∴„,122x∴剟,即所求不等式的解集为1,22⎡⎤⎢⎥⎣⎦.(2)1()()0f x x x aa⎛⎫=--⎪⎝⎭∵„,0a>且方程1()0x x aa⎛⎫--=⎪⎝⎭的两根为1x a=,21xa=,∴当1aa>,即011a<<,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa<,即1a>,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa=,即1a=,不等式的解集为{1}.20.【答案】设矩形温室的左侧边长为 ma,后侧边长为 mb,蔬菜的种植面积为2mS,则800ab=.所以(4)(2)4288082(2)808648 S a b ab b a a b=--=--+=-+-„当且仅当2a b=,即40a=,20b=时等号成立,则648S=最大值.故当矩形温室的左侧边长为40 m,后侧边长为20 m时,蔬菜的种植面积最大,最大种植面积为2648 m.21.【答案】(1)因为不等式()0f x>的解集为(1,3)-,所以1-和3是方程()0f x=的两个实根,从而有(1)30,(3)9330,f a bf a b-=-+=⎧⎨=++=⎩解得1,2,ab=-⎧⎨=⎩(2)由(1)4f=,得1a b+=,又0a>,0b>,所以1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭4559b a a b =+++… 当且仅当4b a a b =即1,32,3a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以14a b+的最小值为9. 22.【答案】(1)2560x x --+<∵,2560x x +->∴, (1)(6)0x x -+∴>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{| 6 1}x x x -<或>. (2)当0a <时,()(2)y a x a x =--的图象开口向下,与x 轴交点的横坐标为x a =,2x =,且2a <,()(2)0a x a a --∴>的解集为{|2}x a x <<.当0a =时,()(2)0a x a x --=,()(2)0a x a x --∴>无解.当0a >时,抛物线()(2)y a x a x =--的图像开口向上, 与x 轴交点的横坐标为x a =,2x =.当2a =时,不等式可化为22(2)0x ->,解得2x ≠. 当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.综上,当0a <时,不等式的解集是{|2}x a x <<; 当0a =时,不等式的解集是∅;当02a <<时,不等式的解集是{| 2}x x a x <或>; 当2a =时,不等式的解集是{|2}x x ≠; 当2a >时,不等式的解集是{|2}x x x a <或>.第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2()1f x x =+,则[(1)]f f -的值等于( ) A .2B .3C .4D .5 2.已知函数()1f x x =+,其定义域为{1,0,1,2}-,则函数的值域为( ) A .[0,3]B .{0,3}C .{0,1,2,3}D .{|0}y y …3.函数0y =的定义域是( )A .{|01}x x 剟B .{| 1 1}x x x --<或>C .{|01}x x x ≠-<且D .{}|1 0x x x ≠-≠且4.已知二次函数()y f x =满足(2)(2)f x f x +=-,且函数图像截x 轴所得的线段长为8,则函数()y f x =的零点为( ) A .2,6B .2,6-C .2-,6D .2-,6-5.若函数()y f x =的定义域是{|01}x x ≤≤,则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是( )A .1|22a a x x -⎧⎫-⎨⎬⎩⎭≤≤B .|12a x x a ⎧⎫--⎨⎬⎩⎭≤≤C .{|1}x a x a --≤≤D .1|2a x a x -⎧⎫-⎨⎬⎩⎭≤≤6.如图所示,可表示函数()y f x =的图像的只可能是( )ABCD7.已知函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,则a b +的值是( ) A .1B .1-C .1或1-D .0或18.若()f x 满足()()f x f x -=-,且在(,0)-∞上是增函数,(2)0f -=,则()0xf x <的解集是( ) A .(2,0)(0,2)-UB .(,2)(0,2)-∞-UC .(,2)(2,)-∞-+∞UD .(2,0)(2,)-+∞U9.设函数()f x 与()g x 的定义域是{|1}x x ∈≠±R ,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于( ) A .2221x x -B .211x -C .221x -D .221xx - 10.已知2()21(0)f x ax ax a =++>,若()0f m <,则(2)f m +与1的大小关系式为( ) A .(2)1f m +<B .(2)1f m +=C .(2)1f m +>D .(2)1f m +…11.函数()f x =( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知2()2f x x x =+,若存在实数t ,使()3f x t x +„对[1,]x m ∈恒成立,则实数m 的最大值是( ) A .6B .7C .8D .9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩,当[()]1f f x =时,x ∈__________.14.关于x 的方程240x x a --=有四个不相等的实数根,则实数a 的取值范围为__________.15.已知函数719()1x f x x +=+,则()f x 的图像的对称中心是__________,集合{}*|()x f x ∈=N __________.16.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数2()2||1f x x x =--.(1)利用绝对值及分段函数知识,将函数()f x 的解析式写成分段函数; (2)在坐标系中画出()f x 的图像,并根据图像写出函数()f x 的单调区间和值域.18.(本小题满分12分)已知函数()f x 对任意实数x 均有()2(1)f x f x =-+,且()f x 在区间[0]1,上有解析式2()f x x =. (1)求(1)f -和(1.5)f 的值;(2)写出()f x 在区间[2,2]-上的解析式.19.(本小题满分12分)函数2()1ax bf x x +=+是定义在(,)-∞+∞上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求实数a ,b 的值.(2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值.如有,写出最大值或最小值(无需说明理由).20.(本小题满分12分)已知定义域为R 的单调函数()f x ,且(1)f x -的图像关于点(1,0)对称,当0x >时,1()3x f x x=-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.21.(本小题满分12分)对于定义域为D 的函数()y f x =,若同时满足下列条件:①()f x在D 内单调递增或单调递减;②存在区间[,]a b D ⊆,使()f x 在[,]a b 上的值域为[,]a b ,那么称()()x D y f x =∈为闭函数.(1)求闭函数3y x =-符合条件②的区间[,]a b . (2)判断函数31()(0)4f x x x x=+>是否为闭函数?并说明理由;(3)判断函数y k =+k 的取值范围.22.(本小题满分12分)设函数()f x 的定义域为R ,当0x >时,()1f x >,对任意,x y ∈R ,都有()()()f x y f x f y +=g ,且(2)4f =. (1)求(0)f ,(1)f 的值.(2)证明:()f x 在R 上为单调递增函数.(3)若有不等式1()2f x f x x ⎛⎫+ ⎪⎝⎭g <成立,求x 的取值范围.第三章测试答案解析一、 1.【答案】D【解析】由条件知(-1)2f =,(2)5f =,故选D . 2.【答案】C【解析】将x 的值依次代入函数表达式可得0,1,2,3,所以函数的值域为{0,1,2,3},故选C . 3.【答案】C【解析】由条件知10x +≠且0x x ->,解得0x <且1x ≠-.故选C 4.【答案】C【解析】由于函数()y f x =满足(2)(2)f x f x +=-,所以直线2x =为二次函数()y f x =图像的对称轴,根据二次函数图像的性质,图像与x 轴的交点必关于直线2x =对称.又两交点间的距高为8,则必有两交点的横坐标分别为1246x =+=,2242x =-=-.故函数的零点为2-,6.故选C . 5.【答案】A【解析】由条件知01,021,x a x a +⎧⎨+⎩剟剟,又01a <<则122a ax --≤≤,故选A .6.【答案】D【解析】由函数定义可得,任意一个x 有唯一的y 与之对应,故选D . 7.【答案】B【解析】因为函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,所以21a a =-,1a =-,0b =,因此1a b +=-,故选B.8.【答案】A【解析】根据题意可知函数是奇函数,且在(,0)-∞,(0,)+∞上是增函数,对()0xf x <,分0x >,0x <进行讨论,可知解集为(2,0)(0,2)-U ,故选A.9.【答案】B【解析】1()()1f x g x x -=-∵,1()()1f x g x x ---=--∴,1()()1f xg x x +=--∴, 21122()111f x x x x =-=-+-∴,21()1f x x =-,故选B . 10.【答案】C【解析】因为2()21(0)f x ax ax a =++>,所以其图像的对称轴为直线1x =-,所以()(2)0f m f m =--<,又(0)1f =,所以(2)1f m +>,故选C .11.【答案】A【解析】由定义城可知x 因此原式化简为()f x =那么根据函数的奇偶性的定义,可知该函数是奇函数不是偶函数,故选A . 12.【答案】C【解析】由题意知,对任意[1,]x m ∈,2()2()3x t x t x +++…恒成立,这个不等式可以理解为()f x t +的图像在直线3y x =的图像的下面时x 的取值范围.要使m 最大,需使两图像交点的横坐标分别为1和m .当1x =时,3y =,代入可求得4t =-(0t =舍去).进而求得另一个交点为(8,24),故8m =.故选C. 二、13.【答案】[0,1][2,3]{5}U U【解析】因为1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩所以要满足元[()]1f f x =,需()[0,1]f x ∈,[0,1]x ∈或2[0,1]x -∈或5x =,这样解得x 的取值范围是[0,1][2,3]{5}U U .14.【答案】(0,4)【解析】原方程等价于24x x a -=,在同一坐标系内作出函数24y x x =-与函数y a =的图像,如图所示:平移直线y a =,可得当04a <<时,两图像有4个不同的公共点,相应地方程240x x a --=有4个不相等的实数根,综上所述,可得实数a 的范围为04a <<. 15.(1,7)- {13,7,5,4,3,0,1,2,3,5,11}----- 【解析】因为函数71912()711x f x x x +==+++,则()f x 的图像的对称中心为(1,7)-, 集合{|()}{13,7,5,4,3,0,1,2,3,5,11}x f x *∈=-----N 16.【答案】0【解析】因为()f x 是定义在R 上的偶函数,因此令12x =-,可知11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,分别令32x =-,52x =-,可得302f ⎛⎫= ⎪⎝⎭,502f ⎛⎫= ⎪⎝⎭,令1x =-.得(0)0f =,因此可知502f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭. 三、17.【答案】(1)22321,0()2||121,0x x x f x x x x x x ⎧--=--=⎨+-⎩<….(2)图像如图所示.单调增区间为(1,0)-,(1,)+∞, 单调减区间为(,1)-∞-,(0,1). 值域为[2,)-+∞.18.【答案】(1)由题意知(1)2(11)2(0)0f f f -=--+=-=,1111(1,5)(10.5)(0.5)2248f f f =+=-=-⨯=-. (2)当[0,1]x ∈时,2()f x x =; 当(1,2]x ∈时,1(0,1]x -∈,211()(1)(1)22f x f x x =--=--; 当[1,0)x ∈-时,1[0,1)x +∈, 2()2(1)2(1)f x f x x =-+=-+;当[2,1)x ∈--时,1[1,0)x +∈-,22()2(1)22(11)4(2)f x f x x x ⎡⎤=-+=-⨯-++=+⎣⎦.所以22224(2),[2,1),2(1),[1,0),(),[0,1],1(1),(1,2].2x x x x f x x x x x ⎧+∈--⎪-+∈-⎪⎪=⎨∈⎪⎪--∈⎪⎩19.【答案】(1)2()1ax bf x x +=+∵是奇函数()()f x f x -=-∴, 2211ax b ax bx x -++=-++∴,0b =∴. 故2()1ax f x x =+,又1225f ⎛⎫= ⎪⎝⎭∵,1a =∴ (2)证明:由(1)知2()1xf x x =+,任取1211x x -<<<,()()()()()()1212121222121211111x x x x x xf x f x x x x x ---=-=++++1211x x -∵<<<,1211x x -∴<<,120x x -<,1210x x ->,2110x +>,2210x +>,()()120f x f x -∴<,即()()12f x f x <,()f x ∴在(1,1)-上是增函数.(3)单调减区间为(,1),(1,)-∞-+∞.当1x =-时,min 1()2f x =-;当1x =时,max 1()2f x =.20.【答案】(1)由题意知()f x 的图像关于点(0,0)对称,是奇函数,∴(0)0f = 当0x <时,0x ->,1()3x f x x--=--∴, 又∵函数()f x 是奇函数.∴()()f x f x -=-,1()3x f x x=-∴. 综上所述,1(0),()30(0).x x f x x x ⎧-≠⎪=⎨⎪=⎩(2)2(1)(0)03f f =-=∵<,且()f x 在R 上单调.∴()f x 在R 上单调递减.由()()22220f t t f t k -+-<,得()()2222f t t f t k ---<.∵()f x 是奇函数,∴()()2222f t t f k t --<,又∵()f x 是减函数, ∴2222t t k t -->即2320t t k -->对任意t ∈R 恒成立,∴4120k ∆=+<,得13k -<.21.【答案】(1)由题意,3y x =-,在[,]a b 上单调递减,则33,,,b a a b b a ⎧=-⎪=-⎨⎪>⎩解得1,1,a b =-⎧⎨=⎩所以,所求区间为[1,1]-.(2)取11x =,210x =,则()()1273845f x f x ==<,即()f x 不是(0,)+∞上的减函数.取,1110x -=,21100x =,()()12331010040400f x f x =++=<,即()f x 不是(0,)+∞上的增函数.所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数.(3)若y k =+[,]a b ,在区间[,]a b 上,函数()f x 的值域为[,]a b,即a k b k ⎧=+⎪⎨=⎪⎩∴a ,b为方程x k =的两个实根,即方程22(21)20(2,)x k x k x x k -++-=-厖有两个不等的实根,故两根均大于等于2-,且对称轴在直线2x =-的右边.当2k -„时,有220,(2)2(21)20,212,2k k k ⎧⎪∆⎪-+++-⎨⎪+⎪-⎩>>…解得924k --<„.当2k ->时,有220,(21)20,21,2k k k k k k ⎧⎪∆⎪-++-⎨⎪+⎪⎩>>…无解.综上所述,9,24k ⎛⎤∈-- ⎥⎝⎦.22.【答案】(1)因为(20)(2)(0)f f f +=g ,所以44(0)f =⋅,所以(0)1f =, 又因为24(2)(11)(1)f f f ==+=,且当0x >时,()1f x >,所以(1)2f =.(2)证明:当0x <时,0x ->,所以()1f x ->,而(0)[()]()()f f x x f x f x =+-=-g , 所以1()()f x f x =-,所以0()1f x <<,对任意的12,x x ∈R , 当12x x <时,有()()()]()()()1212222121f x f x f x x x f x f x f x x -=⎡-+-=--⎣, 因为120x x <<,所以120x x -<,所以()1201f x x -<<,即()1210f x x --<, 所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数.(3)因为1()12f x f x ⎛⎫+ ⎪⎝⎭g <,所以11(1)f x f x ⎛⎫++ ⎪⎝⎭<,而()f x 在R 上是单调递增函数,所以111x x ++<,即10x x+<,所以210x x +<,所以0x <,所以x 的取值范围是(,0)-∞.。
人教版高中数学必修一综合测试题(很基础,很全面)
人教版高中数学必修一综合测试题(考试时间为120分钟,满分150分)一、 选择题(本大题共12小题,每小题5分,共60分)1.已知集合{2,1,0,1,2}A =--,{|22,}B x x x N =-<<∈,则AB =( ) A. {1,0}- B. {0,1} C. {1,0,1}- D. {0,1,2}2.下列图象中表示函数图象的是 ( )A. B. C. D.3、下列函数中,在(0,)+∞上为增函数的是( )。
A 、()3f x x =-B 、2()3f x x x =-C 、1()1f x x =-+ D 、()||f x x =-4.4等于( )A. 16aB. 8aC. 4aD. 2a 5.计算:log 916·log 881的值为( )A. 18B. 118C. 83D. 386.已知函数2()3(0)x f x a a -=+≠,则()f x 的图象过定点( )A.(0,4)B.(2,4)C. (0,3)D. (4,3) 7. 若11221272,,log 327a b c --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A. a b c << B. a c b << C.c b a << D. c a b << 8. 函数2()log ()21x f x x g x -==-与与在同一平面直角坐标系下的图象大( )9.函数()f x = ) A. {}0x x > B. {}1x x > C. {}1x x ≥ D. {}01x x <≤ 10.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( )A. 3a ≤-B. 3a ≥-C. 5a ≤D. 5a ≥11、已知函数f(x)是R 上的减函数,A (0,1),B (2,-1)是其图象上的两点,那么∣f(x)∣<1的解集的补集是 ( )A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(∞,0]∪[2,+∞) 12.12R (),f x x ∈定义在上的偶函数满足:对任意的x (]12,0(),x x -∞≠有12)x x -•([]21()()0.)f x f x n N *->∈则当时,有( A.()(1)(1)f n f n f n -<-<+ B. (1)()(1)f n f n f n -<-<+C. (1)()(1)f n f n f n +<-<-D. (1)(1)()f n f n f n +<-<-二、填空题(本大题共4小题,每小题5分,共20分)13、210()20x x f x x x ⎧+≤=⎨->⎩ , , , ,若()10f x = ,则_______x =.14.使不等式31220x -->成立的x 的取值范围是 .15、已知函数3()8f x ax bx =+- ,且f(-2) =10,则f (2 ) =_______. 16.下列命题:①若函数()f x 是一个定义在R 上的函数,则函数h x f x f x 是奇函数; ②函数211x x y x 是偶函数; ②函数12x y -=的图象可由12x y的图象向右平移2个单位得到; ②函数1y x=在区间12,上既有最大值,又有最小值; 则上述正确命题的序号是________②.三、解答题(本大题共6小题,共70分)17.(本题满分10分)已知全集为U=R ,A={22|<<-x x } ,B={1,0|≥<x x x 或} 求:(1)A ⋂B ,(2)A ⋃B 。
人教版高一数学必修测试题含答案(参考)
人教版高一数学必修测试题含答案一、挑选题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B =I ()A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N I ()A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是()A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞ 4、对于A 到B 的一一映射,下列叙述正确的是()① 一一映射又叫一一对应② A 中别同元素的像别同③ B 中每个元素都有原像④ 像的集合算是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x ===+= () A 、1个 B 、2个 C 、3个 D 、4个6、已知函数()213f x x x +=-+,这么()1f x -的表达式是() A 、259x x -+ B 、23x x -- C 、259x x +- D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是() A 、()0,+∞ B 、()1,+∞ C 、()0,1 D 、?8、若21025x =,则10x -等于()A 、15- B 、15 C 、150D 、1625 9、若()2log 1log 20a a a a +A 、01a B 、112a C 、102 a10、设 1.50.90.4814,8,2a b c -??=== ,则,,a b c 的大小顺序为()A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是()A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都别对12、若()lg f x x =,则()3f = ()A 、lg 3B 、3C 、310D 、103二、填空题13.设{}{}12,0A x x B x x a =14函数y =的定义域为;15、若2x16、100lg 20log 25+= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2综合试题一、选择题(本大题共2道小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、下图(1)所示的圆锥的俯视图为 ( )2、直线:30l y ++=的倾斜角α为 ( )A 、30o ;B 、60o ;C 、120o ;D 、150o 。
3、边长为a 正四面体的表面积是 ( )A、34a ; B、312a ; C、24a ; D2。
4、对于直线:360l x y -+=的截距,下列说法正确的是 ( )A 、在y 轴上的截距是6;B 、在x 轴上的截距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截距是3-。
5、已知,a b αα⊂//,则直线a 与直线b 的位置关系是 ( )A 、平行;B 、相交或异面;C 、异面;D 、平行或异面。
6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 ( )A 、12-; B 、12; C 、2-; D 、2。
7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。
若AC BD a ==,且AC 与BD 所成的角为60o,则四边形EFGH 的面积为 ( )A2a ; B2; C2a ; D2。
8、已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( )图(1)ABCDA 、圆心()1,3P ,半径10r =;B 、圆心()1,3P ,半径r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径r =9、下列叙述中错误的是 ( )A 、若P αβ∈I 且l αβ=I ,则P l ∈;B 、三点,,A BC 确定一个平面;C 、若直线a b A =I ,则直线a 与b 能够确定一个平面;D 、若,A l B l ∈∈且,A B αα∈∈,则l α⊂。
10、两条不平行的直线,其平行投影不可能是 ( )A 、两条平行直线;B 、一点和一条直线;C 、两条相交直线;D 、两个点。
11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( )A 、25π;B 、50π;C 、125π;D 、都不对。
12、四面体P ABC -中,若PA PB PC ==,则点P 在平面ABC 内的射影点O 是ABC V 的 ( )A 、外心;B 、内心;C 、垂心;D 、重心二、填空题(本大题共4道小题,每小题4分,共16分。
把答案填在题中横线上)13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14、命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。
用符号表示为 ;15、点()2,1M 直线0l y --=的距离是 ; 16、已知,a b 为直线,,,αβγ为平面,有下列三个命题: (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α⊂//,则a α//; (4) ,a b a α⊥⊥,则b α//;其中正确命题是 。
三、解答题(本大题共6道小题,共74分。
解答应写出文字说明、证明过程或演算步骤)17、(本小题满分12分)如下图(2),建造一个容积为316m ,深为2m ,宽为2m 的长方体无盖水池,如果池底的造价为120m 2/元,池壁的造价为80m 2/元,求水池的总造价。
18、(本小题满分12分)如下图(3),在四棱锥P ABCD -中,四边形ABCD 是平行四边形,,M N 分别是,AB PC 的中点,求证:MN PAD //平面 。
2m2m图(2)BCA DMNP图(3)19、(本小题满分12分)如下图(4),在正方体1111ABCD A B C D -中, (1)画出二面角11A B C C --的平面角; (2)求证:面11BB DD ⊥面1AB C20、(本小题满分12分)光线自点()2,3M 射到点()1,0N 后被x 轴反射,求该光线及反射光线所在的直线方程。
(请用直线的一般方程表示解题结果)21、(本小题满分12分)已知三角形ABC V 的三个顶点是()()()4,0,6,7,0,8A B C (1) 求BC 边上的高所在直线的方程; (2) 求BC 边上的中线所在直线的方程。
图(4)1A1B1D1CCABD22、(本小题满分14分)如下图(5),在三棱锥A BCD -中,,O E 分别是,BD BC 的中点,2CA CB CD BD ====,AB AD ==(1) 求证:AO ⊥平面BCD ;(2) 求异面直线AB 与CD 所成角的余弦值; (3) 求点E 到平面ACD 的距离。
E ABC图(5)DO2m2m图(2)高中数学必修2综合测试题(答案卷)一、选择题(本大题共2道小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4道小题,每小题4分,共16分。
把答案填在题中横线上)13、3a π或32a π; 14、 ,a P b αα=∀⊂I ,且P b ∉,则a 与b 互为异面直线;15、12; 16、(2)。
三、解答题(本大题共6道小题,共74分。
解答应写出文字说明、证明过程或演算步骤)17、(本小题满分12分)如下图(2),建造一个容积为316m ,深为2m ,宽为2m 的长方体无盖水池,如果池底的造价为120m 2/元,池壁的造价为80m 2/元,求水池的总造价。
解:分别设长、宽、高为,,am bm hm ;水池的总造价为y 元16,2,2V abh h b ====Q ,4a m ∴=—————————————3分则有2428S m =⨯=底————————6分()2224224S m =⨯+⨯=壁—————9分12080120880242880y S S =⨯+⨯=⨯+⨯=底壁(元)————————————12分18、(本小题满分12分)如下图(3),在四棱锥P ABCD -中,四边形ABCD 是平行四边形,,M N 分别是,AB PC 的中点,求证:MN PAD //平面 。
证明:如图,取PD 中点为E ,连接,AE EN ———1分 BCA DM NP图(3)E,E N Q 分别是,PD PC 的中点12EN DC ∴//———————————————4分 M Q 是AB 的中点 12AM DC ∴// ——————7分EN AM ∴// ∴四边形AMNE 为平行四边形 —9分AE MN ∴// ———————————————11分又AE APD ⊂Q 面 MN APD ⊄Q 面 ∴MN PAD //平面 。
————————12分 19、(本小题满分12分)如下图(4),在正方体1111ABCD A B C D -中,(1)画出二面角11A B C C --的平面角; (2)求证:面11BB DD ⊥面1AB C解:(1)如图,取1B C 的中点E ,连接1,AE EC 。
11,,AC AB B C Q 分别为正方形的对角线 11AC AB B C ∴==E Q 是1B C 的中点1AE B C ∴⊥ ——————————————2分又Q 在正方形11BB C C 中11EC B C ∴⊥ ——————————————3分∴1AEC ∠为二面角11A B C C --的平面角。
—————————————————4分(2) 证明: 1D D ABCD ⊥Q 面,AC ABCD ⊂面 1D D AC ∴⊥ —————6分 又Q 在正方形ABCD 中 AC BD ∴⊥ —————————————————8分1D D BD D =Q I 11AC DD B B ∴⊥面 ———————————————10分又1AC AB C ⊂Q 面 ∴面11BB DD ⊥面1AB C ——————————————12分 20、(本小题满分12分)光线自点()2,3M 射到点()1,0N 后被x 轴反射,求该光线及反射图(4)1A1B1D1CCABD E(光线所在的直线方程。
(请用直线的一般方程表示解题结果)解:如图,设入射光线与反射光线分别为1l与2l,11,M l N l∈∈Q由直线的两点式方程可知:1030:121ylx--=--——3分化简得:1:330l x y--=——————4分其中13k=,由光的反射原理可知:12∠=∠213k k∴=-=-,又2N l∈Q—————8分由直线的点斜式方程可知:()2:031l y x-=--—————————————————————————10分化简得:2:330l x y+-=——————————————————————12分21、(本小题满分12分)已知三角形ABCV的三个顶点是()()()4,0,6,7,0,8A B C(1)求BC边上的高所在直线的方程;(2)求BC边上的中线所在直线的方程。
解:(1)如图,作直线AD BC⊥,垂足为点D。
781606BCk-==--—————2分BC AD⊥Q16ADBCkk∴=-= 4分由直线的点斜式方程可知直线AD的方程为:()064y x-=-化简得:624y x=-——6分(2)如图,取BC的中点()00,E x y,连接AE。
由中点坐标公式得000632871522x y +⎧==⎪⎪⎨+⎪==⎪⎩,即点153,2E ⎛⎫ ⎪⎝⎭ ———————————9分由直线的两点式方程可知直线AE 的方程为:1502430y x --=-- ——————————11分 化简得:5102y x =- ——————————————————————————12分22、(本小题满分14分)如下图(5),在三棱锥A BCD -中,,O E 分别是,BD BC 的中点,2CA CB CD BD ====,AB AD ==(1) 求证:AO ⊥平面BCD ; (2) 求异面直线AB 与BC 所成角的余弦值;(3) 求点E 到平面ACD 的距离。
(1)证明:连接OC ,BO DO AB AD ==QAO BD ∴⊥ ———————————1分,BO DO BC CD ==QCO BD ∴⊥ —————————————2分在AOC V中,由已知可得:1,AO CO ==而2222,AC AO CO AC =∴+=90AOC ∴∠=o ,即AO OC ⊥ ———————4分BD OC O =Q I AO BCD ∴⊥平面 ——————————————————5分(2)解:取AC 的中点M ,连接,,OM ME OE由E 为BC 的中点知,ME AB OE DC ////∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角。