信号与系统第四章
信号与系统 第四章 拉普拉斯变换、连续系统的S域分析
f
(t)
1
2
F
(
)e
j
t
d
2、拉普拉斯变换是将时间函数f (t)分解为无
穷多项复指数信号e st之和。其中s = +j
s称为复频率。
f
(t)
1
2j
F (s)e st ds
3、拉普拉斯变换是傅立叶变换的推广。
4、复平面( s平面)
以复频率 s = +j 的实部 和虚部 j 为
t
所以其收敛域为s 平
面上 a 的部分.
四、一些常用函数的拉氏变换
设 f (t)为有始函数,讨论单边拉氏变换
1、阶跃函数
L
u(t)
0
estd t
即 u(t ) 1
est
s 0
( 0)
1 s
2、指数函数
s
L eat eatestd t
f
(t)
1
2
F
(
)e
j
t
d
2、当函数不满足绝对可积条件时
将f(t)乘以衰减因子e-t ( 为 一实常数 ) ,恰当 地选取 的值 就有可以使 f(t) e-t 变得绝对可
积,即 其中 e t称为收敛因子
F f (t)e t
F1( )
f
(t )e t e j t dt
Lt 1 s2
L t2
2 s3
L tn
n! s n1
4、冲激函数 (t)
信号与系统第四章-傅里叶变换的性质
② X(ω)是ω的奇函数,因为sinωt是ω的奇函数。
如果f(t)是t的实奇函数,即偶分量fe(t)=0,则
F( jω)=R(ω)+j X(ω)=j X(ω)= 是ω的虚奇函数。
j f (t) sintdt 2 j f (t) sintdt
0
反之,如果F( jω)=j X(ω)是ω的虚奇函数,则F( jω)对应的原函数f(t)一定是t实奇函 数。
② 尺度变换特性的特例——翻转特性
如果a=-1,由尺度变换特性, 有:f(-t) ↔F(-jω) ——翻转特性
天津大学电子信息工程学
刘安
第四 连续系统的频域分析
例7 试求单位直流信号f(t)=1,-∞< t <+∞的频谱
解:不满足绝对可积
f(t)=1=ε(t)+ε(-t)
ε(t)
↔
F1(
jω)=πδ(ω)+
证明:设a>0,
F f (at) f (at) e jtdt
f
j
( ) e a
d
1
a j f ( ) e a d
a
1 a
F
j
a
令at ,则 t ,dt d
a
a
t:-∞~+ ∞, :-∞~+ ∞
天津大学电子信息工程学
Байду номын сангаас
刘安
第四 连续系统的频域分析
类似地,若a<0,
第四 连续系统的频域分析
4、对称性
如果f(t) ↔F( jω),则F( jt) ↔2π f(-ω) (注意变量代换,证明参见p144)
特殊情况:
如果f(t)是t的实偶函数,且f(t) ↔F(ω)(ω的实偶函数), 则F(t) ↔2π f(-ω)=2π f(ω),或者 F1(t) ↔ f(ω)。
信号与系统第4章 周期信号的频域分析(3学时)
T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1
~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e
jn0t
1 Cn T0
T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )
信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.
(n为正整数)
n st 0
n
t e dt
st
4、冲激函数 (t)
L (t ) 0 ( t )e d t 1
st
同理
L (t t0 ) e
st0
5、正弦函数
1 j t j t L sin t ( L e L e ) 2j
at
,相当于拉氏变
sin t 和 e at cos t 的拉氏变换。
L e sin t 2 2 (s a) sa a t L e cos t ( s a )2 2
a t
Lsin t 2 s 2
s Lcos t 2 2 s
解法一: bs 延时特性 L[ f (t b)u(t b)] F ( s )e
1 s 尺度变换 L[ f (at b)u(at b)] F e a a
解法二: 尺度变换 延时特性
b
s a
1 s L[ f (at )u(at )] F a a
st
t
j t
j 右 半 开 0 平 面
反映指数函数 est 的幅度变化速度 >0, 幅度发散 <0, 幅度收敛 反映指数函数 est 的因子ejt 作周期变化的频率
三、拉普拉斯变换的收敛域
1、定义 把使 f (t) e- t 满足绝对可积条件的 的取值范围称为拉氏变换的收敛域。 2、单边拉氏变换的收敛条件
九、卷积
1、时域卷积 若 L f1 (t ) F1 ( s) L f 2 (t ) F2 ( s) 则 L f1 (t ) f 2 (t ) F1 ( s ) F2 ( s )
《信号与系统》第四章
图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率
为
,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt
信号与系统(第四章)-离散傅里叶变换与快速傅里叶变换
反转,并取主值区间序列
周期延拓
反转后
向右平移1位 向右平移3位
向右平移2位
于是,由
y
(n)
3
x(k
)h((n
k
))
4
G4
(n)
,得
k 0
y(0) 1114 13 02 8
y(1) 1 2 1114 03 7
y(2) 1312 11 04 6
y(3) 14 1312 01 9
➢ 线卷积与圆周卷积
• 线卷积的移位是平移,圆周卷积的移位是周期位 移。
• 线卷积不要求两序列长度一致。若 x(n)与h(n)的长度分别为M和N,则 y(n)=x(n)*h(n)的长度为M+N-1。 圆周卷积要求两序列长度一致,否则短序列须补 零,使两序列等长后,才可进行圆周卷积。
DFT ax1(n) bx2(n) aDFT x1(n) bDFT x2(n)
(4.9)
当序列x1(n)和x2(n)长度不一致时,则可通过将较 短序列补零,使两序列长度一致,此时,式(4.9)成立。
2、圆周位移特性 圆周时移:圆周时移指长度为N的序列x(n),以N 为周期做周期延拓生成xp(n),位移m位后,得序 列xp(n-m),在此基础上取其主值区间上序列。
于是
x(n)
x(t)
t nTs
k
X e jk1nTs k
X e X e
j
2 T1
knTs
k
j 2 nk N
k
(4.3)
k
k
式(4.3)两边同乘
e
j 2 N
nm
,再取合式
N 1
,得
n0
信号与系统第四章-连续信号复频域分析
j
0
(可以用复平面虚轴上的连续频谱表示) 实际上是把非周期信号分解为无穷多等幅振荡的正
弦分量 d cost 之和。 《信号与系统》SIGNALS AND SYSTEMS
F ( )
f (t )e jt dt
ZB
3. 拉普拉斯变换
2 j f (t ) F ( s)
称 为衰减因子; e- t 为收敛因子。 返回《信号与系统》SIGNALS AND SYSTEMS
ZB
取 f(t)e- t 的傅里叶变换:
F [ f (t )e
t
]
f (t )e
t jt
e
f (t )e ( j )t dt dt
它是 j的函数,可以表示成
拉普拉斯变换(复频域)分析法 – 在连续、线性、时不变系统的分析方面十分有效 – 可以看作广义的傅里叶变换 – 变换式简单 – 扩大了变换的范围 – 为分析系统响应提供了规范的方法
返回《信号与系统》SIGNALS AND SYSTEMS
ZB
4.1 拉普拉斯变换
4.1.1 从傅里叶变换到拉普拉斯变换
单边拉氏变换的优点: (1) 不仅可以求解零状态响应,而且可以求解零输入响应 或全响应。 (2) 单边拉氏变换自动将初始条件包含在其中,而且只需 要了解 t=0- 时的情况就可以了。 (3) 时间变量 t 的取值范围为 0 ~ ,复频域变量 s 的取 值范围为复平面( S 平面)的一部分。 j S 平面 当 >0 时, f(t)e- t 绝对收敛。
ZB
按指数规律增长的信号:如 e t ,0 =
比指数信号增长的更快的信号:如 e 或t t 找不到0 , 则此类信号不存在拉氏变换。
信号与系统第4章
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,
信号与系统课件(郑君里版)第四章
F(s) L
[ f (t)]
f (t)estdt
0
f (t) L -1[F (s)]
1
j F (s)estds
2 j j
f (t) 原函数
F (s) 象函数
5
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
0
0
s j
F (s) f (t)estdt 0
单边拉氏变换
FB (s)
f (t)estdt
双边拉氏变换
4
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
2. 拉氏逆变换
f1(t)
f
(t )e t
1
2
F1
()e
jt
d
起系统函数 H(s) 的概念;
(5)利用系统函数零、极点分布可以简明、直观地表达系统
性能的许多规律。
2
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
§4.2 拉普拉斯变换的定义、收敛域
(一)从傅里叶变换到拉普拉斯变换
1. 拉氏变换是傅里叶变换的推广
当 f (t) 满足绝对可积条件时,存在傅里叶变换
(二)从算子符号法的概念说明拉氏变换的定义
d f (t) pf (t) dt
t f ( )d 1 f (t)
p
f (t) F(s)
d f (t) dt
sF(s) f (0 )
t f ( )d 1 F(s) 1 0 f ( )d
s
s
在算子符号法中,由于未能表示出初始条件的作用,只 好在运算过程中作出一些规定,限制某些因子相消。而拉氏 变换法可以把初始条件的作用计入,这就避免了算子法分析 过程中的一些禁忌,便于把微积分方程转化为代数方程,使 求解过程简化。
信号与系统第四章 复频域分析
7
4.1 拉普拉斯变换
• 拉氏变换对:X (s) x(t)est d t 说明:
1. 拉普拉斯变换的定义
x(t) 1 j X (s)estds
2 j j
① X s Lx象t 函 数,自然界中不存在,复函数,无法直接测量;
xt L1X s原函数,实际存在,实函数, 可以感觉和测量.
2
• 三、本书用到的信号的变换域
自变量 基本信号单元 变换名称
连续信号 离散信号
复频域 s j est
频域
j
e jt
复频域 z re jΩ zn
频域
e jΩ
e jΩ
拉氏变换 傅氏变换 z变换 傅里叶变换
3
• 四、拉氏变换在系统分析中的优势
1、将系统在时域内微分方程转换为复频域的代数 方程,降低求解难度.
傅里叶反变换:x(t) 1 X ()e jt d 2
e x(t) 可以分解为 的j线t 性组合.
条件:信号 x必(t须)满足绝对可积条件
x(t) dt
映射:傅里叶变换与傅里叶反变换是一对一的变换对。
6
4.1 拉普拉斯变换
• 拉普拉斯变换的定义
1. 拉普拉斯变换的定义
[x(t)e t ]ej tdt x(t)e( j)tdt
② 复频域移位性质:e at x(t) X (s a)
例4.3.5: 求衰减正弦 e at sin(的0拉t普) 拉斯变换.
解:
正弦函数的变换为
e at sin( 0t)
sin( 0t)
0
0
s2
2 0
(s
a)2
2 0
余弦函数的变换为
cos(0t)
s2
重庆邮电大学信号与系统课件第4章
f
(t )
etch tU
(t )
F (s)
(s
(s ) )2
2
23
通信与信息基础教学部
典型信号的拉普拉斯变换(1)
原函数
f (t)
像函数
F (s)
(t)
(t)
t (t)
Ae at (t)
sin0t (t)
cos0t (t)
24
通信与信息基础教学部
1
1 s 1 s2 A
sa
0 s2 02
1 2
s
1
s
1
1 2
s2
2s
2
s2
s
2
22
通信与信息基础教学部
典型信号的拉氏变换
同理
f
(t)
s ht
F (s)
s2
2
f
(t)
s h tU (t)
F (s)
s2
2
f
(t)
c h tU (t)
F (s)
s2
s
2
f (t) et s h tU (t) F (s)
(s )2 2
f (t) 1
2 j
j j
Fb
(
s)e
st
ds
拉普拉斯变换是将时域函数f(t)变为复频域函数Fb(s);或作相 反的变换。此处时域变量t是实数,复频域变量s是复数。
(拉普拉斯变换建立了时域和复频域(s 域)间的联系。)
6
通信与信息基础教学部
拉普拉斯变换的收敛域(1)
拉普拉斯变换的收敛域
02
18
通信与信息基础教学部
典型信号的拉氏变换
同理
信号与系统第4章拉氏变换
为“象函数”。
拉普拉斯变换是t域函数f(t)与s域函数F(s)之间的变换。 f(t)与F(s)的拉普拉斯变换关系常用以下符号表示:
f (t) F(s)
机械工业出版社
7
三、定义说明
1、为什么正、反变换的原函数相差一个u(t)? 在单边拉普拉斯正变换中,原函数可以是非因
果信号,所以在拉氏正变换中用 f(t) 表示。由于正 变换是对原函数从 t = 0−开始的积分,丢掉了原函 数中t < 0的信息,反变换只能还原t > 0的函数值, 所以在拉氏反变换式中原函数用因果函数f(t)u(t)表 示。 推论:两个t ≥0的波形相同,t < 0波形不同的原函 数,它们单边拉普拉斯变换的象函数完全相同。
0
0
令s = j,代入上式得
F1( j)
∞ -∞
f1 (t )
e- jt dt
∞ f (t) e-stdt F (s)
0
含义:求e- tf(t)u(t)的谱函数等于求f(t)u(t)的复变函数。
F1(j)的傅里叶反变换为
f1 (t )
e- t
f
(t )u(t )
1 2π
∞
-∞ F1(
j )e j t d
等式两边同乘e t,把F1(j) =F(s),s = j,ds =jd
代入式中,得
et
f1(t)
f (t)u(t)
1 2π
∞ -∞
F1
(
j
)e(
j)t d
1 2πj
j∞ - j∞
F
(
s)est
面上的一个点。
机械工业出版社
信号与系统分析第四章 连续时间系统的频域分析
(4.5)
Y(j)
H(j) F(j)
()y()f()
第四章 连续时间系统的频域分析
可见, |H(jω)|是角频率为ω的输出与输入信号幅度之 比, 称为系统的[HTH]幅频响应; φ(ω)是角频率为ω的输 出与输入信号的相位差, 称为系统的相频响应。 由于 H(jω)是h(t)的傅里叶变换, 因而当h(t)为实函数时, 由傅 里叶变换的性质可知, |H(jω)|关于ω偶对称, φ(ω) 关于ω 奇对称。
(4.1)
第四章 连续时间系统的频域分析
设系统的初始状态为零, 则y(t)为系统的零状态响应, 对上式两边取傅里叶变换, 并令 Yzs (jω)=F[y(t)], F(jω)=F[f(t)], 由时域微分性质, 可
[ j) ( n a n 1 ( j) n 1 a 1 ( j) a 0 ] Y z ( j s ) [ b m ( j) m b m 1 ( j) m 1 b 1 ( j) b 0 ] F ( j)
第四章 连续时间系统的频域分析
本章将讨论连续时间系统的频域分析。 系统的频 域分析就是把系统的激励和响应的关系应用傅里 叶变换从时域变换到频域, 在频域中求系统的响应或 分析系统的特性。 利用频域分析法求系统响应, 是 通过运用傅里叶级数或傅里叶变换, 将信号分解为一 系列正弦分量或虚指数信号(ejωt)之和或积分, 并将这 些单元信号作用于系统所得的响应进行叠加, 从而得 到完整的系统响应。
系统函数表征了系统的频域特性, 是频域分析的关 键。 系统函数的求解方法有如下几种:
第四章 连续时间系统的频域分析
(1) 若系统由微分方程给出, 则可以对微分方程两边 取傅里叶变换, 按照式(4.3)直接求取;
(2) 若给定系统的冲激响应, 则可以对其做傅里叶变 换来求取;
信号与系统基础-第4章
4.1 傅氏级数 随时间的变化
是时间的函数,我们关心的是信号大小、快慢和延迟
关系,时间是研究信号和系统的基本出发点,因此,系统分析自然也就围绕着时间变量
展开。在时域分析中,信号f (t)
但是我们还注意到一个事实,一些信号的大小(幅度)和延迟(相位)还直接与另 一个变量
——频率有关,比如正弦型信号、复指数信号等。或者说,一些信号的幅度和相位还是 频率的函数。
【例题4-4】如图4-(6a) 所示的周期信号f1(t) 的傅里叶系数为F,n 试用其表示图4-(6b)、
(c) 、(d) 所示各信号的傅里叶系数。
【解】因为
f 2 (t)
f1
(t
T 2
)
所以,根据傅里叶级数的时移特性有
由题意可知
f
2
(t
)
F S
e
jn
T 2
0
Fn
(1)n Fn
f3 (t) f1 (t) f 2 (t)
c0 cn cos(n0t n ) (4-5)
n1
c0 a0
(4-6)
式(4-5)表明任何满足狄里赫利条件的周期函数可分解为直流和各次谐波分量之和。
12
4.1 傅氏级数
式(4-5)表明,任何满足狄里赫利条件的周期信号都可分解为一个常数和无数个不同频率 不同相位的余弦信号分量之和。其中,第一c0 项常数项是f (t) 在一个周期内的平均值,
式(4-1)说明
f (t) a0 (an cos n0t bn sin n0t)
n 1
(4-1)
任一周期信号可以用三角正交函数的线性组合表示。显然,这是信号分解特性 的体现。
9
4.1 傅氏级数
傅氏级数采用三角函数集的主要特点: (1)三角函数是基本函数; (2)三角函数同时具有时间和频率两个物 理量。 (3)三角函数容易产生、传输和处理。 (4)三角函数通过线性时不变系统后仍为 同频三角函数,仅幅值和相位会有所变化。
信号与系统第四章知识点
第四章 拉普拉斯变换—连续信号s 域分析一、考试内容(知识点)1.拉普拉斯变换的定义及其性质、拉普拉斯逆变换; 2.系统的复频域分析法; 3.系统函数)(s H ;4.系统的零极点分布决定系统的时域、频域特性; 5.线性系统的稳定性;6.拉普拉斯变换与傅里叶变换之间的关系。
二、内容(知识点)详解1.拉普拉斯变换的定义、收敛域(1)变换式与反变换式dt e t f t f s F st -∞⎰-==0)()]([)(L ds e s F js F t f stj j ⎰∞+∞--==σσπ)(21)]([)(1L )(s F 称为)(t f 的象函数,)(t f 称为)(s F 的原函数。
下限值取-0,主要是考虑信号)(t f 在t =0时刻可能含有冲激函数及其导数项也能包含在积分区间之内。
(2)收敛域在s 平面上,能使式0)(lim =-→∞t t e t f σ满足和成立的σ的取值范围(区域),称为)(t f 或)(s F 的收敛域。
2.常用时间函数的拉普拉斯变换(1)冲激函数 )()(t t f δ= 1)(=s F)()()(t t f n δ= n s s F =)((2)阶跃函数 )()(t u t f = ss F 1)(= (3)n t (n 是正整数) t t f =)( 21)(s s F =2)(t t f = 32)(s s F =n t t f =)( 1!)(+=n s n s F(4)指数信号 t e t f α-=)( α+=s s F 1)(t te t f α-=)( ()21)(α+=s s F t n e t t f α-=)( ()1!)(++=n s n s F αt j e t f ω-=)( ωj s s F +=1)( (5)正弦信号、余弦信号系列)sin()(t t f ω= 22)(ωω+=s s F)cos()(t t f ω= 22)(ω+=s ss F)sin()(t e t f t ωα-= 22)()(ωαω++=s s F)cos()(t e t f t ωα-= 22)()(ωαα+++=s s s F )sin()(t t t f ω= 222)(2)(ωω+=s ss F )cos()(t t t f ω= 22222)()(ωω+-=s s s F )()(t sh t f ω= 22)(ωω-=s s F )()(t ch t f ω= 22)(ω-=s ss F (6) ∑∞=-=0)()(n nT t t f δ sT e s F --=11)(∑∞=-=00)()(n nT t f t f sTes F s F --=1)()(0 3.拉普拉斯变换的基本性质象函数)(s F 与原函数)(t f 之间的关系为:)]([)(t f s F L = (1)线性(叠加性)∑∑===⎥⎦⎤⎢⎣⎡ni i i n i i i s F a t f a 11)()(L ,其中i a 为常数,n 为正整数。
信号与系统第四章
4.3 单边拉普拉斯变换的性质
4.3.1 线性
若
f1(t) F1(S), Re[s] 1
f2 (t) F2 (S), Re[s] 2
则
a1
f 1
(t
)
a2
f
2
(t
)
a1F1 ( S
)
a2 F2
(S
),
Re[s]
max(1,
2
)
4.3.2 时移性质
若 则
f (t) (t) F (s) , Re[s] 0
f
(0 )
lim t 0
f
(t) lim sF s
(s)
4.3.12 终值定理
若f(t)在 t 时极限 f () 存在,并且 f (t) F (s), Re[s] 0
则的终值为
f () lim f (t) lim sF(s)
t
s0
上一页 返回
4.4 拉普拉斯逆变换
4.4.1 查表法
双边拉普拉斯变换是信号 f (t)et 的傅里叶变换,因此,若 f (t)et
绝对可积,即
f (t) etdt
则f(t)的双边拉普拉斯变换一定存在。上式表明,F(s)是否存
在取决于能否选取适当的 。进一步说,由于 Re[s] ,所以,
F(s)是否存在取决于能否选取适当的S。由于F(s)的收敛域由S的实
一一对应的关系。在以 为实轴, j 为虚轴如图4-1所示的复
平面中,使拉氏变换积分收敛的那些复数S的集合,称为拉氏变换的 收敛域 (Region of Convergence),拉氏变换的ROC是非常重要的 概念。
上一页 下一页 返回
4.2 拉普拉斯变换
信号与系统_哈尔滨工业大学_4 第四章拉氏变换与S域分析_12 412H(S)、E(S)的极点与自由响应、强迫响应
H(s)、E(s)极点分布与自由响应、 强迫响应关系
八、H(s)、E(s)极点分布与自由响应、 强迫响应关系
m
u
(s zj)
(s zl )
H (s)
j 1 n
,
E(s1
k 1
零状态响应:R(s) H (s)E(s),r(t) L 1[R(s)]
e2t
)u(t)
2 3 2 0, 1, 2
微 分
rh
(t)
A1et
A2e2t,rp
(t )
1 2
u (t )
方
程 经 典
r(0 )
1,
r(0 )
2 ,
A1
A2
1 2
1
A1 2 A2 2
A1
3
A2
5 2
解
法
rh (t)
3et
5 2
e2t
全部自由响应
r(t) (3et 5 e2t 1 )u(t) 22
自由响应 齐次解
零输入响应 齐次解的一部分
强迫响应 特解
零状态响应 齐次解的一部分+特解
2.Ki , Kk 均由 pi , pk共同作用,即
自由响应:形式只由H(s)决定, 幅度相位由H(s)、E(s)共同决定
强迫响应:形式只由E(s)决定, 幅度相位由H(s)、E(s)共同决定
3.固有频率(自由频率):系统行列式(系统特 征方程)的根,反映全部自由响应的形式
s2
s
16
40 17
s2
4
16
10 17
s
1 1
v2
(t
)
[10 17
信号与系统(段哲民)第三版 第四章答案全解
信号与系统(段哲民)第三版第四章答案全解4.1 选择题答案解析(C)伯努利信号是一个具有有限时间持续性的信号,因此是非因果信号。
解析:伯努利信号只在有限时间内存在,而非因果信号是只存在于负时间的信号。
(D)和三角函数的区别是,余弦函数的相位是0,而不是1。
解析:和三角函数不同,余弦函数的相位是0,表示相位没有滞后。
(B)碰撞行为是随机过程,因此其幅度表示为随机变量是正确的。
解析:碰撞行为是随机过程,其幅度表示为随机变量。
4.2 填空题答案解析1.以下哪个信号不是周期信号?(B)解析:周期信号是指在时间轴上具有循环性质的信号。
正方脉冲信号和方波信号都是周期信号,而冲击信号不是周期信号。
2.正弦信号频率是50Hz,则周期为______。
解析:频率和周期的关系为$f=\\frac{1}{T}$。
根据公式可知,周期$T=\\frac{1}{f}=0.02s$。
3.已知信号$y(t)=3\\sin(2\\pi t + \\frac{\\pi}{6})$,则相位为______。
解析:相位指信号相对于某参考信号的滞后程度。
对于正弦信号,相位为$\\theta = 2\\pi t + \\frac{\\pi}{6}$4.3 解答题答案解析1.请证明复指数函数$e^{j\\theta}$是周期信号。
解析:复指数函数$e^{j\\theta}$可以表示为$e^{j(\\omega_0t+\\phi)}=e^{j\\omega_0t}e^{j\\phi}$,其中$\\omega_0$为角频率。
由于$|\\phi| < \\pi$,所以$e^{j\\phi}$是一个衰减的振荡函数,它是一个周期信号。
2.指出以下信号的类型:(1)冲击信号 (2)阶跃信号 (3)斜坡信号解析:(1) 冲击信号是一个非周期信号;(2) 阶跃信号是一个非周期信号;(3) 斜坡信号是一个非周期信号。
3.已知信号y[y]=2y[y−y],请将该信号分解为若干复指数信号的叠加形式。
信号与系统 第四章 拉氏变换及S域分析
2.单边拉氏变换的收敛域
例1: f t e2 t t 0
lim f t e t lim e 2t e t lim e 2 t 0
t
tபைடு நூலகம்
t
j
20
2 0 0 :收敛坐标
例2:f t u t
2 0
j
lim u t e t lim 1 e t 0
t
t
0
0 0 0
f (t) 1 F e j td F 1 f (t)
2
X
为了解决对不符合狄氏条件信号的分析,第三章中引 入了广义函数理论去解释傅里叶变换,同时,还可利 用本章要讨论的拉氏变换法扩大信号变换的范围, •优点在于:
求解比较简单,特别是对系统的微分方程进行变换 时,初始条件被自动计入,因此应用更为普遍; •缺点在于: 物理概念不如傅氏变换那样清楚。
X
本章内容及学习方法
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频 域分析。
最后介绍系统函数以及H(s)零极点概念,并根据他 们的分布研究系统特性,分析频率响应,还要简略介绍 系统稳定性问题。
注意与傅氏变换的对比,便于理解与记忆。
f t e t
1
F j e j t d
2
两边同乘 e t
f t
1
F j e j t d
2
j
其中: s j d s j d 对 : 对s :
j
f t 1
j
F
s
e
s
t
ds
2 j j
X
3.拉氏变换对
F
s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容及要求
(1)双边拉氏变换的定义及收敛域, 要求一般掌握。(第4.1节); (2)单边拉氏变换的定义,单边拉氏变换的 性质,常用典型信号的单边拉氏变换。 要求熟练掌握。(第4.2节); (3)单边拉氏逆变换的定义及计算方法。 要求熟练掌握。(第4.3节);
(4)连续信号复频域分解的概念, 要求一般掌握。(第4.4节); (5)连续系统的复频域分析,包括用系统函数 求零状态反应,系统微分方程的S域解, RLC系统的S域解, 要求熟练掌握。 (第4.5,4.6节); (6)连续系统的表示和模拟。 要求熟练掌握。(第4.7节); (7)系统函数H(s)与系统特性。 要求一般掌握。(第4.8节);ℱ
(2) 终值定理
若f(t)←→F(s), 且f(∞)存在 则 f () lim sF ( s ) s 0 判断f(∞)存在方法: sF(s)的收敛域包含s=0 即:sF(s)的所有极点均在[s]的左半平面 证:
【例
(1)
s 2 2s 】F (s) s 2 1
求f(0+)和f(∞)。
n 0
【例】已知 F(s)=F1(s)e-2s
求f(t)
f1(t)=(2-e-2t)(t) f(t)=ℒ-1[F1(s)e-2s]=[2-e-2(t-2)](t-2)
4.4 连续系统的复频域分析
基本方法:系统的输入信号分解为基本信号
est 之和,而系统对输入信号的响应则等于对 基本信号的响应之和。 4.4.1 连续系统的复频域分解
4.1.2 双边拉普拉斯变换的收敛域
在复平面上,使f(t)的双边拉普拉斯变换存在 的s值的范围称为F(s)的收敛域。 由于f(t)的双边拉普拉斯变换是信号f(t)e-ζt的 傅里叶变换,因此,若 f(t)e-ζt绝对可积,即
则f(t)的双边拉普拉斯变换一定存在。
【例】因果信号f2(t)=e-αtε(t)(α>0) 当ζ=Re[s]>-α时,有
f(t)=ℒ-1[F(s)]=(te-t+e-t-e-3t)ε(t)
【例】已知
求f(t)
f (t ) (1 j)e( 22 j )t (1 j)e( 22 j )t
e [(1 j)(cos2t j sin 2t ) (1 j)(cos2t j sin 2t )]
Yf(t)= ℒ-1[Yf(s)]=
【例4.4-1】
f1(t) f2(t)
H H
y1f(t)
H ( s)
Y1 f ( s) F1 ( s)
y2f(t) ?
Y2 f (s) F2 (s) H (s)
y2 f (t ) ℒ 1[Y2 f (s)]
4.5 系统微分方程的复频域解
4.5.1 系统微分方程的复频域解
2t
e (2 cos2t 2 sin 2t )
2t
t0
F(s)有复极点 为了避免复数运算,可用配方法将F(s)写成 sa 和 2 2 2 2 ( s a) ( s a) 上例
2s 8 2( s 2) 2 2 F ( s) 2 2 2 s 4s 8 ( s 2) 2
双边信号的拉氏变换的收敛域为平行于jω 轴的两条直线间的带状区域 • 即任一信号和它的双边拉普拉斯变换连同 收敛域是一一对应的。
因果信号的双边拉普拉斯变换或积分下限 为“0”时的拉普拉斯变换称为单边拉普拉 斯变换 • 本章主要讨论单边拉普拉斯变换
•
4.1.3 单边拉普拉斯变换
单边拉氏变换 Re[s]>ζ0 单边拉氏逆变换
sin t (t ) ,求f(t)的单边拉氏变换 t
解: 由于 sin t (t )
1 , 根据复频域积分性质 2 s 1 1 1 F ( s) 2 d arctan s arctan s 1 s
10. 初值和终值定理
(1) 初值定理 若 f(t)←→F(s) 若F(s)为有理真分式
物理意义:分解f(t)为ζ-j∞到ζ+j∞区间上不同s 的基本信号est之和(积分)
4.4.2 基本信号激励下的零状态响应
若f(t)=est,则
若h(t)为因果函数,则有
H(s) 称为线性连续系统的系统函数.
4.4.3 一般信号激励下的零状态响应
Yf(s)= ℒ [yf(t)]=H(s)F(s)
4.1.1 从傅里叶变换变换到拉普拉斯变换 若f(t)不满足绝对可积条件, 则傅里叶变换不一定存在,如 eαtε(t)(α>0)。 若引入一个衰减因子 e-ζt,则
双边拉普拉斯变换
双边拉普拉斯逆变换
F(s)=ℒ[f(t)] f(t)=ℒ-1[F(s)] F(s)为f(t)的象函数,f(t)为F(s)的原函数
f(t)与F(s)必一一对应,收敛域不再强调。
4.1.4常用信号的拉普拉斯变换
1.δ(t)
2. δ(n)(t)
3.பைடு நூலகம்ε(t)
4. e-αtε(t)
4.2 单边拉普拉斯变换的性质
1. 线性
f1(t)←→F1(s) f2(t)←→F2(s) 则 a1f1(t)+a2f2(t) ←→a1F1(s)+a2F2(s) 若
微分方程 ℒ 代数方程
时域解
ℒ -1
s域解
以二阶系统为例
设
F (s)
零输入响应
零状态响应
y(t)= ℒ-1[Yf(s)]= ℒ-1[Yx(s)] + ℒ-1[Yf(s)]= yx(t)+yf(t)
几个概念 特征多项式:上式中的分母A(s) 特征方程:A(s)=0 特征根:A(s)=0的根 响应的初始值:上式中的y(0-)和y'(0-)
F(s)=
=
8. 复频域微分性质
若 则 f(t)←→F(s)
例
1 (t ) s 1 t (t ) 2 s
n! t (t ) n 1 s
n
9. 复频域积分性质
若 则
f 例: (t )
f(t)←→F(s)
f (t ) F ( )d s t
f (t ) lim (条件:0 存在) t t
f (0 ) lim sF ( s)
s
若F(s)为假分式,化成 F(s)=多项式+F0(s)(真分式)
f (0 ) lim sF0 ( s)
s
s↔(t) 1↔(t)
证明:
ℒ[f (t)]=sF(s)-f(0-) ℒ[f (t)]= =f(0+)-f(0-)+
sF(s)=f(0+)+ 因为当t>0,s→∞时 所以
f(0+)=2, f(∞)不存在 。
4.3 单边拉普拉斯逆变换
4.3.1 查表法 对简单的象函数F(s),可用拉氏变换表直接查到f(t) 4.3.2 部分分式展开法 若F(s)为假分式,可用多项式除法将F(s)分解 为有理多项式与有理真分式之和
分别求解:
N(s)为有理多项式,其逆变换为冲激函数及其 一阶到m-n阶导数之和。 D(s)/A(s)为有理真分式,可展开为部分分式后 求逆变换 A(s)=(s-s1)(s-s2)…(s-sn) 则s1,s2,…sn称为F(s)的极点
求f1(t)和f2(t)的象函数。
e-2tε(t)
←→
e-2(t-1)ε(t-1) ←→ e2e-2tε(t) ←→
3. 复频移性质
若 则 f(t)←→F(s) es0tf(t)←→F(s-s0)
e-αtcos(ω0t) ←→ e-αt sin(ω0t) ←→
4. 尺度变换性质
若 f(t)←→F(s)
7. 时域积分性质
若 则
f
f(t)←→F(s)
(t )
m 1 n
( n)
1 s n m1
f
( m)
(0 )
F ( s) sn
若f(t)为因果信号
f (-n)(0-)表示从-∞到0-对f(t)的n重定积分
【例 】求f(t)的拉氏变换
f(2)(t)=2δ(t)-2δ(t-1)-2δ(t-2)+2δ(t-3) F2(s)=ℒ[f(2)(t)]=2-2e-s-2e-2s+2e-3s
r i
【例】已知
s5 F ( s) 2 s 5s 6
求f(t)
f(t)=ℒ-1[F(s)]=(3e-2t-2e-3t)(t)
【例】已知
求f(t)
d 3s 5 K11 [ ] |s 1 1 ds s 3
3s 5 k3 ( s 1) 2
1
s 3
4.0 引言
频域 → 复频域 ej t之和 → est之和 s=+j 傅立叶变换 → 拉普拉斯变换 对于系统的输入信号f(t),首先把它分解为 基本信号est之和,则系统的响应为基本信号 的响应之和。这种方法称为复频域分析法。 其中,s称为复频率。 扩展了适用范围,求解更为简便。
4.1 拉普拉斯变换
1 s 则 f(at)←→ F ( ) a a
5. 时域卷积性质 若 f1(t)←→F1(s) f2(t)←→F2(s) 则f1(t)*f2(t)←→F1(s)F2(s)
【例 】f(t)=fτ(t)*fτ(t),求f(t)的拉氏变换。
fη(t)=ε(t)-ε(t-η)
ℒ [fη(t)] =
ℒ [f(t)]=ℒ [fη(t)]· [fη(t)]= ℒ
2. 时移性质
若 则 f(t)←→F(s) f(t-t0)ε(t-t0)←→e-st0F(s)
【例】求cos(ω0t)、sin(ω0t)的 象函数。 cos(ω0t) =1/2(ejω0t+e-jω0t)ε(t) ejω0tε(t)↔ e-jω0tε(t) ↔