2017-2018学年广东省东莞市七年级(下)期中数学试卷

合集下载

2017-2018年七年级上册数学期中试卷及答案

2017-2018年七年级上册数学期中试卷及答案

1 在代数式 x2 + 5, - 1, x 2 -3 x + 2, π , 5 , x 2 +x + 1 中,整式有(位 … 姓… C 、 -5abc 2 的系数是 -5 D 、 2 a + b是一次单项式 …… … … … … … … 2017~2018 学年第一学期考试七年级数学试卷题号 一 二 三 四 总分得分一、选择题(每小题 3 分,共 30 分)1xA 、3 个B 、4 个C 、5 个D 、6 个)… … 号 … 座装 … … … … … … … … 订 … … 名 … … … … … … 线 … … … … … 级 … 班… … …2、我国教育事业快速发展,去年普通高校招生人数达 540 万人,用科学记数法表示 540 万人为( )A 、5.4 ×102 人B 、0.54×104 人C 、5.4 ×106 人D 、5.4×107 人3、一潜水艇所在的海拔高度是-60 米,一条海豚在潜水艇上方 20 米,则海豚所在的高度是海拔( )A 、-60 米B 、-80 米C 、-40 米D 、40 米4、原产量 n 吨,增产 30%之后的产量应为( )A 、(1-30%)n 吨B 、(1+30%)n 吨C 、(n+30%)吨D 、30%n 吨5、下列说法正确的是( )①0 是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A 、①②B 、①③C 、①②③D 、①②③④6、如果 0 < a < 1 ,那么 a 2 , a, 1 之间的大小关系是aA 、 a < a 2 < 1B 、 a 2 < a < 1C 、 1 < a < a 2D 、 1 < a 2 < aa a a a7、下列说法正确的是( )1A 、0.5ab 是二次单项式B 、 x 和 2x 是同类项( ) 9 38、已知:A和B都在同一条数轴上,点A表示-2,又知点B和点A相距5个单位长度,则点B表示的数一定是()A、3B、-7C、7或-3D、-7或39、一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A、x2-5x+3B、-x2+x-1C、-x2+5x-3D、x2-5x-1310、观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32016的个位数字是()A、3B、9C、7D、1二、填空题(每题3分,共15分)11、单项式-2πxy2的系数是____________。

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。

北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师版七年级数学期中模拟试卷题号一二三总分得分第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15 2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠1 3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a 4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.14.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=13πr2h)15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.16.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)评卷人得分三、解答题(共8小题,共62分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.参考答案第I卷(选择题)一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15【答案】B.【解析】试题解析:a5•a3=a5+3=a8.故选:B.2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1C.x≠0D.x≠1【答案】D【解析】试题解析:由题意可知:x﹣1≠0,x≠1故选:D.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【答案】C【解析】试题解析:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x【答案】B【解析】试题解析:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+74xy2.故选:B.5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角【答案】C6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对【答案】B【解析】试题解析:如图所示,∠1与∠2,∠3与∠4都是对顶角,故两条直线相交于一点,则共有对顶角的对数为2对.故选:B.#网7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【解析】试题解析:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.21世纪教育网故选:C.8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行【答案】C9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【答案】B【解析】试题解析:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.【答案】b【解析】试题解析:原式=a2b2÷a2b=b故答案为:b12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.【答案】±4【解析】试题解析:∵(x﹣ay)(x+ay)=x2﹣(ay)2(x﹣ay)(x+ay)=x2﹣16y2,∴a2=16,∴a=±4.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.【答案】18014.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=πr2h)【答案】V、h.【解析】试题解析:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.故答案为:V,h.点睛:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.【答案】y=2x+10【解析】试题解析:一个长方形的长为5c m,宽为xcm,周长为ycm,则y与x之间的函数表达式为y=2x+10;故答案为:y=2x+1016.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)【答案】③①②评卷人得分三、解答题(共8小题,共72分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)【答案】(1) 17a6b3;(2)a2﹣4b2+4bc﹣c2;21世纪教育网18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)5;21. (2)(2n+1)2﹣4n2=4n+1.【解析】试题分析:(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.试题解析:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】63.点睛:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.【答案】(1)65°.【解析】试题分析:(1)根据平角为180度可得∠3=180°﹣∠1﹣∠FOC(2)根据对顶角相等可得∠AOD的度数,然后再根据角平分线定义进行计算即可试题解析:(1)∵∠AOB=180°,∴∠1+∠3+∠COF=180°,∵∠FOC=90°,∠1=40°,∴∠3=180°﹣∠1﹣∠FOC=50°,(2)∠BOC=∠1+∠FOC=130°,∴∠AOD=∠BOC=130°,∵OE平分∠AOD,∴∠2=12∠AOD=65°.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【答案】(1)对顶角相等,140°.(2)150°.故答案为:(1)对顶角相等,140°.(2)150°.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.【答案】(1)20,(2)2,80;(3)6.7.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.【答案】∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.【答案】4D:完全平方公式的几何背景.21世纪教育网【解析】试题分析:(1)运用几何直观理解、通过不同的方法计算图形的面积可以得到一个数等式然后再通过化简可得.(2)可利用(1)所得的结果进行等式变换直接带入求得结果.%网试题解析:(1)由图2可得正方形的面积为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac【点评】本题主要是在完全平方公式的几何背景图形的基础上,利用其解题思路求得结果.。

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。

2017-2018学年广东省东莞市八年级(下)期末数学试卷以及答案

2017-2018学年广东省东莞市八年级(下)期末数学试卷以及答案

2017-2018学年广东省东莞市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分) 1.(232x -x 的取值范围是( D )A .32x >B .32x <C .32x ≥D .32x ≤2.(2分)下列计算正确的是( C )A ()242-= B 523=C 5210=D 623=3.(2分)下列各组线段中,能构成直角三角形的是( B ) A .2cm ,3cm ,4cm B .1cm ,1cm 2cm C .5cm ,12cm ,14cmD 3cm 4cm 54.(2分)函数31y x =-的图象不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限 5.(2分)一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是( B ) A .88 B .90 C .90.5D .916.(2分)如题6图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为( A ) A .40° B .80° C .140° D .180°题6图 题7图 7.(2分)题7图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( C ) A .DE ∥BC B .BC =2DE C .DE =2BC D .∠ADE =∠B 8.(2分)对某小区20户家庭某月的节约用水情况进行分组统计,结果如下表: 节约用水量x (t )0.5≤x <1.51.5≤x <2.52.5≤x <3.53.5≤x <4.5户数6482由上表可知,这20户家庭该月节约用水量的平均数是( B ) A .1.8t B .2.3t C .2.5t D .3 t 9.(2分)边长为4的等边三角形的面积是( C ) A .4B .42C .43D 43310.(2分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是( B ) A . B . C . D .二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)将正比例函数2y x =-的图象向上平移3个单位,则平移后所得图象的解析式是 23y x =-+ .12.(3分)已知一组数据3、x 、4、5、6,若该组数据的众数是5,则x 的值是 5 . 13.(34055= 221 . 14.(3分)一直角三角形的两边长分别为5和12,则第三边的长是 13119或 . 15.(3分)如图,将矩形ABCD 沿直线BD 折叠,使C 点落在C ′处,BC ′交边AD 于点E ,若∠ADC ′=40°,则∠ABD 的度数是 65° . 三、解答题(一)(本大题共5小题,每小题5分,共25分) 16.(5分)计算:218364322286+36432433222343==⨯=解:原式17.(5分)下面是某公司16名员工每人所创的年利润(单位:万元) 5 3 3 5 5 10 8 5 3 5 5 8 3 5 8 5 (1)完成下列表格:每人所创年利润/万元10 853 人数13 84(2)这个公司平均每人所创年利润是多少?()()101+83+58+34432=16843.8⨯⨯⨯⨯=解:利润万元答:利润是万元18.(5分)如图,BD 是▱ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.90ABCD AB CD AB CD ABE CDF AE BD CF BD AEB CFD AE CF AEB CFD AEB CFD ABE CDF AB CD AEB CFD AAS AE CF AECF ∴∴∠∠⊥⊥∴∠∠︒∠=∠⎧⎪∠=∠⎨⎪=⎩∴∴∴证明:四边形是平行四边形,=,,=,,,==,,在和中≌(),=,四边形是平行四边形.‖‖19.(5分)如图,在四边形ABCD 中,AC ⊥CD ,若AB =4,BC =5,AD =41D =30°,求四边形ABCD 的面积.()2222222222222301412241411234541419011413••1022ABCD ABCACDACD AC CD AD D AC AD CD AD AC ABC AB BC AC AB BC AC ABC ABC S SSAB BC AC CD ⊥∠︒∴==∴=-=-+=+==∴+∴∠=︒∴=+=+=+四边形解:在中,,=,=,,=.在中,,,=,是直角三角形,且,20.(5分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费. (1)若该城市某户6月份用水18吨,该户6月份水费是多少? (2)设某户某月用水量为x 吨(x >20),应缴水费为y 元,求y 关于x 的函数关系式.()()()()1 2.5184564522020 2.52033 3.316;203316x y x x x y x =⨯>=⨯+-⋅=-∴>=-解:水费=元答:该户月份水费是元;当时,当时,四、解答题(二)(本大题共5小题,每小题8分,共40分) 21.(86a -5a =.22632234545a a a a a =⋅⋅+⋅====⨯=解:原式当时,原式22.(8分)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:5次测试成绩(分)平均数 方差 甲 8 8 7 8 9 8 0.4 乙59710983.2(1)若从甲、乙两人中选派一人参加操作技能大赛,你认为应选谁?为什么?(2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).()()()()()()()()()222222221880.4 3.2.5898982 3.255898988816=2.67666 2.67.S =<∴-+-++-=-+-++-+-∴=≈乙解:,选择甲参赛易知答:乙次测试成绩的方差大约为23.(8分)如图,一架5米长的梯子AB 斜靠在一面墙上,梯子底端B 到墙底的垂直距离BC 为3米.(1)求这个梯子的顶端A 到地面的距离AC 的值; (2)如果梯子的顶端A 沿墙AC 竖直下滑1米到点D 处,求梯子的底端B 在水平方向滑动了多少米?()()()()()()22222222222213544?24135354431Rt ABC AC CB AB AC AC m A AC m DC m DE m Rt DCE DC CE DE CE CE m BE CE CB m B +=+∴=-==+=+=∴=-=-=解:在中,由勾股定理得, 即=,=,答:这个梯子的顶端到地面的距离为;,,在中,由勾股定理得, 即=,答:梯子的底端在水平方向滑动1m 了.24.(8分)如图,已知直线y kx b =+交x 轴于点A ,交y 轴于点B ,直线24y x =-交x 轴于点D ,与直线AB 相交于点()3,2C .(1)根据图象,写出关于x 的不等式24x x b ->+的解集; (2)若点A 的坐标为()5,0,求直线AB 的解析式; (3)在(2)的条件下,求四边形BODC 的面积.()()()()()()()()1243250,3250132553055050525,00522,031552AOB ACDx x b x A C y kx b k b k k b b y x x y x y B y y x x A y y x x D DA BODC SS->+>=+⋅+==-⎧⎧⎨⎨⋅+==⎩⎩∴=-+==-+=∴==-+=∴==-+=∴∴=∴=-=⨯⨯解:根据图象可得不等式的解集为:;把点,,代入有,解得,解析式为:;把代入得,,,把代入得,,把代入得,,,四边形的面积1329.52-⨯⨯=.25.(8分)如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点,DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F . (1)求证:DE =AF ;(2)若AB =4,BG =3,求AF 的长;(3)如图2,连接DF 、CE ,判断线段DF 与CE 的位置关系并证明.()1909090902435435=22DE AG BF DE BF AG AED BFA ABCD AB AD BAD ADC BAF EAD EAD ADE BAF ADE AFB DEA AAS AF DE Rt ABG AB BG AG BF⊥∴⊥∴∠=∠=︒∴=∠=∠=︒∴∠+∠=︒∠+∠=︒∴∠=∠∴∴====⨯解:证明:,,,,四边形是正方形,且,,,,≌(),;()在中,,,根据勾股定理得,,根据等面积法,有 ‖()222.4;4 2.4 3.2;3.23;9090BF Rt ABF AF AF DF CE FAD ADE EDC ADE ADC FAD EDC AFB DEA AF DE ABCD AD CD FAD EDC FAD EDC SAS ADF DCE ==-=∴=⊥∠+∠=︒∠+∠=∠=︒∴∠=∠∴=∴=∴≅∴∠=∠ 解得 在中,理由如下:,,,≌,,又四边形是正方形,,在和中,(),,,9090ADF CDF ADC DCE CDF DF CE ∠+∠=∠=︒∴∠+∠=︒∴⊥,,.。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)

2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。

2017-2018第一学期七年级数学期中测试题

2017-2018第一学期七年级数学期中测试题

2017——2018学年度第一学期阶段性测试初一数学试卷选择题(每题3分,共30分)1.﹣的倒数是()A.3 B.C.﹣D.﹣32.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A.B.C.D.3、11月2日我市一天的最高气温是12℃,最低气温是-1℃,那么这一天的最高气温比最低气温高()A.-13℃B.-11℃C.13℃D.11℃4.下列各组式子中说法正确的是()A.3xy与﹣2yz是同类项B.5xy与6yx是同类项C.2x与x2是同类项D.2x2y与2xy2是同类项5.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,P表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A.点M B.点N C.点P D.点Q6.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,07、(2)x x y--的运算结果为 ( )A. -x+yB. -x-yC.x-yD.3x-y8.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0 B.1 C.7 D.﹣19、下列计算正确的是 ( )A. 22a b ab+= B. 2232x x-= C. 770mn mn-= D. 2a a a+=10.多项式x2-3kxy-3y2+6xy-8合并同类项后不含xy项,则k的值是()A.B.C.D.2二.填空题(每题3分,共24分)11.据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到212000000,其中212000000用科学记数法表示为.12.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如下图所示,请判断搭成此展台共需这样的正方体13.如果|a﹣1|+(b+2)2=0,则(a+b)2017的值是.14. 一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为15.现有14米长的木材,要做成一个如图所示的窗户,若窗户横档的长度为a 米,则窗户中能射进阳光的部分的面积(窗框面积忽略不计)是。

新人教版2017-2018学年五校七年级(下)期中质量调研数学试卷附答案

新人教版2017-2018学年五校七年级(下)期中质量调研数学试卷附答案

2017-2018学年五校七年级(下)期中质量调研数学试卷一.选择题(4*10=40分)1.(4分)下列语句是命题的是()A.画线段AB B.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(4分)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(4分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(4分)在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个5.(4分)下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动6.(4分)若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)7.(4分)估计的值在哪两个整数之间()A.75和77 B.6和7 C.7和8 D.8和98.(4分)在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A.B.C.D.9.(4分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.4810.(4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2018的坐标为()A.(3,1)B.(0,4)C.(﹣3,1)D.(0,﹣2)二.填空题(4*6=24分)11.(4分)的平方根是.12.(4分)已知3x+2y=1,用含x的代数式表示y:.13.(4分)已知,则ab=.14.(4分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(4分)已知是二元一次方程ax﹣by+3=0的解,则6a﹣4b+8的值为.16.(4分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共86分)17.(8分)计算:(1)+(2)|﹣2|﹣18.(10分)解方程(组):(1)9x2=16(2)19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)如图,已知AB∥CD,试再添加一个条件使∠1=∠2成立.(要求:不能添加新线或新字母,请写出至少两个满足∠1=∠2的条件并选择其中一种情况加以证明)21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D()∴DF∥()∴∠A=∠F().22.(8分)已知+2的小数部分为a,8﹣的小数部分为b,求a+b的平方根.23.(10分)已知:如图,∠DEF:∠EFH=3:2,∠1=∠B,∠2+∠3=180°,求∠DEF 的度数.24.(12分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?25.(14分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.参考答案一.选择题(4*10=40分)DBBCB CDDDB11.±.12.y=.13.﹣4.14.15°或115°.15.2.16.20cm2.17.解:(1)原式=10+(﹣2 )=8;(2)原式=2﹣﹣2=﹣.18.解:(1)∵9x2=16,∴x2=,则;(2),①×2得:4x﹣2y=16 ③,②+③得:7x=21,x=3,把x=3代入①得:y=﹣2,∴原方程组的解为:.19.解:(1)如图.(2)△A′B′C′的面积是:7×8﹣×3×7﹣×5×2﹣×8×5=20.5.20.解:可添加的条件有:①CF和BE分别是∠DCB、∠ABC角平分线;②CF∥EB;③∠FCB=∠FEB;④∠E=∠F;选择:添加CF∥BE.证明:∵CF∥BE,∴∠FCB=∠EBC,∵AB∥CD,∴∠DCB=∠ABC,∴∠DCB﹣∠FCB=∠ABC﹣∠BEF,∴∠1=∠2.21.证明:∵∠AGB=∠EHF,∠AGB=∠DGF(对顶角相等),∴∠EHF=∠DGF,∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),又∵∠C=∠D,∴∠DBA=∠D,(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解:∵,∴,,∴,∴a+b=1∴a+b的平方根为±123.解:∵∠1=∠B,∴FG∥BC,∴∠AFG=∠C,∵∠2+∠3=180°,∠CDE+∠3=180°,∴∠2=∠CDE,∵∠CFH=180°﹣∠AFG﹣∠2,∠CED=180°﹣∠C﹣∠CDE,∴∠CFH=∠CED,∴DE∥FH,∴∠DEF+∠EFH=180°,∵∠DEF:∠EFH=3:2,∴∠DEF=×180°=108°.24.解:(1)设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得:x=8,12﹣x=4;答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱.25.解:(1)正确画出直角坐标系;当0<t≤4时P1(2t,0)当4<t≤7时P2(8,2t﹣8)当7<t≤10时P3(22﹣2t,6)(2)存在①如图1,当0<t≤4时,S△APE=×2t×6=20,解得t=(s);∴p(,0)②如图2,当4<t≤7时,S△APE=48﹣S△ADE﹣S△ABP﹣S△PCE,20=48﹣×6×2﹣×8×(2t﹣8)﹣×6×(14﹣2t)解得:t=6(s);∴p(8,4)③如图3,当7<t≤10时,S△APE=×6×(20﹣2t)=20,解得t=(s)<7,∴t=(应舍去综上所述:当p(,0)或p(8,4)时,△APE的面积等于20cm2。

2017年广东省东莞市中考数学试卷(含详解)

2017年广东省东莞市中考数学试卷(含详解)

2017年广东省东莞市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70° C.30° D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65° D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留p)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70° C.30° D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65° D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF=S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF=S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.东莞市虎门铧师培训中心有限公司咨询电话0769-8598 8066三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.东莞市虎门铧师培训中心有限公司咨询电话0769-8598 8066(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值。

2017-2018学年湘教版七年级数学下册下期中试卷含答案

2017-2018学年湘教版七年级数学下册下期中试卷含答案

2017-2018学年湘教版七年级数学下册下期中试卷含答案2017-2018学年七年级(下)期中数学试卷一、选择题1.下列方程中,是二元一次方程的是()A.3x+2y=4 B.xy=5C.x2﹣y=3 D.8x﹣2x=12.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b23.计算(﹣a+b)(a﹣b)等于()A.a2﹣b2B.﹣a2+b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b24.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.25.如果3a7xby+7和﹣7a2﹣4yb2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣26.若方程组A.4的解x与y相等.则a的值即是()B.10C.11D.127.若a﹣b=1,ab=2,则(a+b)2的值为()A.﹣9B.98.C.±9D.3的解,则a﹣b的值为()是二元一次方程组C.2D.3A.﹣1B.19.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.10.把多项式m2(a﹣2)+m(2﹣a)分解因式即是()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)二、填空题(本大题共10小题,每小题4分,共40分)第1页(共15页)D.m(a﹣2)(m+1)11.方程2x+y﹣4=0,用含x的代数式透露表现y为:y=.12.若方程3xm+2﹣5y3﹣n=0是关于x、y的二元一次方程,则m+n=.13.是方程2x+ay=5的解,则a=.14.计算:a•a3•a5=;(b3)4=;(x2y)3=.15.0.•=1.16.计算(2x+1)(2x﹣1)=.17.若x2+mx+4是完整平体式格局,则m=.18.计算:(﹣2x3y2)•(3x2y)=.19.a+=3,则a2+的值是.20.已知|4x+3y﹣5|与|x﹣3y﹣4|互为相反数,则x+y=.三、解答题(共70分)21.解方程组:(1)(2).22.(1)因式分解:2x2﹣8(2)计算:﹣2013×4028+.23.解方程:(x﹣1)(1+x)﹣(x+2)(x﹣3)=2x﹣5.24.利用因式分解计算:.25.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.26.文化乐园门票价格如下表所示:购票人数每人门票价格1人﹣﹣50人13元51人﹣﹣100人11元100人以上9元某校七年级甲、乙两个班共101人去乐园春游,其中甲班人数较少,不到50人,乙班人数较多,有50多人,经估算如果两个班都以班为单位分别购票,则一共应该付1203元.(1)请计较两个班各有几何逻辑学生?(2)你以为他们若何购票比较合算?并计较比以班为单位划分购票体式格局可节省几何第2页(共15页)元?参考答案与试题解析1、挑选题1.以下方程中,是二元一次方程的是()A.3x+2y=4 B.xy=5C.x2﹣y=3 D.8x﹣2x=1【考点】二元一次方程的定义.【分析】按照二元一次方程的定义:含有两个未知数,而且含有未知数的项的次数都是1,像如许的方程叫做二元一次方程可得答案.【解答】解:只有3x+2y=4是二元一次方程。

【精编】2017-2018学年广东省东莞市八年级下期中数学试卷(有答案)

【精编】2017-2018学年广东省东莞市八年级下期中数学试卷(有答案)

2017-2018学年广东省东莞市八年级(下)期中数学试卷一、填空题每小题2分,共20分)1.①×= ;②×= .2.二次根式有意义的条件是 .3.化简二次根式= ;= .4.“两直线平行,内错角相等”的逆命题是 .5.比较大小:5 .6.直角三角形斜边上的中线等于斜边的 .7.计算:÷= .8.长方形的一边长是,面积为9,则另一边的长为 .9.若x =3,则的值为 .10.计算:(﹣2)(+2)= 二.选择题(每小题2分,共20分)11.若有意义,则x 满足条件( )A .x >1.B .x ≥1C .x <1D .x ≤1. 12.下列计算正确的是( )A .B .C .D . 13.以下列各组数为边长,能构成直角三角形的是( )A .2,3,5B .6,8,10C .,,D .,, 14.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .19415.下列二次根式中,最简二次根式是( )A .B .C .D .16.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( )A .0mB .1mC .2mD .3m17.平行四边形ABCD 中,对角线AC 、BD 交于点O (如图),则图中全等三角形的对数为( )A .2B .3C .4D .518.已知一个多边形的外角和等于它的内角和,则这多边形是( )A .三角形B .四边形C .五边形D .六边形19.下列各式,化简后能与合并的是( )A .B .C .D .20.平行四边形不一定具有的性质是( )A .对边平行且相等B .对角相等C .对角线相等D .对角线互相平分三、解答题(共36分)21.求使下列各式有意义的字母的取值范围:(1)(2)(3)(4) 22.化简:(1)(2)(3)(4)23.计算:(1)++(2)(+5)(3)﹣﹣+(4)(+)(﹣) 四、综合题(共24分)24.已知:x =﹣2,y =+2,分别求下列代数式的值(1)x 2﹣y 2(2)x2+2xy+y225.设直角三角形的两条直角边长分别为a和b,斜边长为c(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.26.如图,在平行四边形ABCD中,E、F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE =CF.27.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.2017-2018学年广东省东莞市八年级(下)期中数学试卷参考答案与试题解析一、填空题每小题2分,共20分)1.①×=;②×=3.【分析】直接利用二次根式的乘法的法则进行运算即可.【解答】解:①×==;②×===3,故答案为:,3.【点评】考查了二次根式的乘除法,属于基础运算,解题的关键是牢固掌握二次根式乘法的运算法则,难度不大.2.二次根式有意义的条件是a≥1.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据二次根式的性质可知:a﹣1≥0;解得a≥1.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.化简二次根式=2;=4xb.【分析】先将积的二次根式转化为二次根式的积,再进行化简.【解答】解:=×=2;=•=4xb,故答案为:2,4xb.【点评】考查了二次根式的性质与化简,正确运用二次根式乘法法则是解答问题的关键.4.“两直线平行,内错角相等”的逆命题是两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:“两直线平行,内错角相等”的条件是:两直线平行,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.5.比较大小:5>.【分析】根据实数大小比较的方法比较即可.【解答】解:∵5=,∴5>.故答案为:>.【点评】本题考查了实数大小的比较,熟练掌握实数大小的比较方法是解题的关键6.直角三角形斜边上的中线等于斜边的一半.【分析】根据在直角三角形中,斜边上的中线等于斜边的一半解答.【解答】解:直角三角形斜边上的中线等于斜边的一半,故答案为:一半.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.7.计算:÷=3.【分析】直接利用二次根式的除法运算法则得出即可.【解答】解:÷==3.故答案为:3.【点评】此题主要考查了二次根式的除法运算,根据二次根式的运算法则得出是解题关键.8.长方形的一边长是,面积为9,则另一边的长为.【分析】根据矩形的面积公式即可得到结论.【解答】解:∵长方形的一边长是,面积为9,∴另一边的长==,故答案为:.【点评】本题考查了矩形的性质,熟记矩形的面积公式是解题的关键.9.若x=3,则的值为4.【分析】先把根号内的数进行因式分解,再代入求值即可.【解答】解:∵x=3,∴原式===4,故答案为:4.【点评】本题主要考查了二次根式的化简求值,解题的关键是正确的因式分解.10.计算:(﹣2)(+2)=﹣5【分析】根据平方差公式可以解答本题.【解答】解:(﹣2)(+2)==3﹣8=﹣5,故答案为:﹣5.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.二.选择题(每小题2分,共20分)11.若有意义,则x满足条件()A.x>1.B.x≥1C.x<1D.x≤1.【分析】二次根式的被开方数是非负数.【解答】解:依题意得:x﹣1≥0,解得x≥1.故选:B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.下列计算正确的是()A.B.C.D.【分析】根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.【解答】解:A、﹣=2﹣=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.【点评】本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.13.以下列各组数为边长,能构成直角三角形的是()A.2,3,5B.6,8,10C.,,D.,,【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A、∵22+32≠52,∴不能构成直角三角形,故本选项错误;B、∵62+82=102,∴能构成直角三角形,故本选项正确;C、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;D、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误.故选:B.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.14.如图字母B所代表的正方形的面积是()A.12B.13C.144D.194【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选:C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.15.下列二次根式中,最简二次根式是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式;B、=|a|b2,被开方数含能开得尽方的因数,不是最简二次根式;C、=3,不是最简二次根式;D、=,不是最简二次根式;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.16.一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A.0m B.1m C.2m D.3m【分析】依照题意画出图形,在Rt△COD中,利用勾股定理可求出OA的长度,结合AC的长度可得出OC的长度,在Rt△COD中,利用勾股定理可求出OD的长度,再利用BD=OD﹣OB即可求出BD的值.【解答】解:依照题意画出图形,如图所示.在Rt△AOB中,OB=3m,AB=5m,∴OA==4m.在Rt△COD中,OC=OA﹣AC=3m,CD=AB=5m,∴OD==4m,∴BD=OD﹣OB=4﹣3=1m.故选:B.【点评】本题考查了勾股定理,依照题意画出图形,利用数形结合解决问题是解题的关键.17.平行四边形ABCD中,对角线AC、BD交于点O(如图),则图中全等三角形的对数为()A.2B.3C.4D.5【分析】平行四边形的性质是:对边相互平行且相等,对角线互相平分.这样不难得出:AD=BC,AB=CD,AO=CO,DO=BO,再利用“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形,故选C.【点评】三角形全等的条件有时候是直接给的,有时候是根据已知条件推出的,还有时是由已知图形的性质得出的,做题时要全面考虑.18.已知一个多边形的外角和等于它的内角和,则这多边形是()A.三角形B.四边形C.五边形D.六边形【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列方程求解即可.【解答】解:设这个多边形边数为n,由题意得,(n﹣2)•180°=360°,解得n=4,所以,这个多边形是四边形.故选:B.【点评】本题考查了多边形内角与外角,熟记内角和公式与外角和定理是解题的关键.19.下列各式,化简后能与合并的是()A.B.C.D.【分析】根据同类二次根式的定义即可求出答案.【解答】解:与是同类二次根式即可合并,由于=2,2与是同类二次根式,∴2与可以合并,故选:C.【点评】本题考查同类二次根式,解题的关键是正确理解同类二次根式,本题属于基础题型.20.平行四边形不一定具有的性质是()A.对边平行且相等B.对角相等C.对角线相等D.对角线互相平分【分析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补,继而即可得出答案.【解答】解:∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴平行四边形不一定具有的性质是C选项.故选:C.【点评】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即平行四边形的邻角互补.三、解答题(共36分)21.求使下列各式有意义的字母的取值范围:(1)(2)(3)(4)【分析】根据二次根式的被开方数是非负数,得不等式,求解不等式即可.【解答】解:(1)x+5≥0,∴x≥﹣5;(2)3﹣a≥0,﹣a≥﹣3,∴a≤3;(3)2a+1≥0,2a≥﹣1,∴a≥﹣;(4)8x≥0,∴x≥0.【点评】本题考查了二次根式有意义的条件,当被开方数是非负数时,二次根式才有意义.22.化简:(1)(2)(3)(4)【分析】先将积的二次根式转化为二次根式的积,再进行化简.【解答】解:(1)=×=5×4=20;(2)==9;(3)==2;(4)==4|x|.【点评】考查了二次根式的运算,正确运用二次根式乘法法则是解答问题的关键.23.计算:(1)++(2)(+5)(3)﹣﹣+(4)(+)(﹣)【分析】(1)根据二次根式的加法可以解答本题;(2)根据二次根式的乘法和加法可以解答本题;(3)根据二次根式的加减法可以解答本题;(4)根据平方差公式可以解答本题.【解答】解:(1)++==3+2;(2)(+5)==6+10;(3)﹣﹣+==+2;(4)(+)(﹣)=2﹣3=﹣1.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.四、综合题(共24分)24.已知:x=﹣2,y=+2,分别求下列代数式的值(1)x2﹣y2(2)x2+2xy+y2【分析】根据二次根式的运算以及乘法公式即可求出答案.【解答】解:(1)∵x=﹣2,y=+2,∴x+y=2,x﹣y=﹣4∴原式=(x+y)(x﹣y)=2×(﹣4)=﹣8;(2)原式=(x+y)2=(2)2=20.【点评】本题考查学生的运算能力,解题的关键是熟练运用乘法公式以及二次根式的运算法则,本题属于基础题型.25.设直角三角形的两条直角边长分别为a和b,斜边长为c(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.【分析】(1)根据c=即可得出结论;(2)根据b=即可得出结论;(3)根据a=即可得出结论.【解答】解:(1)∵直角三角形的两条直角边长分别为a和b,斜边长为c,a=12,b=5,∴c===13;(2)∵直角三角形的两条直角边长分别为a和b,斜边长为c,a=3,c=4,∴b===;(3)∵直角三角形的两条直角边长分别为a和b,斜边长为c,c=10,b=9,∴a===.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.26.如图,在平行四边形ABCD中,E、F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE =CF.【分析】由题意可证△ABE≌△CDF,可得结论.【解答】证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴AE=CF【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.27.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.【分析】要证明线段相等,只需证明两条线段所在的两个三角形全等即可.【解答】证明:∵ABCD为平行四边形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AEO≌△CFO(AAS),∴OE=OF.【点评】运用了平行四边形的对角线互相平分以及平行四边形的对边平行.。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

东莞市七年级下学期期中数学试卷

东莞市七年级下学期期中数学试卷

东莞市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·娄底模拟) 下列运算正确的是()A . .x3•x3=xB . (ab3)2=ab6C . x8÷x4=x2D . (2x)3=8x32. (2分)下列运算正确的是().A .B .C .D .3. (2分)某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A . y=- xB . y= xC . y=-2xD . y=2x4. (2分)如果一个角的两边分别平行于另一个角的两边,那么这两个角的关系是()A . 相等B . 互补C . 相等或互补D . 以上结论都不对5. (2分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A . (a+b)2=a2+2ab+b2B . (a-b)2=a2-2ab+b2C . a2-b2=(a+b)(a-b)D . (a+2b)(a-b)=a2+ab+b26. (2分)下列关系式中,正确的是()A . (a﹣b)2=a2﹣b2B . (a+b)(a﹣b)=a2﹣b2C . (a+b)2=a2+b2D . (a+b)2=a2﹣2ab+b27. (2分) (2017七下·台山期末) 如图,∥ ,分别与,相交于点E、F,则图中与相等的角的个数有()A . 2个B . 3个C . 4个D . 5个8. (2分) (2019七下·十堰期末) 下列命题属于真命题的是()A . 同旁内角相等,两直线平行B . 相等的角是对顶角C . 平行于同一条直线的两条直线平行D . 同位角相等9. (2分)星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A . 小强从家到公共汽车站步行了2千米B . 小强在公共汽车站等小明用了10分钟C . 公交车的平均速度是34千米/小时D . 小强乘公交车用了30分钟10. (2分)如图,用尺规作出∠OBF=∠AOB,所画痕迹是()A . 以点B为圆心,OD为半径的弧B . 以点C为圆心,DC为半径的弧C . 以点E为圆心,OD为半径的弧D . 以点E为圆心,DC为半径的弧11. (2分)(2019·河南模拟) 如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D为BC的中点,动点E,F 分别在AB,AC上,分别过点EG∥AD∥FH,交BC于点G、H,若EF∥BC,则EF+EG+FH的值为()A .B .C .D .12. (2分)(2017·临沂模拟) 如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A . 8°B . 10°C . 12°D . 18°二、填空题 (共4题;共6分)13. (1分)当x=2002时,代数式(x﹣2)(x+2)﹣(x﹣1)(x+1)的值是________14. (3分)如图1,正方形ABCD中,点P从点A出发,以每秒2厘米的速度,沿A→D→C方向运动,点Q 从点B出发,以每秒1厘米的速度,沿BA向点A运动,P、Q同时出发,当点P运动到点C时,两动点停止运动,若△PAQ的面积y(cm2)与运动时间x(s)之间的函数图象为图2,若线段PQ将正方形分成面积相等的两部分,则x的值为________ .15. (1分) (2016七下·槐荫期中) 两个角的两边分别平行,其中一个角比另一个角的4倍少30°,这两个角是________.16. (1分)已知a+b=2,ab=﹣10,则a2+b2=________.三、解答题 (共7题;共81分)17. (10分) (2016七上·岱岳期末) 化简(求值):(1)化简:4a2+3b2+2ab﹣3a2﹣3ba﹣a2;(2)先化简,再求值:x﹣2(x﹣ y2)+(﹣),其中x=﹣2,y= .18. (5分) (2018七下·乐清期末)(1)计算(x-2)2-x(x+1)(2)先化简:,再求出当m=-2时原式的值。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017~2018学年度第一学期期末七年级数学试卷(含答案)

2017~2018学年度第一学期期末七年级数学试卷(含答案)

2017~2018学年度第一学期期末中小学学习质量评价·七 年 级 数 学 试 卷·本卷共8大题,计23小题,满分150分,考试时间120分钟.祝你考出好成绩!一、选择题(本题共10小题,每小题4 分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在本大题后的表格内.每一小题,选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.有理数12-的倒数是 A .12B .-2C .2D . 12.计算-2+5的结果是 A .-7B .-3C .3D .73.2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功。

天宫二号的飞行高度距离地球350千米,350千米用科学记数法表示为( )米.. A .3.5×102 B .3.5×105 C .0.35×104 D .350×1034.下列计算中,正确的是A .235a b ab +=B .--=-+2()2a b a bC .32a a a -+=-D .32a a a -= 5.下列各式结果相等的是 A .2222)--与( B .332233⎛⎫⎪⎝⎭与C .()22----与D .201720171-与(-1)6. 已知x =3是关于x 的方程51312()()x a ---=-的解,则a 的值是 A .2 B .3 C .4D .57.用一副三角板的两块画角,不可能画出的角的度数是 A .15° B .55° C .75° D .135°8.练习本比中芯笔的单价少2元,小刚买了5本练习本和3支中芯笔正好用去14元 如果设中芯笔的单价为x 元,那么下列所列方程正确的是 A.52314()x x -+=B.52314()x x ++=C.53214()x x ++=D.53214()x x +-=相对于点O 的方位可表示为 A .南偏东68°40′方向 B .南偏东69°40′方向 C .南偏东68°20′方向D .南偏东69°10′方向10.如果∠1与∠2互为余角,∠1与∠3互为补角,那么下列结论:①∠3-∠2=90°,②∠3+∠2=270°-2∠1,③∠3-∠1=2∠2,④∠3>∠1+∠2.其中正确的是( ) A. ①②B. ①②③C. ①③④D. ①②③④二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,公园里美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是; 12.在8:30这一时刻,时钟上时针与分针的夹角为;13.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是 元;14.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻转到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.第11题图第9题图东三、(第15题每小题4分计8分,第16题8分,本大题满分16分)15.计算:(1)112()(7)0.754--+-+; (2)2018231(1)124(2)(1)44-+÷-⨯--⨯-;16.解方程:212136x x ---= .四、(每小题8分,本题满分16分)17.先化简,再求值:222222123()()a b ab a b ab +----,其中2120()a b ++-=.18.如图,已知点M 是线段AB 的中点,点E 将AB 分成AE ∶E B =3∶4的两段,若EM =2cm ,求线段AB 的长度.A B五、(本大题共2小题,每小题10分,满分20分)19.定义一种新运算“☒”,即m ☒n =(m +2)×3-n ,例如2☒3=(2+2)×3-3=9.根据规定解答下列问题:(1)求6☒(-3)的值;(2)通过计算说明6☒(-3)与(-3)☒6的值相等吗?20. 如下图是一组有规律的图案,第1个图案由4个基础图形“ ”组成,第2个图案由7个基础图形组成,……(1(2)试写出第(n 是正整数)个图案是由 个基础图形组成 (3)若第n 个图案共有基础图形2017个,则n 的值是多少? n(1) (2) (3) ……六、(本题满分12分)21.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.七、(本题满分12分)22.如图①,将笔记本活页一角折过去,使角的顶点A落在点A’处,BC为折痕.(1)在图①中,若∠1=30º,求∠A’BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA’ 重合,折痕为BE,如图②所示,若∠1=30º,求∠2以及∠CBE的度数;(3)如果在图②中改变∠1的大小,则BA’的位置也随之改变,那么问题(2)中∠CBE的大小是否改变?请说明理由.C八、(本大题题满分14分)23.同学们,我们很熟悉这样的算式:1+2+3+…+n =21n (n +1),其实,数学不仅非常美妙,而且魅力无穷.请你观察、欣赏下列一组等式: ①1×2=13×1×2×3; ②1×2+2×3=13×2×3×4; ③1×2+2×3+3×4=13×3×4×5; ④1×2+2×3+3×4+4×5=13×4×5×6; ……(1)按照上述规律,试写出第⑤个等式的右边:1×2+2×3+3×4+4×5+5×6= ; (2)根据上述规律,写出第n 个等式的右边:1×2+2×3+3×4+…+n ×(n +1)= ; (3)观察类比,并大胆猜想:1×2×3+2×3×4+3×4×5+…+n ×(n +1)×(n +2)= ;(4)根据(2)中的规律计算10×11+11×12+…+98×99(写出计算过程).2017~2018学年度第一学期期末中小学学习质量评价七年级数学参考答案及评分标准一、二、11.两点之间线段最短;12. 75°;13. 320;14. 我.三、15、(1)原式=1312744+-+………………2分=13(127)()44-++………………3分=51+=6………………4分(2)原式=451124(4)()34+⨯⨯--⨯-………………2分=1+64-5…………………3分=60………………………4分说明:方法不唯一,正确即得分.16.解:22126()()x x---=………………3分4226x x--+=………………6分3 x =6x=2……………8分四、17.解:(a2b+2ab2)-2(a2b-1)-2ab2-3= a2b+2ab2-2a2b+2-2ab2-3………………………… 2分=-a2b-1 …………………………4分∵2120()a b++-=,∴21020,()a b+=-=,∴a= -1 ,b=2…………………………6分当a= -1 ,b=2 时,原式= -(-1)2×2-1=―2―1 ……………7分=-3……………………8分18、解:设AB=x cm,则1327,AM x AE x==,…………………………2分由题意得,13227x x-=…………………………4分解得,x=28.所以,A B的长度为28cm. …………………………8分说明:方法不唯一,正确即得分.五、19、解: (1)6☒(-3)=(6+2)×3-(-3)……………………2分=24+3=27……………………5分(2)(-3)☒6=(-3+2)×3-6……………………8分=-9…………………………………….9分所以6☒(-3)与(-3)☒6的值不相等……………………10分20、解:(1)填表格,从左到右依次是:10, 13………………2分(2) (3n+1)…………………………………………………….5分(3)当3n+1=2017时,解得,n=672所以,n的值是672.………………………10分六、21、解:(1)设钢笔的单价为x元,则毛笔的单价为元.由题意得:解得:,则.答:钢笔的单价为21元,毛笔的单价为25元.……………………………..6分设单价为21元的钢笔为y支,所以单价为25元的毛笔则为支.根据题意,得.解得:(钢笔的支数应该是正整数,不符合题意).所以王老师肯定搞错了.……………………………..12分七、22、解:(1)∵∠1=30°,∴∠1=∠ABC=30°,∴∠A’BD=180°-2×30°=120°.……………………………..4分(2)∵∠A’BD=120°,∠2=∠DBE,∴∠2=12∠A’BD=60°,∴∠CBE=∠1+∠2=30°+60°=90°……………………………..8分(3)结论:∠CBE不变.∵∠1=12∠AB A’,∠2=12∠A’BD,∠AB A’+∠A’BD=180°,A B∴∠1+∠2=12∠AB A’+12∠A’BD =12(∠AB A’+∠A’BD )=12×180°=90° 即∠CBE =90°.……………………………..12分 八、 23、解:(1)31×5×6×7 ; ……………………3分 (2)31n (n +1)(n +2) ; ……………………6分 (3)41n (n +1)(n +2)(n +3) ; ……………………10分(4)10×11+11×12+…+98×99=31×98×99×100 - 31×9×10×11 =323070 ……………………14分。

2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)

2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)

2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。

广东省东莞市香市中学2023-2024学年七年级下学期期中数学试卷(含答案)

广东省东莞市香市中学2023-2024学年七年级下学期期中数学试卷(含答案)

广东省东莞市香市中学2023-2024学年七年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)人体内的某种球状细胞的直径为0.0000156m,数据0.0000156用科学记数法可表示为( )A.1.56×10﹣6B.1.56×10﹣5C.156×10﹣5D.1.56×1062.(3分)下列各图中,∠1与∠2属于对顶角的是( )A.B.C.D.3.(3分)计算正确的是( )A.(m2)3=m5B.(mn)2=mn2C.m2•m3=m5D.m6÷m2=m34.(3分)如图,某地进行城市规划,在一条新修公路MN旁有一村庄P,现要建一个汽车站,且有A,B,C,D四个地点可供选择.若要使汽车站离村庄最近,则汽车站应建在( )A.点A处B.点B处C.点C处D.点D处5.(3分)多多从家步行到学校,离家的路程x(米)与步行时间t(分)的函数关系如图所示.若多多步行速度保持不变,则中途停留时间为( )A.5分B.5.6分C.6分D.6.4分6.(3分)下列计算正确的是( )A.6x3y÷2x=3x2B.(x﹣y)2=x2﹣y2C.(2x+y)(x﹣y)=2x2﹣y2D.(x+2)(x﹣2)=x2﹣47.(3分)周末,小明骑车从家出发去博物馆,途中突然发现钥匙不见了,于是原路折返,在刚才等红绿灯的路口找到了钥匙,便立即前往博物馆.小明从家出发到博物馆的过程中,离家距离y(m)与时间x (min)之间的关系如图所示,下列说法正确的是( )A.小明家到博物馆的距离为2400mB.小明等红绿灯的时间为6minC.小明发现钥匙不见后,原路折返找钥匙的骑车速度是120m/minD.小明从家出发到博物馆的过程中,离家距离y是自变量,时间x是因变量8.(3分)若a m=6,a n=2,则a m﹣n的值为( )A.8B.4C.12D.39.(3分)下列图形阴影部分的面积能够直观地解释(x﹣1)2=x2﹣2x+1的是( )A.B.C.D.10.(3分)如图,已知AD⊥BC,FG⊥BC,∠BAC=90°,DE∥AC.则结论:①FG∥AD;②DE平分∠ADB;③∠B=∠ADE;④∠CFG+∠BDE=90°.正确的是( )A.①②③B.①②④C.①③④D.②③④二.填空题(共5小题,满分15分,每小题3分)11.(3分)计算的结果为 .12.(3分)如图,点O在直线AB上,过点O作射线OC、OD,使OC⊥OD,当∠AOC=42°时,∠BOD 的度数为 .13.(3分)某地海拔高度h(km)与温度T(℃)的关系可用T=20﹣6h来表示,则该地区某海拔高度为2000m的山顶上的温度为 .14.(3分)如图,AB∥CD,AE,CD相交于点C.如果∠A=34°,那么∠ECF的度数为 .15.(3分)如图,在大长方形ABCD中放入5张相同的小长方形(图中空白部分).若大长方形的周长是48,图中阴影部分的面积是78,则一张小长方形的面积 .三.解答题(共9小题,满分75分)16.(5分)计算:(﹣1)3﹣|﹣3|+(π﹣2020)0+()﹣2.17.(5分)先化简,再求值:[4(x﹣1)2+(x﹣2)(x+2)]÷2x,其中x=﹣2.18.(6分)如图,已知AD∥BC,∠1+∠4=180°,求证:∠1=∠2.19.(8分)【问题背景】尽享春日好时光,张梅和家人去某自然景区游玩,在欣赏美景的同时张梅用所学过的知识来记录他们的行程.【收集信息】张梅从景区发的宣传册中发现了他们所走的线路图,如图①.【建立模型】张梅通过乘坐的观光车所走的路程,绘制了如图②所示的函数图象,观光车从入口出发,经过景点甲,在景点甲停留一段时间,然后继续行驶到达终点.折线AB﹣BC﹣CD表示观光车到终点的路程y(km)与行驶时间x(h)之间的关系.【解决问题】(1)请求出线段CD表示的函数表达式;(2)请通过计算求观光车在景点甲停留的时间.20.(8分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,四边形ABCD.求作:点E,使CE∥AB,CE=AB,且点E在四边形ABCD的内部.21.(8分)已知有甲、乙两个长方形纸片,它们的边长如图中所示(m是正整数),面积分别为S甲和S 乙.(1)含m的代数式表示S甲= ,S乙= ;(2)用“<”、“=”或“>”号填空:S甲 S乙;(3)若一个正方形纸片的周长与甲的周长相等,其面积设为S正小方同学发现“S正与S甲的差是定值”请判断小方同学的发现是否正确,并通过计算说明你的理由.22.(10分)假期,甲乙两人沿同一条笔直的马路同时从同一小区出发到南京博物院参观,小区与南京博物院的路程是4千米,甲骑自行车,乙步行,当甲从原路回到小区时,乙刚好到达南京博物院,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离小区的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)甲在南京博物院参观的时间为 分钟,甲返回小区的速度为 千米/分钟;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离为y千米,请画出y(千米)与所经过的时间t(分钟)之间的函数图象.23.(12分)综合运用已知A=(x+2y)2﹣(x+y)(x﹣2y),B=(x3y﹣+xy2﹣3xy3)÷xy.(1)化简A和B;(2)若变量y满足2x﹣A=B﹣6,求出y与x之间的关系式;(3)在(2)的条件下,求(x﹣y+2)2﹣x(x﹣2)(x+2)+x(xy﹣x﹣4)的值.24.(13分)(1)如图1,AC∥BD,点P在AC与BD之间,过P作PE∥AC,探究∠A、∠APB、∠B 之间的数量关系;(2)如图2,变换点P的位置,∠A、∠APB、∠B之间的数量关系发生了怎样的变化;写出关系式,并说明理由;(3)如图3,在(2)的基础上,AQ平分∠PAC,BQ平分∠PBD,写出∠APB与∠Q之间的关系式,并说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:0.0000156用科学记数法表示为1.56×10﹣5,故选:B.2.解:A.∠1与∠2不属于对顶角,故A选项不符合题意;B.∠1与∠2不属于对顶角,故B选项符合题意;C.∠1与∠2属于对顶角,故C选项不符合题意;D.∠1与∠2不属于对顶角,故D选项不符合题意,故选:C.3.解:A、(m2)3=m6,故该项不正确,不符合题意;B、(mn)2=m2n2,故该项不正确,不符合题意;C、m2•m3=m5,故该项正确,符合题意;D、m6÷m2=m4,故该项不正确,不符合题意;故选:C.4.解:建在点C处,根据垂线段最短,故选:C.5.解:由题意得,多多步行速度为:600÷6=100(米/分),(1240﹣600)÷100=6.4(分),18﹣6﹣6.4=5.6(分),即中途停留时间为5.6分.故选:B.6.解:A、6x3y÷2x=3x2y,故A不符合题意;B、(x﹣y)2=x2﹣2xy+y2,故B不符合题意;C、(2x+y)(x﹣y)=2x2﹣2xy+xy﹣y2=2x2﹣xy﹣y2,故C不符合题意;D、(x+2)(x﹣2)=x2﹣4,故D符合题意;故选:D.7.解:由题意可得:A.小明家到博物馆的距离为2400m,说法正确,故本选项符合题意;B.小明等红绿灯的时间为:6﹣5=1(min),原说法错误,故本选项不符合题意;C.小明发现钥匙不见后,原路折返找钥匙的骑车速度是:(1600﹣1000)÷(13﹣9)=150(m/min),原说法错误,故本选项不符合题意;D.小明从家出发到博物馆的过程中,离家距离y是因变量,时间x是自变量,原说法错误,故本选项不符合题意.故选:A.8.解:∵a m=6,a n=2,∴原式=a m÷a n=3,故选:D.9.解:选项A中的阴影部分的面积可以用(x﹣1)2=x2﹣2x+1来解释,故选:A.10.解:∵AD⊥BC,FG⊥BC,∴∠FGD=∠ADB=90°,∴FG∥AD,故①正确;∵DE∥AC,∠BAC=90°,∴DE⊥AB,不能证明DE为∠ADB的平分线,故②错误;∵AD⊥BC,∴∠B+∠BAD=90°,∵DE⊥AB,∴∠BAD+∠ADE=90°,∴∠B=∠ADE,故③正确;∵∠BAC=90°,DE⊥AB,∴∠CFG+∠C=90°,∠BDE+∠B=90°,∠C+∠B=90°,∴∠CFG+∠BDE=90°,故④正确,综上所述,正确的选项①③④,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:=•2x﹣×6=x2﹣3x.12.解:∵OC⊥OD,∴∠COD=90°,∵∠AOC=42°,∠AOC+∠COD+∠BOD=180°,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣42°=48°.故答案为:48°.13.解:2000米=2千米,T=20﹣6h=20﹣6×2=8(℃).故答案为:8°C.14.解:∵AB∥CD,∠A=34°,∴∠ECD=34°,∴∠ECF=180°﹣34°=146°,故答案为:146°.15.解:设小长方形的长为x,宽为y,依题意得:,整理得:,由(①2﹣②)÷2得:xy=,∴一张小长方形的面积为.故答案为:.三.解答题(共9小题,满分75分)16.解:原式=﹣1﹣3+1+4=1.17.解:[4(x﹣1)2+(x﹣2)(x+2)]÷2x=(4x2﹣8x+4+x2﹣4)÷2x=(5x2﹣8x)÷2x=x﹣4,当x=﹣2时,原式=×(﹣2)﹣4=﹣5﹣4=﹣9.18.证明:∵AD∥BC,∴∠1=∠3,∵∠1+∠4=180°,∴∠3+∠4=180°∴BE∥DF,∴∠3=∠2∴∠1=∠2.19.解:(1)设线段CD表示的函数表达式为y=kx+b,把(3,24),(4.5,0)分别代入,得:,解得:,∴线段CD表示的函数表达式为y=﹣16x+72.(2)由图可得,当y=40时,﹣16x+72=40,解得x=2,∴2﹣1=1(小时),∴观光车在景点甲停留了1小时.20.解:如图,连接AC,在AC的右侧作∠ACF=∠BAC,再以点C为圆心,AB的长为半径画弧,交CF 于点E,则点E即为所求.21.解:(1)根据长方形面积公式可得:S甲=(m+1)(m+7)=m2+8m+7,S乙=(m+2)(m+4)=m2+6m+8,故答案为:m2+8m+7,m2+6m+8;(2)由(1)可得:S甲﹣S乙=m2+8m+7﹣(m2+6m+8)=2m﹣1,∵m是正整数,即m≥1,∴2m≥2,2m﹣1>0,∴S甲﹣S乙>0,即S甲>S乙,故答案为>;(3)小方同学的发现正确,理由如下:由题意可得:S正=[2(m+1+m+7)÷4]2=(m+4)2=m2+8m+16,∴S正﹣S甲=m2+8m+16﹣m2﹣8m﹣7=9,为定值.22.解:(1)由题意,得甲在南京博物院参观的时间为20分钟,甲返回小区的速度为4÷(60﹣40)=0.2(千米/分钟),故答案为:20,0.2.(2)设直线OD的函数表达式为s=kt.∵D(60,4),∴60k=4,解得.∴直线OD的函数表达式为,当甲从图书馆返回时:设直线BC的函数表达式为s=k1t+b.∵B(40,4),C(60,0),∴,解得,∴直线BC的解析式为.∴,解得t=45.当t=45时,.∴P(45,3).答:P的坐标为(45,3),实际意义为当经过的时间为45分钟时,甲乙两人相遇,此时距离小区的路程为3千米.(3)如图,即为y(千米)与所经过的时间(分钟)之间的函数图象.23.解:(1)A=(x+2y)2﹣(x+y)(x﹣2y)=x2+4xy+4y2﹣(x2﹣xy﹣2y2)=x2+4xy+4y2﹣x2+xy+2y2=5xy+6y2,B=(x3y﹣+xy2﹣3xy3)÷xy=2x2﹣5xy+2y﹣6y2.(2)∵2x﹣A=B﹣6,∴2x﹣5xy﹣6y2=2x2﹣5xy+2y﹣6y2﹣6,∴y=﹣x2+x+3.(3)(x﹣y+2)2﹣x(x﹣2)(x+2)+x(xy﹣x﹣4)=x2+y2+4﹣2xy+4x﹣4y﹣x(x2﹣4)+x2y﹣x2﹣4x=x2+y2+4﹣2xy+4x﹣4y﹣x3+4x+x2y﹣x2﹣4x=﹣x3+x2y﹣2xy+4x+y2﹣4y+4.把y=﹣x2+x+3代入上式得,原式=﹣x3+x2(﹣x2+x+3)﹣2x(﹣x2+x+3)+4x+(﹣x2+x+3)2﹣4(﹣x2+x+3)+4=﹣x3﹣x4+x3+3x2+2x3﹣2x2﹣6x+4x+x4+x2+9﹣2x3﹣6x2+6x+4x2﹣4x﹣12+4=9﹣12+4=1.24.解:(1)∵PE∥AC,∴∠A+∠APE=180°,∴PE∥BD,∴∠B+∠BPE=180°,∴∠A+∠B+∠APE+∠BPE=360°,即∠A+∠B+∠APB=360°;(2)∠A+∠B=∠APB.理由如下:如图,过P作PF∥AC,∵PF∥AC,∴∠A=∠APF,∴PF∥BD,∴∠B=∠BPF,∴∠A+∠B=∠APF+∠BPF,即∠A+∠B=∠APB;(3)∠APB=2∠Q.理由如下:过Q作QG∥AC,如图,∵QG∥AC,∴∠CAQ=∠AQG,∵QG∥AC,AC∥BD,∴QG∥BD,∴∠DBQ=∠BQG,∴∠CAQ+∠DBQ=∠AQG+∠BQG,即∠CAQ+∠DBQ=∠AQB,∵AQ平分∠PAC,BQ平分∠PBD,∴,,∴,由(2)得∠PAC+∠PBD=∠APB,∴∠APB=2∠Q.。

2017-2021学年广东省东莞市七年级(下)期末数学试卷

2017-2021学年广东省东莞市七年级(下)期末数学试卷

2016-2017学年广东省东莞市七年级(下)期末数学试卷一、选择题(本大题共10分,每小题2分,共20分)1.(2分)在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2分)9的平方根是()A.±3B.﹣3C.3D.3.(2分)将点P(2,1)向左平移2个单位后得到P′,则P′的坐标是()A.(2,3)B.(2,﹣1)C.(4,1)D.(0,1)4.(2分)不等式x<1在数轴上表示为()A.B.C.D.5.(2分)“a与3的差是非负数”用不等式表示为()A.a﹣3>0B.a﹣3<0C.a﹣3≥0D.a﹣3≤06.(2分)若21xy=⎧⎨=⎩是二元一次方程kx﹣y=3的解,则k的值为()A.1B.2C.3D.47.(2分)下列命题是真命题的是()A.邻补角相等B.对顶角相等C.内错角相等D.同位角相等8.(2分)下列调查适合抽样调查的是()A.检查小明同学昨天作文的错别字B.检查“天宫二号”飞行器各部件质量C.调查某班同学观看《最强大脑》的人数D.对东江水流污染情况进行调查9.(2分)频数分布直方图的纵轴表示()A.B.C.D.10.(2分)如图1,把△ABC沿直线BC方向平移到△DEF,则下列结论错误的是()A.∠A=∠D B.BE=CF C.AC=DE D.AB∥DE二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)在实数①,②,③3.14,④,⑤π中,是无理数的有;(填写序号)12.(3分)如图,直线a与直线b、c分别相交于点A、B,将直线b绕点A转动,当∠1=∠时,c∥b.13.(3分)不等式2x+5<12的正整数解是.14.(3分)已知关于x ,y 的方程组32422x y x y =⎧⎨-=⎩,则x 的值为 . 15.(3分)在平面直角坐标系中,已知点A (﹣2,4)、B (3,m ),若直线AB ∥x 轴,则m 的值为 .三、解答题(一)(本大题共5小题,每小题5分,共25分)16.(5分)解不等式组:513841x x x -⎧>-⎪⎨⎪+≤-⎩.17.(5分)计算:()373322318-+---. 18.(5分)如图,在平面直角坐标系中,△ABC 的顶点C 的坐标为(1,3).(1)若把△ABC 向上平移3个单位,再向右平移2个单位得△A ′B ′C ′,画出△A ′B ′C ′;(2)求出S △ABC .19.(5分)如图,O 是直线AB 上的一点,OC ⊥OD ,垂足为O . (1)若∠BOD =32°,求∠AOC 的度数;(2)若∠AOC :∠BOD =2:1,直接写出∠BOD 的度数.20.(5分)解方程组:372321a b c a b a b c -+=⎧⎪+=-⎨⎪++=-⎩.四、解答题(二)(本大题共5小题,每小题8分,共40分)21.(8分)在对18﹣35岁的青年人每天发微博数量的调查中,随机抽查部分符合年龄条件的青年人开展每人“日均发微博条数”的调查,一个人的“日均发微博条数”为m ,根据调查数据整理并制作图表如下:组别频数 频率 0≤m <590 0.3 5≤m <10120 a 10≤m <15b 0.2 15≤m <20 30 0.1请你根据以上信息解答下列问题:(1)在表中:a = ,b = ;(2)补全频数分布直方图;(3)若某大城市常住人口中18﹣35岁的青年人大约有530万人,试估计其中“日均发微博条数”不少于10条的大约有多少万人.22.(8分)学校为在汉语听写大赛中获得一、二等奖共30名学生购买奖品,其中一等奖奖品每份80元,二等奖奖品每份60元,共花费了2000元,获一等奖、二等奖的学生分别是多少?23.(8分)(1)填表:a…0.0000010.00010.01110010000……0.0010.1100…(2)利用上表中的规律,解决下列问题:已知=1800,=18,则a的值为;(3)当a≥0时,比较和a的大小.24.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.25.(8分)甲乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过200元后,超过200元的部分按85%收费,在乙商场累计超过100元后,超出部分按照90%收费.(1)若小王要购置累计500元的商品,他去哪个商场花费少?(2)若一顾客累计购物花费x(x>200)元,当x在什么范围内,到乙商场购物花费比较少?2017-2018学年广东省东莞市七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列如图所示的图案,分别是奔驰、奥迪、三菱、大众汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.(2分)下列各数中,是无理数的是()A.B.C.D.3.143.(2分)在平面直角坐标系中,点P(﹣5,0)在()A.第二象限B.第四象限C.x轴上D.y轴上4.(2分)若a<b,则下列各式中一定成立的是()A.a﹣c<b﹣c B.a2<b2C.﹣a<﹣b D.ac<bc5.(2分)若2a+6的值是正数,则a的取值范围是()A.a>0B.a>3C.a>﹣3D.a<﹣36.(2分)下列各组x、y的值中,是方程3x+y=5的解的是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.21xy=-⎧⎨=⎩D.5xy=⎧⎨=-⎩7.(2分)下列问题中,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.选出某校短跑最快的学生参加全市比赛D.调查某批次汽车的抗撞击能力8.(2分)如图,平行线AB、CD被直线AE所截,∠A=110°,则∠1的度数为()A.110°B.80°C.70°D.40°9.(2分)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是2610.(2分)为了绿化校园,甲、乙两班共植树苗30棵,已知甲班植树数量是乙班的1.5倍,设甲班植树x棵,乙班植树y棵根据题意,所列方程组正确的是()A.302.5x yx y+=⎧⎨=⎩B.301.5x yx y+=⎧⎨=⎩C.3032x yy x=+⎧⎨=⎩D.301.5x yx y=+⎧⎨=+⎩二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)4的平方根是.12.(3分)方程组2315y xx y=⎧⎨+=⎩的解是.13.(3分)不等式4x﹣6≥7x﹣12的正整数解为.14.(3分)已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.15.(3分)如图,若AB∥CD,则下列结论:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BCD=180°,成立的是(填序号)三、解答题(一)(本大题共5小题,每小题5分,共25分)16.(531 271624 -+17.(5分)解不等式组()315240x xx-<+⎧⎪⎨-≤⎪⎩并在数轴上表示其解集.18.(5分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为:A(3,4)、B(1,3)、C(4,1).(1)请画出△ABC;(2)若点A'的坐标是(﹣2,2),现将△ABC平移,使点A与点A′重合,点B′、C′分别是B、C的对应点,画出△A'B'C′.19.(5分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠EOD的度数;(2)若∠AOC+∠BOD=100°,求∠EOD的度数.20.(5分)解方程组0 45 9316 x y zx y zx y z-+=⎧⎪++=⎨⎪++=⎩四、解答题(二)(本大题共5小题,每小题8分,共40分)21.(8分)已知x2=5,|y|=,求x+y的值.22.(8分)某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?23.(8分)如图,AC、BD相交于点O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC的延长线上.(1)求证:CD∥AB;(2)若∠D=38°,求∠ACE的度数.24.(8分)某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为66万元;本周已售出2辆A型车和1辆B型车,销售额为42万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,且购车费不超过84万元,问最多可以购多少辆B型号的新能源汽车?25.(8分)如图,在直角坐标系xOy中,点A、B的坐标分别是A(﹣1,0)、B(3,0),将线段AB向上平移2个单位,再向右平移1个单位,得到线段DC,点A、B的对应点别是D、C,连接AD、BC.(1)直接写出点C、D的坐标;(2)求四边形ABCD的面积;(3)若点P为线段BC上任意一点(与点B、C不重合),连接PD,PO.求证:∠CDP+∠BOP=∠OPD.2018-2019学年广东省东莞市七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣2,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)在4,﹣0.1,,中,无理数的个数有()A.1个B.2个C.3个D.4个3.(3分)会议室“2排3号”记作(2,3),那么“3排2号”记作()A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,﹣2)4.(3分)如果x>y,则下列变形中正确的是()A .﹣x yB .yC .3x >5yD .x ﹣3>y ﹣35.(3分)某不等式的解集在数轴上的表示如图所示,则该不等式的解集为( )A .x ≥﹣3B .x ≥﹣2C .x >﹣3D .x <﹣3 6.(3分)已知是方程kx +y =3的一个解,那么k 的值是( ) A .7 B .1 C .﹣1 D .﹣77.(3分)下列调查不适用全面调查的是( )A .调查乘坐飞机的旅客是否带了违禁物品B .调查全班同学观看《流浪地球》的情况C .调查某市公交车客流量D .调查某小区卫生死角的卫生情况8.(3分)如图所示反映了一天24小时内小红的体温变化情况,下列说法错误的是( )A .清晨5时体温最低B .下午5时体温最高C .这一天小红体温T (℃)的范围是36.5≤T ≤37.5D .从5时至24时,小红体温一直是升高的9.(3分)下列命题中是真命题的是( ) A .相等的两个角是对顶角 B .两条直线被第三条直线所截,同位角相等C .在同一平面内,若a ∥b ,b ∥c ,则a ∥cD .在同一平面内,若a ∥b ,b ⊥c ,则a ∥c10.(3分)若关于x 、y 的方程组2521x y x y +=+=-⎧⎨⎩,则x ﹣y 的值是( ) A .6 B .4 C .2 D .﹣6二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)为了了解5000件商品的质量问题,从中任意抽取100件商品进行试验在这个问题中,样本容量是 . 12.(3分)如图,//,1108a b ∠=︒, 则 2∠ 的度数为 . 13.(3分)若式子35x -的值大于3,则x 的取值范围是 . 14.(3分)已知已知 102.0110.1=, 则 1.0201= . 15.(3分)在平面直角坐标系中,AB =2,且AB ∥x 轴,若点A 的坐标为(1,2),则点B 的坐标为 . 三、解答题(-)(本大题共5小题,每小题5分,共25分)16. (5 分)计算: 3(43)1327+--.17. (5 分)解不等式组2(1)3 22123xx x+<⎧⎪+-⎨⎪⎩.18.(5分)一条船顺流航行,每小时行20km;逆流航行,每小时行16km.求轮船在静水中的速度与水的流速.19.(5分)如图,直线AB、CD相交于点O,OE平分∠BOD(1)若∠AOC=50°,求∠BOE的度数;(2)若OF平分∠COB,能判断OE⊥OF吗?(直接回答)20.(5分)解方程组:2412 32147a b ca ba c-+=⎧⎪+=⎨⎪-=⎩.四、解答题(二)(本大题共5小题,每小题8分,共40分)21.(8分)已知:一个正数a的两个平方根分别是x+3和2x﹣15.(1)求x的值;(2)求a+1的立方根.22.(8分)为了解某校创新能力大赛的笔试情况,随机抽查了部分参赛同学的成绩,整理并制作了如下统计表和统计图(不完整),请根据图表中提供的信息解答问题得分频数百分比50<x≤6010m60<x≤702010%70<x≤806030%80<x≤90n45%90<x≤1002010%(1)本次调查的总人数为人;(2)在统计表中,m=,n=;在扇形统计图中“70<x≤80”所在扇形的圆心角的度数为;(3)补全频数分布直方图.23.(8分)如图,点D、F分别是BC、AB上的点,DF∥AC,∠FDE=∠A(1)求证:DE∥AB;(2)若∠AED比∠BFD大40°,求∠BFD的度数.24.(8分)如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(﹣4,0),B(﹣2,3),C(0,﹣2)(1)在所给的图中,画出该平面直角坐标系;(2)将△ABC先向右平移5个单位,再向下平移1个单位得到△A1B1C1,A1、B1、C1分别是A、B、C的对应点,画出△A1B1C1,并写出点A1的坐标;(4)求△A1B1C1的面积.25.(8分)快递公司准备购买机器人来代替人工分拣已知购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?实用文档 2019-2020学年广东省东莞市七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在 10.25,7,212π 中, 无理数有( ) A .1个 B .2个 C .3个 D .4个2.(3分)下列等式成立的是( ) A. 42=- B. 164=± C . 84= D. 11=3.(3分)下列式子是二元一次方程的是( )A. 53x -=B. 3x y +>C. 21x y -=D. 23x y +=4.(3分)如图,直线a 、b 被直线c 所截,若a ∥b ,则下列不正确的是( )A. 12∠=∠B. 24∠=∠C. 14∠=∠D. 15∠=∠5.(3分)为了了解某校学生早晨就餐的情况,四位同学分别作了不同的调查:小华分别向701班、801班、901班的全体同学作了调查;小明向701班、702班、703班3个班的全体同学作了调查;小芳抽取8年级三个班的全体同学作了调查;小珍向9年级的全体同学作了调查,其中抽样调查较科学的是( )A .小华B .小明C .小芳D .小珍6.(3分)点P (2,﹣3)到x 轴的距离等于( )A .﹣2B .2C .﹣3D .37.(3分)若a <b ,则下列各式一定成立的是( )A .a ﹣1>b ﹣1B .﹣3a <﹣3bC .3a >3bD .a +1<b +18.(3分)不等式组31x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D .9.(3分)二元一次方程组 263x y x y +=⎧⎨+=⎩的解是( ) A. 30x y =⎧⎨=⎩ B. 41x y =⎧⎨=⎩ C. 21x y =⎧⎨=⎩ D. 03x y =⎧⎨=⎩ 10.(3分)如图,轮船航行到B 处观测小岛A 的方向是北偏西32°,那么小岛A 观测到轮船B 的方向是( )A .南偏西32°B .南偏东32°C .南偏西58°D .南偏东58°二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)M (1,﹣2)所在的象限是第 象限.实用文档12.(4分)49的平方根是 . 13.(4分)调查一批电视机的使用寿命,适合采用的调查方式是 .(填“普查”或“抽样调查”)14.(4分)已知35x y =⎧⎨=⎩是方程kx +2y =﹣5的解,则k 的值为 .15.(4分)若式子3x ﹣1的值比式子2x +1的值大,则x 的取值范围是 .16.(4分)如图,已知OB ⊥OA ,直线CD 过点O ,且∠AOC =20°,那么∠BOD = °.17.(4分)有一个数值转换器,原理如图:当输入的x =4时,输出的y 等于 . 三、解答题(本大题共3小题,每小题6分,共18分)18.(6分)计算3|2|16(2)27--+--.19.(6分)解不等式组()112241x x x -⎧≤⎪⎨⎪-<+⎩并将其正整数解写出来.20.(6分)如图,平面直角坐标系中,△ABC 的顶点坐标为:A (﹣4,3),B (﹣4,﹣1),C (﹣1,0).将△ABC 向右平移6个单位长度,再向上平移3个单位长度,得到对应的△A 1B 1C 1.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)直接写出△ABC 的面积.四、解答题(本大题共3小题,每小题8分,共24分) 21.(8分)在等式y =kx +b 中,当x =3时,y =3;当x =﹣1时,y =1.(1)求k 、b 的值;(2)求当x =﹣2时y 的值. 22.(8分)某中学为了提高学生的综合素质,成立了以下社团:A (机器人),B (围棋),C (羽毛球),D (电影配音),每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图(如图).根据上述信息,解答下列问题:(1)这次一共调查了多少人?(2)求“A ”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.23.(8分)已知:如图,∠A =∠ADE ,∠C =∠E . (1)求证:BE ∥CD ;(2)若∠EDC =3∠C ,求∠C 的度数.实用文档五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)某校为改善学校多媒体课室教学设施,计划购进一批电脑和电子白板.经过市场考察得知,购买1台电脑和2台电子白板需要3.6万元,购买2台电脑和3台电子白板需要5.6万元.(1)求每台电脑和每台电子白板各是多少万元?(2)根据学校实际,需购进电脑和电子白板共20台,总费用不超过17.6万元,那电子白板最多能买几台?25.(10分)如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,0)、(3,0)、(0,2),点D 在第一象限,CD∥AB且CD=AB,连接AC,BD.(1)直接写出点D的坐标;(2)若点M在y轴的正半轴上且S△ODM=2S△AOC,求出点M的坐标;(3)若点P是线段BD延长线上的一点(如图2).连接PC、PO,判断∠CPO,∠DCP,∠BOP之间存在怎样的数量关系,并证明.实用文档 2020-2021学年广东省东莞市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)A. 81B. 3±C. 3-D. 32. 下列图中是对顶角的是()1.9 的算术平方根是()3. 下列命题错误的是() A.2是无理数B.22+是无理数 C.23是分数D.23是无理数 4. 如图, 若,,170ABCD AD CD =∠=︒‖, 则2∠的度数是()A. 70︒B. 40︒C. 35︒D. 20︒ 5. 下列调查中, 适宜采用普查方式的是()A. 了解一批节能灯的使用寿命B. 了解深圳初中生每天家庭作业所需时间C. 考察人们保护环境的意识D. 调查七年级一个班级学生的每天运动时间6. 下列各数中, 最小的数是() A. 2021- B. 32021- C. 12021D. 2021- 7. 估计21的值在()A. 2和3之间 B . 3和4之间 C . 4和5之间 D . 5和6之间8. 已知甲、乙两数之和是 42, 甲数的3倍等于乙数的4倍, 求甲、乙两数. 若设甲数为x , 乙数为y , 由题意得方程组()A. 4243x y x y +=⎧⎨=⎩B. 4234x y x y +=⎧⎨=⎩C. 421134x y x y -=⎧⎪⎨=⎪⎩ D. 4243y x x y +=⎧⎨=⎩ 9. 已知x y >, 那么下列正确的是()A. 0x y +>B. ax ay >C. 22x y ->+D. 22x y -<-10. 在数轴上, 点A 对应的数是6-, 点B 对应的数是2-, 点O 对应的数是0. 动点 P Q 、分别从,A B 同时出发, 以每秒3个单位, 每秒1个单位的速度向右运动. 在运动过程中, 线段PQ 的长度始终是另一线段长的整数倍, 这条线段是()A. PBB. OPC. OQD. QB二、填空题(本大题共7小题,每小题4分.共28分)11. 若点(1,2)A a a -+在x 轴上, 则A 点的坐标是_________.12. 把方程27x y -=变形, 用含x 的式子来表示y , 则y =_________.13. 为了解某校学生的睡眠情况, 该校数学小组随机调查了部分学生一周的平均每天睡眠时 间, 设每名学生的平均每天睡眼时间为x 时, 共分为四组: ,67,.78A x B x <<, C.89x <, D.910x , 将调查结果绘制成如图两幅不完整的统计图. (注: 学生的平均每天睡眠时间不低于6时且不高于10时.) 若该校有1500名学生, 根据抽样调查结果,请估计该校平均每天睡眠时间低于8时的学生有_____人.14. 已知直线AB 与直线CD 相交于点,O EO CD ⊥, 垂足为0. 若2512AOC ∠=︒', 则BOE ∠的度数为_________(单位用度表示)15. 对于有理数,a b 定义新运算: " ∆ ",a b b ∆=, 则关于该运算, 下列说法正确的是_________ (请填写正确说法的序号)(1)5797∆=∆; (2)若a b b a ∆=∆, 则a b =; (3)该运算满足交换律; (4) 该运算满足结合律.16. 如图, 是由相同的花盆按一定的规律组成的形如正多边形的图秦, 其中第1个图形一共有6个花盆, 第2个图形一共有12个花盆, 第3个图形一共有20个花盆, ...则第98个图形中花盆的个数为_________。

广东省东莞市虎门第四中学、虎门第三中学2022-2023学年七年级下学期期中联考数学试卷

广东省东莞市虎门第四中学、虎门第三中学2022-2023学年七年级下学期期中联考数学试卷

广东省东莞市虎门第四中学、虎门第三中学2022-2023学年七年级下学期期中联考数学试卷学校:___________姓名:___________班级:___________考号:_____________.(2)求CED Ð的度数.(3)证明AB CDP 24.如图,将△ABC 先向右平移3个单位长度,再向下平移2个单位长度,得到A B C ¢¢¢V .(1)画出A B C ¢¢¢V .(2)写出点,,A B C ¢¢¢的坐标.(3)求ABC V 面积.25.AB CD ∥,直线a 交AB 、CD 分别于点E 、F ,点M 在EF 上,P 是直线CD 上的一个动点,(点P 不与F 重合).(1)当点P 在射线FC 上移动时,∠FMP+FPM =AEF ∠∠成立吗?请说明理由;(2)当点P 在射线FD 上移动时,∠FMP+FPM ∠与∠AEF 有什么关系?并说明你的理由.5\=,x故选B.【点睛】本题考查了点的坐标,熟练掌握x轴上的点纵坐标为0是解题的关键.5.B【分析】根据角相等的常见判定方法:平行线的性质、对顶角相等、等式性质等,易得答案.【详解】解:依次分析选项可得:A、对顶角相等,正确;B、两条平行的直线被第三条直线所截,内错角相等,选项中缺少平行的条件,故错误;C、两直线平行,同位角相等,正确;D、由等式性质可知,正确;.故选:B【点睛】本题考查角相等的判定方法,注意关键词的记忆,是一个需要熟记的内容.6.A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,-5),将点A向上平移4个单位,再向左平移3个单位到点B点B的横坐标是3-3=0,纵坐标为-5+4=-1即(0,-1)故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.7.B20n =代入即可.【详解】解:设(,)n A x y ,Q 当1n =时,1(0,2)A ,即110x =-=,211y =+,当2n =时,2(1,5)A ,即211x =-=,221y =+;当3n =时,3(2,10)A ,即312x =-=,231y =+;当4n =时,1(3,17)A ,即413x =-=,241y =+;¼(,)n A x y \的坐标是2(1,1)n n -+,\点20A 的坐标为(201-,2201)+,\点20A 2012A 的坐标为(19,401).故选B .【点睛】此题考查了点的坐标,通过观察找出点A 的横坐标和纵坐标与n 的关系,(,)n A x y 的坐标是2(1,1)n n -+是解题的关键.11.-2【分析】根据立方根的定义进行求解即可得.【详解】解:∵(﹣2)3=8﹣,∴﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.12.3【分析】求得A 的纵坐标的绝对值即可求得P 点到x 轴的距离.【详解】解:∵点A 的纵坐标为3,∵l m P ,∴BE l ∥,∴1CBE Ð=Ð,2ABE Ð=Ð,∵45CBE ABE Ð+Ð=°,∴2452520Ð=°-°=°.故答案为:20.【点睛】本题主要考查了平行线的性质,平行线公理的应用,作出辅助线,熟练掌握两直线平行内错角相等,是解题的关键.16.x +y =1(答案不唯一)【分析】根据二元一次方程的解2-1x y =ìí=î找到x 与y 的数量关系,然后列出方程即可.【详解】∵二元一次方程组的解为2-1x y =ìí=î,∴x +y =1∴这个方程可以是x +y =1【点睛】此题考查二元一次方程的解,解题关键在于掌握运算法则17.()4,4或()2,4-【分析】根据BC x ∥轴,得到B 和C 的纵坐标相等,再结合点B 坐标和3BC =分情况可得结果.【详解】解:∵BC x ∥轴,∴B 和C 的纵坐标相等,∴4C B y y ==,∵(1,4)B ,3BC =,2422a b b a -=ìí+=î,解得:20a b =ìí=î,022b a \-=-=-.【点睛】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于a ,b 的方程组是解题关键.21.30°【分析】由AC ⊥AB ,∠1=60°,易求得∠B 的度数,又由直线a ∥b ,根据两直线平行,同位角相等,即可求得∠2的度数.【详解】解答:解:∵AC ⊥AB ,∴∠BAC =90°,∵∠1=60°,∴∠B =180°-1-∠∠BAC =30°,∵a ∥b ,∴∠2=∠B =30°.【点睛】此题考查了平行线的性质与垂直的定义,此题难度不大,注意掌握数形结合思想的应用.22.100【分析】根据平方根的性质即可求出a 的值,从而可求出x 的值.【详解】解:由题意可知:3170a a -+-=,3a \=-12a \+=-,2(7)100x a \=-=.【点睛】本题考查平方根的性质,解题的关键是正确理解平方根的性质,本题属于基础题型.23.(1)见解析(2)90°(3)见解析【分析】(1)根据题意补全图形即可;(2)根据2D Ð=Ð得到AF DE ∥,根据EC AF ^,可得EC DE ^,即可得解;(3)根据同角的余角相等可得1D Ð=Ð,再根据平行线的判定证明即可.【详解】(1)解:如图所示:(2)2D Ð=ÐQ ,AF DE \∥,EC AF ^Q ,EC DE \^,即90CED Ð=°;(3)∵90CED Ð=°,C \Ð与D Ð互余,1ÐQ 与C Ð互余,1D \Ð=Ð,AB DC \∥.理由:∵AB CD ∥,∴∠AEF 十∠EFC=180°(两直线平行,同旁内角互补),∵∠FMP+FPM+EFC=180°∠∠(三角形内角和定理),∴∠FMP+FPM=AEF ∠∠(等量代换);(2)∠FMP+FPM ∠与∠AEF 互补(或∠FMP+FPM+AEF=180°∠∠)理由:∵AB CD ∥,∴∠AEF=EFD ∠(两直线平行,内错角相等),∵∠FMP+FPM+EFD=180°∠∠(三角形内角和定理),∴∠FMP+FPM+AEF=180°∠∠(等量代换).点睛:此题考查了平行线的性质与三角形内角和定理.此题难度适中,注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)期中数学试卷
一、选择题(共30分,每小题3分)
1.(3分)如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.
2.(3分)﹣的绝对值是()
A.﹣B.C.3D.﹣3
3.(3分)下面四个图形中,∠1=∠2一定成立的是()
A.B.
C.D.
4.(3分)下列各数中最大的数是()
A.πB.3C.D.﹣3
5.(3分)在平面直角坐标系中,点P(3,﹣2)在()
A.第一象限B.第二象限C.第三象限D.第四象限
6.(3分)估计的值在哪两个整数之间()
A.75和77B.6和7C.7和8D.8和9
7.(3分)下列运算正确的是()
A.B.(﹣2)3=8C.D.﹣22=4
8.(3分)在实数:,3.141 59,,1.010 010 001…,4.,﹣π,中,无理数有()A.1个B.2个C.3个D.4个
9.(3分)若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)
C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)
10.(3分)如图,将一张长方形纸条折叠,如果∠1=125°,则∠2=()
A.110°B.130°C.150°D.80°
二、填空题(共12分,每小题3分)
11.(3分)9的平方根是.
12.(3分)﹣64的立方根与的平方根之和是.
13.(3分)把“同角的余角相等”写成“如果…,那么…”的形式为.
14.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.
三、解答题
15.(6分)计算
(1)+﹣(2).
16.(6分)求下列各式中的x.
(1)4x2﹣16=0 (2)27(x﹣3)3=﹣64.
17.(5分)如图,∠AOE=40°,AB⊥CD,垂足为O,EF经过点O.求∠BOF、∠DOF 的度数.
18.(5分)小明给右图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).
(1)写出体育场、文化宫、超市、宾馆、市场的坐标;
(2)分别指出(1)中每个场所所在象限.
19.(6分)如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.
20.(6分)已知3a+1的平方根是±2,2a﹣b+3的平方根是±3,求a﹣2b.
21.(6分)如图,△ABC中,A(﹣2,1),B(﹣4,﹣2),C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图象,并且C的对应点C′的坐标为(4,1)
(1)A′、B′两点的坐标分别为A′B′;
(2)作出△ABC平移之后的图形△A′B′C′;
(3)求△ABC的面积.
22.(8分)如图,AB∥CD,∠B=72°,∠D=32°,求∠F的度数.
23.(10分)如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD.(1)求证:∠ABO+∠CDO=90°;
(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND的值.。

相关文档
最新文档