高三数学 等差数列与等比数列单元练习
数列等差等比数列问题综合章节综合检测专题练习(六)含答案新教材高中数学

高中数学专题复习《数列等差等比数列综合》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A .2-B .0C .1D .2(汇编江西文)2.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n + B .2533n n+ C .2324n n+ D .2n n +(汇编重庆文)解析设数列{}n a 的公差为d ,则根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =(舍去),所以数列{}n a 的前n 项和2(1)1722244n n n n nS n -=+⨯=+ 3.已知{}n a 为等比数列.下面结论中正确的是( )A .1322a a a +≥B .2221322a a a +≥C .若13a a =,则12a a =D .若31a a >,则42a a >(汇编北京文)4.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( ) A .50B .49C .48D .47(汇编)5.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=( ) A .14 B .21 C .28 D .35(汇编全国2理)6.若n 项等比数列的首项为a 1=1,公比为q ,这n 项和为S (S ≠0),则此数列各项的倒数组成的新数列的和是A.S 1B.qS 1C.S qD.1-n q S7.一个小球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下,设它第n 次着地时,共经过了a n 米,则当n ≥2时,有312100.A --+=n n n a a 212100.B --+=n n n a an n n a a 2100.C 1+=- 21210021.D --+=n n n a a8.在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对9.已知一等比数列的前三项依次为33,22,++x x x ,那么2113是此数列的第( )项 A .2 B .4 C .6 D .810.已知等差数列{a n }中的前三项依次为a-1,a +1,2a +3,则此数列的通项公式为 [ ]. A .a n =2n-5 B .a n =2n-3 C .a n =2n-1 D .a n =2n +111.下列各命题中,真命题是A.若{an}成等差数列,则{|an|}也成等差数列B.若{|an|}成等差数列,则{an}也成等差数列C.若存在自然数n 使2an+1=an+an+2,则{an}是等差数列D.若{an}是等差数列,则对任意正整数n 都有2an+1=an+an+212.设命题甲:△ABC 的一个内角为60°,命题乙:△ABC 的三个内角的度数成等差数列.那么A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲不是乙的充分条件也不是乙的必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题13. 设函数()2c o f x x x =-,{}n a 是公差为8π的等差数列,若125()()()5f a f a f a π+++=,则[]2315()f a a a -=_____14.如图是由所输入的x 值计算y 值得一个算法程序,若x 依次取数列()24,2011n n N n n *⎧⎫+∈≤⎨⎬⎩⎭的项,则所得y 值中的最小值为 15.数列{a n }的前n 项和为n S ,若对于n ∈N*,总有n S =2n -1,则数列2{}n n a a +的前n 项和为 ▲ .16.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .17.已知}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k = .18.在等差数列{n a }中,22,16610a a x x --=是方程的两根,则5691213a a a a a ++++= .19.已知数列{a n }、{b n }都是等差数列,a 1=0、b 1= -4,用S k 、k S '分别表示数列{a n }、{b n }的前k 项和(k 是正整数),若S k +kS '=0,则a k +b k 的值为20.数列{}n a 是公差不为零的等差数列,并且5813,,a a a 是等比数列{}n b 的相邻三项,若25b =,则n b =___________; 评卷人得分三、解答题21.已知数列16n a n =-,(1)15nn b n =--,其中*n N ∈(1)求满足1n a +=n b 的所有正整数n 的集合 (2)n ≠16,求数列nnb a 的最大值和最小值(3)记数列{}n n a b 的前 n 项和为n S ,求所有满足22m n S S =(m<n)的有序整数对(m,n)22.定义:若数列{}n A 满足21n n A A =+,则称数列{}n A 为“平方递推数列”.已知数列{}n a 中,21=a ,点),(1+n n a a 在函数x x x f 22)(2+=的图像上,其中n 为正整数.(1)证明:数列{}12+n a 是“平方递推数列”,且数列{})12lg(+n a 为等比数列. (2)设(1)中“平方递推数列”的前n 项之积为n T ,即n T )12()12)(12(21+++=n a a a ,求数列{}n a 的通项及n T 关于n 的表达式.(3)记n a n T b n 12log +=,求数列{}n b 的前n 项之和n S ,并求使n S 2008>的n 的最小值.23.等比数列{}a n 的前n 项和为S S S S n ,3692+=,求公比q 。
(完整版)等差、等比数列》专项练习题

《等差、等比数列》专项练习题、选择题:1已知等差数列{a n }中,a i =l, d=1,则该数列前9项和S )等于( )A.55B.45C.35D.252.已知等差数列{an }的公差为正数,且 a 3 • a ?=— 12, a 4+a 6=— 4,贝U S 20为()A. 180 B .— 180 C. 90D.— 903. 已知等差数列{a n }中,a 2+a s =8,则该数列前9项和S 等于()A.18B.27C.36D.451,则数列b n 的前n 项和T na *a n 134. ______________________________________________ 在等比数歹U { a n }中,已知 a 1= — , a 4=12,贝U q= ___________________________________________________ ____ , a n = _______ _______ .25. ________________________________________________________________________ 在等比数列{ a n }中,a n > 0,且a n + 2=a n + a n +1,则该数列的公比 q= ___________________________________________ __ .三、解答题:S 、1.设{ a n }为等差数列,S 为{ a n }的前n 项和,7, 3=75,已知F 为数列{ - }的前n 项数,求T n .2.已知数列 a n 是等差数列,其前n 项和为S n , a 3 6$ 12 .1 .1 或—1 亠1 A .1 B . —C D . — 1 或—225. 在等比数列{a n }中,如果 a 6=6, a 9=9,那么a 3等于( )316A .4B 一C —D . 2296. 若两数的等差中项为 6, 等比中项为5, 则以这两数为两根的 兀一次方程为( ) 若两数的等差中项为A . .x 2— 6x + 25=0B .x 2+ 12x + 25=0C. x 2+ 6x — 25=0D.x 2— 12x + 25=04.等比数列{ a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为 ()7.已知等比数列 a n 中,公比 q 2,且 a 1 a ? a 3 L a 3°&等比数列的前 n 项和 S n =k 3n + 1,则 k 的值为()A .全体实数B . — 1C . 1D . 3、填空题:1 .等差数列 a n 2的前n 项和S n n3n .则此数列的公差 d2.数列{ a n } , { b n }满足 a n b n = 1, a n = n 2 + 3n + 2,则{ b n }的前10次之和为____________ 30 2 ,那么a 3 a 6 a 9 L a 3°等于 A . 210 B . 220 C . 216D . 215 3•若a n 是首项为1,公差为2的等差数列,b n23. 已知数列满足 a 1=1, a n + 1=2a n + 1(n € N*)(1) (2)求{a n }的通项公式.4. 在等比数列{ a n }中,a 1 + a n =66, a 2 a n -1=128,且前n 项和S n =126,求n 及公比q .(l )求数列 a n 的通项公式;(2)求.S 1 S 2求证数列{a n + 1}是等比数列;参考答案9 8 、选择题:1.B提示:s9 9 1 ---------------- 12a4+a6=a3+a7=—4 与452.A提示:由等差数列性质,--37>33 37=2 , 33=—6 ,从而得a1=—10, d=2, $0=180.2 ______________________a3 • a7=—12联立,即a3, a?是方程x +4x —12=0的两根,又公差d>0,3.C提示:在等差数列{a n}中, 则该数列前9项和S=9(ai知=36CAD B B二、填空题: 1 •答案:2提示: a1 S1 4, a1 a2 S2 22 3 210 ,32提示:1bn= a n = (n+ 1) ( n+ 2)1•- S o= b1+ b+…b n=—23•答案:6n 9提示: an2n 1,b nT n 4.2,6n 9 3 2n—215.2三、解答题:1•解:设数列{a n}1n+ 11n+ 2(2n 1)(2n 3)1 12(2n 1 2n 3),用裂项求和法求得的公差为d,贝y S= n◎+ 2 n (n —1) d.78+ 21d= 7T S= 7, S5= 75,「. ,15a1 + 105d= 751 1=a1+ (n—1) d=—2+ a1 = —2d= 1S n• n-(n—1)S n+1n+ 1 •数列是等差数列,其首项为-2,公差为1,--T n= nn (n—1)-(—2)+ 2—2 9n —n.42.解:(1)设数列a n的公差为d,由题意得方程组a12d 63 23a1 d 12,解得a1 2d 2,•数列弘的通项公式为a n a1 (n 1)d 2n,即a n 2n .2/ 、n(a 〔 a n ) (2)v a n 2n S n- - n(n 1) • 21 1 1 1S n 1 22 3 n(n 1)a n 1 13.(1)证明由 a n +1 =2a n +1 得 a n +1 + 仁2(a n + 1)又 a n + 1 工 0 ••• =2 即{ a n + 1}为等比数列.a n 1⑵解析: 由(1)知 a n + 1=(a 1 + 1)q nr 即 a n =( a +1) q n 「1— 1=2 玄一1 -仁2n - 14•解析:T a 1a n =a 2a n -1=128,又 a 1 + a n =66,•- a 1、a n 是方程 x 2— 66x + 128=0 的两根,解方程得 X 1=2 , x 2=64, •- a 1=2, a n =64 或 a 1=64 , a n =2,显然1.a 1 a n q右 a 1=2, a n =64,由 一 -=126 得 2 — 64q=126 — 126q ,1 q•- q=2,由 a n =a 1q n 1 得 2n 1=32 ,•• n=6.1 若a 1=64 , a n =2,同理可求得 q= , n=6.21 综上所述,n 的值为6,公比q=2或一.21S 1。
数列等差数列与等比数列练习题

数列等差数列与等比数列练习题数列是数学中基础而重要的概念之一,同时也是数学的应用领域中常见的数学模型之一。
其中,等差数列和等比数列是数列中最基础的两种常见类型。
本文将为大家提供一些关于等差数列和等比数列的练习题,以巩固和提高大家对数列的理解和运用能力。
【练习题一】1. 若等差数列的首项是3,公差是4,求第n项的表达式。
解析:由题意,首项是3,公差是4。
所以等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得an = 3 + (n-1)4。
2. 若等差数列的第7项是18,公差是2,求首项和第n项的和。
解析:由题意,第7项是18,公差是2。
所以等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得18 = a1 + (7-1)2。
解方程得a1 = 5。
首项和第n项的和可以表示为Sn = (n/2) * (a1 + an),其中n为项数,a1为首项,an为第n项。
代入已知条件,得Sn = (n/2) * (5 + 5 + (n-1)*2)。
【练习题二】1. 若等比数列的首项是2,公比是3,求第n项的表达式。
解析:由题意,首项是2,公比是3。
所以等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得an = 2 * 3^(n-1)。
2. 若等比数列的第4项是16,公比是2,求首项和第n项的和。
解析:由题意,第4项是16,公比是2。
所以等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得16 = a1 * 2^(4-1)。
解方程得a1 = 2。
首项和第n项的和可以表示为Sn = a1 * (1 - r^n) / (1 - r),其中n为项数,a1为首项,r为公比。
代入已知条件,得Sn = 2 * (1 - 2^n) / (1 - 2)。
高中数学《等差数列、等比数列》专题练习题(含答案解析)

高中数学《等差数列、等比数列》专题练习题(含答案解析)一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8 C [设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d a 1+4d24,6a 1+6×52d =48,解得d =4.故选C .]2.设公比为q (q >0)的等比数列{}a n 的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( )A .-2B .-1C .12D .23B [S 4-S 2=a 3+a 4=3a 4-3a 2 ,即3a 2+a 3-2a 4=0,即3a 2+a 2q -2a 2q 2=0 ,即2q 2-q -3=0,解得q =-1 (舍)或q =32,当q =32时,代入S 2=3a 2+2,得a 1+a 1q =3a 1q +2,解得a 1=-1,故选B .]3.(2018·莆田市3月质量检测)等比数列{a n }的前n 项和为S n ,已知S 2=a 1+2a 3,a 4=1,则S 4=( )A .78B .158C .14D .15D [由S 2=a 1+2a 3,得a 1+a 2=a 1+2a 3,即a 2=2a 3,又{a n }为等比数列,所以公比q =a 3a 2=12,又a 4=a 1q 3=a 18=1,所以a 1=8.S 4=a 11-q 41-q=8×⎝ ⎛⎭⎪⎫1-1161-12=15.故选D .]4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13C [∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.]5.(2018·衡水模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m+1=21,则m 等于( )A .3B .4C .5D .6C [在等比数列中,因为S m -1=5,S m =-11,S m +1=21,所以a m =S m -S m -1=-11-5=-16,a m +1=S m +1-S m =32.则公比q =a m +1a m=32-16=-2,因为S m =-11, 所以a 1[12m ]1+2=-11,①又a m +1=a 1(-2)m =32,② 两式联立解得m =5,a 1=-1.] 6.等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B .⎩⎨⎧⎭⎬⎫1,12C .⎩⎨⎧⎭⎬⎫12D .⎩⎨⎧⎭⎬⎫0,12,1B [a na 2n =a 1n -1da 12n -1d =a 1-d +nda 1-d +2nd,若a 1=d ,则a na 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1=d ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.] 7.已知等比数列{a n }中,a 2a 10=6a 6,等差数列{b n }中,b 4+b 6=a 6,则数列{b n }的前9项和为( )A .9B .27C .54D .72B [根据等比数列的基本性质有a 2a 10=a 26=6a 6,a 6=6,所以b 4+b 6=a 6=6,所以S 9=9b 1+b 92=9b 4+b 62=27.]8.(2018·安阳模拟)正项等比数列{a n }中,a 2=8,16a 24=a 1a 5,则数列{a n }的前n 项积T n 中的最大值为( )A .T 3B .T 4C .T 5D .T 6A [设正项等比数列{a n }的公比为q (q >0),则16a 24=a 1a 5=a 2a 4=8a 4,a 4=12,q 2=a 4a 2=116,又q >0,则q =14,a n =a 2q n -2=8×⎝ ⎛⎭⎪⎫14n -2=27-2n ,则T n =a 1a 2…a n =25+3+…+(7-2n )=2n (6-n ),当n =3时,n (6-n )取得最大值9,此时T n 最大,即(T n )max =T 3,故选A .]二、填空题9.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 3-S 2S 5-S 3的值为________.2 [根据等比中项有a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ),化简得a 1=-4d ,S 3-S 2S 5-S 3=a 3a 4+a 5=a 1+2d 2a 1+7d =-2d -d=2.] 10.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.10或11 [由na n +1-(n +1)a n =2n 2+2n =2n (n +1),两边同时除以n (n +1),得a n +1n +1-a nn =2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a nn =-40+(n -1)×2=2n -42,所以a n=2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b2a=--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等,所以n 取10或11时,a n 取最小值.]11.已知正项等差数列{a n }的前n 项和为S n ,S 10=40,则a 3·a 8的最大值为________. 16 [S 10=10a 1+a 102=40⇒a 1+a 10=a 3+a 8=8,a 3·a 8≤⎝ ⎛⎭⎪⎫a 3+a 822=⎝ ⎛⎭⎪⎫822=16, 当且仅当a 3=a 8=4时“=”成立.]12.已知函数{a n }满足a n +1+1=a n +12a n +3,且a 1=1,则数列⎩⎨⎧⎭⎬⎫2a n +1的前20项和为________.780 [由a n +1+1=a n +12a n +3得2a n +3a n +1=1a n +1+1,即1a n +1+1-1a n +1=2,∴数列⎩⎨⎧⎭⎬⎫1a n +1是以12为首项,2为公差的等差数列,则1a n +1=2n -32,∴数列⎩⎨⎧⎭⎬⎫2a n +1是以1为首项,4为公差的等差数列,其前20项的和为20+10×19×4=780.]三、解答题13.(2018·德阳二诊)已知数列{a n }满足a 1=1,a n +1=2a n +1 . (1)求证:数列{a n +1}为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . [解] (1)∵a n +1=2a n +1,∴a n +1+1=2(a n +1). 又a 1=1,∴a 1+1=2≠0,a n +1≠0.∴{a n +1}是以2为首项,2为公比的等比数列. (2)由(1)知a n =2n -1, ∴2na n a n +1=2n2n -12n +1-1=12n -1-12n +1-1,∴T n =12-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1.14.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.[解] (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21. (2)令(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3), 所以数列{a n +3}是首项为6,公比为2的等比数列, 因此存在λ=3,使得数列{a n +3}为等比数列,所以a n+3=(a1+3)×2n-1,a n=3(2n-1)(n∈N*).。
等差数列与等比数列练习题

等差数列与等比数列练习题一、等差数列1. 求等差数列2, 5, 8, 11, 14的公差d和第n项的通项公式an。
解:首先,根据等差数列的性质,可知第2项减去第1项等于公差d,即5-2=d,解得d=3。
由此可得等差数列的公差d为3。
其次,我们可以观察到等差数列的公式。
第n项的通项公式可表示为an=a1+(n-1)d,其中a1为首项,d为公差。
将已知数据代入,我们有a1=2,d=3,n为第几项(此处为5),代入公式计算,可得a5=2+(5-1)×3=14。
因此,该等差数列的第5项的通项为14。
2. 如果等差数列的第a项是5,公差是7,求第n项的值an。
解:根据等差数列的通项公式可知,an=a1+(n-1)d。
已知a1=5,d=7,n为第几项(此处为n),代入公式计算,得到an=5+(n-1)×7。
因此,等差数列的第n项的值为an=5+(n-1)×7。
二、等比数列1. 求等比数列3,6,12,24的公比r和第n项的通项公式an。
解:首先,根据等比数列的性质,可知第2项除以第1项等于公比r,即6/3=r,解得r=2。
由此可得等比数列的公比r为2。
其次,观察等比数列的公式。
第n项的通项公式可表示为an=a1×r^(n-1),其中a1为首项,r为公比。
将已知数据代入,我们有a1=3,r=2,n为第几项(此处为4),代入公式计算,可得a4=3×2^(4-1)=3×2^3=24。
因此,该等比数列的第4项的通项为24。
2. 如果等比数列的第a项是4,公比是0.5,求第n项的值an。
解:根据等比数列的通项公式可知,an=a1×r^(n-1)。
已知a1=4,r=0.5,n为第几项(此处为n),代入公式计算,得到an=4×0.5^(n-1)。
因此,等比数列的第n项的值为an=4×0.5^(n-1)。
综上所述,等差数列与等比数列的练习题可以通过给定的已知条件,运用相应的公式来求解。
等差数列和等比数列习题及答案

等差数列和等比数列习题1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .62.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .643.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .94.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2B .1-2C .3+2 2D .3-225.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2B .16C .114D .326.已知{a n }是等差数列,公差d 不为零,若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=23,d =________. 7.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,则S 10=___________8.设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为_______.9.设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数.(1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式.10.(文)(2017·蚌埠质检)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9.(1)求数列{a n }的通项公式;(2)设b n =log 23a 2n +3,且{b n }为递增数列,若c n =4b n ·b n +1,求证:c 1+c 2+c 3+…+c n <1.【参考答案】1. D[解析] 本题主要考查等差数列的通项公式及前n 项和公式.由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D .2. C[解析] 解法一:由条件知:a n >0,且⎩⎪⎨⎪⎧ a 1+a 2=3,a 1+a 2+a 3+a 4=15,∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15, ∴q =2.∴a 1=1,∴S 6=1-261-2=63. 解法二:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.3. D[解析] 由题可得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,所以a >0,b >0,不妨设a >b ,所以等比数列为a ,-2,b 或b ,-2,a 从而得到ab =4=q ,等差数列为a ,b ,-2或-2,b ,a 从而得到2b =a -2,两式联立解出a =4,b =1,所以p =a +b =5,所以p +q =4+5=9.4. C[解析] 本题主要考查等差数列、等比数列.∵a 1,12a 3,2a 2成等差数列,∴12a 3×2=a 1+2a 2, 即a 1q 2=a 1+2a 1q ,∴q 2=1+2q ,解得q =1+2或q =1-2(舍),∴a 9+a 10a 7+a 8=a 1q 8(1+q )a 1q 6(1+q )=q 2=(1+2)2=3+2 2. 5. C[解析] 设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =-1(舍)或q =2,∴a n =a 1·2n -1,a m ·a n =16a 21⇒a 21·2m +n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114. 6.-1[解析] 由题可得(a 1+2d )2=(a 1+d )(a 1+6d ),故有3a 1+2d =0,又因为2a 1+a 2=1,即3a 1+d =1,联立可得d =-1,a 1=23.7.91.[解析] 因为任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,所以S n +1-S n =S n -S n -1+2,所以a n +1=a n +2,因为a 3=a 2+2=4,所以a n =a 2+(n -2)×2=2+(n -2)×2=2n -2,n ≥2,所以S 10=a 1+a 2+a 3…+a 10=1+2+4+…+18=1+2×9+9×82×2=91. 8.2.[解析] ∵等比数列{a n }的前n 项和为S n ,S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q a 1q +a 1q 4=4,解得a 1q =8,q 3=-12, ∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2. 9.[解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p 3. 所以{a n }是首项为p 3,公比为43的等比数列. (2)因为a 1=1,则a n =(43)n -1, 由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1, 当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-(43)n -11-43=3·(43)n -1-1, 当n =1时,上式也成立.∴b n =3·(43)n -1-1. 10.[解析] (1)设该等比数列的公比为q ,则根据题意有3·(1+1q +1q 2)=9, 从而2q 2-q -1=0,解得q =1或q =-12. 当q =1时,a n =3;当q =-12时,a n =3·(-12)n -3. (2)证明:若a n =3,则b n =0,与题意不符,故a n =3(-12)n -3, 此时a 2n +3=3·(-12)2n , ∴b n =2n ,符合题意.∴c n =42n ·(2n +2)=1n ·(n +1)=1n -1n +1, 从而c 1+c 2+c 3+…+c n =1-1n +1<1.。
等差数列等比数列练习题

等差数列等比数列练习题等差数列和等比数列是数学中常见的两种数列。
它们在数学和实际生活中都有着广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握这两种数列的性质和运算方法。
一、等差数列练习题1. 求等差数列1,4,7,10,...的第n项。
解析:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
根据题目中的数列,首项a1=1,公差d=3。
代入公式得到an = 1 + (n-1)3。
2. 已知等差数列的首项为5,公差为2,若数列的第n项为23,求n。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到23 = 5 + (n-1)2。
解方程得到n = 10。
3. 若等差数列的前n项和为Sn = 3n^2 + 2n,求数列的首项和公差。
解析:等差数列的前n项和公式为Sn = n/2(a1 + an),代入已知条件得到3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。
化简得到3n^2 + 2n = n/2(2a1 + (n-1)d)。
由此可得2a1 + (n-1)d = 6n + 4。
由于a1和d都是整数,所以2a1 + (n-1)d必须是偶数。
因此,6n + 4必须是偶数,即n必须是奇数。
又因为Sn = 3n^2 + 2n,所以n必须是奇数时Sn才是整数。
根据这个条件,我们可以列举n的值,找到满足条件的n。
当n = 1时,Sn = 5;当n = 3时,Sn = 35;当n = 5时,Sn = 105。
由此可得首项a1 = 5,公差d = 6。
二、等比数列练习题1. 求等比数列2,6,18,54,...的第n项。
解析:等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
根据题目中的数列,首项a1=2,公比r=3。
代入公式得到an = 2 * 3^(n-1)。
2. 已知等比数列的首项为4,公比为0.5,若数列的第n项为1/128,求n。
(完整版)等差等比数列练习题含答案

一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D)不存在 2。
、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D)3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n (B )28-=n a n (C)12-=n n a(D )n n a n -=26、已知))((4)(2z y y x x z --=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=nn a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A)4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( ) (A)97 (B)78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}na 的前10项和为 ( )(A )56 (B )58 (C )62 (D)6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n abaD .如果一个数列{}n a 的前n 项和c ab S nn +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 三、解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学 等差数列与等比数列单元练习一.选择题(1) 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )A 15B 30C 31D 64(2) 在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) A 33 B 72 C 84 D 189(3)已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )A –4B –6C –8D –10 (4) 如果数列}{n a 是等差数列,则 ( )A 5481a a a a +>+B 5481a a a a +=+C 5481a a a a +<+D 5481a a a a =(5) 已知由正数组成的等比数列{a n }中,公比q=2, a 1·a 2·a 3·…·a 30=245, 则 a 1·a 4·a 7·…·a 28=( )A 25B 210C 215D 220(6){}n a 是首项1a =1,公差为d=3的等差数列,如果n a =2005,则序号n 等于( )A 667B 668C 669D 670(7) 数列{a n }的前n 项和S n =3n -c, 则c=1是数列{a n }为等比数列的 ( )A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分又非必要条件(8) 在等比数列{a n }中, a 1<0, 若对正整数n 都有a n <a n+1, 那么公比q 的取值范围是( )A q>1B 0<q<1C q<0D q<1(9) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。
已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( )A 4;B 5;C 6;D 7。
(10) 已知f(x)=bx+1为x 的一次函数, b 为不等于1的常数, 且g(n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n , 设a n = g(n)-g(n-1) (n ∈N※), 则数列{a n }是( )A 等差数列B 等比数列C 递增数列D 递减数列 二.填空题(11) 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_____.(12) 设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_____.(13) 等差数列{a n }的前m 项和为30, 前2m 项和为100, 则它的前3m 项和为 . (14) 设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为_________ 三.解答题(15) 已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a 求数列}{n a 的通项公式;(16) 设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .(17) 已知等比数列{a n }的各项都是正数, S n =80, S 2n =6560, 且在前n 项中, 最大的项为54, 求n 的值.(18) 已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列. (Ⅰ)求q 的值;(Ⅱ)设{n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由..参考答案一选择题: 1.A[解析]:已知等差数列}{n a 中,8,2,16889797=∴=+=+a a a a a a 又又15,2121248=∴+=a a a a2.C[解析]:在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21 故3+3q+3q 2 =21,解得q=2 因此a 3+ a 4+ a 5=2122⨯=84 3.B[解析]:已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则6),4)(2()2(22222-=∴+-=+a a a a 4.B[解析]: ∵d a a a a a 7215481+=+=+∴故选B5.A[解析]:已知由正数组成的等比数列{a n }中,公比q=2, a 1·a 2·a 3·…·a 30=245, 则a 2·a 5·a 8·…·a 29= a 1·a 4·a 7·…·a 28·210a 3·a 6·a 9·…·a 30= a 1·a 4·a 7·…·a 28·220故 a 1·a 4·a 7·…·a 28=256.C[解析]: {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则1+3(n -1)=2005,故n=6697.C[解析]:数列{a n }的前n 项和S n =3n -c,则a n =⎪⎩⎪⎨⎧≥⋅=--)2(32)1(31n n cn 由等比数列的定义可知:c=1⇔数列{a n }为等比数列8.B[解析]:在等比数列{a n }中, a 1<0, 若对正整数n 都有a n <a n+1, 则a n <a n q 即a n (1-q)<0若q<0,则数列{a n }为正负交错数列,上式显然不成立; 若q>0,则a n <0,故1 -q>0,因此0<q<1 9.C[解析]: 底层正方体的表面积为24;第2层正方体的棱长222⨯,每个面的面积为)21(4⨯;第3层正方体的棱长为2)22(2⨯,每个面的面积为2)21(4⨯;┉,第n 层正方体的棱长为1)22(2-⨯n ,每个面的面积为1)21(4-⨯n ;若该塔形为n 层,则它的表面积为24+4[)21(4⨯+2)21(4⨯+┉+1)21(4-⨯n ]=405)21(--n因为该塔形的表面积超过39,所以该塔形中正方体的个数至少是610.B[解析]: 已知f(x)=bx+1为x 的一次函数, b 为不等于1的常数, 且g(n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n ,则g(1)=b+1,g(2)=b 2+b+1,g(3)=b 3+ b 2+b+1, ┉,g(n)=nb +┉+ b 2+b+1. a 1=b,a 2= b 2,a 3= b 3, ┉,n n b a = 故数列{a n } 是等比数列二填空题: 11. 216[解析]: 在83和272之间插入三个数,使这五个数成等比数列,设插入三个数为a 、b 、c ,则b 2=ac=3622738=⨯因此插入的三个数的乘积 为362166=⨯12. 2[解析]:设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),则a 4=S 4-S 3111272)127(2)181(a a a =---,且a 4=54,则a 1 =2 13. 210[解析]:∵{a n }等差数列 , ∴ S m ,S 2m -S m , S 3m -S 2m 也成等差数列 即2(S 2m -S m )= S m + (S 3m -S 2m ) ∴S 3m =3(S 2m -S m )=210 14. –2[解析]:设等比数列}{n a 的公比为q ,前n 项和为S n ,且S n+1,S n ,S n+2成等差数列,则2S n =S n+1+S n+2 (*)若q=1, 则S n =na 1, (*)式显然不成立,若q ≠1,则(*)为qq a q q a q q a n n n --+--=--++1)1(1)1(1)1(221111 故212+++=n n nq qq即q 2+q -2=0 因此q=-2 三解答题(15)解:设等差数列)}1({log 2-n a 的公差为d .由,8log 2log )2(log 29,322231+=+==d a a 得即d =1.所以,)1(1)1(log 2n n a n =⨯-+=-即.12+=n n a(16) (Ⅰ)当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T(17) 解: 由已知a n >0, 得q>0, 若q=1, 则有S n =na 1=80, S 2n =2na 1=160与S 2n =6560矛盾, 故q ≠1. ∵⎪⎪⎩⎪⎪⎨⎧=--=--)2(65601)1()1(801)1(211qq a q q a nn , 由(2)÷(1)得q n=81 (3). ∴q>1, 此数列为一递增数列, 在前n 项中, 最大一项是a n , 即a n =54.又a n =a 1q n-1=q a 1q n=54, 且q n =81, ∴a 1=8154q. 即a 1=32q.将a 1=32q 代入(1)得32q(1-q n )=80(1-q n ),即32q(1-81)=80(1-q), 解得q=3. 又q n =81, ∴n=4. (18) 解:(Ⅰ)由题设,2,21121213q a a q a a a a +=+=即 .012,021=--∴≠q q a.211-=∴或q(Ⅱ)若.2312)1(2,12nn n n n S q n +=⋅-+==则 当.02)2)(1(,21>+-==-≥-n n S b S n n n n 时 故.n n b S >若.49)21(2)1(2,212nn n n n S q n +-=--+=-=则 当,4)10)(1(,21---==-≥-n n S b S n n n n 时故对于.,11;,10;,92,n n n n n n b S n b S n b S n N n <≥==>≤≤∈+时当时当时当。