等差数列与等比数列知识点类比表

合集下载

等差数列与等比数列知识点类比表

等差数列与等比数列知识点类比表
2
an1 q(常数) an
an1 an1 an2 (n 2)
n
3.通项公式法: a n A q (A,q 为不为 0 的常数) 4.前 n 项和公式法:s n B q n B ( q 0, q 1 B0 )
设元 技巧
三数等差: a d , a, a d 四数等差: a 3d , a d , a d , a 3d
一、等差数列与等比数列知识点类比表 等差数列 定 义 式 通项 公式 中项 前 n 项 和 等比数列
an1 an d ( d 为常数, n 2 )
an a1 (n 1)d 或 an am (n m)d
a, b, c 成等差数列的充要条件: 2b a c
Hale Waihona Puke an1 q(q 0, 且为常数,n ≥ 2) an
① an am qnm
重 要 性 质
②等和性: 若 m n p q( m 、n 、 p 、q * ) , ②等积性: 若mn p q (m、 , q * ) n 、p 、 则 am an ap aq 则 a a a a
m n p q
2 ③若 2n p q ( n 、p 、 , 则 2an ap aq . ③若 2n p q q * ) ( n 、p 、 , 则 an q * ) ap aq
an a1qn1 ( a1 , q 0 )或 an amqnm
a, b, c 成等比数列的充要条件: b2 ac
n a1 an ; 2 n n 1 d ② Sn na1 2 ① an am (n m)d
① Sn
na 1 (q 1) S n a 1 q n a a q 1 1 n (q 1) 1 q 1 q

等差求和以及等比数列基础知识点

等差求和以及等比数列基础知识点

等差求和以及等比数列基础知识点(一)知识归纳: 1.概念与公式:等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列; 2°.通项公式:;11m n m n n q a q a a --==2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A += 2°等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数) (2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅③设p 、q 、r 、s 为正整数,且,s r q p +=+ 若}{n a 是等差数列,则;s r q pa a a a +=+(3) 若m+n=s+t (m, n, s, t ∈*N ),则n m s t a a a a ⋅=⋅.特别的,当n+m=2k 时,得2n m k a a a ⋅=注:④若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++ 组成公比这2n q 的等比数列. ⑤若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (4) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (5) ①当1q >时, ②当1q <0<时,110{}0{}{n n a a a a ><,则为递增数列,则为递减数列,110{}0{}{n n a a a a ><,则为递减数列,则为递增数列③当q=1时,该数列为常数列(此时数列也为等差数列); ④当q<0时,该数列为摆动数列.(二)学习要点:1、学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2、巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. 二、等差等比数列练习题1举例说明:1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )A .360B .370C .380D .390 2.已知a 1=1,a 8=6,则S 8等于( ) A .25 B .26 C .27 D .283.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.一、选择题1、等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) A .12 B .10 C .8 D .62.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .24 B .27 C .29 D .48 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .484.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( ) A .99 B .66 C .33 D .05.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A .13项 B .12项 C .11项 D .10项6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( ) A .9 B .10 C .11 D .12二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.8.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________.9.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *). (1)写出该数列的第3项;(2)判断74是否在该数列中.11、设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.二、等差等比数列练习题1(参考答案)举例说明:1、C2、D3、2n 4、 40.一、选择题:1、C.2、C.3、B4、B.5、A.6、B. 二、填空题:7、153 8、12 9、-72三、解答题:10.解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎪⎨⎪⎧-24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11、解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12、解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67,所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22.因为S n =n (a 1+a n )2=286,所以n =26.(2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,所以S 3n =3(S 2n -S n )=54.等比数列练习题2一、选择题1.等比数列{}n a的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++ =A .12B .10C .8D .2+3log 52.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( )A.32B.23C. 32或23D. -32或-233.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .1284.实数12345,,,,a a a a a 依次成等比数列,其中a1=2,a5=8,则a3的值为( ) A. -4 B.4 C. ±4 D. 55、在正项等比数列{}n a 中,991,a a 是方程016102=+-x x 的两个根,则605040a a a 的值为( )A. 32 B. 256 C. 64± D. 646、公差不为0的等差数列{an}中,a a a 632,,依次成等比数列,则公比等于( )A.21B.31C.2D.37、已知两数的等差中项是10,等比中项是8,则以这两数为根的一元二次方程是( )A.08102=++x xB. 064102=+-x xC. 064202=++x xD. 064202=+-x x8、等比数列为a ,2a +2,3a +3,…,第四项为( )A .-227B .227C .-27D .279、如果-1,a,b,c,-9成等比数列,那么( )(A )b=3,ac=9 (B)b=-3,ac=9 (C) b=3,ac=-9 (D)b=-3,ac=-9 10、等比数列{an}中,已知29-=a,则此数列前17项之积为 ( )A .216B .-216C .217D .-21711、各项都是正数的等比数列{an }的公比q ≠1,且132,21,a a a 成等差数列,则5443a a a a ++的值是( ) A.215+ B.215- C.251- D.215+或215-12、在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( ) A .33 B .72 C .84 D .18913、已知数列{an}为等比数列,且an >0, 253426452=++a a a a a a ,那么53a a +的值等于( )A.5 B.10 C.15 D.20 二、填空题1.在两数a,b(ab >0)之间插入3个数,使它们成等比数列,则中间一个数 . 2、.已知1, a1, a2, 4成等差数列,1, b1, b2, b3, 4成等比数列,则=+221b a a ______.3.已知等比数列{an}中,a1+a2=30,a3+a4=120,则a5+a6= .4.若a ,b ,c 成等比数列,则函数f(x)=ax2+bx +c 的图象与x 轴的交点个数为__________5、若数列{}n a 满足:1,2,111===+n a a a n n ,2,3….则=+++n a a a 21 .6、已知等比数列{,384,3,}103==a a a n 中则该数列的通n a = . 7.在递减等比数列{an}中,a4+a5=12,a2〃a7=27,则a10=________.8.已知等差数列{an}的公差d ≠0,且a1,a3,a9成等比数列,则1042931a a a a a a ++++值 .9、若各项均为正数的等比数列{}n a 满足23123a a a =-,则公比q = 10、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =11、已知数列{}n a 满足n n a S 411+=,则n a =三、解答题1、已知{}n a为等比数列,324202,3a a a =+=,求{}n a 的通项式。

等差、等比数列知识点总结

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn二、等差数列1、等差数列及等差中项定义d a a n n =--1、211-++=n n n a a a 。

2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+=当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。

3、等差数列的前n 项和公式:2)(1n n a a n S +=d n n na S n 2)1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……仍为等差数列。

6、B A a A d Bn An S n +==+=122,,7、在等差数列}{n a 中,有关n S 的最值问题利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列1、等比数列及等比中项定义:q a a n n=-1、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n =当1≠q 时,q q a S n n --=1)1(1 qqa a S n n --=114、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ⋅=⋅5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、……仍为等比数列6、0=++=B A B Aq S n n ,则四、求数列}{n a 的最大的方法:1-1n n n n a a a a ≥≥+五、求数列}{n a 的最小项的方法:1-1n n n n a a a a ≤≤+例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。

(完整版)等差等比数列知识点总结

(完整版)等差等比数列知识点总结

1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。

以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。

2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。

4. 等差中项:任意两项的算术平均值等于第三项。

5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。

等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。

2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。

3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。

4. 等比中项:任意两项的几何平均值等于第三项。

5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。

以上是关于等差数列和等比数列的主要知识点总结。

在学习这些内容时,可以通过做练习题来加深理解和巩固知识。

等差 等比知识点总结

等差 等比知识点总结

等差等比知识点总结一、等差数列1. 定义等差数列又叫等差数列,是一种特殊的数列,它的相邻两项之间的差都是相同的,这个差值称为公差。

比如一个等差数列通常的形式是a,a+d,a+2d,a+3d,…其中a是首项,d 是公差。

2. 通项公式设等差数列的首项为a,公差为d,那么它的通项公式为:an = a + (n - 1)d,其中n为数列的项数。

3. 性质① 等差数列的任意一项可以表示成它的首项和公差的线性组合;② 等差数列的前n项和为Sn = n(a + l)/2,其中l为数列的最后一项;③ 若等差数列的前n项和为Sn,则Sn+k = Sn + kn(k为常数);④ 若Tn为等差数列的前n项和,那么Sn = Tn - (n-1)d;⑤ 若Tn为等差数列的前n项和,那么T1、T2、…、Tn为等差数列;⑥ 等差数列的和与项数成正比例。

4. 应用等差数列的应用非常广泛,它可以用在数学、物理、工程学等各个领域。

在数学中,利用等差数列可以解决关于求和、求通项公式、求公差、求项数等各种问题。

在物理中,等差数列可以用来描述各种运动的位移、速度、加速度等之间的关系。

在工程学中,等差数列也可以用来描述一些周期性变化的规律。

二、等比数列1. 定义等比数列又叫等比数列,是一种特殊的数列,它的相邻两项之间的比值都是相同的,这个比值称为公比。

比如一个等比数列通常的形式是a,ar,ar²,ar³,…其中a是首项,r是公比。

2. 通项公式设等比数列的首项为a,公比为r,那么它的通项公式为:an = a * r⁽ⁿ⁻¹⁾,其中n为数列的项数。

3. 性质① 等比数列的任意一项可以表示成它的首项和公比的乘积;② 对于等比数列,前n项和的公式为Sn = a(1-rⁿ)/(1-r);③ 若Tn为等比数列的前n项和,那么Sn = Tn - a;④ 若Tn为等比数列的前n项和,那么T1、T2、…、Tn为等比数列;⑤ 等比数列的和与项数成正比例。

等差数列与等比数列性质总结

等差数列与等比数列性质总结


a1 q
qn

cqn
{an}为常数数列⇔q=1; {an}为摆动数列⇔q<0.
{an}递增⇔
a1>0或 q>1
a1<0 {an}递减⇔ 0<q<1
a0<1>q0<点1击进或入aq相1><应10模块
知识梳理
(3).等比数列前n项和公式
Sn a1 a2 a3 a4 ....... an2 an1 an ① 错位相 qSn a1q a2q a3q a4q ....... an2q an1q anq qSn a2 a3 a4 a5 ....... an1 an anq ② 减法 ①-② (1- q)Sn a1 anq
则Sm , S2m Sm , S3m S2m ,...... 成等差数列。
(3)中项比性质:等差数列anbn 中,Sn Tn 是其前n项和,
an S 2n1
bn
T2 n 1
点击进入相应模块
知识梳理
3.等差数列的性质
(4)奇数项和与偶数项和性质:等差数列an 中,奇数项有n+1项,
点击进入相应模块
上式都成立,因而它就是等差数列{an}的通项公式。
知识梳理
(2).等差数列通项公式常用结论
结论1.等差数列{an}中,首项为a1,公差d an=am+(n-m)d (其中,m,n N*,n m)
结论2:等差数列通项公式 an - a1= (n-1)d函数性:
直线的一般形式: y kx b
a3 - a2=d, a4 …-…a3=d, an-1-an-2=d, an -an-1=d. 这(n-1)个式子迭加

关于等差数列与等比数列的类比

关于等差数列与等比数列的类比
00 , -n + n = 0 2 : 00 } 2 一n+n2 —n+ ・ l ・
+n = 0
由上 表 可 见, 两种 数 列 的本 质 区别 在 于数
列 中相 邻 两项 间的运 算 不 同, 因此 从 它 们 的定 义 和 通项 公 式 出发 归纳 出两 种 数 列 与 运 算相 关 的互 变规 律, 是进 行类 比发 现 的基 础 .
- ・ n = b ・b l
在上 述发 现过 程 中, 等 差数 列不妨设 n 对 > 1 一n 对等 比数 列 不妨设 n> 1 -n 等差数 9 , 7 . 列 与 等 比数 列 在它 们关 于 运算 的互变 规律 中, 蕴 藏 辣刻 的数 学 本 质, 创新 教 育不可 多得 的 是
在平 时教 学 中, 只孤 立地 看待 等 差数 列 和等 比
31前 述 高考 题 的类 比 .
数 列, 么考 生 只能 望 题 兴 叹. 因此 等 差 那 在 数 列 和 等 比数 列 间 架 设一 座 联 想类 比的桥 梁 , 不仅是 课堂教 学 的追求 , 也是 素质教 育 的渴求 . 那 么在两 种 数 列 的教 学 中, 如何 进行 类 比呢?
2 .互 变规 律 若 将 等 差 数 列 定 义 和 通 项 公 式 中 的公 差 d换 成公 比 q ,并 将 “ 加、 减 、 ’ 算 依次 变 运 成‘ ‘ 除、乘方” 算 可 相应 地 产 生等 比 乘、 运 则 数 列 的定义 和通 项公 式 的数 学形式; 因为 一 又 0 , :1 .据 此, 大 胆 猜 想两 种数 列 可 在 运算 方 面存 在如 下 演变 规律 : 1 疆蠢厨 厂- 1羁玎臣 三
学 生 学 习 立体 几 何 , 空 间想 象 力差 , 因 往 入 门的首 要 问题. 纸使 原 有形 成 的平 面 定势 折 顺 利过 渡到 空间 的概 念. 且 实践 性 强 学 生 而

高中数学 数列与类比---等差数列与等比数列的区别与联系

高中数学 数列与类比---等差数列与等比数列的区别与联系
2.等差数列与等比数列在解题思想方法上的“类比”
等差数列与等比数列在“求和”与“求积”可以互换 推等导距. 的部分和构成的新数列的类比.
等差数列与等比数列的区别与联系
类比方法: (1)差—商 (2)和—积 (3)倍数—指数
等差数列
等比数列
定 义
an+1-an=d an-am=(n-m)d
nk akn an
} }
{akn+b}, 仍成等比数列.而{lgpank}成等差
数列.若{an}是等差数列,则 { C an,}
若an、bn是等差数列,则{pan+mbn}, { C pan r } ,{ C pan rbn } 成等比数
{man}, {akn-an},{kanb},{akn+b} 仍成等差数列.
an+1/an=q an/am=qn-m
等 差 (
2b=a+c 2an=am-n + am+n a1+an=a2+ an-1=…= ak+ an-k
b2=a·c an2=am-n ·am+n a1 ·an=a2 ·an-1=…= ak ·an-k
比 )
m±n=p±q am ± an=ap ± aq
m±n=p±q
am ·an=ap ·aq
中 项
距首末两项等距的和相等
am /an=ap /aq 距首末两项等距的积相等
通 项
an=a1+(n-1)d(叠代法、叠加法) an=a1 ·qn-1 (叠代法、叠乘法)
公 式
an=am+(n-m)d
公 差 (
d= an a1
n 1
=

等比数列与等差数列知识点

等比数列与等差数列知识点



第 7页(共 13页)
2.等比数列前 n 项和的性质 公比不为﹣1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n﹣Sn,S3n﹣S2n 仍成等比数列,
其公比为 qn. 8.数列的求和 【知识点的知识】 就是求出这个数列所有项的和,一般来说要求的数列为等差数列、等比数列、等差等比数列 等等,常用的方法包括: (1)公式法: ①等差数列前 n 项和公式:Sn=na1+ n(n﹣1)d 或 Sn= ②等比数列前 n 项和公式:
③几个常用数列的求和公式:
(2)错位相减法:
适用于求数列{an×bn}的前 n 项和,其中{an}{bn}分别是等差数列和等比数列. (3)裂项相消法:

∴=

=1, =
,=

∵数列{ }也为等差数列,

=+,

=1+

解得 d=2.
∴Sn+10=(n+10)2,
=(2n﹣1)2,




由于
为单调递减数列,

≤ =112=121,
故选:D. 2.等差数列的性质 【等差数列】
第 2页(共 13页)
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差
∴an=

把 n=1 代入 2n﹣1 可得 1≠2, ∴{an}不是等差数列
考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是 等差数列,题中 an 的求法是数列当中常用到的方式,大家可以熟记一下. eg2:已知等差数列{an}的前三项分别为 a﹣1,2a+1,a+7 则这个数列的通项公式为 解:∵等差数列{an}的前三项分别为 a﹣1,2a+1,a+7, ∴2(2a+1)=a﹣1+a+7, 解得 a=2. ∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9, ∴数列 an 是以 1 为首项,4 为公差的等差数列, ∴an=1+(n﹣1)×4=4n﹣3.

等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结
仍构成等差数列,公差为2
1(1n n na -+, m a +,2m a +,3m a +
也成等差数列, 公差为
②若两个等差数列{的前n 项和分别是则
22n n n n a A b B =。

数列的求和方法
1、分组求和法
例1、若数列{}n a 的通项式为n
n n a 32+=,求数列{}n a
的前n 项n S
练习1、(1)已知数列{}n a 的通项式为
n
n n a 42)1(⨯++=,求数列{}n a 的前n 项n S
(2)有穷数列1,1+2,1+2+4,…,1
2421-++++n
所有项的和为____________
2、错位相减法
例2、若数列{}n a 的通项式为n
n n a 32•=,求数列{}n a 的前n 项n S
练习2、已知数列{}n a 的通项式为n
n n a )2
1(•=,求数列{}n a 的
前n 项n S
3、并项法
例3、若数列{}n a 的通项式为n a n
n •-=)1(,求2012S
练习3 (1)若数列{}n a 的通项式为)23()1(-•-=n a n
n ,求10S (2)若数列{}n a 的通项式为)34()1(1
-•-=-n a n n ,求100S
4、裂项相消法
例4、若数列{}n a 的通项式为)
1(1
+=
n n a n ,求数列{}n a 的前
n 项n S
练习4、已知数列{}n a 的通项式为1
1-+=
n n a n ,求数列
{}n a 的前n 项n S。

高一等比等差知识点

高一等比等差知识点

高一等比等差知识点等差数列和等比数列是高中数学中非常重要的知识点,它们在解决数学问题、推导公式以及实际应用中起到了重要的作用。

本文将详细介绍高一等比等差知识点,包括定义、性质、公式推导以及应用实例等内容。

一、等差数列等差数列是指数列中的相邻两项之差保持不变的数列。

用数学符号来表示,设数列为{a1, a2, a3, ...},其中a1为首项,d为公差,则有:a2 - a1 = d,a3 - a2 = d,....通项公式:an = a1 + (n-1)d等差数列的性质:1. 公差:等差数列中相邻两项的差值称为公差,记为d。

2. 首项:等差数列中的第一项称为首项,记为a1。

3. 末项:等差数列中的最后一项称为末项,记为an。

4. 项数:等差数列中的项的个数称为项数,记为n。

5. 总和:等差数列的前n项和可表示为Sn = n/2 * (a1 + an)。

二、等比数列等比数列是指数列中的相邻两项之比保持不变的数列。

用数学符号来表示,设数列为{a1, a2, a3, ...},其中a1为首项,r为公比,则有:a2 / a1 = a3 / a2 = r,a3 / a2 = a4 / a3 = r,....通项公式:an = a1 * r^(n-1)等比数列的性质:1. 公比:等比数列中相邻两项的比值称为公比,记为r。

2. 首项:等比数列中的第一项称为首项,记为a1。

3. 末项:等比数列中的最后一项称为末项,记为an。

4. 项数:等比数列中的项的个数称为项数,记为n。

5. 总和:等比数列的前n项和可表示为Sn = a1 * (1 - r^n) / (1 - r)。

三、等差数列和等比数列的应用等差数列和等比数列在各个领域中都有广泛的应用,下面以几个常见的实例进行说明。

1. 财务问题:等差数列和等比数列可以用来计算投资、借贷、存款等金融问题。

例如,年底固定存入一定金额的存款,假设每年存款增加10%,求未来5年的总存款金额。

等比等差知识点总结

等比等差知识点总结

等比等差知识点总结一、等比数列1. 定义等比数列是指一个数列中,每一项与它的前一项的比都相等的数列。

例如,数列1,2,4,8,16,......就是一个等比数列,因为后一项与前一项的比都是2。

2. 通项公式设等比数列的首项为a,公比为r,则等比数列的第n项可以表示为an = ar^(n-1)。

3. 性质(1)等比数列的前n项和公式等比数列的前n项和公式为:Sn = a * (1 - r^n) / (1 - r),其中a为首项,r为公比。

(2)等比中项对于等比数列a,ar,ar^2,ar^3,...,设其中项为ax,则x = aq+k*r^(n-1),其中n为项数,q为前q项和,k为末项与中项的比值。

(3)等比均值不等式对于任意的正整数n,等比数列a1,a2,...,an的乘积大于或等于n个等比数列的n次方的乘积。

(4)和与积的关系等比数列的前n项和等于首项与尾项的乘积除以公比与1的差值。

4. 应用(1)经济学中的应用在经济学中,等比数列常常用来描述成长率、利息等的变化规律。

(2)几何学中的应用在几何学中,等比数列常常用来描述固定比例缩小或放大的图形。

(3)物理学中的应用在物理学中,等比数列也常用来描述指数增长、衰减等现象。

二、等差数列1. 定义等差数列是指一个数列中,每一项与它的前一项的差都相等的数列。

例如,数列1,3,5,7,9,......就是一个等差数列,因为后一项与前一项的差都是2。

2. 通项公式设等差数列的首项为a,公差为d,则等差数列的第n项可以表示为an = a + (n-1)d。

3. 性质(1)等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a + an) * n / 2,其中a为首项,an为末项。

(2)等差数列的性质等差数列的奇数项和偶数项分别是另外两个等差数列。

(3)和与积的关系等差数列的前n项和等于首项与尾项的乘积除以公差与1的和值。

4. 应用(1)物理学中的应用在物理学中,等差数列常常用来描述匀加速运动的位移、速度等变化规律。

等差数列与等比数列类比总结(对比学习,全面知识点)精编材料,适合收藏pdf版

等差数列与等比数列类比总结(对比学习,全面知识点)精编材料,适合收藏pdf版

(5){an}
,{bn}
都是等比数列,则{kan}
,{|
an
|}
,{an2}
,{ 1 an
}
,{anbn
},{
an bn
}
也是等比数列.
5.判断一个数列是等差数列的方法
5.判断一个数列是等比数列的方法
(1)定义法: an1 an d (常数). (2)等差中项法: 2an+1=an +an+2 或 2an =an-1+an+1 .★ (3)通项公式法: an =kn b(公差为 k). (4)前 n 项和公式法: Sn An2 Bn (不含常数项的二次函数).★
2
若三个数 a,G,b 成等比数列,则 G 叫作 a 与 b 的等比中项.
此时 G2 ab , G ab .
3.等差数列的通项公式
3.等比数列的通项公式
等差数列{an} 的首项为 a1 ,公差为 d,则 an a1 (n 1) d . 4.等差数列的性质
等比数列{an} 的首项为 a1 ,公比为 q,则 an a1qn1 .
Sn
d 2
n2
(a1
d 2
)n
简写为
Sn
An2
Bn
(nN* )
,可以把
(n, Sn )
看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如
对称和求最值.
Sn 最值条件 通项法
二次函数法
最大值
a1 0 , d 0
an 0 且 an1 0
在 n 处 Sn 取最大值
Sn
S1=a1>0
[数列]
等差数列与等比数列对比知识点总结

等差数列与等比数列知识点及题型归纳总结

等差数列与等比数列知识点及题型归纳总结

等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。

等差等比数列基础知识点

等差等比数列基础知识点

一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结等差数列与等比数列是数学中常见的两种数列,它们在数学和实际生活中都有着重要的应用。

下面将从定义、性质、求和公式和应用等几个方面对等差数列和等比数列进行全面总结。

**一、等差数列的基本概念**等差数列是指一个数列中,从第二项起,每一项与它的前一项的差等于同一个常数的数列。

一般来说,等差数列的通项公式为:a_n=a_1+(n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。

**二、等差数列的性质**1. 等差数列的通项公式:a_n=a_1+(n-1)d2. 等差数列的前n项和公式:S_n=\frac{n}{2}(2a_1+(n-1)d)3. 等差数列的性质:任意三项成等差数列,等差中项相等。

4. 等差数列的性质:首项与末项的关系。

**三、等差数列的应用**等差数列在实际生活中有着广泛的应用,比如在金融领域中的等额还款、在物理学中的匀速运动等等。

**四、等比数列的基本概念**等比数列是指一个数列中,从第二项起,每一项与它的前一项的比等于同一个常数的数列。

一般来说,等比数列的通项公式为:a_n=a_1 \cdot q^{n-1},其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,q表示公比。

**五、等比数列的性质**1. 等比数列的通项公式:a_n=a_1 \cdot q^{n-1}2. 等比数列的前n项和公式:S_n=\frac{a_1(1-q^n)}{1-q},当|q|<1时成立3. 等比数列的性质:首项、末项、项数的关系。

4. 等比数列的性质:任意三项成等比数列,等比中项与等比积。

**六、等比数列的应用**等比数列同样在实际中有着广泛的应用,比如在利息计算中的等比增长、在生物学中的细胞分裂等等。

**结语**等差数列与等比数列是数学中基础而重要的概念,它们不仅在数学理论中有着重要的意义,而且在实际生活中也有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②等和性: m n p q ( m 、n 、 p 、q ) ②等积性: m n p q( m 、 、p 、 * ) 若 , n q 若 , 则 am an a p aq 则 am an a p aq
2 q ③若 2 n p q( n 、p 、 )则 2 a n a p a q . ③若 2 n p q( n 、p 、 * ) 则 a n a p a q , q ,
证明一个数列为等比数列的方法: 证 明 方 法 证明一个数列为等差数列的方法: 1.定义法 a n 1 a n d ( 常 数 ) 2.中项法
a n 1 a n 1 2 a n ( n 2 )
1.定义法 2.中项法
a n 1 an
q (常 数 )
2
3. 通项公式法: a n pn q ( p , q 为常数) 4. 前 n 项和公式法: s n A n 2 Bn (A,B 为常数)
一、等差数列与等比数列知识点类比表 等差数列 定义 递推 公式 通项 公式 中项 前
n
等比数列
a n 1 an q ( q 0, 且 为 常 数 , n ≥ 2 )
a n 1 a n d ( d 为常数, n 2 )
a n a n 1 d a n a1 ( n 1) d 或 a n a m ( n m ) d
*
④ s k , s 2 k s k , s 3 k s 2 k ,... 构成的数列是等差数列. 设 d 为等差数列 a n 的公差,则 d>0 a n 是递增数列; d<0 a n 是递减数列; d=0 a n 是常数数列.
④ S k , S 2 k S k , S 3 k S 2 k ,... 构成的数列是等比数列.
a , b , c 成等差数列的充要条件: 2b a c
a n a n 1 q
a n a1 q
n 1
( a1 , q 0 )或 a n a m q
nm
a , b , c 成等比数列的充要条件: b ac
2
① Sn
n a1 a n 2

d d 2 d n a 1 n 2 2
a n 1 a n 1 a n ( n 2 )
n
3. 通项公式法: a n A q (A,q 为不为 0 的常数) 4. 前 n 项和公式法: n s 三数等比:
a q
B qn
2
( q 0, q 1
B0
)
设元 技巧
三数等差: a d , a , a d 四数等差: a 3 d , a d , a d , a 3 d
a1 0 a1 0 ,或 q 1 0 q 1
a n 递增数列;
单 调 性:
q=1 a n 是常数数列; q<0 a n 是摆动数列
a1 0 a1 0 0 q 1, 或 q 1 a n 递减数列;
s1 s n s n 1
, a , a q或 a , a q , a q
2 3
四数等比: a , a q , a q , a q
( n 1) (n 2)
二、数列的项 a n 与前 n 项和 S n 的关系: a n
注意:一定不要忘记对 n 取值的讨论!最后,还应检验当 n=1 的情况是否符合当 n 2 的关系式,从而决定 能否将其合并。
项 和
② S n n a1
n n 1 2
n a 1 ( q 1) S n a 1 q n a a q 1 1 n ( q 1) 1 q 1 q
① an am (n m )d 重 要 性 质
*
① an am q
nm
相关文档
最新文档