(完整版)高考等差等比数列知识点总结
(完整版)高考数列公式总结
第四份:数学必修五第二章《初等数列》公式总结一、基本知识点总结aregoodfor 2、常用结论归纳ooso 1.{}{}1-21-2=nnnnnnnn TSbanbaTS项和,那么有的前、分别为等差数列、设2.常见的数列前n项和公式3.)8()6()5()4()2(=1+2•11an)(则4.构造法求数列通项公式(数量众多,此处仅为举例)(1)构造等比数列:形如的数列,可设,其中,那么qpaann+=1+)+(=+1+kapkann1-=pqk是公比为q的等比数列;举例,,则,则{}kan+1+2=1+nnaa1=,1=,2=kqp)1+(2=1+1+nnaa为公比为2的等比数列.{}1+na(2)构造等差数列:形如的数列,可以等式左右两边同时除以得,nnnpqpaa•+=1+np qpapannnn+=1-1+故,故数列是公差为q的等差数列.qpapannnn=-1-1+nnpad A l {}表示数列S n 1+2 5.累加法与累乘法举例:(1)累加法:左边加左边,右边加右边,最后把左右相同部分消除.举例:已知数列满足,求数列的通项公式。
{}n a 11211n n a a n a +=++=,{}n a (2)举例:。
数列的等差与等比性质知识点总结
数列的等差与等比性质知识点总结数列是由一系列数字按照一定规律排列组成的序列,而等差与等比性质是数列中常见的两种规律。
在数学中,掌握数列的等差与等比性质对于解题和推导数学公式都具有重要意义。
本文将对数列的等差与等比性质进行详细总结。
一、等差数列1. 定义:若数列中相邻两项之差保持不变,则称该数列为等差数列。
2. 通项公式:设等差数列的首项为a1,公差为d,则第n项的通项公式为an = a1 + (n-1)d。
3. 性质:a) 任意一项与它的前一项的差等于公差,即an - an-1 = d。
b) 等差数列的前n项和为Sn = (a1 + an) * n / 2。
c) 等差数列的任意一项可以表示为前一项与公差之和,即an = an-1 + d。
d) 若等差数列的前两项之和等于第三项,即a1 + a2 = a3,则该等差数列为等差数列。
二、等比数列1. 定义:若数列中相邻两项之比保持不变,则称该数列为等比数列。
2. 通项公式:设等比数列的首项为a1,公比为r,则第n项的通项公式为an = a1 * (r^(n-1))。
3. 性质:a) 任意一项与它的前一项的比等于公比,即an / an-1 = r。
b) 等比数列的前n项和为Sn = (a1 * (1 - r^n)) / (1 - r)。
c) 等比数列的任意一项可以表示为前一项与公比之积,即an = an-1 * r。
d) 若等比数列的前两项之积等于第三项,即a1 * a2 = a3,则该等比数列为等比数列。
三、等差与等比的联系与区别1. 联系:等差与等比数列都是按照一定规律排列的数列,且都有其通项公式和前n项和的公式。
2. 区别:a) 等差数列的相邻项之差相等,等比数列的相邻项之比相等。
b) 等差数列的公差为常数d,等比数列的公比为常数r。
c) 等差数列的通项公式为an = a1 + (n-1)d,等比数列的通项公式为an = a1 * (r^(n-1))。
(完整版)高考等差等比数列知识点总结
1高考数列知识点等差数列1.等差数列的定义:d aa n n=--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a推广: d m n a a m n )(-+=. 从而mn a a d m n --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22dn a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为的二次式且常数项为00) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列.是等差数列. (2) 等差中项:数列{}na 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中(其中A A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函的一次函 数,数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
等差和等比数列公式大总结
等差和等比数列公式大总结
等差数列是指每一项与前一项之差相等的数列,而等比数列是指每一项与前一项之比相等的数列。
在数学中,我们经常遇到各种各样的数列问题,因此了解等差和等比数列的公式是非常重要的。
等差数列的公式:
1.通项公式:an=a1+(n-1)d
其中,a1为首项,d为公差,an为第n项。
2.前n项和公式:Sn=[n(2a1+(n-1)d)]/2
其中,n为项数,a1为首项,d为公差,Sn为前n项和。
等比数列的公式:
1.通项公式:an=a1*r^(n-1)
其中,a1为首项,r为公比,an为第n项。
2.前n项和公式:Sn=a1*(1-r^n)/(1-r)
其中,a1为首项,r为公比,n为项数,Sn为前n项和。
以上是等差和等比数列的公式大总结。
通过掌握这些公式,我们可以更加轻松地解决各种数列问题。
同时,也可以通过这些公式发现数列的规律,进一步深入了解数学知识。
- 1 -。
(完整版)等差等比数列知识点总结
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
(完整版)等差等比数列知识点总结
等差等比数列知识点总结1. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d,那么这个数列就叫做等差数列,这个常数d叫做等差数列的公差,即a n a n 1 d (d 为常数)(n 2);2. 等差中项:(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:或2A a b3. 等差数列的通项公式:一般地,如果等差数列a n的首项是a1,公差是d,可以得到等差数列的通项公式为:a n 4 n 1 d推广:a n a m(n m)d.a n a m 从而dn m4. 等差数列的前n项和公式:n(a1 a n) n(n 1) , d 2 , 1 2S n na1 d n 佝d)n An Bn2 2 2 2(其中A、B是常数,所以当d M 0时,S是关于n的二次式且常数项为0) 5. 等差数列的判定方法(1)定义法:若a n a n 1 d或a n 1 a n d (常数n N ) a n是等差数列.(2)等差中项:数列a n是等差数列2a n a n-1 a n 1 (n 2)2a n 1a n a n 2 .(3)数列a n是等差数列a n kn b (其屮k, b是常数)。
(4)数列a n是等差数列S n An2Bn,(其中A、B是常数)。
6.等差数列的证明方法定义法:若a n a n 1d或a n1 a n d(常数n N) a n是等差数列.(2 ) 等差中项数列a n 2a n a n-1 a n i(n 2) 2a n 1 a n a n 27.等差数列的性质:(1)当m n p q 时,则有a m a n a p a q ,特别地,当m n 2p 时,则有⑵ 若{a n }是等差数列,则S n ,S 2n 5,务 S ?n ,…也成等差数列和,S n 是前n 项的和 1.当项数为偶数2n 时,a na n 12、当项数为奇数2n 1时,则(其中a n+1是项数为2n+1的等差数列的中间项) 1、 等比数列的定义:旦q q 0 n 2,且*n N ,q 称为公比a n 12、通项公式:n 1a n aga 〔 n n1q A B a-i q 0,A B0,首项:a 1 ;公比:qq推广:a nn mn ma m qqa nq n ma mV am3、 等比中项:(1)如果a,A,b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2 ab 或A ab注意:同号的两个数才有等比中项,并且它们的等比中项 有两个(两个等比中项互为相反数)a m a n2a p .(3)设数列a n 是等差数列,d 为公差,S 奇是奇数项的和, S 偶是偶数项项的n a ia 2n 1a2n 1— nana 2nn a 2a 2n2na n 1na n 1 na nn a n 1 a n =ndS 2n 1S 奇S 偶(2n1) a n+1S 奇 S 偶 a n+1S 奇 (n 1応+1S 偶n a n+1a i a 3a 5a 2 a 4 a 6 na n na n 1S奇为等比数列6等比数列的证明方法:7、等比数列的性质:(3)若{a n }为等比数列,则数列S n ,S 2n S n ,务 dn,,成等比数列 (4)在等比数列{a n }中,当项数为2n(n N *)时,§奇-S 禺q(2)数列a n 是等比数列 2 ana n 1 a n 14、等比数列的前n 项和S n 公式:(1)当 q 1 时,S nna i(2)当 q 1 时,S.a, 1a 〔 a 〔A AB n A'B n A' ( A,B,A',B'为常数)5、等比数列的判定方法:(1)用定义:对任意的n,都有amqa n 或 也 q(q 为常数,a n 0){a n }a n(2)等比中项:2 ana n 1a n 1 ( a n 1 a n 1 0) {a n }为等比数列(3)通项公式:a nA B n A B 0{a n }为等比数列依据定义:若-a ^ qa n 1q 0 n 2,且 nN 或a n 1 qa n {a n }为等比数列(1) 若 m n s t(m,n,s,t N ),贝U a n a m a s a t 。
等差数列和等比数列的特点知识点总结
等差数列和等比数列的特点知识点总结等差数列是指数列中的每一项与它的前一项之差都相等的数列,而等比数列则是指数列中的每一项与它的前一项之比都相等的数列。
在数学中,等差数列和等比数列是非常重要且常见的数列类型。
下面将分别介绍等差数列和等比数列的特点与相关知识点。
一、等差数列的特点与知识点等差数列的特点:1. 公差:等差数列中相邻两项之差称为公差,用d表示。
公差可以是正数、负数或零。
2. 通项公式:等差数列的通项公式是指通过已知的首项和公差,求出数列中任意一项的公式。
对于等差数列a1, a2, a3, ..., an,通项公式为an = a1 + (n-1)d。
3. 求和公式:等差数列的求和公式用于计算数列中前n项和的值。
对于等差数列a1, a2, a3, ..., an,求和公式为Sn = (n/2)(a1 + an) =(n/2)(2a1 + (n-1)d)。
等差数列的知识点:1. 判定一组数字是否为等差数列:通过计算任意相邻两项的差是否相等,若相等则为等差数列。
2. 求等差数列的第n项:已知首项和公差,利用通项公式即可计算出第n项的值。
3. 求等差数列的前n项和:已知首项、公差和项数,利用求和公式即可计算出前n项和的值。
4. 求等差数列中项的个数:已知首项、公差和末项,利用末项与首项之间的关系,即(末项-首项)/公差+1,即可计算出项的个数。
5. 应用:等差数列在日常生活中的应用很广泛,例如计算年龄、身高、价格等各类增量或减量的规律。
二、等比数列的特点与知识点等比数列的特点:1. 公比:等比数列中相邻两项之比称为公比,用r表示。
公比可以是正数、负数或零,但不能为1。
2. 通项公式:等比数列的通项公式是指通过已知的首项和公比,求出数列中任意一项的公式。
对于等比数列a1, a2, a3, ..., an,通项公式为an = a1 * r^(n-1)。
3. 求和公式:等比数列的求和公式用于计算数列中前n项和的值。
数列高考知识点归纳(非常全!)
数列高考知识点大扫描数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列; 依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。
数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法); 数列通项:()na f n =2、等差数列1、定义 当n N ∈,且2n ≥ 时,总有 1,()n n a a d d +-=常,d 叫公差。
2、通项公式1(1)n a a n d =+-1)、从函数角度看1()n a dn a d =+-是n 的一次函数,其图象是以点 1(1,)a 为端点, 斜率为d 斜线上一些孤立点。
2)、从变形角度看 (1)()n n a a n d =+--, 即可从两个不同方向认识同一数列,公差为相反数。
又11(1),(1)nm a a n d a a m d =+-=+-,相减得()n m a a n m d -=-,即()n m a a n m d =+-.若 n>m ,则以 m a 为第一项,n a 是第n-m+1项,公差为d ;若n<m ,则m a 以为第一项时,n a 是第m-n+1项,公差为-d.3)、从发展的角度看 若{}n a 是等差数列,则12(2)p q a a a p q d +=++- ,12(2)m n a a a m n d +=++-, 因此有如下命题:在等差数列中,若2m n p q r +=+= , 则2m n p q r a a a a a +=+=.3、前n 项和公式由1211,n n n n n S a a a S a a a -=+++=+++L L ,相加得12n n a a S n +=, 还可表示为1(1),(0)2n n n S na d d -=+≠,是n 的二次函数。
特别的,由1212n n a a a -+= 可得 21(21)n n S n a -=-。
等比数列与等差数列知识点
=
.
第 7页(共 13页)
2.等比数列前 n 项和的性质 公比不为﹣1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n﹣Sn,S3n﹣S2n 仍成等比数列,
其公比为 qn. 8.数列的求和 【知识点的知识】 就是求出这个数列所有项的和,一般来说要求的数列为等差数列、等比数列、等差等比数列 等等,常用的方法包括: (1)公式法: ①等差数列前 n 项和公式:Sn=na1+ n(n﹣1)d 或 Sn= ②等比数列前 n 项和公式:
③几个常用数列的求和公式:
(2)错位相减法:
适用于求数列{an×bn}的前 n 项和,其中{an}{bn}分别是等差数列和等比数列. (3)裂项相消法:
,
∴=
,
=1, =
,=
,
∵数列{ }也为等差数列,
∴
=+,
∴
=1+
,
解得 d=2.
∴Sn+10=(n+10)2,
=(2n﹣1)2,
∴
=
=
,
由于
为单调递减数列,
∴
≤ =112=121,
故选:D. 2.等差数列的性质 【等差数列】
第 2页(共 13页)
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差
∴an=
,
把 n=1 代入 2n﹣1 可得 1≠2, ∴{an}不是等差数列
考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是 等差数列,题中 an 的求法是数列当中常用到的方式,大家可以熟记一下. eg2:已知等差数列{an}的前三项分别为 a﹣1,2a+1,a+7 则这个数列的通项公式为 解:∵等差数列{an}的前三项分别为 a﹣1,2a+1,a+7, ∴2(2a+1)=a﹣1+a+7, 解得 a=2. ∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9, ∴数列 an 是以 1 为首项,4 为公差的等差数列, ∴an=1+(n﹣1)×4=4n﹣3.
(完整版)等差数列及等比数列的性质总结
等差数列与等比数列总结一、等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示;等差中项,如果2ba A +=,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数;等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-;等差数列}{a n 的前n 项和公式:n S =2n)a a (n 1⨯+=d 2)1-n (n na 1⨯+= 中12na n )2d-a (n )2d (=⨯+⨯; 【等差数列的性质】 1、d )1-n (a a m n +=【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+3、md 成等差数列,公差为、a 、a 、a m 2k m k k ⋯⋯++ 【说明】md a -a a -a m k m 2k k m k =⋯⋯==+++4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ⋯⋯成等差数列,公差为d n 2【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+⋯⋯+++⋯⋯++=++,)a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+⋯⋯+++⋯⋯++=++++⋯⋯=,d n 25、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=⇔+【说明】)d -a (dn d )1-n (a a 1m n +=+=,n S =d 2)1-n (n na 1⨯+= n )2d -a (n )2d (12⨯+⨯ 6、若数列}{a n 是等差数列,则}{c n a为等比数列,c>0【说明】d a-a a ac c cc 1-n n 1-n n ==7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S += 当n 为偶数时,d 2nS -S 奇偶⨯=当n 为奇数时,n a S 中n ⨯=,中偶奇a S -S =,1-n 1n S S 偶奇+=【说明】当n 为偶数时,d 2n)a -a ()a -a ()a -a (S -S 123-n 2-n 1-n n 奇偶⨯=+⋯⋯++= 当n 为奇数时,中11-n n 231偶奇a d 21-n a )a -a ()a -a (a S -S =+=+⋯⋯++=,,1-n 1n 21-n )a a (2121n )a a (21S S 1-n 2n 1偶奇+=⨯++⨯+=n a S S -S S S 中n 偶奇偶奇==+8、设1-2n 1-n 2n n n n n n T Sb a 项和,则n 的前}{b 、}{a 分别表示等差数列T 和S = 【说明】nn 中中1-2n 1-n 2b ab )1-n 2(a )1-n 2(T S == 【例】等差数列1515n n n n n n b a,求1-n 31n 5T S ,若T 和S 项和分别为n 的前}{b 、}{a += 9、1-d ,0a ),则q p (p a ,q a q p q p ==≠==+q --p a ),则q p (p S ,q S q p q p =≠==+ 0a ),则q p (S S q p q p =≠=+【说明】0q -q qd a a ,1-d q -p d )q -p (a -a p q p q p ==+==⇒==+ 2-a a p -q 2)q -p )(a a ()a a (S S p 1q p 1q p 1q q p =+⇒=+=+⋯⋯+=-+++q --p 2)q p )(a a (2)q p )(a a (S p 1q q p 1q p =++=++=+++二、等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比常用小写字母q 表示;等比中项,如果ab G 2=,那么G 叫做a 与b 的等差中项;如果三个数成等比数列,那么等差中项的平方等于另两项的积;等比数列}{a n 的通项公式:)N n (q a a 1-n 1n *∈=;等比数列}{a n 的递推公式:)2n (q a a 1n n ≥=-;等比数列}{a n 的前n 项和公式:n S =⎪⎩⎪⎨⎧≠==1q ,q -1q a -a q -1)q -1(a 1q ,na n 1n 11 【等比数列的性质】 1、m -n m n q a a ⋅=【说明】n 1-n 1m -n 1-m 1m -n m a q a q q a q a =⋅=⋅⋅=⋅ 2、若m 、n 、k 、l *∈N ,且l k n m a a a a ,l k n m ⋅=⋅⋅=⋅【说明】l k 2-l k 212-n m 21n m a a q a q a a a ⋅===⋅++ 3、m m 2k m k k q ,成等比数列,公比为、a 、a 、a ⋯⋯++ 【说明】m mk m 2k k m k q a aa a ==+++ 4、k )1-n (nk k 23k k k 2k S -S S -S 、S -S 、S ⋯⋯成等比数列,公比为nq【说明】n n21n22n 1n n n n 2q a a a a a a S S -S =+⋯⋯+++⋯⋯++=++ 5、数列}{a n 成等比数列)1-q (A S ,q p a ,a a a nn n n 1n 1-n 2n =⋅=⋅=⇔+【说明】)1-q (1-q a q -1)q -1(a S ,q q a qa a n 1n1n n 11-n 1n ==⋅=⋅= 6、若数列}{a n 是等比数列,则0a 为等差数列,}a {log n n c > 【说明】q log a a log a log -a log c 1-n nc1-n c n c == 7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S +=;若n 为偶数时,q a a 奇偶=;当n 为奇数时,q S a -S 偶1奇=;【说明】当n 为偶数时,q a a a a a a a a 1-n 41n42奇偶=+⋯⋯+++⋯⋯++=; 当n 为奇数时,q a a a a a a S a -S 1-n 42n 53偶1奇=+⋯⋯+++⋯⋯++=; 8、设偶奇n 偶奇n T T T 表示偶数项的积,则T 表示奇数项的积,T 项积,n 是前T ⋅=当n 为偶数时,n中奇中偶奇2n奇偶a T ,a T T 为奇数时,n ;当q T T ===;【说明】当n 为偶数时,2n1-n 42n42奇偶q a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=;当n 为奇数时,中1-n 42n421偶奇a a a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=; n中1-n 2n 1n 21奇a a a a a a a a T =⋯⋯⋅⋅=⋅⋯⋯⋅⋅=。
高三数学数列知识点归纳总结
高三数学数列知识点归纳总结数列是数学中常见且重要的概念,它在高三数学中扮演着非常重要的角色。
为了帮助大家更好地掌握数列的知识点,下面对高三数学数列知识进行归纳总结。
一、等差数列等差数列是指数列中相邻两项之差相等的数列。
常见的等差数列公式可以表示为An = a1 + (n - 1)d,其中a1为首项,d为公差,n为项数。
1. 等差数列求和公式等差数列求和公式是等差数列中一个非常重要且常用的公式,可以帮助我们快速计算等差数列的和。
等差数列前n项和公式为Sn = n/2 * (a1 + an),其中Sn表示前n项和,a1为首项,an为第n项。
2. 等差中项公式等差中项公式是指通过等差数列的首项、末项和项数来计算等差数列的中项。
根据等差数列的性质,中项可以通过求首项与末项的平均值来得到。
等差中项公式为An = (a1 + an)/2,其中An表示中项,a1表示首项,an表示末项。
3. 等差数列的性质(1)任意项等于前一项加上公差,即An = An-1 + d。
(2)任意项等于首项加上与该项的差数乘以公差,即An = a1 + (n- 1)d。
(3)等差数列中,相等距离的两个项之和等于首项与末项之和。
二、等比数列等比数列是指数列中相邻两项之比相等的数列。
常见的等比数列公式可以表示为An = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
1. 等比数列求和公式等比数列求和公式是等比数列中一个非常重要且常用的公式,可以帮助我们快速计算等比数列的和。
等比数列前n项和公式为Sn = a1 * (q^n - 1) / (q - 1),其中Sn表示前n项和,a1为首项,q为公比。
2. 等比中项公式等比中项公式是指通过等比数列的首项、末项和项数来计算等比数列的中项。
根据等比数列的性质,中项可以通过将首项与末项的平方根相乘来得到。
等比中项公式为An = sqrt(a1 * an),其中An表示中项,a1表示首项,an表示末项。
等比等差高考知识点
等比等差高考知识点一、等差数列1. 定义:若一个数列中,从第二个数起,每个数与它的前一个数的差等于一个常数,则称该数列为等差数列。
2. 通项公式:设等差数列的首项为a₁,公差为d,则第n项的通项公式为 an = a₁ + (n-1)d。
3. 前n项和公式:设等差数列的首项为a₁,公差为d,则前n项和的公式为 Sn = n/2 [2a₁ + (n-1)d]。
4. 等差中项:若a, b, c三个数成等差数列,且b是a和c的算术平均数,则b称为等差中项。
二、等比数列1. 定义:若一个数列中,从第二个数起,每个数与它的前一个数的比等于一个常数,则称该数列为等比数列。
2. 通项公式:设等比数列的首项为a₁,公比为q,则第n项的通项公式为 an = a₁ * q^(n-1)。
3. 前n项和公式(当公比q≠1时):设等比数列的首项为a₁,公比为q,则前n项和的公式为 Sn = a₁ * (q^n - 1) / (q - 1)。
4. 等比中项:若a, b, c三个数成等比数列,且b是a和c的几何平均数,则b称为等比中项。
三、等差数列和等比数列的联系与区别1. 联系:等差数列和等比数列都是常见的数列模型,它们的计算公式和性质有一些相似之处。
2. 区别:a) 等差数列中,相邻两项之差是常数,而等比数列中,相邻两项的比是常数。
b) 等差数列的通项公式中有关公差的项数,等比数列的通项公式中有关公比的项数。
c) 等差数列的前n项和公式是关于项数n的多项式,等比数列的前n项和公式是关于项数n的有理分式。
四、等差数列和等比数列在高考中的应用1. 常见应用场景:等差数列和等比数列在数学中有广泛的应用,特别在高考中常常出现在数学选择题、填空题和解答题中。
2. 解题思路:对于等差数列或等比数列的应用题,首先要识别出题目中是否存在等差或等比的关系,然后运用相应的公式进行计算,得出所求的结果。
3. 解答技巧:在解答等差数列和等比数列的问题时,可以利用已知条件推导出通项公式或前n项和公式,从而简化计算过程,提高解题效率。
等差等比数列知识点 归纳总结
等差等比数列知识点归纳总结数学中的数列是一系列按照一定规律排列的数的集合。
在数列中,等差数列和等比数列是两种常见的形式。
它们具有一些特定的性质和规律,对于理解数学的推理和应用领域都具有重要意义。
本文将对等差数列和等比数列的知识点进行归纳总结,以帮助读者更好地理解和运用这些概念。
一、等差数列的概念和性质等差数列是指数列中的相邻两项之差保持恒定的数列。
每一项与它的前一项之差称为等差d。
等差数列通常表示为{a,a + d,a + 2d,...},其中a是首项,d是公差。
等差数列具有以下性质:1. 公差:等差数列的公差是相邻两项之差,常用字母d表示。
2. 通项公式:等差数列的通项公式可以通过首项和公差来表示。
通项公式为an = a + (n - 1)d,其中an表示第n项,a表示首项,d表示公差。
3. 首项和末项:等差数列的首项为a,末项为an。
4. 求和公式:等差数列的前n项和可以使用求和公式来表示。
求和公式为Sn = (n/2)(a + an),其中Sn表示前n项和。
5. 通项之和:对于相等间隔的等差数列,任意两项之和都等于首项和末项的和。
二、等比数列的概念和性质等比数列是指数列中的相邻两项之商保持恒定的数列。
每一项与它的前一项之比称为公比r。
等比数列通常表示为{a,ar,ar^2,...},其中a是首项,r是公比。
等比数列具有以下性质:1. 公比:等比数列的公比是相邻两项之比,常用字母r表示。
2. 通项公式:等比数列的通项公式可以通过首项和公比来表示。
通项公式为an = a * r^(n-1),其中an表示第n项,a表示首项,r表示公比。
3. 首项和末项:等比数列的首项为a,末项为an。
4. 求和公式:等比数列的前n项和可以使用求和公式来表示。
求和公式为Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项和。
5. 通项之积:对于相等间隔的等比数列,任意两项之积都等于首项和公比的幂次方之积。
等差数列与等比数列类比总结(对比学习,全面知识点)精编材料,适合收藏pdf版
(5){an}
,{bn}
都是等比数列,则{kan}
,{|
an
|}
,{an2}
,{ 1 an
}
,{anbn
},{
an bn
}
也是等比数列.
5.判断一个数列是等差数列的方法
5.判断一个数列是等比数列的方法
(1)定义法: an1 an d (常数). (2)等差中项法: 2an+1=an +an+2 或 2an =an-1+an+1 .★ (3)通项公式法: an =kn b(公差为 k). (4)前 n 项和公式法: Sn An2 Bn (不含常数项的二次函数).★
2
若三个数 a,G,b 成等比数列,则 G 叫作 a 与 b 的等比中项.
此时 G2 ab , G ab .
3.等差数列的通项公式
3.等比数列的通项公式
等差数列{an} 的首项为 a1 ,公差为 d,则 an a1 (n 1) d . 4.等差数列的性质
等比数列{an} 的首项为 a1 ,公比为 q,则 an a1qn1 .
Sn
d 2
n2
(a1
d 2
)n
简写为
Sn
An2
Bn
(nN* )
,可以把
(n, Sn )
看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如
对称和求最值.
Sn 最值条件 通项法
二次函数法
最大值
a1 0 , d 0
an 0 且 an1 0
在 n 处 Sn 取最大值
Sn
S1=a1>0
[数列]
等差数列与等比数列对比知识点总结
等差数列与等比数列知识点及题型归纳总结
等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。
(完整版)等差数列与等比数列知识总结
等差数列
等比数列
定义
( 为常数, )
或:
或:
通项公式
( )
中项
若a,A,b成等差数列,则
若a,G,b成等比数列,则
即
前 项和
重要性质
②
证明方法
证明一个数列为等差数列的方法:
定义法
证明一个数列为等比数列的方法:
定义法
设元巧
三数等差:
三数等比:
已知数列前n项和 ,求 的方法:
(1)当 时,由 求得;
6、等差数列{ }中,已知d=3,且 求前100项和.
7、已知等比数列{ }的前3项和是 ,前6项和是 ,求它的前10项和.
(2)当 时,由 求得,并验证 是否满足 .
等差数列与等比数列知识梳理
复习训练题
1、求等差数列-1,2,5,…的通项公式,并写出第50项.
2、求等比数列10,1, ,…的通项公式,并写出第12项.
3、在等差数列{ }中, =4, =20,求 .
4、在等比数列{ }中, ,求 .
5、在数列{ }的前n项和为 求数列的通项公式 .
等差等比数列基础知识点
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
等比数列等差数列知识点归纳总结
等比数列等差数列知识点归纳总结等比数列和等差数列是数学中常见且重要的概念之一。
在解决各种数学问题和应用中,它们都有着广泛的应用。
本文将对等比数列和等差数列的知识点进行归纳总结,以帮助读者更好地理解和掌握这两个数列的特点和应用。
一、等差数列等差数列是一种特殊的数列,其中每一项与前一项之差保持恒定。
具体来说,对于一个等差数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ + (n-1)d其中,a₁表示首项,d表示公差,n表示项数。
等差数列的常用术语包括首项、公差、通项公式和项数等。
1. 首项(a₁):等差数列的第一项称为首项。
2. 公差(d):等差数列中相邻两项的差称为公差。
公差可以是正数、负数或零。
3. 通项公式:等差数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等差数列包含的项的个数称为项数。
等差数列的主要特点是任意两项之差相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、平均数问题、等差数列的图像和几何问题等。
二、等比数列等比数列是一种特殊的数列,其中每一项与前一项之比保持恒定。
具体来说,对于一个等比数列a₁, a₂, a₃, ..., an,它的通项公式可以表示为:an = a₁ * r^(n-1)其中,a₁表示首项,r表示公比,n表示项数。
等比数列的常用术语包括首项、公比、通项公式和项数等。
1. 首项(a₁):等比数列的第一项称为首项。
2. 公比(r):等比数列中相邻两项的比称为公比。
公比可以是正数、负数或零,但不能为1。
3. 通项公式:等比数列的第n项通项公式可以用来求出数列中任意一项的值。
在通项公式中,n表示项数。
4. 项数:等比数列包含的项的个数称为项数。
等比数列的主要特点是任意两项之比相等,这使得我们可以根据已知的条件,快速求解未知项的值。
一些常见的应用包括求和公式、计算几何问题和金融领域的应用等。
高中数学知识点总结等差数列与等比数列
高中数学知识点总结等差数列与等比数列高中数学知识点总结:等差数列与等比数列等差数列和等比数列是高中数学中重要的数列概念。
它们在数学和实际问题中都具有广泛的应用。
本文将对等差数列和等比数列进行详细的总结和学习。
一、等差数列(Arithmetic Progression,简称AP)等差数列是指数列中任意两个相邻的项之间的差都是一个常数。
这个常数称为公差,通常用字母d表示。
等差数列的一般形式可以表示为:an = a1 + (n-1)d,其中an表示数列的第n项。
等差数列常见的性质和公式如下:1. 第n项公式:an = a1 + (n-1)d2. 前n项和公式:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d)3. 公差d的求法:d = (an - a1)/(n-1)4. 通项公式:an = a1 + (n-1)d5. 前n项和公式(求和公式):Sn = (n/2)(a1 + an)等差数列的应用非常广泛,特别是在数学、物理和工程学中。
等差数列可以帮助我们推导出一些重要的关系式,解决许多实际问题。
二、等比数列(Geometric Progression,简称GP)等比数列是指数列中任意两个相邻的项之间的比都是一个常数。
这个常数称为公比,通常用字母r表示。
等比数列的一般形式可以表示为:an = a1 * r^(n-1),其中an表示数列的第n项。
等比数列常见的性质和公式如下:1. 第n项公式:an = a1 * r^(n-1)2. 前n项和公式:Sn = a1 * (1 - r^n) / (1 - r),其中r ≠ 13. 公比r的求法:r = √(an / a1)4. 通项公式:an = a1 * r^(n-1)5. 前n项和公式(求和公式):Sn = a1 * (1 - r^n) / (1 - r),其中r ≠1等比数列的应用同样非常广泛,在数学、物理、经济学等领域都有重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数列知识点
等差数列
1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );
2.等差数列通项公式:*
11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a
推广: d m n a a m n )(-+=. 从而m
n a a d m
n --=
;
3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2
b
a A +=
或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:
1()2n n n a a S +=
1(1)2n n na d -=+211
()22
d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212
n n n n a a S n a +++++=
=
+
5.等差数列的判定方法
(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*
∈N n )⇔ {}n a 是等差数列.
(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2
n S An Bn =+,(其中A 、B 是常数)
6.等差数列的证明方法
定义法:若d a a n n =--1或d a a n n =-+1(常数*
∈N n )⇔ {}n a 是等差数列
7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ;
前n 和211(1)()222
n n n d d
S na d n a n -=+
=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.
(4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列
(5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值
法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性
*n N ∈。
法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由⎩⎨
⎧≤≥+0
1n n a a 可得n S 达到最大值时的n 值.
(2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
即 当,,001><d a 由⎩⎨
⎧≥≤+0
1n n a a 可得n S 达到最小值时的n 值.
法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。
若S p = S q 则其对称轴为2
p q
n +=
(二)等比数列1. 等比数列的定义:()()*1
2,n n a q q n n N a -=≠≥∈0且,q 称为公比
n q =2. 通项公式:()11110,0n n n n a a a q q A B a q A B q
-==
=⋅⋅≠⋅≠,首项:1a ;公比:q 推广:n m
n m a a q -= 3. 等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2
A ab =
或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)
(2)数列{}n a 是等比数列⇔2
11n n n a a a -+=⋅
4. 等比数列的前n 项和n S 公式:(1) 当1q =时, 1n S na =(2) 当1q ≠时,()11111n
n n a q a a q
S q q
--==
-- 5. 等比数列的判定方法(1)用定义:对任意的n,都有1
1(0)n n n n n
a a qa q q a a ++==≠或
为常数,⇔{}n a 为等比数列 (2) 等比中项:2
11n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列
(3) 通项公式:()0n n a A B A B =⋅⋅≠⇔{}n a 为等比数列
(4) 前n 项和公式:()
'',,','n n n n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为 等比数列 6. 等比数列的证明方法依据定义:若
()()*1
2,n
n a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列 7. 等比数列的性质(1) 当1q ≠时①等比数列通项公式()1110n n
n n a a a q q A B A B q
-==
=⋅⋅≠是关于n 的带有系数的类指数函数,底数为公比q
②前n 项和()111111''1111n n n n n n a q a a q a a S q A A B A B A q
q q q
--=
=-=-⋅=-----,系数和常数项是互为相反数. (2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,
(3) 若m+n=s+t (m, n, s, t ∈*N ),则n m s t a a a a ⋅=⋅.特别的,当n+m=2k 时,得2n m k a a a ⋅=
(4) 列{}n a ,{}n b 为等比数列,则数列{}n
k
a ,{}n k a ⋅,{}k n a ,{}n n k a
b ⋅⋅{}n n a b (k 为非零常数) 均为等比数列.
(5) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (6) 若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -⋅⋅⋅,成等比数列 (7) ①当1q >时, ②当1q <0<时,
110{}0{}{
n n a a a a ><,则为递增数列
,则为递减数列, 110{}0{}{n n a a a a ><,则为递减数列,则为递增数列
n m n m a q a -=。