等差数列与等比数列知识点复习总结

合集下载

小学等差等比数列知识点归纳总结

小学等差等比数列知识点归纳总结

小学等差等比数列知识点归纳总结【小学等差等比数列知识点归纳总结】数列是数学中一个重要的概念,它由一系列按照特定规律排列的数所组成。

在小学阶段,学生们将接触到两种常见的数列,即等差数列和等比数列。

本文将对小学等差等比数列的知识点进行归纳总结。

一、等差数列(Arithmetic Progression)等差数列是指数列中相邻两项之差相等的一种数列。

等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。

1. 公差等差数列中,相邻两项之差称为公差。

公差可以是正数、负数或零。

2. 首项等差数列中的第一项称为首项,通常表示为a1。

3. 通项公式等差数列中的通项公式可以通过首项和公差来计算任意一项的值。

4. 前n项和公式等差数列的前n项和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。

二、等比数列(Geometric Progression)等比数列是指数列中相邻两项之比相等的一种数列。

等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

1. 公比等比数列中,相邻两项之比称为公比。

公比可以是正数或负数,但不能为零。

2. 首项等比数列中的第一项称为首项,通常表示为a1。

3. 通项公式等比数列中的通项公式可以通过首项和公比来计算任意一项的值。

4. 前n项和公式等比数列的前n项和公式为Sn = (a1 * (r^n - 1))/(r - 1),其中Sn表示前n项和。

三、等差数列与等比数列的关系等差数列和等比数列都是数学中常见的数列形式。

它们之间存在一定的联系。

1. 等差数列的前n项和与等差数列的平均数等差数列的前n项和可以表示为Sn = n * (a1 + an)/2,其中an表示第n项。

而等差数列的平均数可以表示为(a1 + an)/2,即首项与末项的平均值。

2. 等差数列的前n项和与等比数列的前n项和之比当等比数列的公比为1时,等比数列变为等差数列。

高考数学复习:等差数列与等比数列

高考数学复习:等差数列与等比数列

Sn=an2+bn(a,b为 常数)
Sn=kqn-k(k≠0,q≠0,1)
证明数列为等差(比)数列一般使用定义法.
例3 (2019·全国Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an- bn+4,4bn+1=3bn-an-4. (1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)已知函数 f(x)=1+2 x2(x∈R),若等比数列{an}满足 a1a2 020=1,则 f(a1)
+f(a2)+f(a3)+…+f(a2 020)等于
√A.1 D.2
解析 ∵a1a2 020=1,
∴f(a1)+f(a2 020)=1+2 a21+1+2a22 ∵{an}为等比数列,
a3+a4=2,则a6+a7+a8等于
A.12
B.24
√ C.30
D.32
解析 设等比数列{an}的公比为q, 则 q=aa21++aa32++aa43=21=2,
所以a6+a7+a8=(a1+a2+a3)·q5=1×25=32.
(2)已知正项等比数列{an}的前n项和为Sn,且S10=10,S30=130,则S40等于
∴an=2×2n-1=2n. 又∵ak+1+ak+2+…+ak+10=215-25,
∴2k+111--2210=215-25,
即2k+1(210-1)=25(210-1),
∴2k+1=25,∴k+1=5,∴k=4.
(2)(多选)(2020·威海模拟)等差数列{an}的前n项和记为Sn,若a1>0,S10=
证明 由题设得4(an+1+bn+1)=2(an+bn),
即 an+1+bn+1=12(an+bn). 因为a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列.

等差数列及等比数列的性质总结

等差数列及等比数列的性质总结

等差数列与等比数列总结一、等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示;等差中项,如果2ba A +=,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数;等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-;等差数列}{a n 的前n 项和公式:n S =2n)a a (n 1⨯+=d 2)1-n (n na 1⨯+= 中12na n )2d-a (n )2d (=⨯+⨯; 【等差数列的性质】 1、d )1-n (a a m n +=【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+3、md 成等差数列,公差为、a 、a 、a m 2k m k k ⋯⋯++ 【说明】md a -a a -a m k m 2k k m k =⋯⋯==+++4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ⋯⋯成等差数列,公差为d n 2【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+⋯⋯+++⋯⋯++=++,)a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+⋯⋯+++⋯⋯++=++++⋯⋯=,d n 25、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=⇔+【说明】)d -a (dn d )1-n (a a 1m n +=+=,n S =d 2)1-n (n na 1⨯+= n )2d -a (n )2d (12⨯+⨯ 6、若数列}{a n 是等差数列,则}{c n a为等比数列,c>0【说明】d a-a a ac c cc 1-n n 1-n n ==7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S += 当n 为偶数时,d 2nS -S 奇偶⨯=当n 为奇数时,n a S 中n ⨯=,中偶奇a S -S =,1-n 1n S S 偶奇+=【说明】当n 为偶数时,d 2n)a -a ()a -a ()a -a (S -S 123-n 2-n 1-n n 奇偶⨯=+⋯⋯++= 当n 为奇数时,中11-n n 231偶奇a d 21-n a )a -a ()a -a (a S -S =+=+⋯⋯++=,,1-n 1n 21-n )a a (2121n )a a (21S S 1-n 2n 1偶奇+=⨯++⨯+=n a S S -S S S 中n 偶奇偶奇==+8、设1-2n 1-n 2n n n n n n T Sb a 项和,则n 的前}{b 、}{a 分别表示等差数列T 和S = 【说明】nn 中中1-2n 1-n 2b ab )1-n 2(a )1-n 2(T S == 【例】等差数列1515n n n n n n b a,求1-n 31n 5T S ,若T 和S 项和分别为n 的前}{b 、}{a += 9、1-d ,0a ),则q p (p a ,q a q p q p ==≠==+q --p a ),则q p (p S ,q S q p q p =≠==+ 0a ),则q p (S S q p q p =≠=+【说明】0q -q qd a a ,1-d q -p d )q -p (a -a p q p q p ==+==⇒==+ 2-a a p -q 2)q -p )(a a ()a a (S S p 1q p 1q p 1q q p =+⇒=+=+⋯⋯+=-+++q --p 2)q p )(a a (2)q p )(a a (S p 1q q p 1q p =++=++=+++二、等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比常用小写字母q 表示;等比中项,如果ab G 2=,那么G 叫做a 与b 的等差中项;如果三个数成等比数列,那么等差中项的平方等于另两项的积;等比数列}{a n 的通项公式:)N n (q a a 1-n 1n *∈=;等比数列}{a n 的递推公式:)2n (q a a 1n n ≥=-;等比数列}{a n 的前n 项和公式:n S =⎪⎩⎪⎨⎧≠==1q ,q -1q a -a q -1)q -1(a 1q ,na n 1n 11 【等比数列的性质】 1、m -n m n q a a ⋅=【说明】n 1-n 1m -n 1-m 1m -n m a q a q q a q a =⋅=⋅⋅=⋅ 2、若m 、n 、k 、l *∈N ,且l k n m a a a a ,l k n m ⋅=⋅⋅=⋅【说明】l k 2-l k 212-n m 21n m a a q a q a a a ⋅===⋅++ 3、m m 2k m k k q ,成等比数列,公比为、a 、a 、a ⋯⋯++ 【说明】m mk m 2k k m k q a aa a ==+++ 4、k )1-n (nk k 23k k k 2k S -S S -S 、S -S 、S ⋯⋯成等比数列,公比为nq【说明】n n21n22n 1n n n n 2q a a a a a a S S -S =+⋯⋯+++⋯⋯++=++ 5、数列}{a n 成等比数列)1-q (A S ,q p a ,a a a nn n n 1n 1-n 2n =⋅=⋅=⇔+【说明】)1-q (1-q a q -1)q -1(a S ,q q a qa a n 1n1n n 11-n 1n ==⋅=⋅= 6、若数列}{a n 是等比数列,则0a 为等差数列,}a {log n n c > 【说明】q log a a log a log -a log c 1-n nc1-n c n c == 7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S +=;若n 为偶数时,q a a 奇偶=;当n 为奇数时,q S a -S 偶1奇=;【说明】当n 为偶数时,q a a a a a a a a 1-n 41n42奇偶=+⋯⋯+++⋯⋯++=; 当n 为奇数时,q a a a a a a S a -S 1-n 42n 53偶1奇=+⋯⋯+++⋯⋯++=; 8、设偶奇n 偶奇n T T T 表示偶数项的积,则T 表示奇数项的积,T 项积,n 是前T ⋅=当n 为偶数时,n中奇中偶奇2n奇偶a T ,a T T 为奇数时,n ;当q T T ===;【说明】当n 为偶数时,2n1-n 42n42奇偶q a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=;当n 为奇数时,中1-n 42n421偶奇a a a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=; n中1-n 2n 1n 21奇a a a a a a a a T =⋯⋯⋅⋅=⋅⋯⋯⋅⋅=。

等差和等比数列公式大总结

等差和等比数列公式大总结

等差和等比数列公式大总结
等差数列是指每一项与前一项之差相等的数列,而等比数列是指每一项与前一项之比相等的数列。

在数学中,我们经常遇到各种各样的数列问题,因此了解等差和等比数列的公式是非常重要的。

等差数列的公式:
1.通项公式:an=a1+(n-1)d
其中,a1为首项,d为公差,an为第n项。

2.前n项和公式:Sn=[n(2a1+(n-1)d)]/2
其中,n为项数,a1为首项,d为公差,Sn为前n项和。

等比数列的公式:
1.通项公式:an=a1*r^(n-1)
其中,a1为首项,r为公比,an为第n项。

2.前n项和公式:Sn=a1*(1-r^n)/(1-r)
其中,a1为首项,r为公比,n为项数,Sn为前n项和。

以上是等差和等比数列的公式大总结。

通过掌握这些公式,我们可以更加轻松地解决各种数列问题。

同时,也可以通过这些公式发现数列的规律,进一步深入了解数学知识。

- 1 -。

(完整版)等差等比数列知识点总结

(完整版)等差等比数列知识点总结

1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。

单招等差等比数列知识点归纳总结

单招等差等比数列知识点归纳总结

单招等差等比数列知识点归纳总结数列是数学中一种常见的数值序列,而等差数列和等比数列是数列中较为常见和重要的两种类型。

对于学习数学的同学来说,掌握等差数列和等比数列的概念、性质以及求解方法非常重要。

本文将对等差数列和等比数列的基本概念、常见性质和解题方法进行归纳总结。

一、等差数列的概念和性质等差数列是指一个数列中,从第二项开始,每一项与前一项的差相等的数列。

设等差数列的首项为a₁,公差为d,则等差数列的一般形式为an = a₁ + (n-1)d。

(n≥1)等差数列常见的性质有:1. 通项公式:an = a₁ + (n-1)d2. 首项和末项的求解:a₁ = an - (n-1)d,an = a₁ + (n-1)d3. 前n项和的求解:Sn = (n/2)[2a₁ + (n-1)d]4. 累加求和公式:Sn = (n/2)(a₁ + an)5. 通项之和为定值:an + an-1 = a₁ + ∑(n-1) + d = 2a₁ + (n-1)d6. 通项相等时的和:Sn = n(a₁ + an)/2二、等比数列的概念和性质等比数列是指一个数列中,从第二项开始,每一项与前一项的比相等的数列。

设等比数列的首项为a₁,公比为r,则等比数列的一般形式为an = a₁ * r^(n-1)。

(n≥1)等比数列常见的性质有:1. 通项公式:an = a₁ * r^(n-1)2. 首项和末项的求解:a₁ = an / r^(n-1),an = a₁ * r^(n-1)3. 前n项和的求解:Sn = a₁ * (1 - r^n) / (1 - r),当|r|<1时,Sn = (a₁ - an * r) / (1 - r)4. 累乘求积公式:Sn = a₁ * a₂ * a₃ * ... * an = a₁^n * r^(1+2+...+n-1) = a₁^n * r^(n(n-1)/2)5. 通项之和为定值:an * r - an₋₁ = a₁ * (r - 1) * (r^(n-1) - 1) / (r - 1) = a₁ * (r^n - 1) / (r - 1)6. 通项相等时的和:Sn = a₁n三、等差数列和等比数列的应用等差数列和等比数列是数学中非常重要的概念,它们不仅在数学中有着广泛的应用,而且在实际生活中也随处可见。

(完整版)等差、等比数列公式总结

(完整版)等差、等比数列公式总结

一、等差数列等差数列是指从第二项起,每一项与它的前一项的差是同一个常数,这个常数叫做等差数列的公差,通常用字母d表示。

等差数列的一般形式为:a_n = a_1 + (n 1)d其中,a_n表示第n项,a_1表示第一项,n表示项数。

等差数列的前n项和公式为:S_n = n/2 (a_1 + a_n)或者S_n = n/2 (2a_1 + (n 1)d)二、等比数列等比数列是指从第二项起,每一项与它的前一项的比是同一个常数,这个常数叫做等比数列的公比,通常用字母q表示。

等比数列的一般形式为:a_n = a_1 q^(n 1)其中,a_n表示第n项,a_1表示第一项,n表示项数。

等比数列的前n项和公式为:S_n = a_1 (1 q^n) / (1 q) (当q ≠ 1时)或者S_n = n a_1 (当q = 1时)一、等差数列等差数列是一种常见的数列,其中每一项与前一项之间的差是恒定的。

这个恒定的差值被称为公差,通常用字母d表示。

等差数列的一般形式可以表示为:a_n = a_1 + (n 1)d其中,a_n表示第n项,a_1表示第一项,n表示项数。

S_n = n/2 (a_1 + a_n)或者S_n = n/2 (2a_1 + (n 1)d)这个公式可以帮助我们快速计算等差数列的前n项和。

二、等比数列等比数列是另一种常见的数列,其中每一项与前一项之间的比是恒定的。

这个恒定的比值被称为公比,通常用字母q表示。

等比数列的一般形式可以表示为:a_n = a_1 q^(n 1)其中,a_n表示第n项,a_1表示第一项,n表示项数。

S_n = a_1 (1 q^n) / (1 q) (当q ≠ 1时)或者S_n = n a_1 (当q = 1时)这个公式可以帮助我们快速计算等比数列的前n项和。

三、应用场景等差数列和等比数列在数学和现实生活中的应用非常广泛。

例如,在金融领域,等差数列可以用来计算定期存款的利息,而等比数列可以用来计算复利的增长。

等差数列和等比数列的特点知识点总结

等差数列和等比数列的特点知识点总结

等差数列和等比数列的特点知识点总结等差数列是指数列中的每一项与它的前一项之差都相等的数列,而等比数列则是指数列中的每一项与它的前一项之比都相等的数列。

在数学中,等差数列和等比数列是非常重要且常见的数列类型。

下面将分别介绍等差数列和等比数列的特点与相关知识点。

一、等差数列的特点与知识点等差数列的特点:1. 公差:等差数列中相邻两项之差称为公差,用d表示。

公差可以是正数、负数或零。

2. 通项公式:等差数列的通项公式是指通过已知的首项和公差,求出数列中任意一项的公式。

对于等差数列a1, a2, a3, ..., an,通项公式为an = a1 + (n-1)d。

3. 求和公式:等差数列的求和公式用于计算数列中前n项和的值。

对于等差数列a1, a2, a3, ..., an,求和公式为Sn = (n/2)(a1 + an) =(n/2)(2a1 + (n-1)d)。

等差数列的知识点:1. 判定一组数字是否为等差数列:通过计算任意相邻两项的差是否相等,若相等则为等差数列。

2. 求等差数列的第n项:已知首项和公差,利用通项公式即可计算出第n项的值。

3. 求等差数列的前n项和:已知首项、公差和项数,利用求和公式即可计算出前n项和的值。

4. 求等差数列中项的个数:已知首项、公差和末项,利用末项与首项之间的关系,即(末项-首项)/公差+1,即可计算出项的个数。

5. 应用:等差数列在日常生活中的应用很广泛,例如计算年龄、身高、价格等各类增量或减量的规律。

二、等比数列的特点与知识点等比数列的特点:1. 公比:等比数列中相邻两项之比称为公比,用r表示。

公比可以是正数、负数或零,但不能为1。

2. 通项公式:等比数列的通项公式是指通过已知的首项和公比,求出数列中任意一项的公式。

对于等比数列a1, a2, a3, ..., an,通项公式为an = a1 * r^(n-1)。

3. 求和公式:等比数列的求和公式用于计算数列中前n项和的值。

等比数列与等差数列知识点

等比数列与等差数列知识点



第 7页(共 13页)
2.等比数列前 n 项和的性质 公比不为﹣1 的等比数列{an}的前 n 项和为 Sn,则 Sn,S2n﹣Sn,S3n﹣S2n 仍成等比数列,
其公比为 qn. 8.数列的求和 【知识点的知识】 就是求出这个数列所有项的和,一般来说要求的数列为等差数列、等比数列、等差等比数列 等等,常用的方法包括: (1)公式法: ①等差数列前 n 项和公式:Sn=na1+ n(n﹣1)d 或 Sn= ②等比数列前 n 项和公式:
③几个常用数列的求和公式:
(2)错位相减法:
适用于求数列{an×bn}的前 n 项和,其中{an}{bn}分别是等差数列和等比数列. (3)裂项相消法:

∴=

=1, =
,=

∵数列{ }也为等差数列,

=+,

=1+

解得 d=2.
∴Sn+10=(n+10)2,
=(2n﹣1)2,




由于
为单调递减数列,

≤ =112=121,
故选:D. 2.等差数列的性质 【等差数列】
第 2页(共 13页)
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差
∴an=

把 n=1 代入 2n﹣1 可得 1≠2, ∴{an}不是等差数列
考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是 等差数列,题中 an 的求法是数列当中常用到的方式,大家可以熟记一下. eg2:已知等差数列{an}的前三项分别为 a﹣1,2a+1,a+7 则这个数列的通项公式为 解:∵等差数列{an}的前三项分别为 a﹣1,2a+1,a+7, ∴2(2a+1)=a﹣1+a+7, 解得 a=2. ∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9, ∴数列 an 是以 1 为首项,4 为公差的等差数列, ∴an=1+(n﹣1)×4=4n﹣3.

(完整版)等差数列及等比数列的性质总结

(完整版)等差数列及等比数列的性质总结

等差数列与等比数列总结一、等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示;等差中项,如果2ba A +=,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数;等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-;等差数列}{a n 的前n 项和公式:n S =2n)a a (n 1⨯+=d 2)1-n (n na 1⨯+= 中12na n )2d-a (n )2d (=⨯+⨯; 【等差数列的性质】 1、d )1-n (a a m n +=【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+3、md 成等差数列,公差为、a 、a 、a m 2k m k k ⋯⋯++ 【说明】md a -a a -a m k m 2k k m k =⋯⋯==+++4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ⋯⋯成等差数列,公差为d n 2【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+⋯⋯+++⋯⋯++=++,)a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+⋯⋯+++⋯⋯++=++++⋯⋯=,d n 25、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=⇔+【说明】)d -a (dn d )1-n (a a 1m n +=+=,n S =d 2)1-n (n na 1⨯+= n )2d -a (n )2d (12⨯+⨯ 6、若数列}{a n 是等差数列,则}{c n a为等比数列,c>0【说明】d a-a a ac c cc 1-n n 1-n n ==7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S += 当n 为偶数时,d 2nS -S 奇偶⨯=当n 为奇数时,n a S 中n ⨯=,中偶奇a S -S =,1-n 1n S S 偶奇+=【说明】当n 为偶数时,d 2n)a -a ()a -a ()a -a (S -S 123-n 2-n 1-n n 奇偶⨯=+⋯⋯++= 当n 为奇数时,中11-n n 231偶奇a d 21-n a )a -a ()a -a (a S -S =+=+⋯⋯++=,,1-n 1n 21-n )a a (2121n )a a (21S S 1-n 2n 1偶奇+=⨯++⨯+=n a S S -S S S 中n 偶奇偶奇==+8、设1-2n 1-n 2n n n n n n T Sb a 项和,则n 的前}{b 、}{a 分别表示等差数列T 和S = 【说明】nn 中中1-2n 1-n 2b ab )1-n 2(a )1-n 2(T S == 【例】等差数列1515n n n n n n b a,求1-n 31n 5T S ,若T 和S 项和分别为n 的前}{b 、}{a += 9、1-d ,0a ),则q p (p a ,q a q p q p ==≠==+q --p a ),则q p (p S ,q S q p q p =≠==+ 0a ),则q p (S S q p q p =≠=+【说明】0q -q qd a a ,1-d q -p d )q -p (a -a p q p q p ==+==⇒==+ 2-a a p -q 2)q -p )(a a ()a a (S S p 1q p 1q p 1q q p =+⇒=+=+⋯⋯+=-+++q --p 2)q p )(a a (2)q p )(a a (S p 1q q p 1q p =++=++=+++二、等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比常用小写字母q 表示;等比中项,如果ab G 2=,那么G 叫做a 与b 的等差中项;如果三个数成等比数列,那么等差中项的平方等于另两项的积;等比数列}{a n 的通项公式:)N n (q a a 1-n 1n *∈=;等比数列}{a n 的递推公式:)2n (q a a 1n n ≥=-;等比数列}{a n 的前n 项和公式:n S =⎪⎩⎪⎨⎧≠==1q ,q -1q a -a q -1)q -1(a 1q ,na n 1n 11 【等比数列的性质】 1、m -n m n q a a ⋅=【说明】n 1-n 1m -n 1-m 1m -n m a q a q q a q a =⋅=⋅⋅=⋅ 2、若m 、n 、k 、l *∈N ,且l k n m a a a a ,l k n m ⋅=⋅⋅=⋅【说明】l k 2-l k 212-n m 21n m a a q a q a a a ⋅===⋅++ 3、m m 2k m k k q ,成等比数列,公比为、a 、a 、a ⋯⋯++ 【说明】m mk m 2k k m k q a aa a ==+++ 4、k )1-n (nk k 23k k k 2k S -S S -S 、S -S 、S ⋯⋯成等比数列,公比为nq【说明】n n21n22n 1n n n n 2q a a a a a a S S -S =+⋯⋯+++⋯⋯++=++ 5、数列}{a n 成等比数列)1-q (A S ,q p a ,a a a nn n n 1n 1-n 2n =⋅=⋅=⇔+【说明】)1-q (1-q a q -1)q -1(a S ,q q a qa a n 1n1n n 11-n 1n ==⋅=⋅= 6、若数列}{a n 是等比数列,则0a 为等差数列,}a {log n n c > 【说明】q log a a log a log -a log c 1-n nc1-n c n c == 7、偶奇n 偶奇n S S S 表示偶数项的和,则S 表示奇数项的和,S 项和,n 是前S +=;若n 为偶数时,q a a 奇偶=;当n 为奇数时,q S a -S 偶1奇=;【说明】当n 为偶数时,q a a a a a a a a 1-n 41n42奇偶=+⋯⋯+++⋯⋯++=; 当n 为奇数时,q a a a a a a S a -S 1-n 42n 53偶1奇=+⋯⋯+++⋯⋯++=; 8、设偶奇n 偶奇n T T T 表示偶数项的积,则T 表示奇数项的积,T 项积,n 是前T ⋅=当n 为偶数时,n中奇中偶奇2n奇偶a T ,a T T 为奇数时,n ;当q T T ===;【说明】当n 为偶数时,2n1-n 42n42奇偶q a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=;当n 为奇数时,中1-n 42n421偶奇a a a a a a a a T T =⋅⋯⋯⋅⋅⋅⋯⋯⋅⋅=; n中1-n 2n 1n 21奇a a a a a a a a T =⋯⋯⋅⋅=⋅⋯⋯⋅⋅=。

等差和等比数列公式大总结

等差和等比数列公式大总结

等差和等比数列公式大总结数列是数学中一个重要的概念,它是指按一定规律排列的一组数。

常见的数列有等差数列和等比数列。

在学习数列时,熟练掌握数列的公式是非常重要的。

本文将对等差数列和等比数列的公式进行总结。

一、等差数列的公式等差数列是指一个数列中后面的数与前面的数之差相等。

这个相等的差值就是等差数列的公差(d)。

等差数列的通项公式如下:an = a1 + (n-1)d其中,an为第n项,a1为第一项,d为公差。

等差数列的前n项和公式如下:Sn = n/2·[2a1 + (n-1)d]其中,Sn为前n项和。

二、等比数列的公式等比数列是指一个数列中后面的数与前面的数之比相等。

这个相等的比值就是等比数列的公比(q)。

等比数列的通项公式如下:an = a1·q^(n-1)其中,an为第n项,a1为第一项,q为公比。

等比数列的前n项和公式如下:Sn = (a1(1-q^n))/(1-q)其中,Sn为前n项和。

三、等差数列和等比数列的关系等差数列和等比数列都是常见的数列,它们有着一定的联系。

如果在等比数列中,取对数可以得到一个等差数列,相反地,在等差数列中,取指数可以得到一个等比数列。

具体如下:对于等比数列:取对数得到:log(an) = log(a1·q^(n-1))化简可得:log(an) = log(a1) + (n-1)log(q)令b = log(a1),d = log(q),则可得到:log(an) = b + (n-1)d这个式子和等差数列的通项公式an = a1 + (n-1)d一样,只不过d变成了log(q)。

所以,等比数列的通项公式也可以看做是等差数列的通项公式在取对数后的形式。

对于等差数列:取指数得到:an = a1·r^(n-1)化简可得:an = a1·e^(ln(r)·(n-1))令b = ln(a1),d = ln(r),则可得到:an = e^b·e^(d·(n-1))这个式子和等比数列的通项公式an = a1·q^(n-1)一样,只不过q变成了e^d。

等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结

等差数列与等比数列知识点复习总结的公比计算方法:①后一项除以前一项:q = an+1an②前两项之比:q = a2a1③前一项与后一项的平方根之比:q = √(an+1an3、等比数列an的通项式:①ana1q^(n-1)②anamq^(n-m)③anb*q^n (b为常数)4、等比数列an的性质:①两项性质:若m+n=p+q,则 a manapaq②等比中项性质:若x,A,y成等比数列,则 2A = x+y③下标成等比数列的项仍成等比数列。

若数列an是等比数列,公比为q,则数列akak+mak+2mak+3m仍构成等比数列,公比为q^m。

5、等比数列an的前n项和:Sna1q^n-1)/(q-1)等比数列前n项和性质:①首项为a1,公比为q的等比数列的前n项和为Sn=a1(1-q^n)/(1-q)②首项为a1,公比为q的等比数列的前n项和为Sn=a1(q^n-1)/(q-1)③特别地,首项为1,公比为q的等比数列的前n项和为Sn=(1-q^n)/(1-q)6、等比数列前n项和性质:①首项为a1,公比为q的等比数列的前n项和为Sn=a1(1-q^n)/(1-q)②首项为a1,公比为q的等比数列的前n项和为Sn=a1(q^n-1)/(q-1)③特别地,首项为1,公比为q的等比数列的前n项和为Sn=(1-q^n)/(1-q)等差数列前n项和性质:①片段和性质:等差数列{an}的前n项和为Sn,公差为d,则Sn,S2n-Sn,S3n-S2n。

即a1+a2+。

+am,am+1+am+2+。

+a2m,a2m+1+a2m+2+。

+a3m也成等差数列,公差为md。

②若两个等差数列{an},{bn}的前n项和分别是An,Bn,则a1+b1,a2+b2.an+bn也成等差数列,公差为d1+d2.其它性质:(任何数列都适用)①Sn与Sn-1之间的关系:an=Sn-Sn-1(n=1),a1=S1②S2n-1与S2n之间的关系:an=1/2(S2n-S2n-1)(n≥2)③通项公式:an=S(n)-S(n-1)④题型:已知Sn与n的关系,求数列的通项公式an;已知Sn与an的关系,求数列的通项公式an。

高中数学:等差数列、等比数列知识点总结

高中数学:等差数列、等比数列知识点总结

高中数学:等差数列、等比数列知识点总结数列基础知识归纳等差数列定义与性质定义:an+1-an=d (d为常数),an= a1+(n-1)d等差中项:x , A , y成等差数列: 2A=x+y前n项和:性质:{an}是等差数列(1)若m+n=p+q,则am+an=ap+aq ;(2)数列{a2n-1},{a2n},{a2n+1}仍为等差数列,Sn,S2n-Sn,S3n-S2n,等仍为等差数列,公差为n2d ;(3)若三个成等差数列,可设为a-d,a,a+d ;(4)若an,bn是等差数列,且前n项和分别为Sn,Tn,则(5){an}为等差数列,则Sn=an2+bn(a,b为常数,是关于n的常数项为0的二次函数),Sn的最值可求二次函数Sn=an2+bn的最值;或者求出{an}中的正、负分界项,即:当a1>0,d<0,解不等式组:可得Sn达到最大值时的n值。

当a1<0,d>0,解不等式组:可得Sn达到最小值时的n值。

(6)项数为偶数2n的等差数列{an},有(7)项数为偶数2n-1的等差数列{an},有等比数列定义与性质性质:{an}是等比数列(1) 若m+n=p+q,则am•an=ap•aq(2) Sn , S2n-Sn , S3n-S2n , 等仍为等比数列,公比为qn注意:由Sn求an时应注意什么?n=1时,a1=S1 ;n≥2时,an=S1-Sn-1求数列通项公式的常用方法求差(商)法叠乘法等差型递推公式答案:等比型递推公式倒数法▍▍ ▍▍。

等差数列与等比数列类比总结(对比学习,全面知识点)精编材料,适合收藏pdf版

等差数列与等比数列类比总结(对比学习,全面知识点)精编材料,适合收藏pdf版

(5){an}
,{bn}
都是等比数列,则{kan}
,{|
an
|}
,{an2}
,{ 1 an
}
,{anbn
},{
an bn
}
也是等比数列.
5.判断一个数列是等差数列的方法
5.判断一个数列是等比数列的方法
(1)定义法: an1 an d (常数). (2)等差中项法: 2an+1=an +an+2 或 2an =an-1+an+1 .★ (3)通项公式法: an =kn b(公差为 k). (4)前 n 项和公式法: Sn An2 Bn (不含常数项的二次函数).★
2
若三个数 a,G,b 成等比数列,则 G 叫作 a 与 b 的等比中项.
此时 G2 ab , G ab .
3.等差数列的通项公式
3.等比数列的通项公式
等差数列{an} 的首项为 a1 ,公差为 d,则 an a1 (n 1) d . 4.等差数列的性质
等比数列{an} 的首项为 a1 ,公比为 q,则 an a1qn1 .
Sn
d 2
n2
(a1
d 2
)n
简写为
Sn
An2
Bn
(nN* )
,可以把
(n, Sn )
看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如
对称和求最值.
Sn 最值条件 通项法
二次函数法
最大值
a1 0 , d 0
an 0 且 an1 0
在 n 处 Sn 取最大值
Sn
S1=a1>0
[数列]
等差数列与等比数列对比知识点总结

等差数列与等比数列知识点及题型归纳总结

等差数列与等比数列知识点及题型归纳总结

等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。

等差与等比数列知识与方法总结

等差与等比数列知识与方法总结

等差与等比数列知识与方法总结一、知识结构与要点N2cab+ =定义:nn n n n n a aa a q a a 1121+++-=→= N n ∈ 通项 →⋅=-11n n q a a 等比中项:abc 成等比数列ac b =⇒2基本概念推广m n m n q a a -⋅=前n 项和=n S )1(11)1()1(111≠--=--=q qqa a qq a q n a n n 等比数列与首末两端等距离的两项之积相等 1121......+--⋅===i n i n n a a a a a a q p n m a a a a q p n m ⋅=⋅⇒+=+}{n a 成等比,若k n n n ,...,21 成等差则nk n a a a ,...,21成等比基本性质 当101>>q a 或1001<<<q a 时 {}n a 为递增数列当101><q a 或1001<<>q a 时 {}n a 为递减数列当 q<0时 {}n a 为摆动数列 当 q=1时 {}n a 为常数数列二、等差数列、等比数列基础知识与方法概括 (一).一般数列数列的定义及表示方法;数列的项与项数;有穷数列与无穷数列;递增(减)、摆动、循环数列;数列{a n }的通项公式a n ;数列的前n 项和公式S n ;一般数列的通项a n 与前n 项和S n 的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn(二)等差数列1.等差数列的概念[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

即:成等比数列}{)0,0,2(1n n n n a q a n d a a ⇔≠≠≥=--2.等差数列的判定方法(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。

等差数列与等比数列知识点复习总结知识讲解

等差数列与等比数列知识点复习总结知识讲解
等差数列与等比数列知识点复习总结
等差数列
等比数列
1、数列 为等差数列的判定方法
定义法: (后一项减前一项等于常数)
等差中项法: (两倍的中项等于前后项之和)
通项式法: ( 是关于 的一次函数)
前 项和公式法(公差不为零时): (求和公式是关于 的二次函数且常数项为零,且公差 首项 )
1、数列 为等比数列的判定方法
题型: 已知 与 的关系,求数列的通项公式 ; 已知 与 的关系,求数列的通项公式 。
数列的求和方法
1、分组求和法
例1、若数列 的通项式为 ,求数列 的前 项
练习1、(1)已知数列 的通项式为
,求数列 的前 项
(2)有穷数列1,1+2,1+2+4,…, 所有项的和为____________
2、错位相减法
6、等差数列前 项和性质
片段和性质:
等差数列 的前 项和为 ,公差为 ,则
即 , ,
也成等差数列,公差为 。
若两个等差数列 的前 项和分别是 ,则 。
6、等比数列前 项和性质
7、其它性质:(任何数列都适用)
与 之间的关系: ,步骤: ________________ ________________ _____________________ _____________
两项性质:若 ,则________________
等比中项性质:若 成等比数列 ______________
5、等差数列 的前 项和
5、等比数列 的前 项和
__________________ _________________ ________________
特别地,__________________________

(完整版)等差数列与等比数列知识总结

(完整版)等差数列与等比数列知识总结
等差数列与等比数列
等差数列
等比数列
定义
( 为常数, )
或:
或:
通项公式
( )
中项
若a,A,b成等差数列,则
若a,G,b成等比数列,则

前 项和
重要性质

证明方法
证明一个数列为等差数列的方法:
定义法
证明一个数列为等比数列的方法:
定义法
设元巧
三数等差:
三数等比:
已知数列前n项和 ,求 的方法:
(1)当 时,由 求得;
6、等差数列{ }中,已知d=3,且 求前100项和.
7、已知等比数列{ }的前3项和是 ,前6项和是 ,求它的前10项和.
(2)当 时,由 求得,并验证 是否满足 .
等差数列与等比数列知识梳理
复习训练题
1、求等差数列-1,2,5,…的通项公式,并写出第50项.
2、求等比数列10,1, ,…的通项公式,并写出第12项.
3、在等差数列{ }中, =4, =20,求 .
4、在等比数列{ }中, ,求 .
5、在数列{ }的前n项和为 求数列的通项公式 .

等差等比数列基础知识点

等差等比数列基础知识点

一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa q a a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G ,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2nd S S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q aqa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知c b a 1,1,1成等差数列,求证:(1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b 求证:{n b }是等比数列.[解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k 由1)、2)知,,32,-=∈*n a N n n 时当① ②.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQbn an S n 222,①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P QP +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP Q P a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.①②[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a da a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.①②①,②[解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列(B )为非零的常数数列(C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为( ) (A )21(B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )(A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( ) A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。

等差等比知识点总结

等差等比知识点总结

等差等比知识点总结等差数列的通项公式:an=a1+(n-1)d其中,an表示数列的第n项,a1表示数列的首项,d表示公差,n表示项数。

例如:2,5,8,11,14......这个数列的公差是3,首项是2,如果要求出这个数列的第10项,可以用通项公式an=2+(10-1)3=29。

等差数列的求和公式:Sn=n(a1+an)/2其中,Sn表示数列的前n项和,a1表示数列的首项,an表示数列的第n项,n表示项数。

例如:求2,5,8,11,14......的前10项和,可以用求和公式Sn=10*(2+29)/2=155。

等比数列(Geometric Progression,简称GP)是数列的一种,数列中相邻两项的比值相等的情况,这个相等的比值就称为公比r。

等比数列的通项公式:an=a1*r^(n-1)其中,an表示数列的第n项,a1表示数列的首项,r表示公比,n表示项数。

例如:2,6,18,54,162......这个数列的公比是3,首项是2,如果要求出这个数列的第5项,可以用通项公式an=2*3^(5-1)=162。

等比数列的求和公式:Sn=a1(1-r^n)/(1-r)其中,Sn表示数列的前n项和,a1表示数列的首项,r表示公比,n表示项数。

例如:求2,6,18,54,162......的前5项和,可以用求和公式Sn=2*(1-3^5)/(1-3)=-242。

等差数列和等比数列是数学中非常重要的数列,它们在数学和物理等领域都有着广泛的应用。

在数列中,等差数列和等比数列都有着良好的规律性和性质。

1. 等差数列的性质(1)等差数列的前n项和Sn为一个关于n的二次函数。

(2)等差数列的前n项和Sn与项数n呈线性关系。

(3)等差数列前n项和Sn与首项a1和项数n呈三次关系。

(4)若n1、n2、n3为三个自然数,且是等差数列的项数,则n2是n1与n3的中项。

2. 等比数列的性质(1)等比数列的前n项和Sn为一个关于n的指数函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列与等比数列知识点复习总结
仍构成等差数列,公差为2
1(1n n na -+,
m a +,2m a +,3m a +
也成等差数列, 公差为
②若两个等差数列{的前n 项和分别是则22n n n n a A b B =。

、其它性质:(任何数列都适用)
数列的求和方法
1、分组求和法
例1、若数列{}n a 的通项式为n
n n a 32+=,求数列{}n a
的前n 项n S
练习1、(1)已知数列{}n a 的通项式为
n
n n a 42)1(⨯++=,求数列{}n a 的前n 项n S
(2)有穷数列1,1+2,1+2+4,…,12421-++++n 所有项的和为____________
2、错位相减法
例2、若数列{}n a 的通项式为n
n n a 32•=,求数列{}n a 的前n
项n S
练习2、已知数列{}n a 的通项式为n
n n a )2
1(•=,求数列{}n a 的
前n 项n S
3、并项法
例3、若数列{}n a 的通项式为n a n
n •-=)1(,求2012S
练习3 (1)若数列{}n a 的通项式为)23()1(-•-=n a n
n ,求10S (2)若数列{}n a 的通项式为)34()1(1
-•-=-n a n n ,求100S
4、裂项相消法
例4、若数列{}n a 的通项式为)
1(1
+=
n n a n ,求数列{}n a 的前
n 项n S
练习4、已知数列{}n a 的通项式为1
1-+=
n n a n ,求数列
{}n a 的前n 项n S。

相关文档
最新文档