等比数列知识点总结及题型归纳(5.17)
等比数列知识点总结
等比数列知识点总结等比数列知识点总结等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,下面是小编收集整理的等比数列知识点总结,请参考!等比数列知识点总结篇11、等比数列的定义:2、通项公式:a n =a 1q n -1=a 1n q =A B n (a 1q ≠0, A B ≠0),首项:a 1;公比:qa n q =n a m a n =q (q ≠0)(n ≥2, 且n ∈N *),q 称为公比 a n -1推广:a n =a m q n -m q n -m =3、等比中项:(1)如果a , A , b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2=ab 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列{a n }是等比数列a n 2=a n -1a n +14、等比数列的前n 项和S n 公式:(1)当q =1时,S n =na 1(2)当q ≠1时,S n ==a 1(1-q n )1-q =a 1-a n q 1-q a 1a -1q n =A -A B n =A B n -A (A , B , A , B 为常数) 1-q 1-q5、等比数列的判定方法:(1)用定义:对任意的n ,都有a n +1=qa n 或a n +1=q (q 为常数,a n ≠0) {a n }为等比数列 a n(2)等比中项:a n 2=a n +1a n -1(a n +1a n -1≠0) {a n }为等比数列(3)通项公式:a n =A B n (A B ≠0){a n }为等比数列6、等比数列的证明方法: a 依据定义:若n =q (q ≠0)(n ≥2, 且n ∈N *)或a n +1=qa n {a n }为等比数列 a n -17、等比数列的性质:(2)对任何m , n ∈N *,在等比数列{a n }中,有a n =a m q n -m 。
等比数列知识点总结与题型分类
等比数列的性质及题型分类一、等比数列的定义及性质1. 等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比. 2. 通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q . 推广:n m n m a a q -=,从而得n m n m a q a -=或n q =3. 等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅4. 等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5. 等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列. (2)等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列. (3)通项公式:()0n n a A B A B =⋅⋅≠⇔{}n a 为等比数列.(4)前n 项和公式:()'',,','n n n n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为等比数列 6. 等比数列的证明方法 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列. 7. 注意(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。
等比数列定义知识点归纳总结
等比数列定义知识点归纳总结等比数列是数学中常见的一种数列形式,它在各个领域都有广泛的应用。
本文将对等比数列的定义、性质和应用进行归纳总结,以帮助读者更好地理解和运用等比数列。
一、等比数列的定义等比数列是指一个数列中,从第二项起,每一项与前一项的比值都相等的数列。
比值常用字母q表示,称为公比。
换言之,一个数列满足an+1 = an * q的关系,其中an表示第n项,an+1表示第n+1项,q表示公比。
二、等比数列的性质1. 公比的影响:公比q的绝对值决定了等比数列的性质。
当|q|<1时,等比数列的值越来越小;当|q|>1时,等比数列的值越来越大;当q=1时,等比数列的值保持不变。
2. 通项公式:对于等比数列an,第n项的通项公式为an = a1 *q^(n-1),其中a1为首项。
3. 公式推导:可以通过递归或数学归纳法得到等比数列的通项公式,进而求解数列中任意一项的值。
4. 前n项和:等比数列的前n项和(部分和)可用以下公式表示:Sn = a1 * (1 - q^n)/(1 - q),其中a1为首项,q为公比。
三、等比数列的应用等比数列在诸多领域有广泛的应用,如金融、物理、工程等。
以下列举几个常见的应用场景:1. 财务投资:与利率相关的问题往往可以转化为等比数列问题,如计算定期存款每年的本息总额。
2. 自然科学:许多自然界的现象或物理规律可以用等比数列来描述,如累积衰减、分裂增殖等。
3. 几何问题:等比数列广泛应用于几何问题中,如计算等比数列构成的等边三角形的面积。
4. 数据分析:等比数列可用于分析一些数据序列或随机变量的增长规律,如人口增长、疾病传播等。
综上所述,等比数列是一种重要的数列形式,具有较广泛的应用价值。
通过对等比数列的定义、性质和应用的归纳总结,读者可更好地理解等比数列,并能在实际问题中灵活运用。
在解决问题时,读者可以根据题目给定的条件,利用等比数列的相关公式和性质进行推导和计算,以得到准确的结果。
等比数列知识点概念归纳总结
等比数列知识点概念归纳总结等比数列是数学中的重要概念,它在很多领域中都有广泛的应用。
本文将对等比数列的基本概念、性质和常见问题进行归纳总结。
一、基本概念等比数列是指一个数列中,每一项与它前一项的比值都相等的数列。
这个比值称为等比数列的公比,用字母q表示。
设等比数列的首项为a1,公比为q,则数列的通项公式可以表示为:an = a1 * q^(n-1)二、性质1. 等比数列的公比q必须为非零实数。
如果q大于1,则数列呈递增趋势;如果0<q<1,则数列呈递减趋势。
2. 等比数列的前n项和可以通过以下公式计算:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数。
3. 当q大于1时,等比数列趋于正无穷;当0<q<1时,等比数列趋于零。
4. 若一个数列既是等差数列又是等比数列,则这个数列必为常数数列,即a1 = an = a。
三、常见问题1. 如何判断一个数列是否是等比数列?若一个数列中,每一项与它前一项的比值都相等,则这个数列为等比数列。
2. 如何确定等比数列的公比?等比数列的公比可以通过任意两项的比值来确定。
选择两项,例如第n项和第n+1项,计算它们的比值,如果得到的结果对于数列中的任意两项都相等,则该结果即为等比数列的公比。
3. 如何求等比数列的第n项?可以通过数列的通项公式an = a1 * q^(n-1),将首项和公比代入公式,计算得到第n项的值。
4. 如何求等比数列的前n项和?可以利用等比数列的前n项和公式Sn = a1 * (1 - q^n) / (1 - q)计算前n项和的值。
等比数列在数学中有着广泛的应用,特别是在金融、自然科学和工程领域。
例如在金融领域,等比数列可以用来描述复利计算中的本金增长;在自然科学中,等比数列可以用来描述物种繁衍的规律;在工程领域,等比数列可以用来描述扩大或缩小的比例关系。
总结:等比数列是一种重要的数列概念,它具有一些基本概念、性质和常见问题。
等比数列知识点总结及题型归纳
等比數列知識點總結及題型歸納1、等比數列の定義:()()*12,n n a q q n n N a -=≠≥∈0且,q 稱為公比 2、通項公式: ()11110,0n n n n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首項:1a ;公比:q 推廣:n m n m n n n m n m m ma a a a qq q a a ---=⇔=⇔= 3、等比中項: (1)如果,,a A b 成等比數列,那麼A 叫做a 與b の等差中項,即:2A ab =或A ab =±注意:同號の兩個數才有等比中項,並且它們の等比中項有兩個(2)數列{}n a 是等比數列211n n n a a a -+⇔=⋅4、等比數列の前n 項和n S 公式:(1)當1q =時,1n S na =(2)當1q ≠時,()11111n n n a q a a q S q q--==-- 11''11n n n a a q A A B A B A q q=-=-⋅=---(,,','A B A B 為常數) 5、等比數列の判定方法: (1)用定義:對任意のn ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,為等比數列 (2)等比中項:21111(0){}n n n n n n a a a a a a +-+-=≠⇔為等比數列(3)通項公式:()0{}n n n a A B A B a =⋅⋅≠⇔為等比數列6、等比數列の證明方法: 依據定義:若()()*12,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔為等比數列 7、等比數列の性質:(2)對任何*,m n N ∈,在等比數列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t mn st N +=+∈,則n m s t a a a a ⋅=⋅。
等比数列知识点归纳及总结公式
等比数列知识点归纳及总结公式等比数列是数学中常见的一种数列形式,它的定义是指一个数列中,从第二项起,每一项都是前一项与一个固定的非零常数的乘积。
在学习等比数列时,我们需要了解其定义、性质、求和公式等相关知识点。
本文将对等比数列的常见知识点进行归纳总结,并提供相应的公式。
一、等比数列的定义等比数列可以通过以下定义来进行理解:在数列$a_1,a_2,a_3,...,a_n$ 中,若对于任意的正整数 $n$ ,都有$\frac{{a_{n+1}}}{{a_n}}=r$ 成立(常数 $r$ 称为等比数列的公比),则称这个数列为等比数列。
通常我们用 $a_1$ 表示等比数列的首项。
二、等比数列的性质1. 公比与首项的关系:等比数列的公比 $r$ 与首项 $a_1$ 之间存在以下关系:$a_2=a_1 \cdot r$,$a_3=a_2 \cdot r=a_1 \cdot r^2$,以此类推,可得第 $n$ 项为 $a_n=a_1 \cdot r^{n-1}$。
2. 通项公式:根据等比数列的性质1,可推导出等比数列的通项公式为 $a_n=a_1 \cdot r^{n-1}$。
3. 首项与公比的关系:若已知等比数列的首项 $a_1$ 和第 $n$ 项$a_n$,则公比 $r$ 可以通过 $r=\sqrt[n-1]{\frac{{a_n}}{{a_1}}}$ 来求解。
4. 等比数列的倒数列:等比数列的倒数列也是一个等比数列,其公比为原数列公比的倒数。
即若 $a_1,a_2,a_3,...,a_n$ 是一个等比数列,且公比为 $r$,则其倒数列为$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3},...,\frac{1}{a_n}$,且其公比为 $\frac{1}{r}$。
5. 前 $n$ 项和公式:等比数列的前 $n$ 项和可以通过以下公式来求解:$S_n=a_1\frac{{1-r^n}}{{1-r}}$,其中 $S_n$ 表示前 $n$ 项和。
等比数列知识点归纳总结图文
等比数列知识点归纳总结图文在数学中,等比数列是一种特殊的数列。
它是指从第二项开始,每一项与它的前一项的比相等的数列。
本文将对等比数列的相关知识点进行归纳总结,并以图文形式展示,帮助读者更好地理解和掌握等比数列的概念和性质。
1. 等比数列的定义等比数列是指从第二项开始,每一项与它的前一项的比相等的数列。
设等比数列的首项为a,公比为r,数列的通项公式为an=a×r^(n-1)。
其中,n表示数列中的第n项。
2. 等比数列的性质(1)通项公式:等比数列的通项公式是an=a×r^(n-1),其中a表示首项,r表示公比,n表示项数。
(2)前n项和公式:等比数列的前n项和公式是Sn=a×(1-r^n)/(1-r),其中a表示首项,r表示公比,n表示项数。
(3)比值性质:等比数列中,任意两项的比值都为常数,即an/an-1=r。
(4)倒数性质:等比数列中,任意两项互为倒数,即an与1/an-1互为倒数。
3. 等比数列的图文示例下面通过图文形式对等比数列进行示例,以加深对等比数列的理解和记忆。
(插入示例图片)图1是一个等比数列的示例图,首项a=2,公比r=3/2。
根据等比数列的通项公式an=a×r^(n-1),我们可以计算出数列的前几个项如下:a1=2a2=2×(3/2)^1=3a3=2×(3/2)^2=4.5a4=2×(3/2)^3=6.75...由此可见,该数列每一项与前一项的比相等,且比值为3/2。
(插入示例图片)图2展示了等比数列的前n项和的计算过程,首项a=10,公比r=0.5。
根据等比数列的前n项和公式Sn=a×(1-r^n)/(1-r),我们可以计算出数列的前几项和如下:S1=10S2=10×(1-(0.5)^2)/(1-0.5)=15S3=10×(1-(0.5)^3)/(1-0.5)=19.5S4=10×(1-(0.5)^4)/(1-0.5)=21.75...可以看出,数列的前n项和随着项数的增加而增加。
(完整版)等比数列性质及其应用知识点总结与典型例题(经典版)
等比数列知识点总结与典型例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q 推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab =A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当时,1q =1n S na =(2)当时,1q ≠()11111n n n a q a a qS q q--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列n 11(0){}n n n n n na a qa q qa a a ++==≠⇔或为常数,(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明方法:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。
*,m n N ∈{}n a n m n m a a q -=(3)若,则。
特别的,当时,得*(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k +=注:2n m k a a a ⋅=12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1a q 和,可得;或注意到下标,可以利用性质可求出、,再求.1a q 11a 1937+=+3a 7a 11a 解析:法一:设此数列公比为,则q 8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:..........(3) 241(1)20a q q +=∴.10a >由(1)得: , ∴ (4)421()64a q =418a q =(3)÷(4)得:,42120582q q +==∴,解得或422520q q -+=22q =212q =当时,,;22q =12a =1011164a a q =⋅=当时,,.21q =132a =101111a a q =⋅=定义da a n n =-+1)0(1≠=+q q a a nn 递推公式da a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅法二:∵,又,193764a a a a ⋅=⋅=3720a a += ∴、为方程的两实数根,3a 7a 220640x x -+= ∴ 或⎩⎨⎧==41673a a ⎩⎨⎧==16473a a ∵, ∴或.23117a a a ⋅=271131a a a ==1164a =总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。
2024年等比数列知识点总结与典型例题精华版
等比数列知识点总结与经典例题1、等比数列的定义:,称为公比()()*12,nn a q q n n N a -=≠≥∈0且q 2、通项公式:,首项:;公比:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠1a q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)假如成等比数列,那么叫做与的等差中项,即:或,,a A b A a b 2A ab=A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列{}n a 211n n n a a a -+⇔=⋅4、等比数列的前项和公式:n n S (1)当初,1q =1n S na =(2)当初,1q ≠()11111n n n a q a a qS qq--==--(为常数)11''11n n n a aq A A B A B A q q=-=-⋅=---,,','A B A B 5、等比数列的判定措施:(1)用定义:对任意的,都有为等比数列n 11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,(2)等比中项:为等比数列21111(0){}n n n n n n a a a a a a +-+-=≠⇔(3)通项公式:为等比数列()0{}n n n a A B A B a =⋅⋅≠⇔6、等比数列的证明措施:依据定义:若或为等比数列()()*12,nn a q q n n N a -=≠≥∈0且1{}n n n a qa a +=⇔7、等比数列的性质:(2)对任何,在等比数列中,有。
*,m n N ∈{}n a n m n m a a q -=(3)若,则。
尤其的,当初,得 *(,,,)m n s t m n s t N +=+∈n m s t a a a a ⋅=⋅2m n k +=2n m k a a a ⋅=注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列中,, ,求.{}n a 1964a a ⋅=3720a a +=11a 思绪点拨:由等比数列的通项公式,通过已知条件可列出有关和的二元方程组,解出和1a q 1a ,可得;或注意到下标,能够利用性质可求出、,再求.q 11a 1937+=+3a 7a 11a 等差数列等比数列定义da a n n =-+1)0(1≠=+q q a a nn 递推公式da a n n +=-1;mda a n m n +=-q a a n n 1-=;mn m n q a a -=通项公式dn a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=dn n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅解析:法一:设此数列公比为,则q 8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:..........(3) 241(1)20a q q +=∴.10a >由(1)得: , ∴ ......(4)421()64a q =418a q =(3)÷(4)得:, 42120582q q +==∴,解得或422520q q -+=22q =212q =当初,,;22q =12a =1011164a a q =⋅=当初,,.212q =132a =101111a a q =⋅=法二:∵,又,193764a a a a ⋅=⋅=3720a a += ∴、为方程的两实数根,3a 7a 220640x x -+= ∴ 或⎩⎨⎧==41673a a ⎩⎨⎧==16473a a ∵, ∴或.23117a a a ⋅=271131a a a ==1164a =总结升华:①列方程(组)求解是等比数列的基本措施,同时利用性质能够减少计算量;②解题过程中详细求解时,要设法降次消元,常常整体代入以达降次目标,故较多变形要用除法(除式不为零).举一反三:【变式1】{an }为等比数列,a 1=3,a9=768,求a 6。
等比数列知识点归纳总结
等比数列知识点归纳总结等比数列是指一个数列中每一项与它的前一项的比值都相等的数列。
在等比数列中,我们可以通过一些重要的知识点来解决与数列相关的问题。
本文将对等比数列的概念、性质以及求和公式进行归纳总结。
一、等比数列的概念与性质1. 等比数列的概念:等比数列是指一个数列中,从第2项开始,每一项都是前一项乘以同一个常数的结果。
2. 公比的概念:在等比数列中,这个常数被称为公比,通常用字母q表示。
3. 公比的计算:公比q可以通过相邻两项的比值来计算,即等于后一项除以前一项。
公比q = 第(n+1) 项 / 第n 项4. 等比数列的性质:(1)任意项与它前一项的比值都等于公比q;(2)等比数列中,任意两项的比值都相等。
二、等比数列的求和公式在解决与等比数列相关的问题时,求和是一个重要的方面。
通过求和公式,我们能够快速计算等比数列的前n项的总和。
以下是等比数列的求和公式:Sn = a1*(1-q^n)/(1-q)其中,Sn表示前n项的和,a1表示第一项,q表示公比。
三、等比数列的常见问题解答1. 已知等比数列的首项a1和公比q,求出该数列的通项公式:通项公式可以通过逐项相除来得到。
假设通项公式为an,那么有:a2/a1 = a3/a2 = a4/a3 = ... = q根据这个比值相等的关系,可以得到通项公式:an = a1*(q^(n-1))2. 已知等比数列的部分项求和:有时候我们需要计算等比数列中从第m项到第n项的和,可以利用通项公式将问题转化为前n项和减去前m-1项和的差值。
S(m,n) = Sn - S(m-1)其中,S(m,n)表示从第m项到第n项的和。
3. 已知等比数列的前n项和Sn,求出该数列的通项公式:在这种情况下,可以通过求和公式逆推得到通项公式。
首先将求和公式改写为关于q的方程,然后解方程求得q的值,最后代入通项公式中即可得到结果。
以上是关于等比数列的概念、性质、求和公式以及常见问题的解答。
(完整版)等比数列常考题型归纳总结很全面
等比数列及其前n 项和教学目标:1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。
2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。
知识回顾: 1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。
用递推公式表示为)2(1≥=-n q a a n n 或q a ann =+1。
注意:等比数列的公比和首项都不为零。
(证明数列是等比数列的关键) 2.通项公式:等比数列的通项为:11-=n n q a a 。
推广:m n m n q a a -= 3.中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。
4.等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n5.等比数列项的性质(1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2。
(2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。
n q q ='。
(其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。
4、证明等比数列的方法(1)证:q a a nn =+1(常数);(2)证:112·+-=n n na a a (2≥n ). 考点分析考点一:等比数列基本量计算 例1、已知{}n a 为等比数列,S n 是它的前n 项和。
若2312a a a ⋅=, 且4a 与27a 的等差中项为54,求5S 。
例2、成等差数列的三项正数的和等于15,且这三个数加上2、5、13后成等比数列{}n b 中的543,,b b b 。
等比数列及其前n项和考点与题型归纳
等比数列及其前n 项和考点与题型归纳一、基础知识1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.-(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列与指数型函数的关系当q >0且q ≠1时,a n =a 1q·q n 可以看成函数y =cq x,其是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x的图象上;对于非常数列的等比数列{a n }的前n 项和S n =a 11-q n 1-q =-a 11-q q n +a 11-q ,若设a =a 11-q,则S n =-aq n+a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x+a 图象上一系列孤立的点.对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点.二、常用结论汇总——规律多一点设数列{a n }是等比数列,S n 是其前n 项和.·(1)通项公式的推广:a n =a m ·q n -m(n ,m ∈N *).(2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *.(3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m(k ,m ∈N *).(4)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n 也是等比数列.(5)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q . 考点一 等比数列的基本运算[典例] (2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3.%(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .[解] (1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63,得(-2)m=-188,此方程没有正整数解.]若a n =2n -1,则S n =1-2n1-2=2n-1.由S m =63,得2m=64,解得m =6. 综上,m =6.[题组训练]1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4D .22~解析:选B 由题意,设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2q=4.2.(2019·长春质检)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )A .4B .10C .16D .32解析:选C 设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.3.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,~则⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:32考点二 等比数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列. ^[证明] 因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n ,所以b n +1b n =a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2. 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法].1.掌握等比数列的4种常用判定方法定义法 中项公式法 通项公式法 前n 项和公式法2.等比数列判定与证明的2点注意~(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n 项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.(2)证明一个数列{a n }不是等比数列,只需要说明前三项满足a 22≠a 1·a 3,或者是存在一个正整数m ,使得a 2m +1≠a m ·a m +2即可.[题组训练]1.数列{a n }的前n 项和为S n =2a n -2n,证明:{a n +1-2a n }是等比数列. 证明:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,由a 1+a 2=2a 2-4得a 2=6. 由于S n =2a n -2n ,故S n +1=2a n +1-2n +1,后式减去前式得a n +1=2a n +1-2a n -2n,即a n +1=2a n +2n,|所以a n +2-2a n +1=2a n +1+2n +1-2(2a n +2n)=2(a n +1-2a n ),又a 2-2a 1=6-2×2=2,所以数列{a n +1-2a n }是首项为2、公比为2的等比数列.2.(2019·西宁月考)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上.在数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1.>∴数列{a n }是一个以2为首项,1为公差的等差数列.∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.①∴T n -1=-12b n -1+1(n ≥2).②①②两式相减,得b n =-12b n +12b n -1(n ≥2).}∴32b n =12b n -1,∴b n =13b n -1.由①,令n =1,得b 1=-12b 1+1,∴b 1=23.∴数列{b n }是以23为首项,13为公比的等比数列.考点三 等比数列的性质考法(一) 等比数列项的性质[典例] (1)(2019·洛阳联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A .-2+22B .-2}D .- 2 或2(2)(2018·河南四校联考)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16[解析] (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)由分数的性质得到1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2a 7a 2+…+a 4+a 5a 4a 5.因为a 8a 1=a 7a 2=a 3a 6=a 4a 5,所以原式=a 1+a 2+…+a 8a 4a 5=4a 4a 5,又a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,∴1a 1+1a 2+…+1a 8=2.故选A.[答案] (1)B (2)A。
等比数列的通项及前n项和性质7大题型总结 (解析版)--2024高考数学常考题型精华版
等比数列的通项及前n 项和性质7大题型总结【考点分析】考点一:等比数列的基本概念及公式①等比数列的定义:q a a n n =-1(或者q a ann =+1).②等比数列的通项公式:m n m n n q a q a a --⋅=⋅=11.③等比中项:若三个数a ,A ,b 成等比数列,则A 叫做a 与b 的等比中项,且有ab A =2(Aba A =).④等比数列的前n 项和公式:()()⎪⎩⎪⎨⎧≠--=--==1111)1(111q q q a a qqa q na S n nn 考点二:等比数列的性质①通项下标和性质:在等比数列{}n a 中,当+=+m n p q 时,则q p n m a a a a ⋅=⋅.特别地,当t n m 2=+时,则2t n m a a a =⋅.②等比数列通项的性质:11-=n n qa a ,所以等比数列的通项为指数型函数.③等比数列前n 项和的常用性质:()qaq q a q q a S n n n -+--=--=1111111,即r kq S n n +=,其中0=+r k 【题型目录】题型一:等比数列的基本运算题型二:等比中项及性质题型三:等比数列通项下标的性质及应用题型四:等比数列前n 项片段和的性质及应用题型五:等比数列前n 项和的特点题型六:等比数列的单调性题型七:等比数列新文化试题【典型例题】题型一:等比数列的基本运算【例1】在各项为正的递增等比数列{}n a 中,1261356421a a a a a a =++=,,则n a =()A .12n +B .12n -C .132n -⨯D .123n -⨯【例2】数列{}n a 中,12,m n m n a a a a +==,若177121022k k k a a a ++++++=- ,则k =()A .5B .6C .7D .17所以1111772222k k ++-=-,故6k =.故选:B.【例3】已知等比数列{}n a 的各项均为正数,且133520,5a a a a +=+=,则使得121n a a a < 成立的正整数n 的最小值为()A .8B .9C .10D .11【例4】各项为正数且公比为q 的等比数列{}n a 中,2a ,32a ,1a 成等差数列,则54a 的值为()A B C D 【例5】已知等比数列{}n a 的前n 项和为n S ,若0n a >,公比1q >,3520a a +=,2664a a =,则6S =()A .31B .36C .48D .63【例6】若数列{}n a 满足121n n a a +=-,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =()A .123n -⨯B .12n -C .12n +D .2n【答案】D【分析】根据题意可得()11211n n b b ++=+-,进而可得{}n b 为等比数列,再求得通项公式即可.【详解】由题意得()11211n n b b ++=+-,所以12n n b b +=,又12b =,所以{}n b 是首项为2,公比为2的等比数列,所以1222n nn b -=⨯=.故选:D .【例7】已知等比数列{}n a :1-,2,4-,8,…,若取此数列的偶数项246,,a a a ,…组成新的数列{}n b ,则8b 等于()A .102B .102-C .152D .82【答案】C【分析】由题可得()12n n a -=--,进而即得.【详解】由题可得()()11122n n n a --=-⨯-=--,所以()151516822a b =--==.故选:C.【例8】已知{}n a 是首项为1的等比数列,n S 是{}n a 的前n 项和,且3698S S =,则5S =()A .31B .3116C .31或5D .3116或5【例9】已知数列{}n a 满足12a =,21n n a a +=,则数列{}n a 的通项公式为n a =()A .21n -B .12n -C .122n -D .2n 【答案】C【分析】将21n n a a +=两边同时取常用对数,即可得数列{}lg n a 是以lg 2为首项,2为公比的等比数列,从而求得数列{}n a 的通项公式.【例10】已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a 14a =,则122n m n+++的最小值为()A .118+B .2615C .74D .2815【答案】B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m nm n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B【例11】设等比数列{}n a 的前n 项和为n S ,且29a =,3136S a -=.(1)求{}n a 的通项公式;(2)若3log n n n b a a =+,求数列{}n b 的前n 项和n T .【例12】已知等差数列{}n a 的前n 项和为510,9,100n S a S ==.(1)求{}n a 的通项n a ;(2)设数列{}n b 满足:{}2,n an n b b =的前n 项和为n T ,求使200n T <成立的最大正整数n 的值.【答案】(1)21n a n =-;(2)4.【分析】(1)利用1,a d 表示题干条件,求解即可得解;(2)先证明{}n b 是等比数列,利用等比数列求和公式求解n T ,解不等式即可.(1)由题意,设等差数列{}n a 的首项为1a ,公差为d ,又5109,100a S ==,【题型专练】1.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1418a a +=,2312a a +=,则下列说法错误的是()A .=2q B .数列{}+2n S 是等比数列C .数列{}lg n a 是公差为2等差数列D .8510S =2.已知数列{}n a 中,11a =,12nn n a a +=⋅,*N n ∈,则下列说法正确的是()A .22a =B .434a a -=C .{}2n a 是等比数列D .12122n n n a a +-+=3.(2022·福建省龙岩第一中学高二阶段练习)在正项等比数列{}n a 中,若存在两项,(,N*)m n a a m n ∈,使得14a =,且3212a a a =+,则19m n+的最小值为()A .114B .83C .103D .1454.(2022·全国·模拟预测(文))设{}n a 是等比数列,且123a a +=,236+=a a ,则56a a +=()A .12B .24C .32D .48【答案】D【分析】根据{}n a 是等比数列,且满足123a a +=,236+=a a ,计算出其通项公式n a ,然后代入56a a +计算即可.【详解】{}n a 是等比数列,设其公比为q ,则由123a a +=,236+=a a 得:121232(1)3(1)6a a a q a a a q +=+=⎧⎨+=+=⎩,解得112a q =⎧⎨=⎩,12n n a -\=,45562248a a ∴+=+=.故选:D.5.(2022·山东泰安·三模)已知数列{}n a 满足:对任意的m ,*n ∈N ,都有m n m n a a a +=,且23a =,则20a =()A .203B .153C .103D .53【答案】C 【解析】【分析】由递推关系判断数列{}n a 为等比数列,再由等比数列通项公式求20a .【详解】因为对任意的m ,*n ∈N ,都有m n m n a a a +=,所以112a a a =,11n n a a a +=,又23a =,所以1a =,所以11n na a a +=,所以数列{}n a 是首项为1a ,公比为1a 的等比数列,所以()()1111n nn a a a a -=⋅=,所以()2010201=3a a =,故选:C.6.(2022·河南省叶县高级中学模拟预测(文))已知数列{}n a 为等比数列,1272a a +=,2336a a +=,则4a =______.7.已知等比数列{}n a 的公比1q >,4a a +=,3a =2n a =___________.8.设等比数列{}n a 的前n 项各为n S ,已知11a =,23S =,则3S =___________.9.已知等比数列{}n a 的前n 项和为n S ,132a a +=,244a a +=,则5S =______.10.已知在正项等比数列{}n a 中1323,,22a a a 成等差数列,则20222021a a =+__________.故答案为:9.11.正项等比数列{}n a 中,1=1a ,534a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)12n n a -=,(2)=6m 【分析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.根据534a a =列方程,解出q 即可得出结果.(2)由(1)的结果可求出n S ,将63m S =代入求解即可.(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =或=2q ,{}n a 为正项等比数列,所以=2q .故12n n a -=.(2)由(1)得=2q ,∴则21n n S =-. 63m S =,∴264m =,解得=6m .12.已知公比小于1的等比数列{}n a 满足2420a a +=,38a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若100n n S a >,求n 的最小值.题型二:等比中项及性质【例1】三个实数成等差数列,首项是9,若将第二项加2、第三项加20可使得这三个数依次构成等比数列{}n a ,则3a 的所有取值中的最小值是()A .49B .36C .4D .1【答案】D【分析】设原来的三个数为9、9d +、92d +,根据题意可得出关于d 的等式,解出d 的值,即可得解.【详解】设原来的三个数为9、9d +、92d +,由题意可知,19a =,211a d =+,3292a d =+,且2213a a a =,所以,()()2119229d d +=+,即241400d d +-=,解得10d =或14-.则3a 的所有取值中的最小值是292141-⨯=.故选:D.【例2】若a ,b ,c 为实数,数列1,,,,25--a b c 是等比数列,则b 的值为()A .5B .5-C .5±D .13-【答案】B【分析】根据等比数列的性质求得b 的值.【详解】设等比数列的公比为q ,所以()210b q =-⋅<,根据等比数列的性质可知()()212525b =-⨯-=,解得5b =-.故选:B【例3】已知等差数列{}n a 的公差是2,若1a ,3a ,4a 成等比数列,则2a 等于()A .6-B .4-C .8-D .10-【答案】A【分析】利用等比中项,结合等差数列通项公式列方程求解即可.【详解】解:因为等差数列{}n a 的公差为2,且1a ,3a ,4a 成等比数列,所以2314a a a =,即()()()2222224a a a +=-+,解得26a =-,故选:A【例4】已知等比数列{}n a 满足10a >,公比1q >,且1220211220221,1a a a a a a <> ,则()A .20221a >B .当2021n =时,12n a a a 最小C .当1011n =时,12n a a a 最小D .存在1011n <,使得12n n n a a a ++=【例5】设2log3,lg x,81log2三个数成等比数列,则实数x=______.【例6】已知公差不为0的等差数列{}n a中,11a=,4a是2a和8a的等比中项.(1)求数列{}n a的通项公式:(2)保持数列{}n a中各项先后顺序不变,在k a与1(1,2,)ka k+= 之间插入2k,使它们和原数列的项构成一个新的数列{}n b,记{}n b的前n项和为n T,求20T的值.【答案】(1)n a n=,(2)2101【分析】(1)设数列{}n a的公差为d,根据等比中项列出方程求得d即可得到通项公式.(2)由题意计算出k a在{}n b中对应的项数,然后利用分组求和即可.(1)设数列{}n a的公差为d,因为4a是2a和8a的等比中项,则()()()2242811137a a a a d a d a d=⋅⇒+=++且11a=则1d=或0d=(舍)【题型专练】11-1+的等比中项是()A B .C .D .2±2.若四个正数a b c d ,,,成等差数列,x 是a 和d 的等差中项,是b 和c 的等比中项,则x 和的大小关系为()A .x y >B .x y≥C .x y<D .x y≤3.若不为1的正数a ,b ,c 依次成公比大于1的等比数列,则当1x >时,log a x ,log b x ,log c x ().A .依次成等差数列B .依次成等比数列C .各项的倒数依次成等差数列D .各项的倒数依次成等比数列4.已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______.5.已知等差数列{}n a 的公差为3-,且3a 是1a 和4a 的等比中项,则15a =__________.【答案】30-【分析】将1a 和公差代入等式,求解1a ,写出通项公式n a ,代入15n =,可求出结果.【详解】解:因为3a 是1a 和4a 的等比中项,且公差为3-,所以21111(6)(9)12a a a a -=-⇒=,所以1515330n a n a =-⇒=-.故答案为:30-.6.已知1,,4a --成等差数列,1,,4b --成等比数列,则ab =____________.又由1,,4b --成等比数列,可得2(1)(4)4b =-⨯-=,解得2b =±,所以5ab =±.故答案为:5±.7.若依次成等差数列的三个实数a ,b ,c 之和为12,而a ,b ,2c +又依次成等比数列,则a =______.【答案】2或8【分析】由题意列出方程组,即可求得答案.【详解】由题意可得2212(2)b a c a b c b a c =+⎧⎪++=⎨⎪=+⎩,整理得210160a a -+=,解得2a =或8a =,故答案为:2或88.在3和9之间插入两个正数后,使前三个数成等比数列,后三个数成等差数列,则这两个正数之和为()A .1132B .1114C .1102D .10【答案】B【解析】不妨设插入两个正数为,a b ,即3,,,9a b ∵3,,a b 成等比数列,则23a b=,,9a b 成等差数列,则92a b+=即2392a b a b ⎧=⎨+=⎩,解得92274a b⎧=⎪⎪⎨⎪=⎪⎩或33a b =-⎧⎨=⎩(舍去)则4511144a b +==故选:B .题型三:等比数列通项下标的性质及应用【例1】已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1bb a a +-⋅的值是()A .B .1-C .D3【例2】已知{}n a 为等比数列,47562,8a a a a +==-,则10a =()A .1或8B .1-或8C .1或8-D .1-或8-【例3】设{}n a 是由正数组成的等比数列,公比2q =,且30123302a a a a ⋅= ,那么36930a a a a = ()A .102B .202C .162D .152【答案】B【分析】根据等比数列的性质,设14728A a a a a = ,25829B a a a a = ,36930C a a a a = ,则A ,B ,C 成等比数列,然后利用等比中项的性质可求得答案【详解】设14728A a a a a = ,25829B a a a a = ,36930C a a a a = ,则A ,B ,C 成等比数列,公比为10102q =,且2B A C =⋅,由条件得302A B C ⋅⋅=,所以3302B =,所以102B =,所以102022C B =⋅=.故选:B【例4】等比数列{}n a 满足*0,n a n N >∈且23233(2)nn a a n -⋅=≥,则当1n ≥时,logn a-+++=1221L ()A .(21)2n n -B .()222n n-C .22n D .22n n-【例5】在各项均为正数的等比数列{}n a 中,11168313225a a a a a a ++=,则113a a 的最大值是__.【例6】已知等比数列{}n a 各项均为正数,且满足:101a <<,1718171812a a a a +<+<,记n n a a a T 21=,则使得1n T >的最小正数n 为()A .36B .35C .34D .33【例7】在正项等比数列{}n a 中,44a =,则()A .358a a +≥B .3514a a +的最小值为1C .2611242aa-⎛⎫⎛⎫⋅≥ ⎪ ⎪⎝⎭⎝⎭D 4【答案】AB【分析】AB 选项,先根据等比数列的性质得到432516a a a ==,再利用基本不等式进行求解,C 选项,先得到226416a a a ==,结合指数运算及指数函数单调性和基本不等式进行求解;D 选项,平方后利用基本不等式,【例8】在等比数列{}n a 中,1234516a a a a a ++++=,314a =,则a a a a a ++++=______.【题型专练】1.已知递增等比数列{}n a ,10a >,2464a a =,1534a a +=,则6a =()A .8B .16C .32D .642.在等比数列{}n a 中,472a a +=,298a a =-,则110a a +=()A .5B .7C .-5D .-7当4724a a =-⎧⎨=⎩时,解得1312a q =⎧⎨=-⎩,()1039111112187a a a q a =+=+⨯-=-=-+;故选:D3.等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______【答案】5【解析】利用等比数列下标和的性质可知22243465,a a a a a a ==,再进行化简即可求解出结果.【详解】2435462a a a a a a ++ ()222335535225a a a a a a =++=+=,又 等比数列{}n a 中,0n a >,355a a ∴+=,故答案为:5.【点睛】本题考查等比数列下标和性质的运用,难度一般.已知{}n a 是等比数列,若()*2,,,,m n p q t m n p q t N +=+=∈,则有2m n p q t a a a a a ⋅=⋅=.4.若等比数列{}n a 中的5a ,2019a 是方程2430x x -+=的两个根,则31323332023log log log log a a a a ++++ 等于()A .20243B .1011C.20232D .10125.已知等比数列{}n a 的公比为q ,其前n 项之积为n T ,且满足11a >,2021202210a a ->,2021202201a <-,则()A .1q >B .2020202210a a -<C .2021T 的值是n T 中最大的D .使1n T <成立的最小正整数n 的值为40426.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552b =,则99B =()A .512B .32C .8D .2【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2)等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a = ,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项.7.已知数列{}n a 为等差数列,{}n b 为等比数列,{}n a 的前n 项和为n S ,若16113a a a π++=,1598b b b =,则()A .1111S π=B .210461sin2a ab b +=C .3783a a a π++=D .374b b +≥8.若等比数列{}n a 的各项均为正数,且210101013101110122e a a a a ⋅+⋅=,则122022ln ln ln a a a +++= ___________.【答案】2022【分析】根据等比数列的性质化简得到210111012e a a =,由对数的运算即可求解.【详解】因为{}n a 是等比数列,所以210101013101110121011101222e a a a a a a ⋅+⋅=⋅=,即210111012e a a ⋅=,所以()1011202212202212202210111012ln ln ln ln ln 2022a a a a a a a a lne ++⋅⋅⋅+====故答案为:20228.在正项等比数列{}n a 中,若35727a a a =,则931log i i a ==∑___________.【答案】9【解析】先由35727a a a =,利用性质计算出53a =,然后利用对数的运算性质计算931log i i a =∑即可.【详解】∵{}n a 为正项等比数列,∴若m n p q +=+都有m n p qa a a a =∴2192837465==a a a a a a a a a ==又35727a a a =,∴3527,a =即53a =,∴2192837465==9a a a a a a a a a ===∴93333311289log log log log log i i a a a a a =++++=∑ ()()()()31932833734635log log log log log a a a a a a a a a =++++33333log 9log 9log 9log 9log 3=++++=2+2+2+2+1=9故答案为:9【点睛】等差(比)数列问题解决的基本方法:基本量代换和灵活运用性质.题型四:等比数列前n 项片段和的性质及应用【例1】已知等比数列{}n a 的前n 项和为n S ,110=S ,1330=S ,=40S ()A .﹣51B .﹣20C .27D .40【答案】D【分析】由{an }是等比数列可得S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,列方程组,从而即可求出S 40的值.【详解】由{an }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .【例2】设等比数列{}n a 中,前n 项和为n S ,已知83=S ,67S =,则789a a a ++等于()A .18B .18-C .578D .558【例3】若等比数列{}n a 的前n 项和为n S ,22S =46S =+,则78a a +=()A .32+B .32+C .16+D .16+【例4】已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若2-,10S ,20S 成等差数列,则20102S S -=______,3020S S -最小值为______.【答案】28【分析】根据等差中项可求出201022S S -=;利用10S ,1200S S -,3020S S -成等比数列,结合基本不等式可得3020S S -最小值.【详解】因为2-,10S ,20S 成等差数列,所以102022S S =-+,所以201022S S -=,【例5】(2022·全国·高二课时练习)关于等差数列和等比数列,下列四个选项中正确的有()A .若数列{}n a 的前n 项和2n S an bn c =++(a ,b ,c 为常数),则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,…仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,…仍为等比数列【答案】BC【分析】由n S 得n a ,进而可判断A 和B ;由等差数列的性质判断C ;举反例判断D.【详解】根据题意,依次分析选项:对于选项A :因为2n S an bn c =++,11a S a b c ==++,当2n ≥时,()()()221112n n n a S S an bn c a n b n c a n b a -⎡⎤=-=++--+-+=⋅+-⎣⎦,所以()(),12,2n a b c n a a n b a n ⎧++=⎪=⎨⋅+-≥⎪⎩,所以只有当0c =时,数列{}n a 成等差数列,故A 错误;对于选项B :因为122n n S +=-,112a S ==,当2n ≥时,()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==,符合上式,所以2n n a =,则数列{}n a 成等比数列,故B 正确;对于选项C :数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,L 是公差为2n d (d 为{}n a 的公差)的等差数列,故C 正确;对于选项D :令()1nn a =-,则2S ,42S S -,64S S -,L 是常数列0,0,0, ,显然不是等比数列,故D 错误.故选:BC.【题型专练】1.等比数列{}n a 的前n 项和为n S ,若812S =,2436S =,则16S =()A .24B .12C .24或-12D .-24或12【答案】A【分析】根据等比数列片段和性质得到方程,求出16S ,再检验即可;【详解】解:因为等比数列{}n a 的前n 项和为n S ,所以8S ,168S S -,2416S S -成等比数列,因为812S =,2436S =,所以()()21616121236S S -=⨯-,解得1624S =或1612S =-,因为816880S S q S -=>,所以160S >,则1624S =.故选:A2.已知各项为正的等比数列的前5项和为3,前15项和为39,则该数列的前10项和为()A .B .C .12D .15【答案】C【分析】利用等比数列的性质可得()()210551510S S S S S -=×-,代入数据即可得到答案【详解】解:由等比数列的性质可得51051510,,S S S S S --也为等比数列,又5153,39S S ==,故可得()()210551510S S S S S -=×-即()()210103339S S -=-,解得1012S =或109S =-,因为等比数列各项为正,所以1012S =,故选:C3.若等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则()A .AB C+=B .2B AC=C .()22A B C A B +=+D .()()A C AB B A -=-S 4.设等比数列{}n a 的前n 项和为n S ,若23S =,621S =,则84S =()A .83B .133C .5D .75.设n S 是等比数列{}n a 的前n 项和,若33S =,则3S S =+______.题型五:等比数列前项和的特点【例1】在数列{}n a 中,1n n a ca +=(c 为非零常数),且其前n 项和23n n S k -=+,则实数k 的值为()A .1-B .13-C .19D .19-【例2】已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是A .4B .2C .2-D .4-【例3】已知等比数列{}n a 的前n 项和为13n n S t +=+,则数列的通项公式n a =______________.【题型专练】1.一个等比数列的前n 项和为(12)2nn S λλ=-+⋅,则λ=()A .1-B .1C .2D .32.等比数列{}n a 的前n 项和23nn S m =+⨯,则m =()A .2-B .2C .1D .1-【答案】A【分析】求出数列的通项公式,根据通项公式确定参数的值.【详解】116a S m ==+,当2n ≥时,1143n n n n a S S --=-=⨯,因为{}n a 是等比数列,所以11436m -⨯=+,得2m =-,所以A 正确.故选:A.3.记n S 为等比数列{}n a 的前n 项和,已知11a =,1n n S a t +=+,则t =_______.题型六:等比数列的单调性【例1】等比数列满足如下条件:①10a <;②数列{}n a 单调递增,试写出满足上述所有条件的一个数列的通项公式n a =________.【例2】设{}n a 是公比为q 的等比数列,则“1q >”是“20222023a a <”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】D【例3】已知等比数列{}n a ,下列选项能判断{}n a 为递增数列的是()A .10a >,01q <<B .10a >,0q <C .10a <,1q =D .10a <,01q <<【例4】(2022·全国·高二课时练习多选题)关于递增等比数列{}n a ,下列说法正确的是().A .当10a >时,1q >B .当10a >时,0q <C .当10a <时,01q <<D .11nn a a +<【答案】AC【题型专练】1.设等比数列{}n a 的首项为1a ,公比为q ,则{}n a 为递增数列的充要条件是()A .10a >,1q >B .10a <,01q <<C .1lg 0a q >D .1lg 0a q <【答案】C【分析】分析可知0q >,分10a <、10a >两种情况讨论,结合递增数列的定义求出对应的q 的取值范围,即可得出结论.【详解】因为11n n a a q -=,若0q <,则数列{}n a 为摆动数列,与题意不符,所以,0q >.①若10a <,则对任意的N n *∈,0n a <,由1n n n a a a q +<=可得1q <,即01q <<;②若10a >,则对任意的N n *∈,0n a >,由1n n n a a a q +<=可得1q >,此时1q >.所以,{}n a 为递增数列的充要条件是10a >,1q >或10a <,01q <<,当10a >,1q >时,lg 0q >,则1lg 0a q >;当10a <,01q <<时,lg 0q <,则1lg 0a q >.因此,数列{}n a 为递增数列的充要条件是1lg 0a q >.故选:C.2.在等比数列{}n a 中,公比是q ,则“1q >”是“()*1N n n a a n +>∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【分析】根据等比数列的单调性举出反例,如11a =-,再根据充分条件和必要条件的定义即可得出答案.【详解】解:当11a =-时,则1n n a q -=-,因为1q >,所以1n n q q ->,所以1n n q q --<-,故()*1N n n a a n +<∈,所以1q >不能推出()*1N n n a a n +>∈,当11a =-时,则1n n a q -=-,由()*1N n n a a n +>∈,得1n n q q -->-,则1n n q q -<,所以01q <<,所以()*1N n n a a n +>∈不能推出1q >,所以“1q >”是“()*1N n n a a n +>∈”的既不充分也不必要条件.故选:D.3.(2022·河南·新蔡县第一高级中学高二阶段练习(理))已知等比数列{}n a 的公比为q .若{}n a 为递增数列且10a <,则()A .1q <-B .10q -<<C .01q <<D .1q >【答案】C【分析】根据题设等比数列的性质,结合等比数列通项公式确定公比q 的范围即可.【详解】由题意,11n n a a q -=,又10a <,∴要使{}n a 为递增数列,则0q >,当01q <<时,{}n a 为递增数列,符合题设;当1q >时,{}n a 为递减数列,符合题设;故选:C.题型七:等比数列新文化试题【例1】十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,1 33⎡⎤⎡⎤⎢⎢⎥⎣⎦⎣⎦分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:…;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n 的最小值为()(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .7【答案】A 【解析】【分析】利用题中的条件,分别计算出每一次操作去掉的区间的长度,结合对数不等式即可解出.【详解】第一次操作去掉的区间长度为13,第二次操作去掉两个长度为19的区间,长度和为29,第三次操作去掉四个长度为127的区间,长度和为427, ,第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=+++=-⎪⎝⎭,由题意可知,24135n⎛⎫-≥ ⎪⎝⎭,即21lg lg 35n ≤,解得 3.97n =,又n 为整数,所以需要操作的次数n 的最小值为4.故选:A.【例2】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【例3】1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1 [0,] 3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1 [0, 9,21 [,] 93,27[,] 39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n步构造后,20212022不属于剩下的闭区间,则n 的最小值是().A .7B .8C .9D .10【答案】A 【解析】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n 步,剩下的最后一个区间为1113n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n ⎛⎫⎛⎫⎛⎫-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由120111121320223n n ⎛⎫⎛⎫-⨯<<- ⎪ ⎪⎝⎭⎝⎭化简得4044320223n n ⎧>⎨<⎩,解得7n =故选:A【例4】我国古代数学著作《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天织布多少?”这个问题体现了古代对数列问题的研究.某数学爱好者对于这道题作了以下改编:有甲、乙两位女子,需要合作织出40尺布.两人第一天都织出一尺,以后几天中,甲女子每天织出的布都是前一天的2倍,乙女子每天织出的布都比前一天多半尺,则两人完成织布任务至少需要()A .2天B .3天C .4天D .5天因为22()32n f n n n ++=+在0n >上单调递增,当5n =时,7(5)25152168164f =++=>,而6(4)1612292164f =++=<,故2232()164n n n f n +++=≥的解为5,N n n ≥∈,故至少需要5天,故选:D .【例5】费马数是以法国数学家费马命名的一组自然数,具有形式为221(n+记做)n F ,其中n 为非负数.费马对0n =,1,2,3,4的情形做了检验,发现这组费马公式得到的数都是素数,便提出猜想:费马数是质数.直到1732年,数学家欧拉发现52521F =+为合数,宣布费马猜想不成立.数列{}n a 满足()2log 1n n a F =-,则数列{}n a 的前n 项和n S 满足2020n S >的最小自然数是()A .9B .10C .11D .12【题型专练】1.已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂()A .420只B .520只C .20554-只D .21443-只【答案】B【解析】第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n n n a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205故选:B .2.数学源于生活,数学在生活中无处不在!学习数学就是要学会用数学的眼光看现实世界!1906年瑞典数学家科赫构造了能够描述雪花形状的图案,他的做法如下:从一个边长为2的正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边,分别向外作正三角形,再去掉底边(如图①、②、③等).反复进行这一过程,就得到雪花曲线.不妨记第(1,2,3,)n n =⋅⋅⋅个图中的图形的周长为n a ,则5a =()A .2569B .25627C .51227D .51281【答案】C【解析】【分析】根据题图规律确定第n 个图边的条数及其边长,并写出其通项公式,再求第5个图的周长.【详解】由图知:第一个图有3条边,各边长为2,故周长132a =⨯;第二个图有12条边,各边长为23,故周长22123a =⨯;第三个图有48条边,各边长为29,故周长32489a =⨯;……所以边的条数是首项为3,公比为4的等比数列,则第n 个图的边有134n -⋅条,边长是首项为2,公比为13的等比数列,则第n 个图的边长为112(3n -⋅,故4451512342()327a =⨯⨯⨯=.故选:C3.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则下列说法正确的是()A .该人第五天走的路程为14里B .该人第三天走的路程为42里C .该人前三天共走的路程为330里D .该人最后三天共走的路程为42里4.北京2022年冬奥会开幕式用“一朵雨花”的故事连接中国与世界,传递了“人类命运共同体”的理念.“雪花曲线”也叫“科赫雪花”,它是由等边三角形三边生成的科赫曲线组成的,是一种分形几何.图1是长度为1的线段,将图1中的线段三等分,以中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉得到图2,这称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,这称为“二次分形”;L .依次进行“n 次分形()*n ∈N ”.规定:一个分形图中所有线段的长度之和为该分形图的长度.若要得到一个长度不小于40的分形图,则n 的最小值是()(参考数据lg 30.477≈,lg20.301≈)A .11B .12C .13D .14【答案】C【解析】【分析】分析可知“n 次分形”后线段的长度为43n⎛⎫ ⎪⎝⎭,可得出关于n 的不等式,解出n 的取值范围即可得解.【详解】图1的线段长度为1,图2的线段长度为43,图3的线段长度为243⎛⎫ ⎪⎝⎭,L ,“n 次分形”后线段的长度为43n⎛⎫ ⎪⎝⎭,所以要得到一个长度不小于40的分形图,只需满足4403n ⎛⎫ ⎪⎝≥⎭,则4lg lg4012lg23n ≥=+,即()2lg2lg312lg2n -≥+,解得12lg210.60212.82lg2lg30.6020.477n ++≥≈--,所以至少需要13次分形.故选:C.5.十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:…;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n的最小值为()(参考数据:lg20.3010=,lg30.4771=)A.4B.5C.6D.76.毕达哥拉斯树是由古希腊数学家毕达哥拉斯根据勾股定理画出来的一个可以无限重复的图形,因为重复数次后的形状好似一棵树,所以被成为毕达哥拉斯树,也叫“勾股树”.毕达哥拉斯树的生长方式如下:以边长为1的正方形的一边作为斜边,向外做等腰直角三角形,再以等腰直角三角形的两直角边为边向外作正方形,得到2个新的小正方形,实现了一次生长,再将这两个小正方形各按照上述方式生长,如此重复下去,设第n次生长得到的小正方形的个数为na,则数列{}n a的前n项和n S=___________.【答案】122n +-##122n +-+7.(多选题)如图,1P 是一块半径为1的圆形纸板,在1P 的左下端前去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个前掉半圆的半径)得图形3P ,4,,,n P P ,记纸板n P 的周长为n L ,面积为n S ,则下列说法正确的是()A .37142L π=+B .31132S π=C .1111222n n n L π-+⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦D .1212n n n S S π++=-【答案】ABD【解析】【分析】观察图形,分析剪掉的半圆的变化,纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,再分别写出n L 和n S 的递推公式,从而累加得到通项公式再逐个判断即可【详解】根据题意可得纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,故1111122222n n n n L L π---=-⨯+⨯,即112122n n n n L L π----=-,故12L π=+,2110122L L π-=-,3221122L L π-=-,4332122L L π-=- (112122)n n n n L L π----=-,累加可得1210121112......222222n n n L ππππ--⎛⎫⎛⎫=+++++-++ ⎪ ⎪⎝⎭⎝⎭1111112222111122n n ππ--⎛⎫-- ⎪⎝⎭=++---1211222n n π--⎛⎫=-+ ⎝⎭,所以132171421222L ππ⎛⎫=-+ ⎪⎝⎭=+,故A 正确,C 错误;又1211122n n n S S π--⎛⎫=- ⎪⎝⎭,故1212n n n S S π---=-,即1212n n n S S π++=-,故D 正确;又12S π=,2132S S π-=-,3252S S π-=-...1212n n n S S π---=-,累加可得3521 (2222)n n S ππππ-=----111841214n ππ-⎛⎫- ⎪⎝⎭=--211132n π-⎛⎫=+ ⎪⎝⎭,故31132S π=正确,故B 正确;故选:ABD。
等比数列知识点及题型归纳
等比数列知识点及题型归纳一、等比数列简介等比数列是数学中常见的一种数列。
如果一个数列中,从第二项开始,每一项与前一项的比都相等,则这个数列被称为等比数列。
等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比,n表示项数。
二、等比数列的性质:1. 常比:等比数列中,公比r始终是一个常数。
2. 正比和负比:如果公比r>1,则称等比数列为正比数列;如果0<r<1,则称等比数列为负比数列。
3. 倒数和倒数的倒数:对于等比数列,如果公比r不等于1,则相邻两项的倒数也是一个等比数列,并且它们的公比是1/r。
4. 等比中项:对于等比数列,存在一个项x,称为等比中项,它满足x²=a1*a(n+1),其中a1表示第一项,an表示最后一项。
5. 等比数列的和:等比数列的前n项和可以表示为Sn = a1 * (1-r^n) / (1-r),其中a1表示第一项,r表示公比。
三、等比数列的常见题型:1. 求第n项:已知等比数列的首项和公比,求第n项的值。
2. 求前n项和:已知等比数列的首项和公比,求前n项和的值。
3. 求公比:已知等比数列的首项和第n项,求公比的值。
4. 求等比中项:已知等比数列的首项和最后一项,求等比中项的值。
5. 求满足条件的项数:已知等比数列的首项和公比,求满足条件的项数。
6. 判断数列性质:已知数列的前几项,判断数列是等比数列还是等差数列。
7. 求等差数列对应项:已知等差数列和等比数列的相同位置上的项相等,求该等差数列的对应项。
四、等比数列的应用:等比数列在实际生活和工作中有着广泛的应用。
以下是一些等比数列的典型应用场景:1. 财务计算:等比数列可以用来计算贷款或投资的复利。
2. 科学研究:等比数列的合理运用可以帮助科学家研究自然界中的各种现象。
3. 经济分析:等比数列可以用来分析经济增长和衰退的趋势。
4. 工程计划:等比数列可以用来计算任务的进度和耗时。
等比数列知识点总结和归纳
等比数列知识点总结和归纳数列在数学中占据着重要的地位,它们是数学研究的基础。
其中,等比数列作为一种特殊的数列,具有独特的性质和规律。
本文将对等比数列的基本概念、性质、公式和应用进行总结和归纳,以帮助读者更好地理解和应用等比数列。
一、等比数列的基本概念等比数列是指具有公比不为零的数列。
公比是指数列中任意两个相邻项的比值,通常用字母q表示。
根据定义,等比数列中的每一项与它的前一项的比值都是相等的。
二、等比数列的性质1. 公比的性质:等比数列的公比q决定了数列的性质。
当q>1时,数列为递增的;当0<q<1时,数列为递减的;当q=1时,数列为等差数列。
2. 通项公式:等比数列的通项公式是数列中任意一项与首项的比值的幂次方关系。
若首项为a,公比为q,第n项为an,则通项公式为an = a * q^(n-1)。
3. 前n项和公式:等比数列的前n项和公式是数列中前n项的和。
该公式可通过分两种情况讨论得出,即当q≠1时和当q=1时。
当q≠1时,前n项和公式为Sn = a * (q^n - 1) / (q - 1)。
当q=1时,前n项和公式为Sn = n * a。
4. 附加性质:等比数列还具有一些特殊的性质,比如任意三项成比例、倒数等比数列等。
这些特殊性质在问题求解中常常发挥重要作用。
三、等比数列的应用1. 复利计算:等比数列的应用广泛存在于复利计算中。
例如,一个年利率为r的账户,每年利滚利进行复利计算,那么每年的本金就构成了一个等比数列,利息也构成了一个等比数列。
2. 几何图形构造:等比数列的特性可以应用于几何图形的构造中。
例如,通过不断加减边长比值为q的等边三角形,可以构造出一种叫做“谢尔宾斯基三角形”的几何图形。
3. 自然界中的等比数列:等比数列的规律也在自然界中普遍存在,例如菜花的花瓣数、树枝的分支、蜂巢的结构等都呈现出等比数列的性质。
综上所述,等比数列作为一种重要的数列形式,其基本概念、性质、公式和应用都具有重要的研究意义和实际应用价值。
等比数列知识点总结及题型归纳
等比数列知识点总结及题型归纳一、等比数列的定义和性质等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。
当这个比值大于1时,称为增长等比数列;当比值在0和1之间时,称为衰减等比数列。
1. 等比数列的通项公式设等比数列的首项为a₁,公比为r,则等比数列的第n项为:an = a₁ * r^(n-1)。
2. 等比数列的前n项和公式设等比数列的首项为a₁,公比为r,前n项和为Sn,则有:Sn = a₁ * (1 - r^n) / (1 - r)。
3. 等比数列的性质(1)两项间的比值永远相等,即 an / a(n-1) = r。
(2)等比数列从第二项开始,每一项都是前一项与公比的乘积。
(3)等比数列的前n项和与公比无关,只与首项和项数有关。
二、等比数列的题型归纳1. 求等比数列的第n项已知等比数列的首项a₁和公比r,求等比数列的第n项an。
解法:根据通项公式an = a₁ * r^(n-1)进行计算。
2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,求等比数列的前n 项和Sn。
解法:根据前n项和公式Sn = a₁ * (1 - r^n) / (1 - r)计算。
3. 求等比数列的首项或公比已知等比数列的前两项a₁和a₂,或其中一个项an和其前一项a(n-1),求等比数列的首项a₁或公比r。
解法:通过已知项之间的比值an / a(n-1) = r,或者利用前n项和公式解方程进行计算。
4. 求等比数列的项数已知等比数列的首项a₁、公比r和第n项an,求等比数列的项数n。
解法:利用通项公式an = a₁ * r^(n-1)解方程求解n的值。
5. 求等比数列的部分项已知等比数列的首项a₁、公比r和项数n,求等比数列的部分项(例如第m项)am。
解法:利用通项公式an = a₁ * r^(n-1)计算am的值。
6. 求等比数列中的缺项已知等比数列的部分连续项,求等比数列中的缺项。
解法:通过项与项之间的比值an / a(n-1) = r进行推导,找出缺项并进行计算。
等比数列解析版
4.3 等比数列知识点一 等比数列的概念1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.递推公式形式的定义:a na n -1=q (n ∈N *且n >1) ⎝⎛⎭⎫或a n +1a n =q ,n ∈N *.知识点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab .知识点三 等比数列的通项公式若等比数列{a n }的首项为a 1,公比为q ,则a n = a 1q n -1=a m q n -m (n 、m ∈N *).知识点四 等比数列的常用性质 设数列{a n }为等比数列,则:(1)下标和公式:若k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (2)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列.(3)在等比数列{a n }中,连续取相邻k 项的和(或积)构成公比为q k(或2k q )的等比数列.(4)若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (5)若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和p q .知识点五 等比数列的前n 项和公式已知量首项、公比与项数首项、公比与末项求和公式S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q (q ≠1),na 1(q =1)S n =⎩⎪⎨⎪⎧a 1-a n q 1-q (q ≠1),na 1(q =1)知识点六 等比数列前n 项和的性质数列{a n }为公比不为-1的等比数列(或公比为-1,且n 不是偶数),S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 仍构成等比数列.【题型目录】题型一、等比数列中的基本运算 题型二、等比中项及应用 题型三、等比数列的性质及其应用 题型四、等比数列的判定与证明题型五、等比数列前n 项和公式的基本运算 题型六、等比数列前n 项和的性质 题型七、利用错位相减法求数列的前n 项和题型一、等比数列中的基本运算1.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8 D .16 【答案】B【详解】当n=1时,a 1a 2=16①;当n=2时,a 2a 3=256②,②÷①得:=16,即q 2=16,解得q=4或q=﹣4,当q=﹣4时,由①得:a 12×(﹣4)=16,即a 12=﹣4,无解,所以q=﹣4舍去, 则公比q=4. 故选B3.在各项为正的递增等比数列{}n a 中,12664a a a =,13521a a a ++=,则n a =( ) A .12n + B .12n - C .132n -⨯ D .123n -⨯【答案】B【解析】设其公比为q ,由等比数列通项公式得34a =,进而得2333221a a a q q ++=,解得2q =±或12q =±,再根据数列单调性即可得2q ,进而得12n n a -=【详解】{}n a 为等比数列,设其公比为q ,()3362312611364a a a a q a q a ∴====,则34a =,13521a a a ∴++=, 2333221a a a q q∴++=, 即2244421q q++=, 解得2q =±或12q =±, 又{}n a 各项为正且递增,2q ∴=,3313422n n n n a a q ---∴==⨯=.故选:B .【点睛】本题解题的关键是先根据题意得34a =,进而将13521a a a ++=转化为2333221a a a q q++=求q ,考查运算求解能力,是中档题. n (1)a 1=1,a 4=8,求a n ; (2)a n =625,n =4,q =5,求a 1; (3)a 2+a 5=18,a 3+a 6=9,a n =1,求n . 【详解】(1)因为a 4=a 1q 3, 所以8=q 3,所以q =2, 所以a n =a 1q n -1=2n -1.(2)a 1=a n q n -1=62554-1=5,故a 1=5.(3) 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ②由②①,得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1, 即26-n =20,故n =6.题型二、等比中项及应用5.等差数列{}n a 的公差是2,若 248,,a a a 成等比数列,则{}n a 的前 n 项和n S =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n - 【答案】A【详解】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(1)2n n n a a S n n +==+. 【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和.6.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( ) A .–10 B .14- C .–18 D .–20【答案】D【解析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-. ∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值. 7.已知0ab >,若2是2a 与4b 等比中项,则41121a b +++的最小值为_____ 【答案】94【解析】利用等比数列可得22a b +=,再利用基本不等式即可求解. 【详解】∵2是2a 与4b 的等比中项,∴244a b ⋅=,∴22a b +=,即1214a b +++=, 结合0ab >可得10a +>,210b +>, ∴()411411*********a b a b a b ⎛⎫+=+⋅+++ ⎪++++⎝⎭()()42142111119552421142114b b a a b a b a ⎛⎫++⎡⎤++ ⎪=++≥+⋅=⎢⎥ ⎪++++⎣⎦⎝⎭, 当且仅当()1221a b +=+,即53a =,16b =时取等号,即41121a b +++的最小值为94. 故答案为:94【点睛】本题考查了等比中项的应用、基本不等式求最值,注意验证等号成立的条件,属于基础题.题型三、等比数列的性质及其应用8.若等比数列{}n a 的各项均为正数,23a =,23174a a a =,则5a =( )A .34B .38C .12D .24【答案】D【分析】由23174a a a =,利用等比中项的性质,求出q ,利用等比数列的通项公式即可求出5a .【详解】解:数列{}n a 是等比数列,各项均为正数,2231744a a a a ==,所以224234a q a ==,所以2q .所以33523224a a q =⋅=⨯=,故选D .【点睛】本题考查了等比数列的通项公式,等比中项的性质,正确运算是解题的关键,属于基础题.9.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8 B .8- C .4 D .88-或【答案】B【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可.【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.10.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++=_____. 【答案】5.【详解】试题分析:由题意知21534a a a ==,且数列{}n a 的各项均为正数,所以32a =,()()()223512345152433352a a a a a a a a a a a a a ∴=⋅⋅=⋅==,()521222324252123452log log log log log log log 25a a a a a a a a a a ∴++++===.考点:1.考查等比数列的基本性质;2.对数的基本运算.题型四、等比数列的判定与证明11.已知数列{}n a 满足12a =-,124n n a a +=+. (1)证明:{}4n a +是等比数列; (2)求数列{}n a 的前n 项和n S . 【答案】(1)见解析;(2)1242n n S n +=--.【分析】(1)由题设124n n a a +=+,化简得1424n n a a ++=+,即可证得数列{}4n a +为等比数列. (2)由(1),根据等比数列的通项公式,求得24nn a =-,利用等比数列的前n 项和公式,即可求得数列的前n 项和.【详解】(1)由题意,数列{}n a 满足12a =-,所以142a += 又因为124n n a a +=+,所以()142824n n n a a a ++=+=+,即1424n n a a ++=+, 所以{}4n a +是以2为首项,2为公比的等比数列.(2)由(1),根据等比数列的通项公式,可得42n n a +=,即24n n a =-,所以()()()()22122424242224n nn n S a a a n =++⋯+=-+-+⋯+-=++⋯+-()1212422412n n n n +-=-=---,即1242n n S n +=--.【点睛】本题主要考查了等比数列的定义,以及等比数列的通项公式及前n 项和公式的应用,其中解答中熟记等比数列的定义,以及等比数列的通项公式和前n 项和的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==. (1)证明数列{}n b 是等比数列,并求数列{}n b 的通项; (2)求数列{}n a 的前n 项和n S .【答案】(1)见证明;(2)n S 21222n n n++=-- 【分析】(1)由121n n a a n +=+-变形得()()112n n a n a n +++=+,即12n n b b +=,从而可证得结论成立,进而可求出通项公式;(2)由(1)及条件可求出2n n a n =-,然后根据分组求和法可得n S .【详解】(1)证明:因为n n b a n -=, 所以n n b a n =+. 因为121n n a a n +=+- 所以()()112n n a n a n +++=+ 所以12n n b b +=. 又12b =,所以{}n b 是首项为12b =,公比为2的等比数列,所以1222n nn b -=⨯=.(2)解:由(1)可得2nn n a b n n =-=-,所以()1232222n n S =++++ ()123n -++++()()2121122n n n -+=+-21222n n n++=--. 【点睛】证明数列{}n b 为等比数列时,在得到12n n b b +=后,不要忘了说明数列中没有零项这一步骤.另外,对于数列的求和问题,解题时要根据通项公式的特点选择合适的方法进行求解,属于基础题.13.在数列{}n a 中,11a =,23a =,11320n n n a a a +--+=(n +∈N 且2n ≥). (1)证明:数列{}1n n a a +-是等比数列; (2)求数列{}n a 的通项公式.【答案】(1)见解析;(2)21nn a =-.【分析】(1)利用定义法证明数列{}1n n a a +-是等比数列;(2)结合数列{}1n n a a +-的通项公式,利用累加法可求得数列{}n a 的通项公式. 【详解】(1)证明:∵11320n n n a a a +--+=, ∴()112n n n n a a a a +--=-, 又11a =,23a =,2120a a ∴-=≠; ∴112n nn n a a a a +--=-(n +∈N ,且2n ≥),故数列{}1n n a a +-是首项和公比都是2的等比数列;(2)解:由(1)可得12nn n a a +-=,则112n n n a a ---=(n +∈N ,且2n ≥),故()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+… 12322221n n n ---=+++++…122112nn -==--(n +∈N ,且2n ≥), 当1n =时,1a 1=满足上式, ∴21n n a =-.【点睛】本题考查了等比数列的证明方法——定义法,等比数列通项公式,累加法求求通项公式,特别是累加法求通项要验证首项,考查理解辨析能力和运算求解能力,是中档题.题型五、等比数列前n 项和公式的基本运算14.设等比数列{}n a 的前n 项和为n S ,若252, 16a a ==,则10=S ( ) A .1023 B .511 C .1023- D .511-【答案】A【分析】先根据已知求出1,a q ,即得10S 的值.【详解】设数列{}n a 的公比为q ,由题意可得3528a q a ==,所以2q ,由题得1122,1a a ⨯=∴=.故()()101011011121023112a q S q-⨯-===--.故选:A.【点睛】本题主要考查等比数列的通项的基本量的计算,考查等比数列的求和,意在考查学生对这些知识的理解掌握水平.15.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q=_______ 【答案】【详解】显然公比,设首项为,则由,得,即,即,即,所以,解得.16.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问前三天走了______里. 【答案】336【分析】由等比数列前n 项和公式即可求解. 【详解】由题意得等比数列{}n a ,公比12q =,6378S =, ∴16112378112a ⎛⎫- ⎪⎝⎭=-,解得1192a =,∴33119212336112S ⎛⎫- ⎪⎝⎭==-. 故答案为:336【点睛】本题主要考查等比数列前n 项和公式,需熟记公式,属于基础题.17.设n S 是等比数列{}n a 的前n 项和,11a =,且1S 、3S 、2S 成等差数列. (1)求{}n a 的通项公式;(2)求使3n n S a ≤成立的n 的最大值.【答案】(1)112n n a -⎛⎫=- ⎪⎝⎭;(2)3.【分析】(1)求出等比数列{}n a 的公比,然后利用等比数列的通项公式可求得n a ;(2)利用等比数列的求和公式以及已知条件可得出关于n 的不等式,解之即可得解.【详解】(1)解:设等比数列{}n a 的公比为q ,则0q ≠,由()22312122111202S S S q q q q q q =+⇒++=++⇒+=⇒=-, 故11112n n n a a q --⎛⎫==- ⎪⎝⎭.(2)解:11212113212n n n S ⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,则121113322n n -⎡⎤⎛⎫⎛⎫--≤-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,整理得1128n ⎛⎫-≤- ⎪⎝⎭, 当n 为偶数时,102n ⎛⎫-> ⎪⎝⎭,不合乎题意; 当n 为奇数时,则1122n n ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,可得3111282n ⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭,可得3n ≤. 因此,n 的最大值为3.题型六、等比数列前n 项和的性质18.记等比数列{}n a 的前n 项和为n S ,若43S =,89S =,则12S =( )A .12B .18C .21D .27 【答案】C【分析】根据等比数列的性质,可知等比数列{}n a 的公比1q ≠-,所以484128,,S S S S S --成等比数列,根据等比的中项性质即可求出结果.【详解】因为n S 为等比数列{}n a 的前n 项和,且43S =,89S =,易知等比数列{}n a 的公比1q ≠-,所以484128,,S S S S S --成等比数列所以2484128)(()S S S S S -=-,所以2129)3(6S =-,解得1221S =.故选:C.19.已知数列{}n a 满足:10a ≠,()*12n n a a n +=∈N ,n S 为数列{}n a 的前n 项和,则633S S S -=___________. 【答案】8【分析】依题意可得12n na q a +==,即数列{}n a 为等比数列,再根据等比数列的通项公式计算可得; 【详解】解:因为10a ≠,()*12n n a a n +=∈N 12n na q a +∴==, ()312336345631231238q a a a S S a a a q S a a a a a a ++-++∴====++++. 故答案为:820.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50【答案】B【详解】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .题型七、利用错位相减法求数列的前n 项和21.已知数列{}n a 的前n 项和为n S ,2n S n =.(1)求数列{}n a 的通项公式;(2)已知2n n b =,求数列{}n n a b 的前n 项和n T .【答案】(1)21n a n =-;(2)()12326n n T n +⋅=-+【分析】(1)利用n a 与n S 的关系式,分类讨论并检验可求得21n a n =-;(2)利用错位相减法即可求得n T .【详解】(1)因为2n S n =,所以当1n =时,111a S ==,当2n ≥时,()221121n S n n n -=-=-+,故121n n n a S S n -=-=-,经检验,11a =满足21n a n =-,所以21n a n =-.(2)由(1)得()212n n n a b n -⋅=, 所以()()231123252232212n n n T n n -=⨯+⨯+⨯++-⋅+-⋅,则()()23412123252232212n n n T n n +=⨯+⨯+⨯++-⋅+-⋅,两式相减,得()23112222222212n n n T n +-=⨯+⨯+⨯++⨯--⋅()()21121212221212n n n -+-=⨯+⨯--⋅-()13226n n +=-⋅-,所以()12326n n T n +⋅=-+.22.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,② ①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n nn n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.23.设数列{}n a 满足11a =,1123n n n a a -+-=⋅.(1)求数列{}n a 的通项公式;(2)令()21n n b n a =+,求数列{}n b 的前n 项和n S . 【答案】(1)13n n a -=,*n ∈N ;(2)3n n S n =⋅,*n ∈N .【分析】(1)利用累加法求通项公式;(2)利用错位相减法以及等比数列求和公式即可得出n S .【详解】(1)由已知,当2n ≥时,2123n n n a a ---=⋅,()()()121321n n n a a a a a a a a -=+-+-++- ()12211312133312313n n n ----=+++++=+⨯=- 当1n =时,11131a -==符合上式,13n n a -∴=,*n ∈N .(2)由(1)知()()121213n n n b n a n -=+=+⨯,()0113353213n n S n -=⨯+⨯+++⨯① 3n S =()()1213353213213n n n n -⨯+⨯++-⨯++⨯②①-②得()()121232333213n n n S n --=++++-+⋅ ()()121213332131n n n -=++++-+⋅+ ()132213113nn n -=⨯-+⋅+- 23n n =-⋅所以,3n n S n =⋅,*n ∈N .【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.1.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+( ) A .6B .7C .8D .9 【答案】D 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得.【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a q a a q a a a a .++===++ 故选D .【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.2.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【答案】D【分析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果. 【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q ++=++=, ()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q ++=++=++==. 故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.3.已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( )A .14B .12C .6D .3 【答案】D【分析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列{}n a 的公比为,0q q ≠,若1q =,则250a a -=,与题意矛盾,所以1q ≠, 则()31123425111168142a q a a a q a a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩, 所以5613a a q ==. 故选:D .4.已知递增等差数列{}n a 的前n 项和为n S ,若515S =,且123,,1a a a +成等比数列,则( )A .1100,45a S ==B .1100,90a S ==C .1101,100a S ==D .1101,55a S ==【答案】D【分析】结合题中所给的条件,利用等差数列通项公式和求和公式以及三数成等比数列的条件,列出等量关系式,求得其首项和公差,进一步求其前10项和,从而得到正确答案.【详解】因为{}n a 是递增等差数列,515S =,所以1545152a d ⨯+=,即123a d +=,① 由123,,1a a a +成等比数列,所以2111()(21)a d a a d +=++,整理得2221111122a a d d a a d a ++=++,即21d a =,②①②联立求得111d a =⎧⎨=⎩,或139d a =-⎧⎨=⎩(舍去) 所以101091011552S ⨯=⨯+⨯=, 故选:D.【点睛】关键点点睛:该题考查的是有关数列的问题,正确解题的关键是熟练掌握等差数列的通项公式和求和公式,以及三数成等比数列的条件.5.等比数列{}n a 中,452,5a a ==,则数列{}lg n a 的前8项和等于( )A .6B .5C .4D .3 【答案】C【详解】试题分析:利用等比数列的性质可得a 1a 8=a 2a 7=a 3a 6=a 4a 5=10.再利用对数的运算性质即可得出.解:∵数列{a n }是等比数列,a 4=2,a 5=5,∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=10.∴lga 1+lga 2+…+lga 8=lg (a 1a 2…×a 8)==4lg10=4.故选C .考点:等比数列的前n 项和.6.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则{}n a 前10项的和为( )A .10B .8C .6D .-8 【答案】A【分析】由题意可得(a1+4)2=a1(a1+6),解之可得a 1,代入等差数列的求和公式可得.【详解】由题意可得a32=a1a4,即(a1+4)2=a1(a1+6),解之可得a 1=-8, 故()1010101810210.2S ⨯-=-⨯+⨯=故选A .【点睛】本题考查等差数列的求和公式,涉及等比中项的应用,属中档题.7.已知等比数列{a n }的前n 项和为S n ,若a 2=23,1a 1+1a 2+1a 3=132,则S 3等于( ) A. 269 B. 133 C. 139 D .6 【答案】A【详解】设等比数列{a n }的首项为a 1,公比为q ,因为a 2=23,且1a 1+1a 2+1a 3=132, 所以⎩⎨⎧ a 1q =23,1a 1+1a 1q +1a 1q 2=132,解得⎩⎪⎨⎪⎧ a 1=29,q =3或⎩⎪⎨⎪⎧a 1=2,q =13, 当a 1=29,q =3时,S 3=29(1-33)1-3=269; 当a 1=2,q =13时,S 3=2⎣⎡⎦⎤1-⎝⎛⎭⎫1331-13=269, 所以S 3=269. 8.设等比数列{}n a 的前n 项和为n S ,若35S =,620S =,则9S =( )A .66B .65C .64D .63 【答案】B【分析】根据等比数列前n 项和的片段和性质求解即可.【详解】解:由题知:31235S a a a =++=,()36345612315S S a a a a a a q -=++=++=, ()696789123920S S a a a a a a q S -=++=++=-,所以3S ,63S S -,96S S -成等比数列,即5,15,920S -成等比数列,所以()2915520S =-,解得965S =.故选:B.9.已知数列{}n a 的前n 项和n n S 21=-,则数列{}2n a 的前10项和为( )A .1041-B .()21021-C .()101413-D .()101213- 【答案】C 【分析】利用n n S 21=-可得n n 1n 1n a S S 2++=-=,结合11a S 1==,可知n 1n a 2-=,进而可得2n 1n a =4-,根据等比数列的求和公式计算即可.【详解】∵n n S 21=-,∴n+1n+1S 21=-,∴()()n+1n n n 1n 1n a S S 2121=2++=-=---,又11a S 211==-=,∴数列{}n a 的通项公式为:n 1n a 2-=,∴()22n 1n 1n a =2=4--, ∴所求值为()101014141143-=--, 故选C .【点睛】本题考查数列的递推公式,等比数列的通项公式、求和公式,对表达式的灵活变形是解决本题的关键,属于中档题.10.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________.【答案】6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解.【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±.11.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________ 【答案】3【详解】分析:设塔的顶层共有a 1盏灯,则数列{a n }公比为2的等比数列,利用等比数列前n 项和公式能求出结果. 详解: 设塔的顶层共有a 1盏灯,则数列{a n }公比为2的等比数列,∴S 7=71(12)12a --=381,解得a 1=3.故答案为3.12.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,且11a =,11b =,224a b +=.(1)若337a b +=,求{}n b 的通项公式;(2)若313T =,求5S . 【答案】(1)12n n b -=;(2)5或75.【分析】(1)设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠,由已知条件求出q ,再写出通项公式;(2)由1313T =,求出q 的值,再求出d 的值,求出5S .【详解】设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠有()14d q ++=,即3d q +=.(1)∵()2127d q ++=,结合3d q +=得2q =,∴12n n b -=.(2)∵23113T q q =++=,解得4q =-或3,当4q =-时,7d =,此时55457752S ⨯=+⨯=; 当3q =时,0d =,此时5155S a ==.【点睛】本题主要考查等差数列与等比数列的通项公式、等差数列的前n 项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S 一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.13.在数列{}n a 中,12a =,1431n n a a n +=-+,*N n ∈. (Ⅰ)证明:数列{}n a n -是等比数列;(Ⅱ)记()n n b a n n =-,求数列{}n b 的前n 项和n S . 【答案】(Ⅰ)证明见解析;(Ⅱ)()31419n nn S -+=【分析】(Ⅰ)利用等差数列的定义证明1(1)n n a q a nn +--=-即可. (Ⅱ)由(Ⅰ)求出数列{}n a n -的通项公式,代入()n n b a n n =-,再利用错位相减求数列{}n b 的前n 项和. 【详解】解:(Ⅰ)证明:由1431n n a a n +=-+,可得()()114n n a n a n +-+=-. 又111a -=,所以数列{}n a n -是首项为1,公比为4的等比数列; (Ⅱ)由(Ⅰ)知14n n a n --=,即14n n a n -=+,所以14n n b n -=⋅,01114244n n S n -=⋅+⋅++⋅,① 12414244n n S n =⋅+⋅++⋅,②①-②得,21314444n nn S n --=++++-⋅4143n n n -=-⋅,所以()31419n nn S -+=【点睛】本题考查等比数列的定义,错位相减求数列的前n 项和,属于基础题.14.已知数列{}n a 满足11a =,24a =,2144n n n a a a ++=-. (1)证明:{}12n n a a +-为等比数列; (2)求数列{}n a 的前n 项和n S .【答案】(1)证明见解析;(2)(1)21nn S n =-+.【分析】(1)由2144n n n a a a ++=-,化简得到211222n n n na a a a +++-=-,结合等比数列的定义,即可求解.(2)由(1)求得112222n nn n a a -+-=⨯=,得到11122n nn n a a +--=,根据等差数列的定义和通项公式,求得12n n a n -=⨯,结合“乘公比错位相减法”,即可求解.【详解】(1)因为2144n n n a a a ++=-,所以()211122422n n n n n n a a a a a a ++++-=-=-, 即211222n n n na a a a +++-=-, 又由2122a a -=,所以{}12n n a a +-是以2为首项,2为公比的等比数列. (2)由(1)知{}12n n a a +-是以2为首项,2为公比的等比数列,所以112222n nn n a a -+-=⨯=,可得11122n nn n a a +--= 又由1012a =,所以12n n a -⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列, 所以11(1)12nn a n n -=+-⨯=,即12n n a n -=⨯, 所以01211222322n n S n -=⨯+⨯+⨯++⨯,所以12321222322n n S n =⨯+⨯+⨯++⨯,两式相减,可得012122222n nn S n --=++++-⨯()0212212n n n ⨯-=-⨯-,所以(1)21nn S n =-+.【点睛】错位相减法求解数列的前n 项和的分法:(1)适用条件:若数列{}n a 为等差数列,数列{}n b 为等比数列,求解数列{}n n a b 的前n 项和n S ; (2)注意事项:①在写出n S 和n qS 的表达式时,应注意将两式“错位对齐”,以便下一步准确写出n n S qS -; ②作差后,应注意减式中所剩各项的符号要变号; ③作差后,作差部分应用为n 1-的等比数列求和.15.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)112n a n =+;(2)1422n n n S ++=-.【分析】(1)方程的两根为2,3,由题意得233,2a a ==,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可求出. 【详解】方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32.所以{a n }的通项公式为a n =12n +1. (2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n ,由(1)知2n n a =122n n ++, 则S n =232+342+…+12n n ++122n n ++,12S n =332+442+…+112n n +++222n n ++,两式相减得12S n =34+311122n +⎛⎫+⋅⋅⋅+ ⎪⎝⎭-222n n ++=34+111142n -⎛⎫- ⎪⎝⎭-222n n ++,所以S n =2-142n n ++. 考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前n 项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为2,3,由题意得233,2a a ==,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.16.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n S . 【答案】(1)32n a n =-;(2)n S =31+nn . 【分析】(1)根据给定条件,利用等差数列性质、等比中项的意义列式求解作答. (2)利用(1)的结论,结合裂项相消法计算作答. 【详解】(1)等差数列{}n a 中,324214a a a =+=,解得37a=,因1a ,2a ,6a 成等比数列,即2216a a a =,设{}n a 的公差为d ,于是得()()()277273d d d -=-+,整理得230d d -=,而0d ≠,解得3d =,所以()3332n a a n d n =+-=-.(2)由(1)知,()()1111()323133231n b n n n n ==--+-+,所以111111[(1)()()]34473231n S n n =-+-+⋅⋅⋅+--+11(1)33131nn n =-=++.1.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5C .5-D .7-【答案】D【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-. 由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D.【点睛】本题主要考查了等比数列的下标的性质,属于中档题.2.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –1【答案】B【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n nn n n S a ---==-.故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.3.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2 B .-2C .12D .12-【答案】D 【分析】把已知2214S S S 用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S ,即211111(21)(46).2a a a a -=-=-,故选D.【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n ∈N ,则10S 的值为( ) A .110- B .90- C .90 D .110【答案】D【详解】试题分析:31171191124,612,816a a d a a a d a a a d a =+=-=+=-=+=-,又因为7a 是3a 与9a 的等比中项,所以2739a a a =,即2111(12)(4)(16)a a a -=--,解之得120a =,所以101091020(2)1102S ⨯=⨯+⨯-=,故选D. 考点:1.等差数列定义与性质;2.等比数列的定义与性质;3.等差数列的前n 项和.【名师点睛】本题考查等差数列定义与性质、等比数列的定义与性质、等差数列的前n 项和,属中档题;解决等差数列与等比数列相关问题最常用的方法就是基本量法,即用首项1a 及公差d ,公比q 来表示已知条件,列出方程或方程组,求出1,,a d q 就可以解决受益人问题.5.已知0,0x y >>,,,,x a b y 成等差数列,,,,x c d y 成等比数列,则2()a b cd+的最小值是( ) A .0B .1C .2D .4【答案】D【详解】解:∵x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列 根据等差数列和等比数列的性质可知:a+b=x+y ,cd=xy ,222(2)()()4xy a b x y cd xy xy ++=≥= 当且仅当x=y 时取“=”,6.已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =( ) A .52 B .7C .6D .42【答案】A【详解】试题分析:由等比数列的性质知,a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,所以a 4a 5a 6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想.7.已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列⎭⎬⎫⎩⎨⎧n a 1的前5项和为( ) A .158或5 B .3116或5 C .3116D .158【答案】C【详解】设等比数列{}n a 的公比为q, ∵9S 3=S 6,∴8(a 1+a 2+a 3)=a 4+a 5+a 6, ∴8=q 3,即q=2, ∴a n =2n-1, ∴1n a =112n -⎛⎫ ⎪⎝⎭, ∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为1,公比为12的等比数列,故数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为51112112⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=3116.故选C.8.已知n S 是等比数列{}n a 的前n 项和,若存在*m ∈N ,满足22519,1m m m m S a m S a m +==-,则数列{}n a 的公比为( ) A .2- B .2 C .3- D .3【答案】B 【分析】根据22519,1m m m m S a m S a m +==-,解关于q 的方程,注意1q =还是1q ≠的讨论,代入公式即可求解. 【详解】设数列{}n a 的公比为q , 若1q =,则22mmS S =,与题中条件矛盾, 故()()212122*********.19,8.8,111mm mmmm m m mm m a q S a a q m qq q q q S a a q m a q q---+-≠==+=∴=====--- 33,8,2m q q ∴=∴=∴= .故选:B【点睛】注意公式应用的前提,以及题中没有说明q 的取值时,要考虑q 是否为1. 9.设等比数列{}n a 的前n 项和为n S ,若63:1:2S S =,则93:S S =( ) A .1:2 B .2:3C .3:4D .1:3【答案】C【分析】利用等比数列前n 项和的性质k S ,2k k S S -,32k k S S -,43k k S S -,成等比数列求解.【详解】解:因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则62m S =,则632mS S -=-, 故633S S S -=966312S S S S -=--,所以964m S S -=,得到934S m =,所以9334S S =.故选:C.10.已知{}n a 是首项为2的等比数列,n S 是其前n 项和,且6364S =,则数列2{log }n a 前20项和为( ) A .﹣360 B .﹣380 C .360 D .380【答案】A【分析】从等比数列{}n a 的前n 项和n S 满足的等式中,解出公比,进而得到数列{}n a 的通项公式,也就得到了数列2{log }n a 的通项公式,而后使用等差数列求和公式求和.【详解】根据题意3633164S S q S -==,所以14q =, 从而有3211224n n n a --=⋅=, 所以2log 32n a n =-,所以数列2{log }n a 的前20项和等于()()()()1340201133220360.2+-⨯+-+-++-⨯==-故选:A .11.(多选)已知数列{}n a 的前n 项和为n S ,下列说法正确的是( ) A .若()21n S n =+,则{}n a 是等差数列B .若21n n S =-,则{}n a 是等比数列C .若{}n a 是等差数列,则()2121n n S n a -=-D .若{}n a 是等比数列,则232,,n n n n n S S S S S --成等比数列 【答案】BC【分析】根据()12n n n a S S n -=-≥;11a S =即可判断选项A ,B ;根据等差数列的性质易判断选项C ;易举反例()1nn a =-判断选项D .【详解】对于A ,当1n =时,114a S ==; 当2n ≥时,()221121n n n a S S n n n -=-=+-=+;经检验:14a =不满足21n a n =+,∴数列{}n a 自第二项起为等差,A 错误; 对于B ,当1n =时,111a S ==;当2n ≥时,11121212n n n n n n a S S ---=-=--+=;经检验:11a =满足12n n a -=,()12n n a n N -*∴=∈,∴数列{}n a 是等比数列,B 正确;对于C ,()()()()12121212122122n nn n n a a n a S n a ---+-⋅===-,C 正确;对于D ,当()1nn a =-时,20S =,420S S -=,640S S -=,此时232,,n n n n n S S S S S --不构成等比数列,D 错误.故选:BC.12.在等比数列{}n a 中,1,a 17a 是方程2620x x -+=的根,则2169a a a 的值为________. 【答案】2【分析】根据等比数列中等比中项的性质,等比数列通项公式即可求解. 【详解】等比数列{}n a 中,1,a 17a 是方程2620x x ++=的根, 则17120a a ⋅=>,17160a a +=>, 则10a >,由等比数列性质可知2117162a a a a ⋅=⋅= 217912a a a ⋅==,所以92a =±,而8910a a q =>,所以92a =,故答案为:2.【点睛】本题考查了等比数列中等比中项的应用,注意项的符号判断,属于基础题.13.已知S n 是等比数列{a n }的前n 项和,且S 3,S 9,S 6成等差数列,a 2+a 5=6,则a 8=____. 【答案】3【分析】根据等差数列的性质,结合等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列{an }的公比为q ,当1q =时,显然S 3,S 9,S 6不成等差数列, 当1q ≠时,因为S 3,S 9,S 6成等差数列,所以有9362S S S =+,即936111(1)(1)(1)2111a q a q a q q q q ---⋅=+---,化简得63210q q --=,因为1q ≠,所以解得312q =-,因为a 2+a 5=6,所以3222612a a q a +⋅=⇒=,因此68211234a a q =⋅=⨯=,故答案为:314.各项均为正数的等比数列{}n a 的前n 项和为n S ,若264a a =,31a =,则2942⎛⎫+ ⎪⎝⎭n nS a 的最小值为______. 【答案】8【分析】根据等比数列的性质可得42a =,由此可求得n a ,n S ,从而表示出2942⎛⎫+ ⎪⎝⎭n nS a ,再根据基本不等式求解即可.【详解】解:∵264a a =,且0n a >, ∴42a =, ∴公比432a q a ==, ∴43222n n n a --=⋅=,2222212124n n n S ----==--,∴()2222922422n n n n S a --⎛⎫+ ⎪+⎝⎭=224242n n --=++22422482n n --≥⋅+=,当且仅当224222n n --==, 即3n =时等号成立,故答案为:8.【点睛】本题主要考查等比数列的性质和等比数列的前项和,考查基本不等式的应用,考查计算能力,属于中档题.15.已知数列{}n a 是公差为2的等差数列,它的前n 项和为Sn ,且137,,a a a 成等比数列. (1)求{}n a 的通项公式;(2)求数列14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)22n a n =+,(2)()22n nT n =+【分析】(1)由题意可得12(1)n a a n =+-,从而可求出1a ,进而可求得{}n a 的通项公式; (2)由(1)可得144111(22)[2(1)2](1)(2)12n n a a n n n n n n +===-+++++++,然后利用裂项相消求和法可求得结果 【详解】(1)因为数列{}n a 是公差为2的等差数列,且137,,a a a 成等比数列,所以2317a a a =即2111412a a a ,解得14a =,所以22n a n =+;(2)由(1)得()()()()14411122241212n n a a n n n n n n +===-++++++, 所以()111111112334122222n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭.16.设等差数列{}n a 的公差为()d d ≠0,11a =,2a 为14,a a 的等比中项.(1)求数列{}n a 的通项公式;(2)设2n n n b a =+,求数列{}n b 的前n 项和n T . 【答案】(1)n a n =(2)()(1)2212n n n n T +=+- 【解析】(1)根据等比中项的概念求出公差d ,结合等差数列的通项公式,可得结果.(2)根据(1)的结论,结合分组求和的方法,可得结果.【详解】解:(1)11a =,2a 为1a 与4a 的等比中项,2214a a a ∴=⋅,即2(1)1(13)d d +=⨯+,由0d ≠,所以1d =,∴数列{}n a 的通项公式为1(1)1n a n n =+-⨯=.(2)由(1)得n a n =,2n n b n ∴=+,()()212(1)(12)221122n n n n n T n -+∴=++++=+--. 【点睛】本题考查等差数列的通项公式以及分组求和,掌握求和的基本题型,比如:分组求和,裂项相消,错位相减等,属基础题.17.已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列知识点总结及题型归纳
1、等比数列的定义:()()*1
2,n
n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:
()11110,0n n
n n a a a q q A B a q A B q
-==
=⋅⋅≠⋅≠,首项:1a ;公比:q
推广:n m n m n n n m m a a a q q q a --=⇔=
⇔=3、等比中项:
(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =
或
A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:
(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q
S q
q
--=
=
-- 11''11n n n a a
q A A B A B A q q
=
-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:
(1)用定义:对任意的n ,都有1
1(0){}n n n n n n
a a qa q q a a a ++==≠⇔或
为常数,为等比数列
(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列
(3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列
6、等比数列的证明方法:
依据定义:若()()*12,n n a
q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列
7、等比数列的性质:
(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。
(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅
(4)数列{}n a ,{}n b 为等比数列,则数列{}n
k
a ,{}n k a ⋅,{}k n a ,{}n n k a
b ⋅⋅,{}
n n a b (k 为非零常数)均为等比数列。
(5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++⋅⋅⋅仍为等比数列
(6)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -⋅⋅⋅,成等比数列 (8)若{}n a 为等比数列,则数列12n a a a ⋅⋅⋅⋅⋅⋅,122n n n a a a ++⋅⋅⋅⋅⋅⋅,21223n n n a a a ++⋅⋅⋅⋅⋅⋅⋅成等比数列
(9)①当1q >时,110{}0{}{
n n a a a a ><,则为递增数列,则为递减数列
②当1q <0<时,110{}0{}{n n a a a a ><,则为递减数列,则为递增数列
③当1q =时,该数列为常数列(此时数列也为等差数列); ④当0q <时,该数列为摆动数列.
(10)在等比数列{}n a 中,当项数为*2()n n N ∈时,
1
S S q
=奇偶 二、 考点分析
考点一:等比数列定义的应用
1、数列{}n a 满足()1123
n n a a n -=-≥,14
3a =,则4a =_________.
2、在数列{}n a 中,若11a =,()1211n n a a n +=+≥,则该数列的通项
n a =______________.
考点二:等比中项的应用
1、已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( ) A .4- B .
6- C .8- D .10- 2、若a 、b 、c 成等比数列,则函数2
y ax bx c =++的图象与x 轴交点的个数为( ) A .0
B .1
C .2
D .不确定
3、已知数列{}n a 为等比数列,32a =,2420
3
a a +=,求{}n a 的通项公式.
考点三:等比数列及其前n 项和的基本运算
1、若公比为23的等比数列的首项为98,末项为1
3
,则这个数列的项数是( )
A .3
B .4
C .5
D .6 2、已知等比数列{}n a 中,33a =,10384a =,则该数列的通项
n a =_________________.
3、若{}n a 为等比数列,且4652a a a =-,则公比q =________.
4、设1a ,2a ,3a ,4a 成等比数列,其公比为2,则
12
34
22a a a a ++的值为( )
A .14
B .12
C .18
D .1
考点四:等比数列及其前n 项和性质的应用
1、在等比数列{}n a 中,如果66a =,99a =,那么3a 为( )
A .4
B .32
C .16
9
D .2
2、如果1-,a ,b ,c ,9-成等比数列,那么( ) A .3b =,9ac = B .3b =-,9ac = C .3b =,9ac =- D .3b =-,9ac =-
3、在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a 等于( )
A .81 B
.C
D .243
4、在等比数列{}n a 中,()9100a a a a +=≠,1920a a b +=,则99100a a +等于( )
A .98b a
B .9
b a ⎛⎫ ⎪⎝⎭ C .109
b a D .10
b a ⎛⎫ ⎪⎝⎭
5、在等比数列{}n a 中,3a 和5a 是二次方程250x kx ++=的两个根,则246a a a 的
值为( ) A .25 B
.C
.- D
.±6、若{}n a 是等比数列,且0n a >,若243546225a a a a a a ++=,那么35a a +的值等
于
考点五:公式11,(1)
,(2)n n
n S n a S S n -=⎧=⎨-≥⎩的应用
1.等比数列前n 项和S n =2n -1,则前n 项的平方和为( )
A.(2n -1)2
B.31(2n -1)2
C.4n
-1 D.3
1(4n -1)
2. 设等比数列{a n }的前n 项和为S n =3n +r ,那么r 的值为______________.
3.设数列{a n }的前n 项和为S n 且S 1=3,若对任意的n ∈N *都有S n =2a n -3n. (1)求数列{a n }的首项及递推关系式a n+1=f(a n ); (2)求{a n }的通项公式;
(3)求数列{a n }的前n 项和S n .
考点六:数列求和
方法:(1)公式法;(2)分组求和法;(3)错位相减法
23n 1.1+2+3+2+5+2++[2-1+2]
2.{a }, a =+12, {a }n
3.{b }, b =(2-1)3, {b }n n n n n n n n n n n ⋅⋅求和()()()(n )已知数列()求数列的前项和。
已知数列求数列的前项和。