2018-201 9 学年七年级数学上期中试题含答案

合集下载

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、填空题(本大题共有12小题,每小题2分,共24分)1.(2分)﹣3的相反数是.2.(2分)跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.3.(2分)单项式﹣的次数是.4.(2分)某市某楼盘房屋销售均价为每平方米10500元,该数用科学记数法表示为.5.(2分)用代数式表示“比a的3倍大5的数”.6.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.7.(2分)若﹣3x m y2与5x3y n是同类项,则n﹣m=.8.(2分)绝对值不大于3的所有负整数的和是.9.(2分)已知x2﹣2y+2=0,则代数式2x2﹣4y﹣1的值是.10.(2分)如果|a﹣1|+(b+2)2=0,则(a+b)2018的值是.11.(2分)有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.12.(2分)在我国的民俗中常将十二生肖用于记年,顺序排列为子鼠、丑牛、寅虎、卯兔、辰龙、已蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪,今年(2018年)是“戌狗”年,2050年是“”年.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.(3分)下列一组数:﹣8,2.7,,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中无理数有()个A.0 B.1 C.2 D.314.(3分)下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.15.(3分)下列各式计算正确的是()A.6a﹣5a=1 B.a+a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b16.(3分)多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2 B.﹣2 C.0 D.317.(3分)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(24分)(1)计算:﹣3﹣(﹣4)+7;(2)计算:﹣81÷×÷(﹣16);(3)计算:(﹣﹣)×(﹣24);(4)计算:﹣14﹣(﹣2)2+6×(﹣);(5)化简:3x2+5x﹣5x2+3x;(6)化简:6(m2﹣n)﹣3(n+2m2).19.(6分)画出数轴(取0.5cm为一个单位长度),用数轴上的点表示下列各数,并用“<”将它们从小到大排列.﹣2,+3.5,﹣1,1,0按照从小到大的顺序排列为.20.(6分)现定义某种新运算:对于任意两个有理数a、b,有a*b=a2﹣2b+1,例如:2*3=22﹣2×3+1=﹣1.(1)计算:3*(﹣2)的值;(2)试化简:x*(x2+1).21.(6分)老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂住的多项式;(2)当a=﹣1,b=3时求所捂住的多项式的值.22.(6分)我们知道:点A、B在数轴上分别表示有理数a、b,如图A、B两点之间的距离表示为AB,记作AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)已知|a﹣3|=7,则有理数a=;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=.23.(6分)某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”)(1)有名男同学成绩达标,跑得最快的同学序号是号;跑得最快的同学比跑得最慢的同学快了秒;(2)这10名男同学的平均成绩是多少?24.(7分)操作与思考:一张边长为a的正方形桌面,因为实际需要,需将正方形边长增加b,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:(1)方案中大正方形的边长都是,所以面积为;(2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示;(3)你有什么发现,请用数学式子表达;(4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.25.(6分)我们把形如(n是正整数,n≥2)的分数叫做单位分数,如、、…,任何一个单位分数都可以拆成两个不同的单位分数之和,如=+、=+、=+…观察上述式子的规律,回答下面的问题:(1)把写成两个单位分数之和:=;(2)把(n是正整数,n≥2)写成两个单位分数之和:=;(3)计算:+++…+.26.(7分)阅读理解:我们把分一条线段为两条相等线段的点称为线段的中点.如图1所示,则称点M为线段AB的中点.问题解决:(1)如图2所示,点A、B、C、D、E在数轴上的对应的数分别为﹣2、﹣1、0、1、2,则图2中,线段AC的中点是点,点C是线段和线段的中点,线段AB的中点对应的数是,线段BE的中点对应的数是;(2)如图3,点E、F对应的数分别是e、f,则线段EF的中点对应的数为(用含e、f的代数式表示).27.(7分)小明根据市自来水公司的居民用水收费标准,制定了水费计算数值转换机的示意图.(用水量单位:m3,水费单位:元)(1)根据转换机程序计算下列各户月应缴纳水费(2)当x>15时,用含x的代数式表示水费;(3)小丽家10月份水费是70元,小丽家10月份用水m3.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共24分)1.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.2.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.3.【解答】解:该单项式的次数为:4,故答案为:4.4.【解答】解:10500元,该数用科学记数法表示为1.05×104.故答案为:1.05×104.5.【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故答案为:3a+5.6.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.7.【解答】解:∵﹣3x m y2与5x3y n是同类项,∴m=3,n=2,则n﹣m=2﹣3=﹣1.故答案为:﹣1.8.【解答】解:绝对值不大于3的负整数有﹣1,﹣2,﹣3,则它们的和为﹣1+(﹣2)+(﹣3)=﹣6.故答案为﹣6.9.【解答】解:∵x2﹣2y+2=0,∴x2﹣2y=﹣2.∴2x2﹣4y=﹣4.∴原式=﹣4﹣1=﹣5.故答案为:﹣510.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2018=(﹣1)2018=1,故答案为:1.11.【解答】解:根据题意得:b<0<a,则a+b<0,a﹣b>0,则|a+b|﹣2|a﹣b|=﹣a﹣b﹣2a+2b=﹣3a+b.故答案为﹣3a+b.12.【解答】解:(2050﹣2018)÷12=2…8,∴2050年是“午马”年,故答案为:午马.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.【解答】解:、0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:C.14.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选:D.15.【解答】解:A、6a﹣5a=a,故本选项错误;B、a与a2不是同类项,不能合并成一项,故本选项错误;C、﹣(a﹣b)=﹣a+b,故本选项正确;D、2(a+b)=2a+2b,故本选项错误;故选:C.16.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.17.【解答】解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.【解答】解:(1)﹣3﹣(﹣4)+7=﹣3+4+7=8;(2)﹣81÷×÷(﹣16)=﹣81×××(﹣)=1;(3)(﹣﹣)×(﹣24)=﹣9+4+18=13;(4)﹣14﹣(﹣2)2+6×(﹣)=﹣1﹣4﹣2=﹣7;(5)3x2+5x﹣5x2+3x=﹣2x2+8x;(6)6(m2﹣n)﹣3(n+2m2)=6m2﹣6n﹣3n﹣6m2=﹣9n.19.【解答】解:如图所示:按照从小到大的顺序排列为﹣2<﹣1<0<1<3.5.故答案为:﹣2<﹣1<0<1<3.5.20.【解答】解:(1)根据题中的新定义得:原式=9+4+1=14;(2)根据题意得:原式=x2﹣2(x2+1)+1=﹣x2﹣1.21.【解答】解:(1)原式=(a2﹣4b2)+(a2+4ab+4b2)=2a2+4ab(2)当a=﹣1,b=3时,原式=2﹣12=﹣1022.【解答】解:(1)数轴上表示2和5两点之间的距离是:|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是:|﹣3﹣2|=5.故答案是:3;5;(2)依题意得:a﹣3=7,或a﹣3=﹣7,解得a=10或a=﹣4,故答案是:10或﹣4;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=3﹣b+b+4=7.故答案是:7.23.【解答】解:(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1,15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.24.【解答】解:(1)方案中大正方形的边长都是(a+b),所以面积为(a+b)2,故答案为:(a+b),(a+b)2;(2)方案中大正方形的面积还可以用四块小四边形的面积和来表示:a2+ab+ab+b2=a2+2ab+b2,故答案为:(a2+2ab+b2);(3)根据大正方形的面积不变可知(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(4)20.182+2×20.18×19.82+19.822=(20.18+19.82)2=402=1600.25.【解答】解:(1)根据题意知,=+,故答案为:+.(2)根据题意知,=+,故答案为:+.(3)原式=﹣+﹣+﹣+…+﹣=﹣=.26.【解答】解:(1)线段AC的中点是点B,点C是线段BD和线段AE的中点,线段AB 的中点对应的数是﹣,线段BE的中点对应的数是;故答案为:B,BD,AE,﹣,;(2)∵点E、F对应的数分别是e、f,∴线段EF的中点对应的数为,故答案为:.27.【解答】解:(1)张大爷水费:6×3=18元;王阿姨水费:15×3=45元;小明家水费:(17﹣15)×5+15×3=55元.故答案为:18,4,55.(2)观察示意图得:当x>15时,月应缴纳水费(元)用x的代数式表示为15×3+5(x﹣15)=5x﹣30;故答案为:5x﹣30;(3)(70﹣15×3)÷5+15=25÷5+15=5+15=20(m3).答:小丽家该月用水20m3.故答案为:20;。

2018年新人教版数学初一上册期中考试试卷含答案

2018年新人教版数学初一上册期中考试试卷含答案

2018—2019学年上学期期中考试七年级数学试卷
(本试题满分120分,考试时间120分钟)
题号
一二三四五六总分
得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1. 下面几何体的截面图可能是圆的是()
A. 正方体
B. 圆锥
C. 长方体
D.
棱柱2. 相反数是最大负整数的数是
() A. 1 B. -1 C. 0 D.2
3. 下列图形经过折叠不能围成棱柱的是
( ) A
B C D 4. 已知15a ,则a 的值为()
A.6
B.-4
C.-6或4
D.6或-4
5. 数轴上与-3的距离等于2个单位的点表示的数是
() A.0和2 B. -1和-3 C. -1和-5 D. -2和2
6. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若
第一次输入3,并将显示的结果第二次输入,则此时显示的结果是(
)A. 3 B.1
2 C.2
3 D. -3
二、填空题(本大题共6小题,每小题3分,共18分.)
7. 比较大小:0________-2 (
填“>”“<”或“=”) 8. 代数式2x 系数是________,代数式c b a 323的系数是__ _,次数是_______.
9. 某风力发电站每天能发电约
74850000度,该数据用科学记数法表示为
度. 10. a 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第
4次后剩下的小棒长_______________米.。

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。

2018-2019学年七年级上期中考试数学试卷(有答案)

2018-2019学年七年级上期中考试数学试卷(有答案)

2018-2019学年七年级上期中考试数学试卷(有答案)2018-2019学年七年级上期中考试数学试卷(有答案)篇一一、选择题(本大题共16 个小题,1-10 题,每小题3 分11-16 小题,每小题2 分,共42 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列方程是二元一次方程的是( )2. 用两块相同的三角板按如图所示的方式作平行线AB 和CD,能解释其中的道理的依据是( )A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线平行,内错角相等3. 下列命题中是假命题的是( )A. 同旁内角互补,两直线平行B. 垂线段最短C. 在同一平面内,过一点有且只有一条直线与已知直线垂直D. 两条直线被第三条直线所截,内错角相等5. 下列运算中,能用平方差公式计算的是( )A. (-a+b) (a-b)B. (a-b) (-b+a) C. (3a-b) (3b+a) D. (b+2a) (2a-b)6. 点A、B、C 为直线l 上三点,点P 为直线l 外一点,且PA=3cm,PB=4cm,PC=5cm,则点P 到直线l 的距离为( )A. 2cmB. 3cmC. 小于3cmD. 不大于3cm8. 如图,下列条件①∠1=∠2;②∠3=∠4;③∠B=∠3;④∠1+∠ACE=180°,其中,能判定AD∥BE 的条件有( )A. 4 B. 3 C. 2 D. 111. 如图,把一张长方形纸条ABCD 沿EF 折叠,若∠1=56°,则∠FGE 应为( )二、填空题(本题共有3 个小题,1 7-1 8 每小题3 分,1 9 小题4 分,满分 1 0 分)17.阅读理解:引人新数i ,新数i 满足分配律,结合律,交换律,已知:18.如右图所示,直线AB,CD 相交于点O,若∠BOD=40°,OA 平分∠COE,则∠COE= 。

2018--2019学年七年级数学上期中试题含答案

2018--2019学年七年级数学上期中试题含答案

2018-2019学年七年级数学上学期期中试题(考试时间:120分钟;满分:120分)第I 卷一、选择题(每小题3分,共36分) 1.-|-2︳的值等于()A .2B .0C .±2D .-22.单项式322xy π-的系数和次数分别是() A .B .-3, 32C .3 , 32π-D .2 , 2-3.若a 、b 互为相反数,c 、d 互为倒数,|m |=2,则代数式m ba cd m ++-32的值为()A 、-1B 、1C 、-7D 、1或-74.下列利用等式的性质,错误的是()A 、由b a =,得到b a 2121-=-B 、由bc ac =,得到b a =C 、由c b c a =,得到b a =D 、由b a =,得到1122+=+c b c a5.若方程()02122=+---x mx x m是关于x 的一元一次方程,则代数式|m ﹣1|的值为()A.0B.2C.0或2D.﹣26.若a >0,ab <0,则|b-a-1|-|a-b+3|的值为()A 、2B 、-2C 、-2a+2b+4D 、2a-2b-47.若当1=x 时,整式73++bx ax 的值为4,则当1-=x 时,整式73++bx ax 的值为()A. 7B. 12C. 11D. 108.已知7-=x 是方程ax x =-72的解,则代数式a a 3-的值是( )A.-3B.3C.2D328-.9.某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( ) A .60﹣x=20%(120+x ) B .60+x=20%×120 C .180﹣x=20%(60+x ) D .60﹣x=20%×120 10.若k 为整数,则使得关于x 的方程1439+=-kx x 的解也是整数的k 值有( )。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

2018年秋季期中考试初一数学试卷及答案

2018年秋季期中考试初一数学试卷及答案

2018-2019学年度上学期初中期中教学质量监测--初一年数学答题卡第1面(共4面)学校 班级姓名 考号2018-2019学年度上学期初中期中教学质量监测初一年数学试题(满分:150分;时间:120分钟)学校 班级_______姓名___ ____考号________友情提示:本次考试有设置答题卡,请把各题的解答 另填写在答题卡指定的位置,这样的解答才有效!第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果零上15℃记作+15℃,那么零下5℃应记作( ). A. -5℃B. -20℃C. +5℃D. +20℃2.-5的绝对值是( ). A. -15 B. 5 C. 15D. -5 3.下列各数中,比-1小的数是( ). A. -2B. 0C. 2D. 34.计算:46+-的结果是( ).A. 2B. 10C.2-D. 10- 5.下列语句中给出的数字,是近似数的是( ).A .小王所在班有50人;B .一本书186页;C .吐鲁番盆地低于海平面155米;D .我国有56个民族.6.在数轴上有一点,到表示的数为3和-5的两个点的距离相等,则这个点所表示的数是( ). A. 0 B. 2 C. -2 D. -1 7.计算()4000023⨯-结果用科学记数法表示为( ).A .32×140B .-24×140C .-2.4×150D .-3.2×158.马虎同学做了以下4道计算题:①0(1)1--=; ②11()122÷-=-;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题9.在()51-,()101-,22-,()23-这四个数中,最大的数比最小的数大( ).A . 13B . 10C . 8D . 510.规定45分钟为1个单位时间,并以每天上午9时记为0, 9时以前的时间记为负数,9时以后的时间记为正数,例如:8:15记为-1; 9:45记为+1;依此类推,则上午7:30应记为( ). A . +2 B . -2 C . -1.50 D . -7.30二、填空题:(每小题4分,共24分)11.用“>”或“<”号填空: -2 -5. 12.计算:-4×(-2)的结果是 . 13.如果数a 与2互为相反数,那么a= .14.某中学七年级1班有学生x 人, 2班学生人数比1班多3人, 则2班有学生 人. 15.若代数式32+x 的值为7,则代数式54-x 的值为 .16.如图,下面四个三角形内的数有共同的规律,请找出这个规律,确定A 为_________.第II 卷三、解答题(本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤) 17.(8分)画出数轴,并在数轴上表示出 154,30,22,--,并比较各数的大小,用“<”号连接起来. 18.(8分)计算:(1)(-10)+(+7) (2)5-(-2)+(-3)19.(8分)计算:(1)⎪⎭⎫ ⎝⎛-+-⨯-31432124 (2)2252253⎪⎭⎫ ⎝⎛-⨯--20.(8分)计算: (1)12÷(13-14) (2)-41-22×7-(-3)×6+5 21.(8分)当2=m ,1-=n 时,(1)求代数式()2n m +和222n mn m ++的值;(2)观察下面图形面积的不同表示法,直接写出(1)中两个代数式之间的关系; (3)请用简便的方法计算出当125.0=m ,875.0=n 时,222n mn m ++的值.22.(10分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)nmnm23.(10分)定义一种新运算“⊗”:观察下列各式: 2⊗3=2×3+3=9; 3⊗(-1)= 3×3-1=8; 4⊗4=4×3+4=16; 5⊗(-3)=5×3-3=12. (1)请你想一想:a ⊗b = ;(2)a ⊗b =b ⊗a 成立(填入 “一定不”、“一定”或 “不一定”) ; (3)已知(a +3)2与|b -1|互为相反数,c 与a 互为倒数,试求c ⊗(a ⊗b )的值.24.(12分)已知代数式c bx ax ++3,当0=x 时,该代数式的值为3. (1)求c 的值;(2)已知:当1x =时,该代数式的值为0.①求:当1-=x 时,该代数式的值; ②若0>ab ,1>a ,131<cd ,试比较a 与d 的大小,并说明理由.25.(14分)问题:如何快速计算的值呢?(1)探究:令①,则②①得()1+=n n 因此 .(2)应用:①计算:=++++200321 ;②如图1,一串连续的整数1,2,3,4,…,自上往下排列,最上面一行有一个数,以下各行均比上一行多一个数字,若共有15行数字,则最底下一行最左边的数是 ;③如图2,一串连续的整数-25,-24,-23,…,按图1方式排列,共有14行数字,求图2中所有数字的和.(本页可作为草稿纸使用)2018—2019学年度上学期初中期中教学质量监测初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题4分,共40分)1. A ;2. B ;3.A ;4.C ;5.C ;6. D ;7.D ;8.C ;9.A ;10.B . 二、填空题(每小题4分,共24分)11.>; 12.8; 13. −2; 14. (x+3) ; 15.3; 16.55 . 三、解答题17.…………6分2130254<<-<-………………………………………………………8分 18.解:(1)原式= -10+7= -3………………………………………………………………4分(2)原式= 5+2-3 …………………………………………………………………2分=4…………………………………………………………………………4分19.解:(1)原式()()()131242424243⎛⎫=-⨯-+-⨯--⨯ ⎪⎝⎭12188=-+……………………………………………………3分2= ……………………………………………………………4分(2)原式492525=--⨯…………………………………………………………2分 94=--…………………………………………………………………3分13=-……………………………………………………………………4分()()()31241203 1.523838232414-⨯+-⨯+-⨯+⨯+⨯+⨯=---++=千克20.解:(1)原式11212=÷ ………………………………………………………2分 144=………………………………………………………………4分(2)原式147185=--⨯++……………………………………………………2分12823=--+…………………………………………………………3分6=-……………………………………………………………………4分21.解:(1)当2,1m n ==-时, …………………………………………………1分()()22211m n +=+-=⎡⎤⎣⎦……………………………………………………2分()()22222222114411m mn n ++=+⨯⨯-+-=-+=…………………3分(2)()2222m n m mn n +=++………………………………………………5分 (3) 由(2) 可知: ()2222m mn n m n ++=+ ………………………………6分 当0.125,0.875m n ==时, ………………………………………………7分()()2222220.1250.87511m mn n m n ++=+=+== …………………8分22. 解:(1) ∵ ()336--=………………………………………………………2分∴最重的一筐比最轻的一筐重6千克. ……………………………3分 (2) ∵ …………………5分… …………………………………………………………6分∴这20筐白菜总计超过14千克. ………………………………………7分(3)()()202514 2.6=514 2.6=1336.41336⨯+⨯⨯≈元……………………9分答:出售这20筐白菜可卖约1336元. ………………………………………10分23.解:(1) 3a b +……………………………………………………………3分(2)不一定 ……………………………………………………………5分(3)∵(a +3)2与|b -1|互为相反数,且()230,10a b +≥-≥∴310a b +=-=………………………………………………………6分∴3, 1.a b =-=…………………………………………………………7分又∵c 与a 互为倒数∴1.3c =-…………………………………………………………………8分∴a ⊗b 3318=-⨯+=-………………………………………………9分∴c ⊗(a ⊗b ) 13=-⊗()8-13893⎛⎫=⨯--=- ⎪⎝⎭……………………10分 24.(1)解:∵当x 为0时,代数式c bx ax ++3的值为3,∴ c =3. ……………………………………………………………3分(2)①∵当1x =时, 代数式c bx ax ++3的值为0,∴ a +b +c =0. ………………………………………………………4分即a +b 与c 互为相反数.∴ a +b =-3. ………………………………………………………5分∴当1-=x 时, ()()6333=+--=++-=+--=++c b a c b a c bx ax ……7分②∵ab >0,且a +b =-3<0,∴ a <0, b <0. ………………………………………………………8分∵a >1,∴ a <-1. …………………………………………………9分 ∵131<cd ,且c =3, ………………………………………………10分 ∴d <1. ………………………………………………………………11分∴11<<-d∴ a <d . ……………………………………………………………12分(3)另解:∵ab >0,且a +b =-3<0,∴ a <0, b <0. ………………………………………………………8分∵1>a ,∴ 数轴上a 在-1的左侧…………………………………9分 ∵131<cd ,且c =3, ………………………………………………10分 ∴d <1. ………………………………………………………………11分∴数轴上d 在-1与1之间∴ a <d . ……………………………………………………………12分25.解:(1)()21+n n ; ………………………………………………………2分 (2)①20100; ……………………………………………………………………4分②106; ………………………………………………………………………7分③图2中共有()105211414=+⨯个数, …………………………………9分 其中有25个负数、一个0、79个正数,………………………………10分 ∴图2中所有数字的和为()()792102521+++++---- ………………………………12分 ()()217979212525+⨯++⨯-= 3160325+-=2835= ……………………………………………………………………14分。

人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案

人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案

人教版 2018-2019学年度第一学期期中考试七年级数学试题及答案2018-201年度第一学期期中考试七年级数学试卷一、选择题(每题3分,共30分)1、下列各对数中,互为相反数的是(-3)和(3)。

2、下列运算中,正确的是(5a2b-5ba2=5ab(a-b))。

3、过度包装既浪费资源又污染环境。

据测算,如果全国每年减少的二氧化碳吨数用科学记数法表示为(2×104),即2乘以10的4次方。

4、一个多项式与x2-2x+1的和是3x-2,则这个多项式为(x2-5x+3)。

5、按照一定规律排列的个数为(10)。

6、有理数a、b、c在数轴上位置如图,则|c-a|-|a+b|-|b-c|的值为(2a-2c+2b)。

7、如图,在长方形ABCD中,放入6个长度相同的小长方形,BH=6cm,设小长方形的宽QE=xcm则图形BQEFGH的周长为(24+2x)cm。

8、某班组每天需生产50个零件才能在规定时间内完成一批零件的生产任务,实际上该班组每天比计划多生产10个零件,结果比规定时间提前3天并超额生产120个零件,若该班组需完成零件的生产任务为x个,则根据题意得规定的时间为(x-1)/60天。

9、下列去括号或添括号正确的有(3)个,分别是①、②、③。

10、XXX在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为(-1009)。

二、填空题(每题3分,共18分)11、3的相反数的倒数是-1/3.12、有六张卡片,正面分别写有六个数字,背面分别写有六个字母。

将卡片正面的数字由大到小排列,然后将卡片翻转,卡片上的字母组成的单词是什么。

13、数轴上点M表示有理数-2,将点M向右平移1个单位长度到达点N,点E到点N的距离为4,那么点E表示的有理数为-1.14、用[a]表示不大于a的最大整数,例如:[1.5]=1,[-2.3]=-3,则[-5.2]+[-0.3]+[2.2]=-4.15、某校七年级四个班的学生在植树节这天共义务植树(6a-3b)棵,七(1)班植树a棵,七(2)班植树的棵数比七(1)的两倍少b棵,七(3)班植树的棵数比七(2)班的一半多1棵,那么七(4)班的植树棵数为(6a-9b-1)棵。

2018~-2019学年七年级数学上期中试题含 答案

2018~-2019学年七年级数学上期中试题含  答案

2018-2019学年七年级(上)期中数学试卷(全卷共8页,满分150分,120分钟完卷)题号 一 二 三 四 五 总分 总分人 题分 40 32 35 23 20 150得分一、选择题(本题共10个小题,每小题4分,共40分,在下列各题的四个选项中,只有一项是符合题意的.请将正确选项填在对应题目后的括号中.) 1.2-的倒数是( )A .21B .21-C .2D .﹣22.在数轴上距离原点2个单位长度的点所表示的数是( ) A .2 B .﹣2 C .2或﹣2 D .1或﹣1 3.我国国土面积约960万平方千米,用科学记数法可表示为( )平方千米. A .96×105 B .960×104 C .9.6×107 D .9.6×106 4.下列各组中的两项,不是同类项的是( )A .y x 2-与22yxB .R π2与π2RC .n m 2-与221mnD .32与235.下列计算正确的是( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a aD .b a b a ba 2222-=+-6.下列说法错误的是( )A .1322--xy x 是二次三项式B .1+-x 不是单项式C .232xy π-的系数是32-D .222xab -的次数是47.计算3562+-a a 与1252-+a a 的差,结果正确的是( ) A .432+-a aB .232+-a aC .272+-a aD .472+-a a8.一件衣服的进价为a ,在进价的基础上增加20%标价,则标价可表示为( )得分 评卷人A .a )%20-1(B .a %20C .a )%201(+D .%20+a9.两个有理数a ,b 在数轴上的位置如图,下列四个式子中运算结果为正数的是( )A .b a +B .b a -C .abD .b a10.有一列数1a ,2a ,3a ,…,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若21=a ,则2011a 为( )A .2011B .2C .1-D .21二、填空题(本题共8个小题,每小题4分,共32分.把正确答案填在题目中横线上)11.计算:=⨯÷-5515 (﹣1)2000﹣02011+(﹣1)2013= .12.列式表示:p 的3倍的一半的相反数是 .13.若单项式y x 45和m n y x 25是同类项,则n m +的值为 . 14.数轴上的A 点与表示﹣3的点距离4个单位长度,则A 点表示的数为 . 15.已知代数式a a 22-值是4,则代数式a a 6312-+的值是 . 16.化简=-+-ππ34 .17.已知2=x ,3=y ,且x >y ,则y x 43-的值是 .18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中的基础图形个数为 (用含n 的式子表示).得分 评卷人三、解答题(本大题共3个小题,第19题20分,第20题10分,第21题5分,共35分.解答应写出必要的计算步骤.)19.计算题(每小题5分,共20分)(1)12﹣(﹣16)+(﹣4)﹣5(2)(﹣10)+8×(﹣2)﹣(﹣4)×(﹣3)(3)-÷-3422[22﹣(31211⨯-)]×12得分评卷人(4)(1531276543+-+-)601÷20.计算题(每小题5分,共10分)(1)(2254ab b a -)﹣(2243ab b a -)(2)-22x {+-x 3 [-24x (x x -23)]}.21.(本题满分5分)化简求值:-y x 22 [232+xy (y x xy 222+)],其中21=x ,2-=y .四、解答题(本大题共4小题,第22题5分,第23,24,25每小题6分,共23分,解答时应按要求写出各题解答的文字说明或计算步骤.)22.(本题满分5分)画出数轴,在数轴上表示下列各数,并用“<”号把这些数连接起来.﹣(﹣4),5.3--,+(21-),0,+(+2.5),311,101-.23.(本题满分6分)小明参加“趣味数学”选修课,课上老师给出一个问题,小明看了很为难,你能帮他一下吗?已知a ,b 互为相反数,c ,d 互为倒数,m =2,则cd m m ba -+++1的值为多少?24.(本题满分6分)某班组织学生参加秋季社会实践活动,其中第一小组有x 人,第二小组的人数比第一小组人数的54少3人,如果从第二小组调出1人到第一小组,那么:(1)两个小组共有多少人?(2)调动后,第一小组的人数比第二小组多多少人?得分 评卷人25.(本题满分6分)已知代数式2122-++=y xy x A ,1222-+-=x xy x B(1)求B A -2;(2)当1-=x ,2-=y 时,求B A -2的值;五、解答题.(本题共2小题,第26题10分,第27题10分,共20分.解答时应按要求写出各题解答的文字说明或计算步骤.)26.(本题满分10分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期 一 二 三 四 五 六 日 增减 +5 ﹣2 ﹣4 +13 ﹣10 +16﹣9 (1)根据记录的数据可知该厂星期四生产自行车多少辆? (2)根据记录的数据可知该厂本周实际生产自行车多少辆? (3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?得分 评卷人27.(本题满分10分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,直接写出点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.A-6 -5 -4 -3 -2 -1 0 1 2 3 4 5七年级数学参考答案及评分意见一、选择题(本大题共10小题,每小题4分,共40分)A 2、C 3、D 4、C 5、D 6、C 7、D 8、C 9、A 10、B 二、填空题(本大题共8小题,每小题4分,共32分)-125 , 0 12、 -23p13、5 14、1或-7 15、 131 17、6或18 18、3n+1三、解答题(共3个小题,第19题20分,第20题10分,21题5分,共35分。

最新浙教版2018-2019学年七年级数学(上册)期中试题及答案

最新浙教版2018-2019学年七年级数学(上册)期中试题及答案

2018-2019学年七年级(上)期中数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.若|x|=2016,则x等于()A.﹣2016 B.2016 C.D.±20162.比较﹣3,2,﹣2的大小,正确的是()A.﹣3<2<﹣2 B.﹣2<﹣3<2 C.2<﹣2<﹣3 D.﹣3<﹣2<23.从国家旅游局获悉,今年国庆期间全国共接待游客5.93亿人次,将5.93亿用科学记数法表示正确的是()A.5.93×107B.5.93×108C.5.93×109D.5.93×10104.有理数m、n在数轴上所对应的点的位置如图所示,则m+n的值()A.大于0 B.小于0 C.等于0 D.大于n5.某洗衣机厂原来库存洗衣机m台,现每天又生产n台存入库内,x天后该厂库存洗衣机的台数是()A.(m+nx)台B.(mx+n)台C.x(m+n)台D.(mn+x)台6.单项式﹣xy2的系数是()A.﹣1 B.3 C.D.﹣7.下列各组中是同类项的是()A.x与y B.3ab与3abc C.2mn与﹣2mn D.4x2y与4xy28.计算2x2﹣3x2的结果是()A.5x2B.﹣5x2C.x2D.﹣x29.下列方程中是一元一次方程的是()A.xy=2 B.2x2﹣x﹣1=0 C.x﹣2y=4 D.3(2x﹣7)=4(x﹣5)10.下列方程的变形中,正确的是()A.若y﹣4=8,则y=8﹣4B.若2(2x﹣3)=2,则4x﹣6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(t﹣1)=1二.填空题(本大题共有8个小题,每小题3分,共24分)11.﹣的相反数是.12.计算:(﹣6)÷(﹣)= .13.按如图所示的程序计算.若输入x的值为3,则输出的值为.14.多项式5x4﹣3x3y2+2x2y+1的次数是.15.若x=﹣2是关于x的方程2x﹣5=3m的解,则m的值为.16.某种篮球打7折后每个篮球售价为140元,若设该篮球每个原价为x元,则可建立方程模型为.17.已知a2﹣2a=﹣1,则2016﹣3a2+6a= .18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.三、解答题(本大题共有7个小题,19、20、21题每小题8分,22、23、24题每小题8分,25题12分,共66分)19.计算:(﹣2)3+×[1﹣(﹣3)2].20.先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.21.解方程:.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B,求得结果为x2﹣4x,请你帮助小马算出A+B的正确结果.23.兴旺肉联厂的冷藏库能使冷藏食品每小时降温3℃,每开库一次,库内温度上升4℃,现有12℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?24.当x=2时,代数式x 2+(t ﹣1)x ﹣3t 的值是1,求当x=﹣2时,该代数式的值.四、探究题(本大题共12分)25.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±1(1)若y 2=+,求y 2的值(2)若y 3=++,则y 3的值为 ;(3)由以上探究猜想,y 2016=+++…+共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.若|x|=2016,则x等于()A.﹣2016 B.2016 C.D.±2016【考点】绝对值.【分析】根据绝对值的性质可得结果.【解答】解:∵|x|=2016,∴x=±2016,故选D.【点评】本题主要考查了绝对值的定义及性质,熟记数轴上某个数与原点的距离叫做这个数的绝对值;互为相反数的两个数绝对值相等是解答此题的关键.2.比较﹣3,2,﹣2的大小,正确的是()A.﹣3<2<﹣2 B.﹣2<﹣3<2 C.2<﹣2<﹣3 D.﹣3<﹣2<2【考点】有理数大小比较.【分析】若是两个负数,先比较绝对值,再比较原数的大小;若是两个正数,绝对值大的数就大;一个正数一个负数,正数大于一切负数.【解答】解:比较﹣3,2,﹣2的大小为:﹣3<﹣2<2,故选D【点评】本题考查有理数的大小比较,有理数的比较方法为:两个负数,绝对值大的反而小;正数大于一切负数;两个正数,绝对值大的数就大.3.从国家旅游局获悉,今年国庆期间全国共接待游客5.93亿人次,将5.93亿用科学记数法表示正确的是()A.5.93×107B.5.93×108C.5.93×109D.5.93×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.93亿=5 9300 0000=5.93×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.有理数m、n在数轴上所对应的点的位置如图所示,则m+n的值()A.大于0 B.小于0 C.等于0 D.大于n【考点】数轴.【专题】计算题;实数.【分析】根据数轴上点的位置,利用有理数的加法法则判断即可.【解答】解:根据题意得:﹣1<m<0<1<n,则m+n的值大于0,故选A【点评】此题考查了数轴,熟练掌握数轴上点的特点是解本题的关键.5.某洗衣机厂原来库存洗衣机m台,现每天又生产n台存入库内,x天后该厂库存洗衣机的台数是()A.(m+nx)台B.(mx+n)台C.x(m+n)台D.(mn+x)台【考点】列代数式.【分析】先求出x天后生产的台数,再加上原先的台数,从而得出答案.【解答】解:∵每天生产n台存入库内,∴x天后生产nx台存入库内,∵原来库存洗衣机m台,∴x天后该厂库存洗衣机的台数是(m+nx)台.故选A.【点评】此题考查了列代数式,关键是读懂题意,求出x天后生产的台数.6.单项式﹣xy2的系数是()A.﹣1 B.3 C.D.﹣【考点】单项式.【分析】根据单项式的定义进行选择即可.【解答】解:单项式﹣xy2的系数是﹣,故选D.【点评】本题考查了单项式的定义,掌握单项式的系数、次数是解题的关键.7.下列各组中是同类项的是()A.x与y B.3ab与3abc C.2mn与﹣2mn D.4x2y与4xy2【考点】同类项.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,依据定义即可判断.【解答】解:A、所含字母不同,不是同类项,选项错误;B、所含字母不同,不是同类项,选项错误;C、是同类项,选项正确;D、所含字母不同,不是同类项,选项错误.故选C.【点评】本题考查了同类项的定义,所含字母相同,相同字母的次数相同,正确理解定义是关键.8.计算2x2﹣3x2的结果是()A.5x2B.﹣5x2C.x2D.﹣x2【考点】合并同类项.【分析】依据合并同类项法则求解即可.【解答】解:2x2﹣3x2=(2﹣3)x2=﹣x2.故选:D.【点评】本题主要考查的是合并同类项,掌握合并同类项法则是解题的关键.9.下列方程中是一元一次方程的是()A.xy=2 B.2x2﹣x﹣1=0 C.x﹣2y=4 D.3(2x﹣7)=4(x﹣5)【考点】一元一次方程的定义.【专题】计算题;一次方程(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:是一元一次方程的是3(2x﹣7)=4(x﹣5),故选D【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.10.下列方程的变形中,正确的是()A.若y﹣4=8,则y=8﹣4B.若2(2x﹣3)=2,则4x﹣6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(t﹣1)=1【考点】解一元一次方程;等式的性质.【专题】计算题;一次方程(组)及应用.【分析】各项中方程变形得到结果,即可作出判断.【解答】解:A、若y﹣4=8,则y=8+4,错误;B、若2(2x﹣3)=2,则4x﹣6=2,正确;C、若﹣x=4,则x=﹣8,错误;D、若﹣=1,则去分母得:2﹣3(t﹣1)=6,错误,故选B【点评】此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.二.填空题(本大题共有8个小题,每小题3分,共24分)11.﹣的相反数是.【考点】相反数.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是﹣(﹣)=.故答案为:.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12.计算:(﹣6)÷(﹣)= 18 .【考点】有理数的除法.【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,依此即可求解.【解答】解:(﹣6)÷(﹣)=18.故答案为:18.【点评】此题考查了有理数的除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.13.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣9 .【考点】代数式求值.【分析】先依据3为奇数,选择所输入的代数式,然后进行计算即可.【解答】解:∵3为奇数,∴输出=﹣32=﹣9.故答案为:﹣9.【点评】本题主要考查的是求代数式的值,选择适当的计算程序是解题的关键.14.多项式5x4﹣3x3y2+2x2y+1的次数是 5 .【考点】多项式.【分析】根据多项式的次数进行填空即可.【解答】解:∵多项式5x4﹣3x3y2+2x2y+1的最高此项是﹣3x3y2,∴多项式5x4﹣3x3y2+2x2y+1的次数是5,故答案为5.【点评】本题考查了多项式,掌握多项式的次数是解题的关键.15.若x=﹣2是关于x的方程2x﹣5=3m的解,则m的值为﹣3 .【考点】一元一次方程的解.【分析】把x=﹣2代入方程,即可得出一个关于m的方程,求出方程的解即可.【解答】解:∵x=﹣2是关于x的方程2x﹣5=3m的解,∴﹣4﹣5=3m,解得:m=﹣3,故答案为:﹣3.【点评】本题考查了一元一次方程的解的应用,能得出一个关于m的方程是解此题的关键.16.某种篮球打7折后每个篮球售价为140元,若设该篮球每个原价为x元,则可建立方程模型为0.7x=140 .【考点】由实际问题抽象出一元一次方程.【分析】直接利用原价×=售价,进而得出答案.【解答】解:设该篮球每个原价为x元,则可建立方程模型为:0.7x=140.故答案为:0.7x=140.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出售价是解题关键.17.已知a2﹣2a=﹣1,则2016﹣3a2+6a= 2019 .【考点】代数式求值.【分析】等式a2﹣2a=﹣1的两边同时乘以﹣3可求得﹣3a2+6a的值,然后整体代入即可.【解答】解:∵a2﹣2a=﹣1,∴﹣3a2+6a=3.∴原式=2016+3=2019.故答案为:2019.【点评】本题主要考查的是求代数式的值,整体代入是解题的关键.18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9 .【考点】规律型:数字的变化类.【分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.【点评】此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.三、解答题(本大题共有7个小题,19、20、21题每小题8分,22、23、24题每小题8分,25题12分,共66分)19.计算:(﹣2)3+×[1﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:(﹣2)3+×[1﹣(﹣3)2]=(﹣8)+×[﹣8]=(﹣8)+(﹣2)=﹣10【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=5xy﹣2x2+xy+2x2+6=6xy+6,当x=1,y=﹣2时,原式=﹣12+6=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得3x﹣2(2x﹣1)=4,去括号,得3x﹣4x+2=4,移项,得3x﹣4x=4﹣2,合并同类项,得﹣x=2,两边除以﹣1,得x=﹣2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B,求得结果为x2﹣4x,请你帮助小马算出A+B的正确结果.【考点】整式的加减.【分析】根据题意可求出多项式B,然后代入A+B即可求出答案.【解答】解:由题意可知:A﹣B=x2﹣4x,∴B=A﹣(x2﹣4x)=x2﹣2x+1﹣(x2﹣4x)=2x+1,∴A+B=x2﹣2x+1+2x+1=x2+2.【点评】本题考查多项式的加减运算,要注意加减法是互逆运算.23.兴旺肉联厂的冷藏库能使冷藏食品每小时降温3℃,每开库一次,库内温度上升4℃,现有12℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式计算即可得到结果.【解答】解:根据题意,得:12﹣3×(2+3+4)+4×2=12﹣3×9+8=12﹣27+8=﹣7(℃)答:肉的温度是﹣7摄氏度.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.当x=2时,代数式x2+(t﹣1)x﹣3t的值是1,求当x=﹣2时,该代数式的值.【考点】代数式求值.【分析】把x=2代入代数式,得到关于t的一元一次方程,求出t的值,然后把t的值代入代数式,再把x=﹣2代入求出代数式的值.【解答】解:把x=2代入代数式得:4+(t﹣1)×2﹣3t=1,解得:t=1,把t=1代入得:x2﹣3.把x=﹣2代入得:(﹣2)2﹣3=1.∴当x=﹣2时,代数式的值为1.【点评】本题考查的是代数式求值,先把x=2代入代数式,求出字母系数t 的值,然后把x=﹣2和t 的值代入代数式可以求出代数式的值.四、探究题(本大题共12分)25.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±1(1)若y 2=+,求y 2的值(2)若y 3=++,则y 3的值为 ±1或±3 ;(3)由以上探究猜想,y 2016=+++…+共有 2017 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 4032 .【考点】规律型:数字的变化类;绝对值.【分析】(1)根据=±1, =±1,讨论计算即可.(2)方法同上.(3)探究规律后,利用规律解决问题即可.【解答】解:(1)∵=±1, =±1,∴y 2=+=±2或0.(2)∵=±1=±1, =±1,∴y 3=++=±1或±3.故答案为±1或±3,(3)由(1)(2)可知,y 1有两个值,y 2有三个值,y 3有四个值,…,由此规律可知,y 2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【点评】本题考查规律题、绝对值等知识,解题的关键是学会分类讨论的思想思考问题,属于中考常考题型.。

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.3的相反数是()A.﹣3B.﹣C.3D.2.下列各数中,比﹣2大的数是()A.﹣3B.0C.﹣2D.﹣2.13.下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数4.计算(﹣2)3所得结果是()A.﹣6B.6C.﹣8D.85.单项式﹣的系数与次数分别是()A.﹣2,2B.﹣2,3C.,3D.﹣,36.下列各式正确的是()A.﹣(﹣3)=﹣|﹣3|B.﹣(2)3=﹣2×3C.|﹣|>﹣100D.﹣24=(﹣2)4 7.计算(2﹣3)+(﹣1)的结果是()A.﹣2B.0C.1D.28.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米9.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元10.有理数a,b,c在数轴上对应的点如图所示,则下列式子①a>b;②|b+c|=b+c;③|a﹣c|=c ﹣a;④﹣b<c<﹣a.其中正确的是()A.①②③④B.①②④C.①③④D.②③④二、填空题(每小题3分,共15分)11.计算2×3+(﹣4)的结果为.12.“m与n的平方差”用式子表示为.13.把2x3﹣x+3x2﹣1按x的升幂排列为.14.比较大小:.15.若|x﹣2|+(y+3)2=0,则(x+y)2018=.三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算:直接写出结果10﹣(﹣8)=;(﹣32)﹣(+5)=;﹣7﹣5=;(+12)﹣(+21)=;=;=;﹣12﹣(﹣3)2=;=.17.(9分)画一条数轴,并把﹣4,﹣(﹣3.5),,0,…各数在数轴上表示出来,再用“<”把它们连接起来.18.(9分)计算:﹣23÷8﹣×(﹣2)2.19.(9分)计算:(﹣+﹣)×(﹣48)20.(9分)计算:﹣34÷(﹣27)﹣[(﹣2)×(﹣)+(﹣2)3].21.(10分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?22.(10分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.23.(11分)阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫*(加乘)运算.”然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:(+4)*(+2)=6;(﹣4)*(﹣3)=+7;…(﹣5)*(+3)=﹣8;(+6)*(﹣7)=﹣13;…(+8)*0=8;0*(﹣9)=9.…小亮看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”请你帮助小亮完成下列问题:(1)归纳*(加乘)运算的运算法则:两数进行*(加乘)运算,..特别地,0和任何数进行*(加乘)运算,或任何数和0进行*(加乘)运算,都得这个数的绝对值.(2)若有理数的运算顺序适合*(加乘)运算,请直接写出结果:①(﹣3)*(﹣5)=;②(+3)*(﹣5)=;③(﹣9)*(+3)*(﹣6)=;(3)试计算:[(﹣2)*(+3)]*[(﹣12)*0](括号的作用与它在有理数运算中的作用一致);参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2.1<﹣2<0,所以各数中,比﹣2大的数是0.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【分析】只需分a>0、a=0、a<0三种情况讨论,就可解决问题.【解答】解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.【点评】本题考查的是数的分类、绝对值的概念、相反数等知识,其中数可分为正数、0、负数,运用分类讨论的思想是解决本题的关键.4.【分析】本题考查有理数的乘方运算,(﹣2)3表示3个(﹣2)的乘积.【解答】解:(﹣2)3=(﹣2)×(﹣2)×(﹣2)=﹣8.故选:C.【点评】本题考查了乘方运算,负数的偶数次幂是正数,负数的奇数次幂仍为负数.5.【分析】根据单项式的概念即可求出答案.【解答】解:单项式的系数为﹣,次数为3;故选:D.【点评】本题考查单项式的概念,属于基础题型.6.【分析】先求出每个式子左、右两边的值,再判断即可.【解答】解:A、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;B、﹣(2)3=﹣8,﹣2×3=﹣6,故本选项错误;C、|﹣|=>﹣100,故本选项正确;D、﹣24=﹣16,(﹣2)4=16,故本选项错误;故选:C.【点评】本题考查了有理数的乘方,绝对值,相反数的应用,能正确求出各个式子的值是解此题的关键.7.【分析】根据有理数的加减混合运算的法则进行计算即可得解.【解答】解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2故选:A.【点评】本题主要考查了有理数的加减混合运算,是基础题比较简单.8.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.9.【分析】根据题意列出代数式即可.【解答】解:根据题意得:买2千克苹果和3千克香蕉共需(2a+3b)元,故选:C.【点评】此题考查了列代数式,弄清题意是解本题的关键.10.【分析】根据数轴可判断a<b<0<c,且|a|>|c|>|b|,于是可判断①是错误的,于是可排除答案A、B、C即可解决.【解答】解:由数轴可知a<b<0<c,∴①错误∴利用排除法即可排除答案A、B、C,∴只能选择答案D.实质上,∵b+c>0,∴|b+c|=b+c,故②正确;∵a﹣c<0,∴|a﹣c|=c﹣a,故③正确;∵根据数轴上互为相反数的对称关系,可判断﹣b<c<﹣a正确故选:D.【点评】本题考查的利用数轴进行数的大小比较,把握数轴上点的特征以及是解决本题的关键.二、填空题(每小题3分,共15分)11.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据题意利用两数平方后再相减得出即可.【解答】解:由题意可得:m2﹣n2.故答案为:m2﹣n2.【点评】此题主要考查了列代数式,正确把握关键术语是解题关键.13.【分析】根据多项式的次数的意义、x的指数的大小顺序排列即可.【解答】解:把2x3﹣x+3x2﹣1按x的升幂排列为﹣1﹣x+3x2+2x3,故答案为:﹣1﹣x+3x2+2x3【点评】本题主要考查对多项式的次数和排列顺序的理解,理解多项式的次数含义是解此题的关键.14.【分析】根据两个负数,绝对值大的其值反而小,进行比较即可.【解答】解:∵|﹣|>|﹣|,∴﹣<﹣.故答案为:<.【点评】本题考查了有理数的大小比较,属于基础题,掌握有理数的大小比较法则是关键.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出x,y的值进而得出答案.【解答】解:∵|x﹣2|+(y+3)2=0,∴x=2,y=﹣3,∴(x+y)2018=(﹣1)2018=1.故答案为:1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.三、解答题(8+9+9+9+9+10+10+11=75分)16.【分析】根据有理数的混合运算顺序和运算法则逐一计算可得.【解答】解:10﹣(﹣8)=10+8=18;(﹣32)﹣(+5)=(﹣32)+(﹣5)=﹣37;﹣7﹣5=﹣7+(﹣5)=﹣12;(+12)﹣(+21)=(+12)+(﹣21)=﹣9;=;=﹣×=﹣;﹣12﹣(﹣3)2=﹣1﹣9=﹣10;=2﹣2×3×3=2﹣18=﹣16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.17.【分析】先画出数轴,将﹣4,﹣(﹣3.5),,0在数轴上表示出来,再利用数轴从左到右的顺序用“<”把它们连接起来即可.【解答】解:在数轴上表示以上各数为:用“<”把它们连接为:﹣4<﹣2<0<﹣(﹣3.5)【点评】本题考查的是数轴与有理数的对应及有理数的大小比较,准确找到每个数对应数轴上的每一个点是解决本题的关键.18.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8÷8﹣×4=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.【分析】先利用乘法分配律展开,再依次计算乘法和加减可得.【解答】解:原式=﹣×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=10﹣20=﹣10.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律.20.【分析】首先计算乘方以及括号内的式子,然后进行加法计算即可.【解答】解:原式=﹣81÷(﹣27)﹣[﹣8],=3+,=.【点评】本题主要考查了有理数的混合运算,正确理解运算顺序是解决本题的关键.21.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格解答即可.【解答】解:(1)4﹣3﹣5+300=296.(2)21+8=29.(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(﹣3﹣5﹣8﹣6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.故答案为:296;29【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.22.【分析】(1)当x=850时,在甲商场没有优惠,在乙商场有优惠,故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+超过1000元的部分×90%;在乙商场的费用是:500+超过500元的部分×95%=0.95x+25;(3)把x=1700代入(2)中的代数式计算出结果进行比较即可.【解答】解:(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1640,∵1640>1630,∴选择甲商场合算.【点评】此题主要考查了根据实际问题列代数式,关键是正确理解题意,分清两个商场的收费方式.23.【分析】(1)根据已知算式得出法则:两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加;(2)依据所得法则计算可得;(3)先计算中括号内的加乘运算,再进一步计算可得.【解答】解(1)根据题意知,两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加,故答案为:同号得正、异号得负,并把绝对值相加.(2)①(﹣3)*(﹣5)=+(3+5)=8;②(+3)*(﹣5)=﹣(3+5)=﹣8;③(﹣9)*(+3)*(﹣6)=(﹣12)*(﹣6)=18;(3)原式=(﹣5)*(﹣12)=17.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及对新定义的理解与运用.。

2018-2019学年新人教版七年级数学(上册)期中测试卷及答案

2018-2019学年新人教版七年级数学(上册)期中测试卷及答案

2018-2019学年七年级(上)期中数学试卷一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.2.下列各对式子是同类项的是()A.4x2y与4y2x B.2abc与2abC.与﹣3a D.﹣x3y2与y2x33.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0 B.1 C.2 D.34.如图,图中共有()条线段.A.5 B.6 C.7 D.85.如果线段AB=6cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定6.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1 370 000千米,这个路程用科学记数法表示为()A.13.7×104千米B.13.7×105千米C.1.37×105千米D.1.37×106千米7.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2 C.3x2﹣y2﹣3z2 D.3x2﹣5y2+z28.下列计算正确的是()A.3a﹣a=2 B.﹣42=﹣16 C.3a+b=3ab D.﹣5﹣2=﹣39.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.14410.观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.50二、填空题11.代数式﹣的系数是,次数是.12.若5x2y m与4x n+m﹣1y的和是单项式,则代数式m2﹣n的值是.13.若|a+5|+(b﹣2)2=0,则(a+b)2010=.14.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.15.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)16.已知代数式x﹣2y的值是3,则代数式15﹣2x+4y的值是.三、解答题17.已知:如图,A,B,C在同一条线段上,M是线段AC的中点,N是线段BC 的中点,且AM=5cm,CN=3cm.求线段AB的长.18.计算(1)3x2﹣3(x2﹣2x+1)+4;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1);(3)(+﹣)×(﹣24)(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3.19.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.20.如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.21.先画简,再求值:(1)2a+3(a2﹣b)﹣2(2a2+a﹣b),其中a=,b=﹣2;(2)(m﹣5n+4mn)﹣2(2m﹣4n+6mn),其中m﹣n=4,mn=﹣3.22.已知a,b,c在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|的值.23.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?24.探究题.用棋子摆成的“T”字形图如图所示:(1)填写表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:四个方格形成的“田”字的,不能组成正方体,A错;出现“U”字的,不能组成正方体,B错;以横行上的方格从上往下看:C选项组成正方体.故选:C.2.下列各对式子是同类项的是()A.4x2y与4y2x B.2abc与2abC.与﹣3a D.﹣x3y2与y2x3【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】解:A、所含相同字母的指数不相同不是同类项.B、所含字母不相同不是同类项.C、所含相同字母的指数不相同不是同类项.D、所含字母相同,相同字母的指数也相同,是同类项.故选D.3.如图,下列说法,正确说法的个数是()①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A.0 B.1 C.2 D.3【考点】直线、射线、线段.【分析】根据直线、射线及线段的定义及特点结合图形即可解答.【解答】解:①直线AB和直线BA是同一条直线,正确;②射线AB与射线BA是同一条射线的顶点不同,故错误;③线段AB和线段BA是同一条线段,正确;④每一个点对应两个射线,图中有4条射线,故错误.综上可得①③正确.故选C.4.如图,图中共有()条线段.A.5 B.6 C.7 D.8【考点】直线、射线、线段.【分析】根据图形结合线段定义得出线段有AB、AD、AC、BD、DC、BC,即可得出答案.【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.5.如果线段AB=6cm,BC=3cm,那么A、C两点间的距离是()A.8cm B.2cm C.4cm D.不能确定【考点】两点间的距离.【分析】分两种情况:C在AB之间,有AC=AB﹣BC;C不在AB之间,有AC=AB+BC,分别得出A,C两点间的距离.【解答】解:C在AB之间,有AC=AB﹣BC=6﹣3=3cm;C不在AB之间,有AC=AB+BC=6+3=9cm.故A,C两点间的距离是大于等于3cm且小于等于9cm,故选D.6.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1 370 000千米,这个路程用科学记数法表示为()A.13.7×104千米B.13.7×105千米C.1.37×105千米D.1.37×106千米【考点】科学记数法—表示较大的数.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.所以1 370 000的n=6.【解答】解:1 370 000=1.37×106.故选D.7.已知多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C为()A.5x2﹣y2﹣z2B.3x2﹣5y2﹣z2 C.3x2﹣y2﹣3z2 D.3x2﹣5y2+z2【考点】整式的加减.【分析】由于A+B+C=0,则C=﹣A﹣B,代入A和B的多项式即可求得C.【解答】解:由于多项式A=x2+2y2﹣z2,B=﹣4x2+3y2+2z2且A+B+C=0,则C=﹣A﹣B=﹣(x2+2y2﹣z2)﹣(﹣4x2+3y2+2z2)=﹣x2﹣2y2+z2+4x2﹣3y2﹣2z2=3x2﹣5y2﹣z2.故选B.8.下列计算正确的是()A.3a﹣a=2 B.﹣42=﹣16 C.3a+b=3ab D.﹣5﹣2=﹣3【考点】合并同类项;有理数的混合运算.【分析】根据有理数运算法则以及合并同类项法则即可判断.【解答】解:(A)3a﹣a=2a,故A错误;(C)3a与b不是同类项,故C错误;(D)﹣5﹣2=﹣7,故D错误;故选(B)9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.10.观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.50【考点】规律型:图形的变化类.【分析】根据题意得出第n个图形中小黑点个数为1+4n个,据此可得.【解答】解:∵第1个图形中小黑点个数为1+4×1=5个,第2个图形中小黑点个数为1+4×2=9个,第3个图形中小黑点个数为1+4×3=13个,…∴第10个图形中小黑点个数为1+4×10=41个,故选:A.二、填空题11.代数式﹣的系数是﹣π,次数是4.【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:代数式﹣的系数是﹣π,次数是4.故答案为:﹣π,4.12.若5x2y m与4x n+m﹣1y的和是单项式,则代数式m2﹣n的值是﹣1.【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,由同类项的定义可先求得m=1和n+m﹣1=2的值,从而求出m2﹣n的值.【解答】解:由同类项的定义可知,m=1,n+m﹣1=2,解,得n=2,m=1,所以m2﹣n=12﹣2=﹣1.13.若|a+5|+(b﹣2)2=0,则(a+b)2010=32010.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣2=0,解得a=﹣5,b=2,所以,(a+b)2010=(﹣5+2)2010=32010.故答案为:32010.14.某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.【考点】由三视图判断几何体.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆及圆心可判断出此几何体为圆柱.【解答】解:由三视图可得,此几何体为圆柱,所以圆柱的体积为,故答案为:3π15.当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.(用n表示,n是正整数)【考点】规律型:图形的变化类.【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.【解答】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.故答案为:n2+4n.16.已知代数式x﹣2y的值是3,则代数式15﹣2x+4y的值是9.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知代数式的值代入计算即可求出值.【解答】解:∵x﹣2y=3,∴原式=15﹣2(x﹣2y)=15﹣6=9,故答案为:9三、解答题17.已知:如图,A,B,C在同一条线段上,M是线段AC的中点,N是线段BC 的中点,且AM=5cm,CN=3cm.求线段AB的长.【考点】两点间的距离.【分析】根据线段中点的概念分别求出MC、BN,结合图形计算即可.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴MC=AM=5cm,BN=CN=3cm,∴AB=AM+MC+CN+NB=16cm.18.计算(1)3x2﹣3(x2﹣2x+1)+4;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1);(3)(+﹣)×(﹣24)(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3.【考点】整式的加减;有理数的混合运算.【分析】(1)(2)去括号、合并同类项即可;(3)利用分配律计算即可;(4)先做括号的运算,再算乘方,然后算乘除,最后算加减.【解答】解:(1)3x2﹣3(x2﹣2x+1)+4=3x2﹣x2+6x﹣3+4=2x2+6x+1;(2)3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1)=3a2+4a2﹣8a﹣4﹣6a2+2a﹣2=a2﹣6a﹣6;(3)(+﹣)×(﹣24)=﹣12﹣20+14=﹣18;(4)﹣14﹣(1﹣0.5)× [10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣× [10﹣4]﹣(﹣1)=﹣1﹣1+1=﹣1.19.如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.【考点】比较线段的长短.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.20.如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【考点】合并同类项.【分析】根据合并后不含三次项,二次项,可得含三次项,二次项的系数为零,可得m,k的值,根据乘方的意义,可得答案.【解答】解:由3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,得﹣2+k=0,5+m=0.解得k=2,m=﹣5.m k=(﹣5)2=25.21.先画简,再求值:(1)2a+3(a2﹣b)﹣2(2a2+a﹣b),其中a=,b=﹣2;(2)(m﹣5n+4mn)﹣2(2m﹣4n+6mn),其中m﹣n=4,mn=﹣3.【考点】整式的加减—化简求值.【分析】(1)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=2a+3a2﹣3b﹣4a2﹣2a+b=﹣a2﹣2b,当a=,b=﹣2时,原式=﹣()2﹣2×(﹣2)=;(2)原式=m﹣5n+4mn﹣4m+8n﹣12mn=﹣3(m﹣n)﹣8mn,当m﹣n=4,mn=﹣3时,原式=﹣3×4﹣8×(﹣3)=12.22.已知a,b,c在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|的值.【考点】整式的加减—化简求值;数轴;绝对值.【分析】根据点的位置,可得a,b,c的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<0<b<c,|a|>|b|.|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|=﹣(a+b)﹣3(b+c)+2(b﹣a)﹣(c﹣b)=﹣a﹣b﹣3b﹣3c+2b﹣2a﹣c+b=﹣3a﹣b﹣4c.23.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【考点】代数式求值;列代数式.【分析】(1)方案①需付费为:西装总价钱+20条以外的领带的价钱,方案②需付费为:西装和领带的总价钱×90%;(2)把x=30代入(1)中的两个式子算出结果,比较即可.【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:×0.9=元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.24.探究题.用棋子摆成的“T”字形图如图所示:(1)填写表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)【考点】规律型:图形的变化类.【分析】根据图形中每个图案中棋子的个数,8﹣5=3、11﹣8=3、14﹣11=3可得出规律:每一个图形中棋子的个数比上一个图形中棋子的个数多3,所以第n个图案中,棋子的个数为5+3(n﹣1).【解答】解:由题意可得:摆成第1个“T”字需要5个棋子;摆成第2个“T”字需要8个棋子,8﹣5=3;摆成第3个“T”字需要11个棋子,11﹣8=3;摆成第4个“T”字需要14个棋子,14﹣11=3;…摆成第10个“T”字需要32个棋子;…由此可得出规律:摆成第n个“T”字需要5+3(n﹣1)=3n+2个棋子.(1)填写表:(2)第n个“T”字形图案中棋子的个数为:5+3(n﹣1)=3n+2个棋子;(3)第19个“T”字需要59个棋子,第20个T子需要62个棋子,故第1个图案与第20个图案共有5+62=67个棋子;第2个图案与第19个图案共有8+59=67个棋子;第3个图案第18个图案共有11+56=67个棋子,故前20个“T“字形图形案中棋子的总个数为9×67+32=635个棋子.2017年5月4日。

2018-2019学年度七年级上学期期中考试数学试题(含答案) - 副本

2018-2019学年度七年级上学期期中考试数学试题(含答案) - 副本

2018-2019学年度七年级上学期期中考试数学试题考试时间:100分钟 满分:120注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题3分,共42分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A . +4B . ﹣9C . ﹣4D . +9 2.的倒数是( )A . 2B . -2C .D .3.下列各式中运算正确的是( )A . 3a ﹣2a=1B . x 2+x 2=x 4C . 2a 2b ﹣3ab 2=﹣abD . 2x 3+3x 3=5x 34.如果a 与1互为相反数,则a+2等于( ) A . 2 B . -2 C . 1 D . -15.从阳江海陵岛试验区旅游外侨局获悉,去年7,8两月暑假期间海陵岛共接待游客3520000人次,旅游收人约24亿元,分别同比增长8.9%,8.8%,外省游客和团队游数量明显增加.其中3520000用科学记数法表示为( )A . 0.352×105B . 3.52×106C . 3.52×107D . 35.2×106 6.下列算式中,运算结果为负数的是( )A . ﹣(﹣2)B . |﹣2|C . ﹣22D . (﹣2)2 7.下列比较大小结果正确的是( )A . 43-->B . 22->C . 1123--> D .1165-->8.在代数式① ,② ,③ ,④,⑤2+57x y 中 单项式有( )A . 1个B . 2个C . 3个D . 4个 9.大于-3的负整数的个数是( ). A . 2 B . 3 C . 4 D . 无数个10.有理数 , 在数轴上的位置如图所示,下面结论正确的是( )A .B .C .D . 11.下列说法正确的是( )A . 一个数前面加上“-”号,这个数就是负数B . 零是最小的整数C . 若a 是正数,则-a 不一定是负数D . 零既不是正数也不是负数12. 的值与 的取值无关,则 的值为( )A .B .C .D . 13.下列各题去括号正确的是( ).A . (a -b)-(c +d)=a -b -c +dB . a -2(b -c)=a -2b -cC . (a -b)-(c +d)=a -b -c -dD . a -2(b -c)=a -2b -2c 14.若a 、b 、c 是三个非零有理数,则的值是( )A . 3B . ±3C . 3或1D . ±1或±3第II 卷(非选择题)二、填空题(每题4分,共16分)15.若a 是绝对值最小的数,b 是最大的负整数,则a ﹣b =_____. 16.若 -2mxy 和 3n x y 是同类项,则 m + n 的值是_______. 17.a 、b 互为相反数,c 、d 互为倒数,数轴上表示m 的点到原点的距离为6,则的值为____________________.18.一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点表示的数__________.三、解答题(共62分)19.计算:(每题5分,本题10分)(1)()23()|2 (3)5(5)5|-⨯÷----(2)3571 ()491236 --+÷20.(本题8分)先化简,再求值:3a2-7a+[3a-2(a2-2a-1)],其中a= -2. 21.(本题10分)“十一”黄金周期间,呀诺达风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(单位:万人)9月30日游客为2万.(1)10月2日游客的人数为多少万人?(2)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?22.(本题10分)同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求 = . (2)若25x -=,则 =(3)同理12x x ++-表示数轴上有理数x 所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得123x x ++-=,这样的整数是 (直接写答案).23.(本题12分)若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各 式的符号:a+b 0;c ﹣b 0 c ﹣a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a |24.(本题12分)已知:A=3a 2-4ab ,B=a 2+2ab . (1)求A -2B ;(2)若|2a +1|+(2-b )2=0,求A -2B 的值.答案 一选择1-5 B B D C B 6-10 C D B A A 11-14 D A C D 二填空15. 1 16. 417. 7或-5 18. -50 三解答19.(1) (2)523253551015⎛⎫=⨯-⨯- ⎪⎝⎭=+= 357364912357363636491227202126⎛⎫--+⨯ ⎪⎝⎭-⨯-⨯+⨯=--+=-== 20.解:原式=3a 2−7a+3a−2(a 2−2a−1)=3a 2−7a+3a−2a 2+4a+2=a 2+2,当a=−2时, 原式=(−2)2+2=621.(1)4.4万人;(2)10月3日人数最多;10月7日人数最少; 它们相差2.2万人;22.(1) 7 (2) -3或7 (3) -1,0,1,2 23. (1) , , .(2) =-(a+b)+(c-b)-(c-a)= -a-b+c-b-c+a=-2b24. 解:, ., ()2210,20a b +≥-≥ 解得:当时,。

校18—19学年上学期七年级期中考试数学试题(附答案)

校18—19学年上学期七年级期中考试数学试题(附答案)

2018年下学期期中考试试题七年级数学(问卷) 考试时量 120 分钟,满分120 分 命题教师:张艳一、选择题(每小题3分,共计24分)1、在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1 D 、-12、下列各式: -(-2); -|-2 |;22-;④22--)(,计算结果为负数的个数有( )A.1个B.2个C.3个D.4个3.下列各组中,不是同类项的是( )A. 130与31 B.y x 213与242yx C.b a 24.0与23.0ab D.n n y x 23+-与22+n n x y . 4.下列计算正确的是( )A. 2232x x -=B. 2a a a +=C.a a a =-23D.ab ab ab 23=-5.有理数a 、b 在数轴上的对应的位置如图所示,则( )6.下列说法正确的有( ):①0不是单项式; ②不是整式;a - ③;的系数是8-8-ππab ④是五次二项式;多项式xy y x -22 ⑤.92432的次数是b a A.1个 B.2个 C.3个 D.4个7.某学校食堂有煤m 吨,计划每天用煤n 吨,实际每天节约a 吨,节约后可多用的天数为( ) A.m m n a n -+ B. m m n a n -- C.m m n m a -+ D.m m n n a-- 8.设“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“”的个数为( )A .2B .3C .4D .5_______5,22=-+-+a y x x ax y x 不含二次项,则的多项式已知关于二、填空题(每题3分,共24分)9.比较大小(填“>、<或=”):﹣32________﹣53. 10.__________3121-32=b b a a y x y x 可以合并成一项,则与若. 11.地球上陆地面积约为149 000 000km 2,用科学记数法可以表示为______km 2. 12._________06)21==+--a x xa a 的一元一次方程,则是关于已知方程( 13.若有理数a 满足0100022=--a a ,则a a 42182-+的值为 .14. 15、;__________,4,52=+==y x y x y x 则>,且已知16.如图为手的示意图,在各个手指间标记字母A 、B 、C 、D.请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C …的方式)从A 方向开始数连续的正整数,1,2,3,4,…,当数到32时,对应的字母是 ______ ;当字母C 第2018次出现时,恰好数到的数是 ______ ;当字母C 第2n+1次出现时(n 为正整数),恰好数到的数是 __________(用含n 的代数式表示)三、解答题(每小题5分,共计10分) 17.计算:)20()17()3()8+----+-( 18.计算:)36()1259743-⨯--(四、解答题(每小题6分,共计12分)19. 计算:222)211(922)5.0(51493-⨯+⨯--÷-)1(2--=c d c y 20.解方程:7512-=+x x五、解答题(每小题7分,共计14分)21.先化简,再求值:()[]xy x y x xy y x y x 3422352222-----,其中3-=x ,2-=y ..22、若a 与b 互为相反数,c 与d 互为倒数,)3()2(4b a a x ---=,,求x-y 的值。

2018-2019学年七年级上学期期中考试数学试题(解析版 )

2018-2019学年七年级上学期期中考试数学试题(解析版 )

2018-2019学年七年级上学期期中考试数学试题一、选择题(每小题3分,共30分)1. 3-的倒数是( ) A. 3 B.13 C. 13- D. 3- 【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2. 在今年的十一黄金周期间,新昌十九峰景区共接待海内外游客约11.2万人次,则数据11.2万用科学计数法可表示为( )A. 11.2×104B. 11.2×105C. 1.12×104D. 1.12 ×105【答案】D【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 的值等于原数的整数位数减1,由此即可解答【详解】11.2万=112000= 1.12 ×105. 故选D.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.3.在,1.51, 27中无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】 根据无理数的定义解答即可.【详解】在,1.51,27是无理数,共2个. 故选A. 【点睛】本题考查了无理数的知识,熟知无理数的三种形式(①开方开不尽的数,②无限不循环小数,③含有π的数)是解决问题的关键.4. 5(7)-表示 ( )A. 5个-7相加B. 5个-7相乘C. 7个-5相加D. 7个-5相乘【答案】B【解析】【分析】根据乘方的定义解答即可.【详解】由乘方的定义可得, 5(7)-=(-7)×(-7)×(-7)×(-7)×(-7),故选B.【点睛】本题考查了乘方的定义,熟知乘方的定义是解决问题的关键.5. 某两位数,十位上的数字为a ,个位上的数字为b ,则这个两位数可表示为 ( )A. abB. a+bC. 10a+bD. 10b+a【答案】C【解析】【分析】根据两位数的表示方法即可解答.【详解】根据题意,这个两位数可表示为10a+b ,故选C .【点睛】本题考查了一个两位数的表示方法,即为十位上的数字×10+个位上的数字.6. 下列计算正确的是 ( )A. 224-=B. 3=- ±3 D. ()326-=-【答案】B【解析】【分析】根据乘方的定义及平方根的定义依次计算各项后即可解答.详解】选项A ,由 224-=- 可知选项A 错误;选项B ,由 3=- 可知选项B 正确;选项C ,3-=-可知选项D错误.可知选项C错误;选项D,由()328故选B.【点睛】本题考查了有理数乘方的运算及平方根的定义,熟知有理数乘方运算的运算法则及平方根的定义是解决问题的关键.7. 估计30的算术平方根在哪两个整数之间( )A. 2与3B. 3与4C. 4与5D. 5与6【答案】D【解析】【分析】根据题意及算术平方根定义即可解答.【详解】∵25<30<36,∴56,∴30的算术平方根的大小应在5~6之间,故选D.【点睛】本题考查了估算无理数的大小及算术平方根的定义,熟练掌握无理数的估算方法是解本题的关键.8. 如果五个有理数的积为负数,那么其中的负因数有()A. 1个B. 3个C. 5个D. 1个或3个或5个【答案】D【解析】【分析】根据有理数的乘法法则解答即可.【详解】∵五个有理数的积为负数,∴其中负因数的个数一定为奇数.∴负因数的个数只可能是1、3、5个.故选D.【点睛】本题考查了有理数的乘法法则:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.9. 16的平方根与27的立方根的相反数的差是()A. 1B. 7C. 7或-1D. 7或1【解析】【分析】根据题意列出算式,利用平方根及立方根定义化简,计算即可得到结果.【详解】根据题意得:(-=±4+3=-1或7.故选C.【点睛】本题考查了平方根与立方根的运算,熟练掌握运算法则是解本题的关键.10. 一个池塘的水浮莲,每天都在生长,且每天的面积是前一天的两倍.如果12天就能把整个池塘遮满,那么水浮莲长到遮住半个池塘需要()A. 6天B. 8天C. 10天D. 11天【答案】D【解析】【分析】根据12天就能把整个池塘遮满,每天的面积是前一天的两倍可知水浮莲长到遮住半个池塘需要11天. 【详解】设第一天池塘的面积为a,∴第二天的池塘面积为2a,第三天的池塘面积为22a,如此类推可知:第十二天的池塘面积为:211a,∴半个池塘面积为:211a÷2=210a∴水浮莲长到遮住半个池塘需要11天,故选D.【点睛】本题考查了有理数乘方的应用,弄懂题意是解决本题的关键.二、填空题:(每小题3分,共24分)11. 在“生活中的数学”知识竞赛中,如将加20分记为+20分,则扣10分记为______分.【答案】-10【解析】【分析】“加分”和“扣分”是两个具有相反意义的量,如果把加分记作“正”,扣分就记作“负”.【详解】加20分记为+20分,则扣10分记为-10分.考点:具有相反意义的量.12. 一个数的绝对值等于5,则这个数是__________.【答案】±5【解析】【分析】根据绝对值的定义解答即可.【详解】根据绝对值的定义得,绝对值等于5的数有2个,分别是+5和-5.故答案为+5或-5.【点睛】本题考查了绝对值的性质,熟练运用绝对值的性质及其定义是解决本题的关键.13. 近似数1.75万精确到______位.【答案】百【解析】【分析】【详解】解:根据近似数的精确度可得:近似数1.75万精确到百位.故答案是:百.14. 飞机在12000米高空飞行时,机舱外的温度为-56℃,机舱内的温度为26℃,则机舱外的温度比机舱内低_____________ ℃.【答案】82【解析】【分析】由题意可得算式26-(-56),根据有理数的减法法则计算即可求解.【详解】由题意得,26-(-56)=26+56=82.∴机舱外的温度比机舱内低82℃.故答案为82.【点睛】本题考查了有理数减法的应用,正确列出算式是解决本题的关键.15. 数轴上点A表示的数是-5 , 点B到点A的距离是3, 则点B所表示的数是________.【答案】-2或-8【解析】【分析】根据数轴上到一点距离相等的点有两个,一个点在已知点的左边,一个点在已知点的右边,由此即可求解.【详解】数轴上点A 所表示的数是-5,点B 到点A 的距离是3,则点B 所表示的数是-2或-8,故答案为-2和-8.【点睛】本题考查了数轴,解决本题利用了数轴上点的关系:数轴上到一点距离相等的点有两个. 16. 若x 、y 互为相反数,a 、b 互为倒数,则()132x y ab +- = __________ 【答案】-3【解析】【分析】由x 、y 互为相反数,a 、b 互为倒数可得x+y=0、ab=1,整体代入代数式求值即可.【详解】∵x 、y 互为相反数,a 、b 互为倒数∴x+y=0,ab=1,∴()132x y ab +-=-3. 故答案为-3.【点睛】本题考查了相反数的性质及倒数的定义,利用相反数的性质和倒数的定义得到x+y=0、ab=1是解决本题的关键.17. 如图,方格纸中的每一个小方格都是边长为1个单位长度的正方形,则图中阴影正方形的边长是_____.【答案】【解析】 试题分析:因为图中每个小正方形边长都为1,所以大正方形面积为16,阴影部分面积为大正方形面积的一半,即8,所以阴影部分的边长为8,也就是.考点:算术平方根.18. 某超市推出如下优惠方案:⑴ 一次性购物不超过100元不享受优惠; ⑵ 一次性购物超过100元但不超过300元一律9折; ⑶一次性购物超过300元一律8折.某人两次购物分别付款99元和252元,如果该人一次性购买以上两次相同的商品,则应付___________________元.(注:9折是指折后价格为原来的90%)【答案】312,340,303.2,331.2【解析】【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物有两种情况,也可能超过100,显然没有超过100,是按九折付款,也可能没有超过100,就是99元.第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【详解】该人一次性购物付款99元,据条件(1)、(2)知他有两种可能①享受九折优惠,则实际购物款为:99÷0.9=110元;②可能实际就是99元,没有优惠,故实际购物款为99元;另一次购物付款252元,有两种可能:①其一购物超过300元按八折计,则实际购物款为252÷0.8=315元.②其二购物超过100元但不超过300元按九折计算,则实际购物款为252÷0.9=280元.故该人两次购物总价值可能为:①99+315= 414元;②99+280=379元;③110+315=425元;④110+280=390元.若一次性购买这些商品应付款为:①414×0.8=331.2元;②379×0.8=303.2元;③425×0.8=340元;④390×0.8=312元. 故答案为:331.2或303.2或340或312元.【点睛】本题考查了打折销售的运用,分类讨论思想在数学实际问题中的运用,解答时分析清楚打折销售的几种情况是解答本题的关键.三.解答题(本大题共7小题,共46分)19. 在:227, 5π, 0, 3.14, 7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数 { …},分数 { …},负数 { …}.【答案】整数:0, 分数:227, 3.14; 负数: 【解析】【分析】根据整数、分数及负数的定义解答即可.【详解】整数 { 0, …},分数 { 227, 3.14 …},负数 { -5, 64- …}.【点睛】本题考查了有理数的分类,熟知整数、分数及负数的定义是解决本题的关键. 20. 在数轴上表示下列各数,并用“<”连接.3, 0, 231,8,(1)2--- . 【答案】见解析【解析】【分析】先化简,再把数分别在数轴上表示出来,按照在数轴上从左到右的顺序从小到大排列起来即可.【详解】()2382;1-=--=1,在数轴上表示出来,如图所示: ;用“<”号连接起来38-12-< 0<()21-<3. 【点睛】本题主要考查了利用数轴比较有理数的大小,利用数轴把复杂的问题转化为简单的问题,在解题中要注意利用数形结合的数学思想.21. 计算:(1)()()()()34119-+--+--(2)()2116031215⎛⎫--⨯- ⎪⎝⎭(3)()2243033⎛⎫-÷--⨯- ⎪⎝⎭(4)2323213()243⎡⎤--⨯-⨯+⎢⎥⎣⎦ 【答案】(1)-9;(2)-31;(3)-26;(4)132. 【解析】【分析】 (1)根据有理数的加减运算法则计算即可;(2)利用乘法的分配律计算即可;(3)根据有理数的运算法则,先算乘除,再算加减即可;(4)根据有理数的混合运算顺序依次计算即可.【详解】(1)原式=-3-4- 11+9=-9;(2)原式=-40+5+4=-31;(3)原式=34202-⨯-=-26;(4)原式=34313 12721(10)4942⎡⎤--⨯-⨯+=--⨯-=⎢⎥⎣⎦.【点睛】本题考查了有理数的混合运算,熟知有理数的运算法则及运算顺序是解决问题的关键.22. 甲、乙两品牌上衣的单价分别为x元、y元,在换季时,甲品牌上衣按4折(即原价的40%)销售,乙品牌上衣按6折销售.(1)用含x、y的代数式表示购买两种品牌上衣各一件共需多少元?(2)当x=150,y=24时,购买两种品牌上衣各一件共需多少元?【答案】(1)(0.4x+0.6y);(2)204.【解析】【分析】(1)由题意可知换季时一件甲品牌上衣的价格是0.4x元,一件乙品牌上衣的价格是0.6y元,由此即可求得换季时购买两种品牌上衣各一件的费用;(2)把所给的数值代入(1)中的代数式计算求值即可.【详解】(1)由题意可知,换季时一件甲品牌上衣的价格是0.4x元,一件乙品牌上衣的价格是0.6y元,∴买甲乙两品牌上衣各一件,一共需要(0.4x+0.6y)元;(2)把x=150,y=240代入(1)中的代数式得,原式=0.4×150+0.6×240=204(元)答:当x=150,y=24时,购买两种品牌上衣各一件共需204元.【点睛】本题考查了列代数式及求代数式的值,根据题意正确列出代数式是解决问题的关键.23. 已知一个圆柱体水池的底面半径为2.4 m , 它的高为3.6 m ,求这个圆柱体水池的体积.(π取3,结果精确到0.1m3)【答案】62.2【解析】【分析】根据圆柱的体积公式积的即可.【详解】由题意可得,232.43.662.20862.2()mπ⨯⨯=≈.答:这个圆柱体水池的体积约为66.2m 3.【点睛】本题考查了圆柱体积的计算,熟练运用圆柱的体积公式是解决问题的关键.24. 粮库6天内发生粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):26+,32-,15-,34+,38-,20-. (1)经过这6天,库里的粮食是增多还是减少了?增加(减少)了多少?(2)经过这6天,管理员结算时发现库里还存480吨粮,那么6天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?【答案】(1)库里的粮食减少了,减少了45吨;(2)6天前库里存粮525吨;(3)这6天要付825元装卸费.【解析】【分析】(1)将记录的数据直接相加得到结果,正数表示增加,负数表示减少;(2)根据(1)的结果进行计算;(3)将数据的绝对值相加,再乘以5可得答案.【详解】(1)()()()()26321534382045+-+-++-+-=-(吨),答:库里的粮食减少了,减少了45吨;(2)48045525+=(吨)答:6天前库里存粮525吨;(3)()26321534382051655825+-+-++-+-⨯=⨯=(元),答:这6天要付825元装卸费.【点睛】本题考查正数负数在实际生活中的应用,掌握正数与负数的实际意义是关键.25. 从2开始,连续偶数相加,它们的和的情况如下表:(1)如果n =8时,那么S 的值为 ;(2)根据表中的规律猜想:用n 的代数式表示S 的公式为S =2+4+6+8+…+2n = ;(3)由上题的规律计算100+102+104+…+2014+2016+2018的值(要有计算过程)【答案】(1)S=72; (2)S=n(n+1);(3)1016640.【解析】【分析】(1)根据表中的式子可得S与n之间的关系为:S=n(n+1),再把n=8代入计算即可;(2)根据(1)得出的规律直接求解即可;(3)根据(2)得出的规律先把2+3+4+6+…+2016+2018算出来,再减去2+4+6+…+98的值,即可得出答案.【详解】(1)∵第一个加数的个数是1时,S=2=1×(1+1),第二个加数的个数是2时,S=2+4=2×(2+1),第三个加数的个数是3时,S=2+4+6=3×(3+1),…则第n个加数的个数是n时,S=n(n+1);如果n=8时,那么S=8×(8+9)=72;故答案为72;(2)根据(1)得出的规律可得:2+4+6+…+2n=n(n+1);故答案为n(n+1);(3)原式=(2+4+6+…+2018)﹣(2+4+6+…+98)=1009×1010﹣49×50=1016640.【点睛】本题考查了数字的变化类,是一道找规律的题目,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题是解此类问题的基本思路.。

2018-2019学年七年级上期中考试数学试题及答案

2018-2019学年七年级上期中考试数学试题及答案

初一年级数学期中考试试卷一、选择题(本大题共6题,每小题3分,共18分.) 1.下列计算止确的是 ( )A .(-3)-(-5)=-8B .(-3)+(-5)=+8C .(-3)3=-9D .-32=-92. 地球上的海洋面积约为361000000km 2,用科学记数法可表示为 ( )A .3.61×106km 2B .3.61×107km 2C .0.361×108km 2D .3.61×109km 23. 下列运算结果正确的是( )A.x x x 23534=- B.mn mn 743=+C.022=+-a b b aD.999109107102⨯=⨯+⨯ 4.若32n x y 与5m x y -是同类项,则m ,n 的值为 ( ) A. m =3,n =-1 B .m =3,n=1 C .m =-3, n =-1 D .m =-3,n =1 5. 下列说法中正确的个数是(1)a 和0都是单项式 (2)多项式-3a 2b +7a 2b 2-2ab +l 的次数是3(3)单项式229xy -的系数为-2 (4)x 2+2xy -y 2可读作x 2、2xy 、-y 2的和A .l 个B .2个C .3个D .4个6.下表,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .66D .74二、填空题(本大题共8题,每小题3分,共24分) 7. 单项式32y x ⋅-π的系数是___ _次数是___________.0 2 84 2 4 6 224 6 8 448.如果22(1)0a b ++-=,那么代数式2013)(b a 的值是 . 9. 若4x 2my m +n 与-3x 6y 2是同类项,则m n = .10. 若代数式b a 3+的值为8-,则代数式()()b a b a +++24132的值为__________ 11. 1-2+3-4+5-6+…+2 011-2 012+2018的值是___ ___. 12. 当时,二次三项式的值等于18,那么当时,该二次三项式的值等于 .13. 若有理数在数轴上的位置如图所示,则化简:a c abc b ++--+=________.14. 观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的等式表示出来: .三、(本大题共2 题,每小题5分,共10分.解答时应写出必要的计算过程) 15. 8-23÷(-4)×(-7+5); 16. 412×[-36×(-13)6-0.8]÷(-145)2四.(本大题共2题,每小题6分,共12分.解答时应写出必要的计算过程.) 17. -3x +2y -5x -7y 18. 5(3a 2b -ab 2+c )-4(2c -ab 2+3a 2b )五.化简或求值(本大题共2题,每小题8分,共16分.) 19. -a 2-12[3b 2-2 (a 2-b 2)+6],其中a =-2,b =3.20. 3x 3-[x 3+(6x 2-7x)]-2(x 3-3x 2-4x),其中x =-1.六.(本大题共2题,每小题9分,共18分.) 21. 已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1(1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值.0c b acba (1)(2)(3)22. 某厂家生产的产品出厂时可以提供如图所示的三种方式进行打包.(其中a b c >>) (1)请用代数式分别表示出三种方式的绳子长度123,,l l l ;(2)若出厂时只能采用一种方式统一进行打包,那么 最节省打包所费绳子的方式为________.(填序号)七.(本题共2小题,23题10分,24题12分,共22分) 23. 问题:你能比较两个数20122018与20182012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较n n +1和(n +1)n的大小(即是自然数).然后,我们分析n =1,n =2,n =3…这些简单情形入手,从而发现规律,经过归纳,才想出结论. (1)通过计算,比较下列各组中两个数的大小①12_______24②23_______32③34_______43④45_______54⑤56_______65⑥67_______76(2)从第(1)题的结果经过归纳,可以猜想nn +1和(n +1)n的大小关系;(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小: 20122018_______20182012.24. (1)观察一列数12343,9,27,81,,a a a a ====发现从第二项开始,每一项与前一项之比是一个常数,这个常数是_______;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么6a =__________,n a =__________;(可用幂的形式表示) (2)如果想要求231012222+++++的值,可令23101012222S =+++++①将①式两边同乘以2,得_________________________②,由②减去①式,得10S =_______.(3)若(1)中数列共有20项,设2020392781S a =+++++,请利用上述规律和方法计算20S 的值. (4)设一列数111111,,,,,2482n - 的和为n S ,则n S 的值为__________.参考答案22.(1)c b a l 6241++= c b a l 6422++= c b a l 4443++= (2)2l 23.< < > > > > 当n=1或n=2 时n n+1____<___(n+1)n当n>=3 时 且n 为自然数时 n n+1___>__(n+1)n20122018___>____20182012.24. (1)3 63 n3 (2)11321022222++++= S 1211-(3))33(212120-=S (4)1212--n 或n 222-。

2018-2019学年新人教版七年级上册数学期中考试试卷及答案

2018-2019学年新人教版七年级上册数学期中考试试卷及答案

2018—2019学年上学期期中考试七年级数学试卷(本试题满分120分,考试时间120分钟)题号 一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1. 下面几何体的截面图可能是圆的是 ( )A. 正方体B. 圆锥C. 长方体D. 棱柱 2. 相反数是最大负整数的数是 ( ) A. 1B. -1C. 0D.23. 下列图形经过折叠不能围成棱柱的是( )A B C D 4. 已知15a -=,则a 的值为( )A.6B.-4C.-6或4D.6或-4 5. 数轴上与-3的距离等于2个单位的点表示的数是 ( ) A.0和2 B. -1和-3 C. -1和-5 D. -2和26. 有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是( ) A. 3 B.12-C.23D. -3 二、填空题(本大题共6小题,每小题3分,共18分.) 7. 比较大小:0________-2 (填“>”“<”或“=”) 8. 代数式2x -系数是________,代数式c b a 323π-的系数是__ _,次数是_______.9. 某风力发电站每天能发电约74850000度,该数据用科学记数法表示 为 度.10. a 米长的小棒,第1次截去一半,第二次截去剩下的一半,如此截下去,第4次后剩下的小棒长_______________米.11.如果图中的平面展开图折叠成正方体后,相对面上的两个数互为相反数,则x y + =__________.11题图 12题图12.观察如图中的数列排放顺序,根据其规律猜想: 第10行第8个数应该是三、解答题(本大题共5小题,每小题6分,共30分) 13.计算或化简:(1)3116(2)(4)8÷-+⨯-(2)22(212)(1)a a a a -+--+14. 画出数轴,把下列各数分别在数轴上表示出来,并用“<”连接起来:21-,2, 0, 3-,0.5-,)214(--,22-15. 已知 ()2230x x y -++-=,求代数式()()x y x y +- 的值.16.探索规律:按照如图方式摆放餐桌和椅子.完成问题:1 2 3(1)填写下表:图形编号 1 2 3 4 … 10 … 100 图中座位总数610……402(2)照这样的方式摆下去,写出摆第n 个图形座位的总数; 解:第n 个图形共有座位: 个 17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.四、(本大题共3小题,每小题8分,共24分)18.某校分为初中部和高中部,做广播操时,两部分别站两个不同的操场上进行,站队时,做到了整齐化一,高中部排成的是一个规范的长方形方阵,每排40人,站有(2)a b 排;初中部站的方阵更特别,排数和每排人数都是5a .⑴试求该校初中部比高中部多多少学生(用含 a b 、 的代数式表示)? ⑵当a =10,b =2时,试求该学校共有多少学生?19.张强在南城某房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题: (1)用含x 的代数式表示这所住宅的总面积.• • • • • •(2)若铺1平方米地砖平均费用120元,求当x =6时,这套住宅铺地砖总费用为多少元?20.如图用一边长为16 cm 的正方形纸片,在其四个角上剪掉四个边长相同的小正方形可做成无盖的长方体盒子.若剪掉的小正方形的边长为x cm ,做成的无盖长方体盒子的容积为V 3cm .⑴ 要使做成的长方体盒子底面周长为48 cm ,那么剪掉的正方形边长为_ cm ;⑵ 用含x 的式子表示V = ;⑶填表:观察表格中的结果,你能得到哪些信息?(写出一条)五、(本大题共2小题,每小题9分,共18分)21.先化简再求值:已知222244,7A x xy y B x xy y =--=-++ ①求A ﹣3B ; ②若A=﹣1,B= 12时,求226615x xy y -- 的值.x (cm ) 1 2 3 4 5 V (3cm )22.某城市按以下规定收取每月煤气费:用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.例如,甲用户5月份用煤气80立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72(元).(1)设甲用户某月用煤气x 立方米,用含x 的代数式表示甲用户该月的煤气费. 若60x ≤,则费用表示为 ;若60x >,则费用表示为 . (2)若甲用户10月份用去煤气90立方米,求甲用户10月份的煤气费是多少元?六、(本大题共12分)23.在学习了有理数的加减法之后,老师讲解了例题-1+2-3+4+……-2017+2018的计算思路为:将两个加数组合在一起作为一组;其和为1,共有1009组,所以结果为+1009.根据这个思路学生改编了下列几题:(1)计算:① 1-2+3-4+……+2017-2018=② 1-3+5-7+……+2017-2019=(2)蚂蚁在数轴的原点O 处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位……按照这个规律,第1024次爬行后蚂蚁在数轴什么位置?参考答案 1-6、BABCCC 7、> 8、-269、7.485×107 10、11、-412、5313、14、15、16、17、18、19、20、21、22、23、。

2018-2019学年七年级(上)期中数学试卷

2018-2019学年七年级(上)期中数学试卷

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作5+步,那么向南走7步记作( ) A .7+步B .7-步C .12+步D .2-步2.(3分)2018的相反数是( ) A .2018-B .2018C .12018-D .120183.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .62.1810⨯B .52.1810⨯C .621.810⨯D .521.810⨯4.(3分)单项式253x y 的系数与次数分别是( )A .53和3B .5-和3C .53和2D .5-和25.(3分)下列去括号正确的是( )A .()a b c a b c --=--B .22[()]x x y x x y ---+=-+C .2()2m p q m p q --=-+D .(2)2a b c d a b c d +--=+-+6.(3分)下列各数|2|-,2(2)--,(2)--,3(2)-中,负数的个数有( ) A .1个B .2个C .3个D .4个7.(3分)如果0a b c ++=,且||||||a b c >>,则下列说法中可能成立的是( ) A .a 、b 为正数,c 为负数 B .a 、c 为正数,b 为负数 C .b 、c 为正数,a 为负数 D .a 、c 为负数,b 为正数 8.(3分)若0a <,0b >,化简|||3||2|a b a b +--得( )A .bB .52b a -C .5b -D .2a b +9.(3分)如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的2019-所对应的点与圆周上字母( )所对应的点重合.A .AB .BC .CD .D10.(3分)已知a ,b ,c 为非零的实数,则||||||||a ab ac bca ab ac bc +++的可能值的个数为( )A .4B .5C .6D .711.(3分)把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为)n 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A .4mB .2()m n +C .4nD .4()m n - 12.(3分)适合|25||23|8a a ++-=的整数a 的值有( ) A .4个B .5个C .7个D .9个二、填空题(每题3分,共18分)13.(3分)近似数2.018精确到百分位结果是 . 14.(3分)化简95a a -的结果是 .15.(3分)若多项式2237x x ++的值为10,则多项式2697x x +-的值为 . 16.(3分)已知a ,b 为常数,且三个单项式24xy ,b axy ,5xy -相加得到的和仍然是单项式.那么a b +的值可以是 .(写出所有可能值)17.(3分)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将2(101),2(1011)换算成十进制数分别是212(101)120214015=⨯+⨯+=++=,3212(1011)12021211l =⨯+⨯+⨯+=.按此方式,将二进制2(10110)换算成十进制数的结果是 .18.(3分)现有七个数1-,2-,2-,4-,4-,8-,8-将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m ,如图2给出了一种填法,此时64m =,在所有的填法中,m 的最大值为 .三、解答题(共66分) 19.(16分)计算下列各题 (1)10(19)(5)167--+-- (2)411(1)()6232--⨯-⨯÷(3)311183(83)18382427⨯-÷⨯(4)71(36)9972-⨯20.(12分)先化简,再求值:(1)2211312()()2323x x y x y --+-+,其中2x =-,23y =(2)222215(3)(34)2a b ac a c a b ac a c ---+-,其中1a =-,2b =,2c =-.21.(8分)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个))根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少? 22.(8分)观察下面三行数:(2)直接写出r ,s ,t 的值;(3)设x ,y ,z 分别为第①②③行的第2019个数,求6x y z ++的值.23.(8分)有若干个数,第一个数记为1a ,第2个数记为2a ,第3个数记为3a ,⋯⋯,第n 个数记为n a ,若112a =-,从第二个数起,每一个数都是“1”与它前面那个数的差的倒数.(1)直接写出2a ,3a ,4a 的值;(2)根据以上结果,计算12320172018a a a a a +++⋯++.24.(8分)已知整式21P x x =+-,21Q x x =-+,21R x x =-++,若一个次数不高于二次的整式可以表示为aP bQ cR ++(其中a ,b ,c 为常数).则可以进行如下分类 ①若0a ≠,0b c ==,则称该整式为P 类整式; ②若0a ≠,0b ≠,0c =,则称该整式为PQ 类整式; ③若0a ≠,0b ≠,0c ≠.则称该整式为PQR 类整式;(1)模仿上面的分类方式,请给出R 类整式和QR 类整式的定义,若 ,则称该整式为“R 类整式”,若 ,则称该整式为“QR 类整式”;(2)说明整式255-+为“PQ类整式;x x(3)21x x++是哪一类整式?说明理由.25.(6分)一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是38335726-=,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.2018-2019学年湖北省武汉市七年级(上)期中数学试卷一、选择题(每小题3分,共36分) 【解答】解:向北走5步记作5+步, ∴向南走7步记作7-步. 故选:B .【解答】解:2018的相反数是:2018-. 故选:A .【解答】解:将数据2180000用科学记数法表示为62.1810⨯. 故选:A .【解答】解:单项式253x y 的系数与次数分别是53,3,故选:A .【解答】解:A 、()a b c a b c --=-+,原式计算错误, 故本选项错误;B 、22[()]x x y x x y ---+=-+,原式计算正确, 故本选项正确;C 、2()22m p q m p q --=-+,原式计算错误, 故本选项错误;D 、(2)2a b c d a b c d +--=+--,原式计算错误, 故本选项错误; 故选:B .【解答】解:|2|2-=,2(2)4--=-, (2)2--=,3(2)8-=-,4-,8-是负数, ∴负数有2个. 故选:B .【解答】解:0a b c ++=,且||||||a b c >>, ||||||a b c =+, 故选:C .【解答】解:0a <,0b >, 20a b ∴-<, |||3||2|a b a b ∴+-- 32a b a b =-++- b =.故选:A .【解答】解:1(2019)2020--=, 20204505÷=(周),所以应该与字母A 所对应的点重合. 故选:A .【解答】解:①a 、b 、c 三个数都是正数时,0a >,0ab >,0ac >,0bc >, 原式1111=+++ 4=;②a 、b 、c 中有两个正数时,设为0a >,0b >,0c <,则0ab >,0ac <,0bc <, 原式1111=+--0=;设为0a >,0b <,0c >,则0ab <,0ac >,0bc <,原式1111=-+-0=;设为0a <,0b >,0c >,则0ab <,0ac <,0bc >, 原式1111=---+2=-;③a 、b 、c 有一个正数时,设为0a >,0b <,0c <, 则0ab <,0ac <,0bc >,原式1111=--+0=;设为0a <,0b >,0c <,则0ab <,0ac >,0bc <, 原式1111=--+-2=-;设为0a <,0b <,0c >, 则0ab >,0ac <,0bc <, 原式1111=-+--2=-;④a 、b 、c 三个数都是负数时,即0a <,0b <,0c <, 则0ab >,0ac >,0bc >, 原式1111=-+++ 2=.综上所述,||||||||a ab ac bca ab ac bc +++的可能值的个数为4. 故选:A .【解答】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y . GF DH y ∴==,AG CD x ==, HE CD n +=, x y n ∴+=,长方形ABCD 的长为:()AD m DH m y m n x m n x =-=-=--=-+, 宽为:CD x =,∴长方形ABCD 的周长为:2()2(2)224AD CD m n x m n x +=-+=-+ 长方形GHEF 的长为:GH m AG m x =-=-, 宽为:HE y =,∴长方形GHEF 的周长为:2()2()222GH HE m x y m x y +=-+=-+,∴分割后的两个阴影长方形的周长和为:224222422()4m n x m x y m n x y m -++-+=-++=, 故选:A .【解答】解:如图,由此可得2a 为4-,2-,0,2的时候a 取得整数,共四个值. 故选:A .二、填空题(每题3分,共18分)【解答】解:近似数2.018精确到百分位结果为2.02. 故答案为2.02.【解答】解:原式4a =, 故答案为:4a .【解答】解:由题意得:2233x x += 226973(23)72x x x x +-=+-=. 【解答】解:(1)若axyb 与5xy -为同类项, 1b ∴=,和为单项式, ∴51a b =⎧⎨=⎩,6a b ∴+=;(2)若24xy 与b axy 为同类项,2b ∴=,240b axy xy +=, 4a ∴=-, ∴42a b =-⎧⎨=⎩,2a b ∴+=-.综上可得a b +的可能值为2-或6.故答案为:2-或6.【解答】解:根据题意得:432120212120164222⨯+⨯+⨯+⨯+=++=, 故答案为:22【解答】解:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以8-,8-必须放在被乘两次的位置.与8-,8-同圆的只能为1-,2-,其中2-放在中心位置,如图(8)(8)(1)(2)128m ∴=-⨯-⨯-⨯-= 三、解答题(共66分) 【解答】解:(1)原式10195167=+-- 29172=- 143=-;(2)原式111()6232=-⨯-⨯÷116()232=-⨯-÷11(66)232=-⨯+⨯÷(23)2=-+÷ 12=; (3)原式272525258()8382427=⨯-÷⨯272525248()8382527=⨯-⨯⨯ 252524()3825=-⨯ 25242524325825=⨯-⨯835=-=;(4)71(36)9972-⨯136(100)72=-⨯-136002=-+135992=-.【解答】解:(1)原式22123122323x x y x y =-+-+ 23x y =-+,把2x =-,23y =代入得: 原式223(2)()3=-⨯-+469=; (2)原式2222153342a b ac a c a b ac a c =--++-223272a b ac a c =--, 把1a =-,2b =,2c =-代入得:原式223(1)22(1)(2)7(1)(2)2=⨯-⨯-⨯-⨯--⨯-⨯-3414=-+ 13=.【解答】解:(1)前三天生产的辆数是1003(635)298⨯+--=(个). 答案是:298;(2)14(9)23--=(个), 故答案是23;(3)这一周多生产的总辆数是6351181496--+-+-=(个). 5070065635390⨯+⨯=(元).答:该厂工人这一周的工资是35390元. 【解答】解:(1)由表可得, 第一行第n 个数是:(1)3n n -⨯,第二行第n 个数是:(1)33n n-⨯-,第三行第n 个数是:(1)31n n -⨯+,33(1)327a ∴=-⨯=-,44(1)3273b -⨯==--,33(1)3126c =-⨯+=-,即27a =-,27b =-,26c =-; (2)由表可得,第一行第n 个数是:(1)3n n -⨯,第二行第n 个数是:(1)33n n-⨯-,第三行第n 个数是:(1)31n n -⨯+,则(1)3nnr =-⨯,(1)33n ns -⨯=-,(1)31n n t =-⨯+;(3)当2019n =时,201920192019(1)33x =-⨯=-,201920192018(1)333y -⨯==-,201920192019(1)3131z =-⨯+=-+, 6x y z ∴++201920182019363(31)=-+⨯+-+20192019201932331=-+⨯-+ 1=.【解答】解:(1)112a =-,从第二个数起,每一个数都是“1”与它前面那个数的差的倒数,212131()2a ∴==--,313213a ==-,411132a ==--.(2)112a =-,223a =,33a =,412a =-,⋯⋯,∴这列数每3个数为一周期循环, 201836722÷=⋯,1232017201812121672(3)212823232a a a a a ∴+++⋯++=⨯-++-+=.【解答】解:(1)若0a b ==,0c ≠,则称该整式为“R 类整式”. 若0a =,0b ≠,0c ≠,则称该整式为“QR 类整式”. 故答案是:0a b ==,0c ≠;0a =,0b ≠,0c ≠; (2)因为22232(1)3(1)P Q x x x x -+=-+-+-- 22222233355x x x x x x =--++-+=-+.即25523x x P Q -+=-+,所以255x x -+是“PQ 类整式”(3)22221(1)(1)(1)x x x x x x x x ++=+-+-++-++, ∴该整式为PQR 类整式. 【解答】(1)解:3253不是“十三数”,254514是“十三数”,理由如下: 3253250-=-,不能被13整除, 3253∴不是“十三数”,254514260-=-,2601320-÷=- 254514∴是“十三数”;(2)①证明:设任意一个四位“间同数”为(19abab a 剟,09b 剟,a 、b 为整数), 100010010101010110101101101abab a b a b a ba b ++++===+, a 、b 为整数, 10a b ∴+是整数,即任意一个四位“间同数”能被101整除;②解:解法一:由①可知:这个四位“间同数”表示为101(10)a b +,它是13的倍数, 19a 剟,09b 剟,a 、b 为整数,∴当9a =,1b =时,abab 最大为9191,第11页(共11页)当1a =,3b =时,abab 最小为1313,919113137878∴-=;解法二:设任意一个四位“间同数”为(19abab a 剟,09b 剟,a 、b 为整数), 10191313bab a b a -+=, 这个四位自然数是“十三数”,1019b a ∴+是13的倍数,当1a =,3b =时,10193039312b a +=+=,3121324÷=,此时这个四位“间同数”为:1313; 当2a =,6b =时,101960618624b a +=+=,6241348÷=,此时这个四位“间同数”为:2626;当3a =,9b =时,101990927736b a +=+=,9361372÷=,此时这个四位“间同数”为:3939;当5a =,2b =时,101920245247b a +=+=,2471319÷=,此时这个四位“间同数”为:5252;当6a =,5b =时,101950554559b a +=+=,5591343÷=,此时这个四位“间同数”为:6565;当7a =,8b =时,101980863871b a +=+=,8711367÷=,此时这个四位“间同数”为:7878; 当9a =,1b =时,101910181182b a +=+=,1821314÷=,此时这个四位“间同数”为:9191; 综上可知:这个四位“间同数”最大为9191,最小为1313, 919113137878-=,则满足条件的所有四位数的最大值与最小值之差为7878.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年七年级(上)期中数学试卷
一、选择题(每小题3分,共30分)
1.﹣2017的倒数是()
A.B.﹣C.2017 D.﹣2017
2.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4 B.﹣4 C.±4 D.±8
3.若|x|=4,|y|=7,且x+y>0,那么x﹣y的值是()
A.3或11 B.3或﹣11 C.﹣3或11 D.﹣3或﹣11
4.两个数的和为正数,那么这两个数是()
A.正数 B.负数
C.至少有一个为正数 D.一正一负
5.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()
A.0.21×108 B.2.1×106 C.2.1×107 D.21×106
6.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数有()
A.3个B.4个C.5个D.6个
7.多项式的各项分别是()
A.B.C. D.
8.下列运算正确的是()
A.﹣a2b﹣2a2b=﹣3a2b B.2a﹣a=2a
C.3a2+2a2=5a4 D.2a+b=2ab
9.一个多项式与x2﹣3x+2的和是3x﹣1,则这个多项式为()
A.﹣x2+6x+1 B.﹣x2+1 C.﹣x2+6x﹣3 D.﹣x2﹣6x+1
10.x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为()
A.0 B.﹣1 C.﹣2 D.2
二、填空题(每小题3分,共15分)
11.若a、b互为倒数,则(﹣ab)2017=.
12.在3,﹣4,6,﹣7这四个数中,任取两个数相乘,所得的积最大的是.
13.一列单项式﹣x2,3x3,﹣5x4,7x5.…,按此规律排列,则第9个单项式是.
14.单项式﹣2xy5的系数是m,次数是n,则m﹣n=.
15.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是cm.(用m或n的式子表示).
三、解答题(本大题共8个小题,满分75分)
16.(4分)把下列各数填入相应的大括号内:
﹣,,﹣0.01,2,7,1,﹣(﹣4),+(﹣1)
正数集合{…}
负数集合{…}
非负整数集合{…}
分数集合{…}.
17.(12分)计算
(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);
(2)﹣0.5﹣(﹣3)+2.75﹣7;
(3)(+﹣)×(﹣36);
(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|
18.(10分)在数轴上有三个点A,B,C,分别表示﹣3,0,2.按下列要求回答:
(1)点A向右移动6个单位后,三个点表示的数谁最大?
(2)点C向左移动3个单位后,这时点B表示的数比点C表示的数大多少?
(3)怎样移动点A,B,C中的两个点,才能使三个点所表示的数相同?有几种办法?分别写出来.19.(7分)若有理数m、n在数轴上的位置如图所示,请化简|m+n|+|m﹣n|﹣|n|.
20.(12分)先化简,再求值.
(1)1﹣2(x﹣y3)+(﹣x+y5),其中x=﹣,y=﹣1.
(2)﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.
21.(10分)出租车司机老李某天上午营运全是在东西走向的胜利路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:公里)如下:
+8,+4,﹣10,﹣8,+6,﹣2,﹣5,﹣7,+4,+6,﹣8,﹣9,
(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?
(2)将最后一名乘客送到目的地时,老王距上午出发点多远?
(3)若汽车耗油量为0.4升/公里,这天上午老王耗油多少升?
22.(10分)已知|a﹣2|+(b+1)2=0,求5ab2﹣|2a2b﹣(4ab2﹣2a2b)|的值.
23.(10分)已知多项式A,B,计算A﹣B.某同学做此题时误将A﹣B看成了A+B,求得其结果为A+B=3m2﹣2m﹣5,若B=2m2﹣3m﹣2,请你帮助他求得正确答案.
参考答案
一、选择题(每小题3分,共30分)
1.B;2.C;3.D;4.C;5.B;6.B;7.B;8.A;9.C;10.D;。

相关文档
最新文档