八年级数学(下)期中试题(三)2018. -

合集下载

陕西省西安市高新一中2018-2019学年八年级(下)期中数学试卷解析版

陕西省西安市高新一中2018-2019学年八年级(下)期中数学试卷解析版

2018-2019 学年陕西省西安市高新一中八年级(下)期中数学试卷.选择题(共10小题)4 .在平行四边形 ABCD 中,/ A: / B: / C=1: 3: 1,则/ D 的度数是()A. 45°B, 60°C. 120°D, 135°5 .如果把分式 等中的x 、y 的值都扩大5倍,那么分式的值()B.扩大5倍 D,以上都不正确A (0, 0)、B (4, 0)、D (1, 2)为平行四边形的三个顶7.如图,在^ ABC 中,点D 是边BC 上的点(与 B, C 两点不重合)DF // AB,分别交AB, AC 于E, F 两点,下列条件能判定四边形 AEDF 是菱形的是( )2. A. 1卜面四个图形分别是绿色食品、 C. 3 D. 4节水、节能和回收标志,在这四个标志中,是中心对称D.B. (a+b) (a — b) =a 2 - b 2C. x2 —4= ( x+2) (x —2)D. (a+b) 2=a 2+b 2+2abA .不变C.缩小为原来的一倍 5 A. (2, 5) B. (4, 2) C. (5, 2)D. (6, 2),过点D 作DE // AC, 1.下列式子: —,—自一中,是分式的有( 51+xB. 2图形的是(A.x2-x- 2 = x(x- 1) - 2 6.如图,在平面直角坐标系中,点,则第四个顶点 C 的坐标是(C. 4D. 510 .如图,平行四边形 ABCD 的对角线AC, BD 相交于点O, AE 平分/ BAD,分别交BC, BD 于点 E, P,连接 OE, / ADC = 60° , AB=yBC=2,下列结论: ① /CAD =30° ; ②BD = 2\";③S 四边形ABCD =AB?AC;④OE=^AD;⑤$。

0£=^.其中正确的个数B. AD 为BC 边上的中线C. AD= BDD. AD 平分/ BAC8.某工程队准备修建一条长1200米的道路, 由于采用新的施工方式, 实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路 x 米,则根据题意可列方程为()A -=2「30_L2OO__Q(1+20%纭 乂9.如图,△ ABC 是等边三角形,点 AC,若/\ ABC 的周长为12,则D1200 LL200 oB..、 - ------ -- 2(1-20%)K xn 1200.__1200o k (1-2。

江苏省徐州市2018-2019学年八年级数学下册期中试题

江苏省徐州市2018-2019学年八年级数学下册期中试题

江苏省徐州市铜山区2018-2019学年八年级数学下学期期中试题2018~2018学年度第二学期期中考试八年级数学试题参考答案及评分意见2018.4.12说明:1.本意见对每题给出了一种或几种解法供参考,如果考生的解法与本意见不同,可根据试题的主要考查内容比照本意见制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端括号内所注分数,表示考生正确做到这一步应得的分段分数.4.只给整数分数.一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9.①③10.167.5---170.5 11.226a b12.④③②①13.5 14.1615.12 16. ③ 17. 5 18.2三、解答题(第19-25题每题8分,第26题每题10分,共66分) 19. (本题8分)(1)解:原式=()()22a b a b b a ba b-++++ (2)解:原式=()()()12122a a a a a a +--+- =22a b a b++ ---------4分 =112a a +-+=12a +--------8分 20. (本题8分)(1)解:去分母得:2x=3(x-2) (2)解:去分母得:()()222216x x --+=去括号得:2x=3x-6 去括号得:2x -4x+4-(2x +4x+4)=16移项得:2x-3x=-6 移项合并得:-8x=16 合并同类项得:x=6 系数化为1得:x=-2 检验:当x=6时,x(x-2)=24≠0, 检验:当x=-2时,(x+2)(x-2)=0,x=-2是增根x =6是原方程的解.---------------4分 原方程无解. ----------------------8分 21. (本题8分)证明:连接BD ,BD 交AC 于点O. ∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD(平行四边形的对角线互相平分). ------------3分∵AE=CF,∴OA-AE=OC-CF,即OE=OF. ------------6分∴四边形EBFD是平行四边形。

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。

北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考

北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考

2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n22.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.12.(3分)已知关于x的不等式组无解,则a的取值范围是.13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为.14.(3分)不等式组有5个整数解,则a的取范围是15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.2.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【解答】解:△A′B′O如图所示,点B′(2,1).故选A.【点评】本题考查了坐标与图形变化,是基础题,熟练掌握网格结构,作出图形是解题的关键.4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=4cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=4cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=8cm,故选:B.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0【分析】利用函数图象,写出在x轴上方,直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:结合图象,当﹣1<x<0时,k1x+b>k2x>0,所以k1x+b>k2x>0的解集为﹣1<x<0.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.12.(3分)已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为18.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=3,∴B′C=BC﹣BB′=6.由平移性质,可知A′B′=AB=6,∠A′B′C=∠B=60°,∴A′B′=B′C且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=18.故答案为:18.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.14.(3分)不等式组有5个整数解,则a的取范围是﹣4<a≤﹣3【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到a的范围.【解答】解:由不等式x﹣a≥0,得:x≥a,∵不等式组有5个整数解,∴这5个整数解为1、0、﹣1、﹣2、﹣3,则﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×4﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.【分析】首先作射线AO,并在AO上取线段AB=a,再分别以A、B为圆心,a为半径画弧,两弧交于点C,然后连接AC、BC,即可得到△ABC.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,关键是掌握做一条线段等于已知线段的方法.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.【点评】考查不等式(组)的解法;求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【解答】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF,∵OP⊥EF,∴OP平分∠EOF.【点评】本题主要考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.【分析】证明Rt△AED≌Rt△AFD(HL),得出∠ADE=∠ADF,证明Rt△BED≌△Rt △CFD(HL),得出∠BDE=∠CDF,则可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,∵点D是BC的中点,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌△Rt△CFD(HL),∴∠BDE=∠CDF,∴∠ADB=∠ADC,即AD⊥BC,∴AD是BC的垂直平分线.【点评】本题考查全等三角形的判定与性质、角平分线的性质、垂直平分线的判定,解答本题的关键是熟练掌握全等三角形的判定与性质.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.【分析】(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90°即可得到△A2B2C2;(2)对称中心就是对称点连线的交点,据此即可作出.【解答】解:(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90度即可得到△A2B2C2.(2)把△A1B1C1绕点C1逆时针旋转90度即可得到△A2B2C2成中心对称的位置,对称中心为P.【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.【分析】本题中去甲商场购买所花的费用=餐桌的单价×购买的餐桌的数量+餐椅的单价×实际购买的餐椅的数量(注意要减去赠送的椅子的数量).去乙商场购买所花的费用=(购买的餐桌花的钱+购买餐椅花的钱)×8.5折.如果设餐椅的数量为x,那么可用x 表示出到甲、乙两商场购买所需要费用.然后根据“甲商场购买更优惠”,让甲的费用小于乙的费用,得出不等式求出x的取值范围,然后得出符合条件的值.【解答】解:设学校计划购买x把餐椅,到甲、乙两商场购买所需要费用分别为y甲、y,乙y甲=200×12+50(x﹣12),即:y甲=1800+50x;y乙=(200×12+50x)×85%,即y乙=2040+x;当y甲<y乙时,1800+50x<2040+x,∴x<32,又根据题意可得:x≥12,∴12≤x<32,综上所述,当购买的餐椅大于等于12少于32把时,到甲商场购买更优惠.【点评】本题考查了一元一次方程的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出不等式,求出所要求的值.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【解答】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.【分析】(1)问题的转化:根据旋转的性质证明△APP'是等边三角形,则PP'=P A,可得结论;(2)问题的解决:运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;(3)问题的延伸:如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键.。

常州市2018-2019学年八年级下期中数学试卷含答案解析

常州市2018-2019学年八年级下期中数学试卷含答案解析

江苏省常州市2018-2019学年八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.考察一批炮弹的杀伤半径D.对航天飞机上的零部件进行检查3.要使分式有意义,那么x的取值范围是()A.x>2 B.x>3 C.x≠2 D.x≠34.一个黑色不透明的袋子里装有除颜色外其余都相同的7个红球和3个白球,那么从这个袋子中摸出一个红球的可能性和摸出一个白球的可能性相比()A.摸出一个红球的可能性大B.摸出一个白球的可能性大C.两种可能性一样大 D.无法确定5.分式,﹣,的最简公分母是()A.x2y B.2x3y C.4x2y D.4x3y6.▱ABCD中,∠A=4∠B,则∠D的度数是()A.18°B.36°C.72°D.144°7.一件工作甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工作需要的小时数是()A. B. C. +D.8.如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长()A.7 B.8 C.9 D.10二、填空题(共10小题,每小题2分,满分20分)9.若分式的值为0,则x的值是______.10.在06006000600006的各个数位中,数字“6”出现的频率是______.11.计算:()=______.12.“平行四边形的对角线互相垂直”是______事件.(填“必然”、“随机”、“不可能”)13.已知,则分式的值为______.14.如图,四边形ABCD的两条对角线AC、BD的长分别为5cm、4cm,点A1,B1,C1,D1是四边形ABCD 各边上的中点,则四边形A1B1C1D1的周长为______cm.15.如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是______°.16.如图,在平行四边形ABCD中,AB=4cm,AD=7cm,∠ABC的角平分线交AD于点E,交CD的延长线于点F,则DE=______cm.17.如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为______.18.如图,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是______.三、解答题(共8小题,满分64分)19.(16分)(2016春•常州期中)化简:(1)(2)(3)先化简,再求值:(),其中a=5.20.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了______名学生,α=______%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为______度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?21.用直尺和圆规作图:作出四边形ABCD关于O点成中心对称的四边形A′B′C′D′.(保留作图痕迹)22.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.23.如图,正方形ABCD的对角线AC与BD交于点O,分别过点C、点D作CE∥BD,DE∥AC.求证:四边形OCED是正方形.24.如图,在▱ABCD中,DE⊥AC,BF⊥AC,垂足分别为点E、F.(1)求证:四边形BEDF是平行四边形.(2)若AB=13,AD=20,DE=12,求▱BEDF的面积.25.如图,平面直角坐标系xOy中,点O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当四边形PODB是平行四边形时,求t的值;(2)在线段PB上是否存在一点Q,使得四边形ODQP为菱形?若存在,求处当四边形ODQP为菱形时t的值,并求出Q点的坐标;若不存在,请说明理由;(3)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).26.如图,将矩形ABCD先过点A的直线L1翻折,点DA的对应点D′刚好落在边BC上,直线L1交DC于点F;再将矩形ABCD沿过点A的直线L2翻折,使点B的对应点G落在AD′上,EG的延长线交AD于点H.(1)当四边形AED′H是平行四边形时,求∠AD′H的度数.(2)当点H与点D刚好重合时,试判断△AEF的形状,并说明理由.2018-2019学年江苏省常州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.考察一批炮弹的杀伤半径D.对航天飞机上的零部件进行检查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查你班同学的年龄情况,调查范围小适合抽样调查,故A错误;B、为订购校服,了解学生衣服的尺寸是要求精确度高的调查,适合普查,故B错误;C、考察一批炮弹的杀伤半径,调查具有破坏性,适合抽样调查,故C正确;D、对航天飞机上的零部件进行检查是事关重大的调查,适合普查,故D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.要使分式有意义,那么x的取值范围是()A.x>2 B.x>3 C.x≠2 D.x≠3【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式即可.【解答】解:由题意得,x﹣2≠0,解得,x≠2,故选:C.【点评】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.4.一个黑色不透明的袋子里装有除颜色外其余都相同的7个红球和3个白球,那么从这个袋子中摸出一个红球的可能性和摸出一个白球的可能性相比()A.摸出一个红球的可能性大B.摸出一个白球的可能性大C.两种可能性一样大 D.无法确定【考点】可能性的大小.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子里装有除颜色外其余都相同的7个红球和3个白球,∴总球数是10,∴从这个袋子中摸出一个红球的可能性是,摸出一个白球的可能性是,∴从这个袋子中摸出一个红球的可能性和摸出一个白球的可能性相比摸出一个红球的可能性大;故选:A.【点评】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.分式,﹣,的最简公分母是()A.x2y B.2x3y C.4x2y D.4x3y【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,﹣,的最简公分母是4x3y,故选D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.6.▱ABCD中,∠A=4∠B,则∠D的度数是()A.18°B.36°C.72°D.144°【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A+∠B=180°,再由已知条件∠A=4∠B,即可得出∠B的度数,再根据平行四边形的对角相等即可求出∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴∠A+∠B=180°,∵∠A=4∠B,∴4∠B+∠B=180°,解得:∠B=36°;∴∠D=36°,故选B.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7.一件工作甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工作需要的小时数是()A. B. C. +D.【考点】列代数式(分式).【分析】首先表示出甲的工作效率为,再表示出乙的工作效率,再利用工作量÷两人的工作效率之和即可.【解答】解:∵一件工作甲单独做a小时完成,乙单独做b小时完成,∴甲的工作效率为,乙的工作效率,∴甲、乙两人一起完成这项工作需要的小时数是:=.故选:A.【点评】此题主要考查了列代数式,关键是正确理解题意,掌握工作量=工作时间×工作效率.8.如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长()A.7 B.8 C.9 D.10【考点】矩形的性质;等腰直角三角形;旋转的性质.【分析】连接AC、CF、AF,由矩形的性质和勾股定理求出AC,由矩形的性质得出M是AC的中点,N是CF的中点,证出MN是△ACF的中位线,由三角形中位线定理得出MN=AF,由等腰直角三角形的性质得出AF=AC=20,即可得出结果.【解答】解:连接AC、CF、AF,如图所示:∵矩形ABCD绕点C顺时针旋转90°得到矩形FFCE,∴∠ABC=90°,∴AC===10,AC=BD=GE=CF,AC与BD互相平分,GE与CF互相平分,∵点M、N分别是BD、GE的中点,∴M是AC的中点,N是CF的中点,∴MN是△ACF的中位线,∴MN=AF,∵∠ACF=90°,∴△ACF是等腰直角三角形,∴AF=AC=10×=20,∴MN=10.故选:D.【点评】本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质、三角形中位线定理;熟练掌握矩形的性质,由三角形中位线定理求出MN是解决问题的关键.二、填空题(共10小题,每小题2分,满分20分)9.若分式的值为0,则x的值是x=﹣3.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x+3=0且x≠0,解得x=﹣3.故答案为:x=﹣3.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.10.在06006000600006的各个数位中,数字“6”出现的频率是.【考点】频数与频率.【分析】根据频率的概念:频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=,结合题意求解即可.【解答】解:∵在数字06006000600006中一共有14个数位,数字“6”一共出现了4次,∴频数为4,数据总数为14,∴数字“6”出现的频率=,故答案为:.【点评】本题考查了频数与频率的知识,解答本题的关键在于掌握频率的概念,准确找出频数和数据总数,代入频率的公式求解.11.计算:()=2.【考点】分式的混合运算.【分析】原式括号中利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式=•=2,故答案为:2 【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.“平行四边形的对角线互相垂直”是 随机 事件.(填“必然”、“随机”、“不可能”)【考点】平行四边形的性质;随机事件.【分析】根据平行四边形的性质判断即可.【解答】解:因为平行四边形的对角线互相平分,但不一定互相垂直,所以平行四边形的对角线互相垂直是随机事件,故答案为:随机.【点评】本题考查的是平行四边形的性质,同时考查了必然事件:必然事件指在一定条件下,一定发生的事件.必然事件发生的概率为1,即P (必然事件)=1.13.已知,则分式的值为 . 【考点】分式的值.【分析】首先根据,可得y ﹣x=2xy ,然后把y ﹣x=2xy 代入分式,求出算式的值为多少即可.【解答】解:∵, ∴y ﹣x=2xy ,∴====.故答案为:. 【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.14.如图,四边形ABCD的两条对角线AC、BD的长分别为5cm、4cm,点A1,B1,C1,D1是四边形ABCD 各边上的中点,则四边形A1B1C1D1的周长为9cm.【考点】中点四边形.【分析】根据三角形的中位线定理得出A1B1=BD,C1D1=BD,A1D1=AC,B1C1=AC,代入四边形的周长式子求出即可.【解答】解:∵A1,B1,C1,D1是四边形ABCD各边上的中点,∴A1B1=BD,C1D1=BD,A1D1=AC,B1C1=AC,∴四边形EFGH的周长是:A1B1+C1D1+A1D1+B1C1=(AC+BD+AC+BD)=AC+BD=9(cm).故答案为:9.【点评】本题主要考查对三角形的中位线定理的理解和掌握,能熟练运用性质求出EF+GH+EH+FG=AC+BD 是解此题的关键.15.如图,△COD是由△AOB绕点O按顺时针方向旋转40°后得到的图形,点C恰好在边AB上.若∠AOD=100°,则∠D的度数是50°.【考点】旋转的性质.【分析】已知△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,可得△COD≌△AOB,旋转角为40°,∵点C恰好在AB上,可得△AOC为等腰三角形,可结合三角形的内角和定理求∠B的度数.【解答】解:根据旋转性质得△COD≌△AOB,∴CO=AO,∠D=∠B由旋转角为40°,∴∠AOC=∠BOD=40°,∴∠OAC=(180°﹣∠AOC)÷2=70°,∴∠BOC=∠AOD﹣∠AOC﹣∠BOD=20°,∴∠AOB=∠AOC+∠BOC=60°,在△AOB中,由内角和定理得∠B=180°﹣∠OAC﹣∠AOB=180°﹣70°﹣60°=60°.∴∠D=∠B=50°故答案为50°.【点评】此题是旋转的性质题,主要考查了旋转变化前后,对应角相等,同时充分用三角形的内角和定理,等腰三角形的性质,解本题的关键是用等腰三角形的性质求角的度数.16.如图,在平行四边形ABCD中,AB=4cm,AD=7cm,∠ABC的角平分线交AD于点E,交CD的延长线于点F,则DE=3cm.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】利用平行四边形的性质得出AD∥BC,进而得出∠AEB=∠CBF,再利用角平分线的性质得出∠ABF=∠CBF,进而得出∠AEB=∠ABF,即可得出AE的长,即可得出答案.【解答】解:∵在平行四边形ABCD中,∴AD∥BC,∴∠AEB=∠CBF,∵∠ABC的角平分线交AD于点E,∴∠ABF=∠CBF,∴∠AEB=∠ABF,∴AB=AE,∵AB=4cm,AD=7cm,∴DE=3cm.故答案为:3.【点评】此题主要考查了平行四边形的性质以及角平分线的性质,得出∠AEB=∠ABF是解题关键.17.如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为﹣1.【考点】一次函数图象上点的坐标特征.【分析】由条件可先求得矩形OABC的中心坐标,再由直线分矩形面积相等的两部分可知直线过矩形的中心,代入可求得k的值.【解答】解:如图,连接OB、AC交于点D,过D作DE⊥x轴,过D作DF⊥y轴,垂足分别为E、F,∵A(2,0),B(2,4),C(0,4),∴四边形OABC为矩形,∴DE=OC=×4=2,DF=OA=×2=1,∴D(1,2),∵直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,∴直线过点D,∴2=k﹣2k+1,解得k=﹣1,故答案为:﹣1.【点评】本题主要考查矩形的判定和性质,掌握过矩形中心的直线平分矩形面积是解题的关键.18.如图,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是3.【考点】菱形的性质;轴对称-最短路线问题.【分析】作DH⊥AC垂足为H与AG交于点E,点H关于AG的对称点为F,此时EF+ED最小=DH,先证明△ADC是等边三角形,在RT△DCH中利用勾股定理即可解决问题.【解答】解:如图作DH⊥AC垂足为H与AG交于点E,∵四边形ABCD是菱形,∵AB=AD=CD=BC=6,∵∠B=60°,∴∠ADC=∠B=60°,∴△ADC是等边三角形,∵AG是中线,∴∠GAD=∠GAC∴点H关于AG的对称点F在AD上,此时EF+ED最小=DH.在RT△DHC中,∵∠DHC=90°,DC=6,∠CDH=∠ADC=30°,∴CH=DC=3,DH===3,∴EF+DE的最小值=DH=3故答案为3.【点评】本题考查菱形的性质、垂线段最短、等边三角形的判定、勾股定理等知识,解决问题的关键是利用垂线段最短解决最小值问题,属于中考常考题型.三、解答题(共8小题,满分64分)19.(16分)(2016春•常州期中)化简:(1)(2)(3)先化简,再求值:(),其中a=5.【考点】分式的化简求值;分式的混合运算.【分析】(1)先通分,再把分子相加减即可;(2)根据分式的除法法则进行计算即可;(3)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:(1)原式=﹣===;(2)原式=÷=•=;(3)原式=[﹣]÷=[﹣]•=•=﹣,当a=5时,原式=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.用直尺和圆规作图:作出四边形ABCD关于O点成中心对称的四边形A′B′C′D′.(保留作图痕迹)【考点】作图-旋转变换;中心对称.【分析】连接AO并延长至A′,使AO=A′O,则A′就是点A的对称点;同理作出其它各点的对称点,连接成四边形即可.【解答】解:作法:①连接AO并延长至A′,使AO=A′O,②同理作出点B′、C′、D′,③将A′、B′、C′、D′连接成四边形,则四边形A′B′C′D′就是所求作的四边形.【点评】本题是关于中心对称的作图题,考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,根据这一性质进行作图,基本方法是:将各点与对称中心相连,并延长至相等长度,得该点的对称点.22.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1.(2)若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2.(3)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)利用网格特点和旋转性质画出点A、B的对应点A1、B1即可;(2)根据关于y轴对称的点的坐标特征写出A2和B2的坐标,然后描点即可;(3)利用平行四边形的判定方法,分类讨论:当AB2为对角线可得到点P1;当AB1为对角线可得到点P2;当B1B2为对角线可得到点P3,然后写出对应的P点坐标.【解答】解:(1)如图,线段A1B1为所作;(2)如图,线段A2B2为所作;(3)点P的坐标为(﹣4,﹣1)或(4,﹣1)或(0,5).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.23.如图,正方形ABCD的对角线AC与BD交于点O,分别过点C、点D作CE∥BD,DE∥AC.求证:四边形OCED是正方形.【考点】正方形的判定与性质.【分析】先证明四边形OCED是平行四边形,由正方形的性质得出OA=OC=OB=OD,AC⊥BD,即可得出四边形OCED是正方形.【解答】证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,∵四边形ABCD是正方形,∴OA=OC=OB=OD,AC⊥BD,∴四边形OCED是正方形.【点评】本题考查了正方形的判定与性质、平行四边形的判定;熟练掌握正方形的性质是解决问题的关键.24.如图,在▱ABCD中,DE⊥AC,BF⊥AC,垂足分别为点E、F.(1)求证:四边形BEDF是平行四边形.(2)若AB=13,AD=20,DE=12,求▱BEDF的面积.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,证出∠BAC=∠DCA,由垂线的性质得出BF∥DE,∠AFB=∠CED=90°,由AAS证明△ABF≌△CDE,得出BF=DE,AF=EC,即可得出四边形BEDF是平行四边形.(2)由勾股定理求出EC,得出AF,由勾股定理求出AE,得出EF,即可得出▱BEDF的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA,∵DE⊥AC,BF⊥AC,∴BF∥DE,∠AFB=∠CED=90°,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴BF=DE,AF=EC,∴四边形BEDF是平行四边形.(2)∵AB=13,∴CD=13,∴EC===5,∴AF=5,∵AE===16,∴EF=AE﹣AF=11,∴▱BEDF的面积=2××11×12=132.【点评】本题考查了平行四边形的判定与性质,全等三角形的判定与性质、勾股定理、垂线的性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.25.如图,平面直角坐标系xOy中,点O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当四边形PODB是平行四边形时,求t的值;(2)在线段PB上是否存在一点Q,使得四边形ODQP为菱形?若存在,求处当四边形ODQP为菱形时t 的值,并求出Q点的坐标;若不存在,请说明理由;(3)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).【考点】四边形综合题.【分析】(1)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值.(2)要使ODQP为菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值.(3)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理P1C,OE,P3F,DG的值,就可以求出P的坐标.【解答】解:(1)∵四边形PODB是平行四边形,∴PB=OD=5,∴PC=5,∴t=5.(2)∵ODQP为菱形,∴OD=OP=PQ=5,∴在Rt△OPC中,由勾股定理得:PC=,∴t=3,PQ=PC+PQ=3+5=8,∴点Q的坐标为(8,4).(3)当P1O=OD=5时,由勾股定理可以求得P1C=3,P2O=P2D时,作P2E⊥OA,∴OE=ED=2.5;当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,∴P3C=2;当P4D=OD=5时,作P4G⊥OA,由勾股定理,得DG=3,∴OG=8.∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4).【点评】本题考查了矩形的性质,坐标与图形的性质,等腰三角形的性质,平行四边形的判定及性质,菱形的判定及性质,勾股定理的运用.解决本题的关键是熟记平行四边形、菱形的判定.26.如图,将矩形ABCD先过点A的直线L1翻折,点DA的对应点D′刚好落在边BC上,直线L1交DC于点F;再将矩形ABCD沿过点A的直线L2翻折,使点B的对应点G落在AD′上,EG的延长线交AD于点H.(1)当四边形AED′H是平行四边形时,求∠AD′H的度数.(2)当点H与点D刚好重合时,试判断△AEF的形状,并说明理由.【考点】翻折变换(折叠问题).【分析】(1)如图1中,在RT△ABC中,由AD′=2AB推出∠AD′B=30°,再证明四边形AED′H是菱形即可解决问题.(2)如图2中,先证明△DD′G≌△DD′C得出DG=DC=AB=AG,发现△AGD、△GED′、△DEC都是等腰直角三角形,再证明△ABE≌△ECF即可解决问题.【解答】解:(1)如图1中,∵四边形AED′H是平行四边形,∴AG=GD,∵EH⊥AD,∴四边形AED′H是菱形,∴∠AD′H=∠AD′B,∵△AEG是由△AEB翻折得到,∴AB=AG=D′G,∵四边形ABCD是矩形,∴∠B=90°,∴∠AD′B=30°,∴∠AD′H=30°.(2)结论:△AEF是等腰直角三角形.理由:如图2中,垃圾DD′.∵四边形ABCD是矩形,∴AD∥BC,∠ADD′=∠DD′C,AB=DC,∠B=∠C=90°,∵AD=AD′,∴∠ADD′=∠AD′D,. ∴∠DD′A=∠DD′C,在△DD′G 和△DD′C中,,∴△DD′G≌△DD′C,∴DG=DC=AB=AG,∵∠AGD=90°,∴∠GAD=∠GDA=∠AD′E=∠DED′=45°,∴EG=GD′=BE=CD′,∵∠AD′B+∠FD′C=90°,∴∠FD′C=′D′FC=45°,∴CD′=CF=BE,∵∠CED=∠CDE=45°,∴EC=CD=AB,在△ABE和△ECF中,,∴△ABE≌△ECF,∴AE=EF,∠BAE=∠CEF,∵∠BAE+∠AEB=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形..【点评】本题考查翻折变换、矩形的性质、菱形的判定和性质、全等三角形的判定和性质、等腰直角三角形的判定等知识,第一问的关键是菱形性质的应用,第二个问题的关键是正确寻找全等三角形,利用特殊三角形解决问题,属于中考常考题型.。

2018-2019学年山西省运城实验中学八年级(下)期中数学试卷

2018-2019学年山西省运城实验中学八年级(下)期中数学试卷

2018-2019学年山西省运城实验中学八年级(下)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2018春•胶州市期中)已知实数a、b满足a+2>b+2,则下列选项错误的为()A.a>b B.a+1>b+1C.﹣a<﹣b D.2a>3b2.(3分)(2018•北塔区模拟)下列四个图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2012•凉山州)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.(3分)(2018春•大田县期中)△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6B.8C.D.55.(3分)(2019春•新罗区期中)如图,将周长为8的△ABC沿BC方向向右平移2个单位长度,得到△DEF,连接AD,则四边形ABFD的周长为()A.6B.8C.10D.126.(3分)(2020秋•莒南县期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC=15,则CD的长为()于点D,AB=10,S△ABDA.3B.4C.5D.67.(3分)(2019春•平度市期中)如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.728.(3分)(2015•辽阳)如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1B.x≥3C.x≤﹣1D.x≤39.(3分)(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)10.(3分)(2018春•胶州市期中)如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.B.C.D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)(2015春•崇明区期末)将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是.12.(3分)(2019春•峄城区期中)如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=.13.(3分)(2019春•市中区期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC,AB=3,将△ABC沿AB方向平移得△DEF,若△ABC与△DEF重叠部分的面积为2,则AD=.14.(3分)(2018春•胶州市期中)如图,△ABC中,AB=AC,BC=15,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=.15.(3分)(2018春•太原期中)如图,△ABC是边长为24的等边三角形,△CDE是等腰三角形,其中DC=DE=10,∠CDE=120°,点E在BC边上,点F是BE的中点,连接AD、DF、AF,则AF的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(2019春•盐湖区校级期中)解答下列各题:(1)解不等式:2x+1≤3(3﹣x);(2)解不等式组,并将其解集表示在如图所示的数轴上.17.(10分)(2019春•盐湖区校级期中)在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.18.(10分)(2018秋•饶平县期末)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.19.(9分)(2018春•胶州市期中)已知:如图,△ABC中,D是AB上一点,DE⊥BC于E,DF⊥AC于F,点G在AC上,且DG=DB,FG=BE.求证:CD平分∠ACB.20.(8分)(2019春•岱岳区期末)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?21.(10分)(2018春•胶州市期中)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.22.(10分)(2020•灌阳县一模)某电器超市销售每台进价分别为200元,170元的A、B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.(10分)(2018春•胶州市期中)如图,在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.2018-2019学年山西省运城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由不等式的性质得a>b,a+1>b+1,﹣a<﹣b.故选:D.2.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.【解答】解:依题意得b=2c;a>b.∴a>b>c.故选:A.4.【解答】解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°解得x=30°即∠A=30°,∠C=3×30°=90°此三角形为直角三角形故AB=2BC=2×4=8cm故选:B.5.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=8+2+2=12.故选:D.6.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.7.【解答】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选:B.8.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选:D.9.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.10.【解答】解:连接AD,∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:AD===8,∵S=,△ADB∴DE===,故选:D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.【解答】解:将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是(﹣1,﹣2).故答案为(﹣1,﹣2).12.【解答】解:在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD∵∠CAD:∠DAB=2:1∴4∠B=90°∴∠B=22.5°故答案为22.5°.13.【解答】解:由平移可得∠BDG=∠A=45°=∠ABC,∴△BDG是等腰直角三角形,∵△ABC与△DEF重叠部分的面积为2,∴DG×BG=2,∴DG=BG=2,∴BD==2,∴AD=AB﹣BD=3﹣2=,故答案为:.14.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=30°,AD=BD,∴DA=DC,∴BC=DC+2DC=15,∴CD=5,故答案为5.15.【解答】解:过D作DH⊥BC于H,∵DC=DE=10,∴EH=HC,∵∠CDE=120°,∴∠DCH=30°,∴CH=EH=5,∴CE=10,∴BE=BC﹣CE=24﹣10,∵F是BE的中点,∴BF==12﹣5,过A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=BC=12,AM=12,∴FM=BM﹣BF=12﹣(12﹣5)=5,由勾股定理得:AF====13.故答案为:13.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.【解答】解:(1)去括号得:2x+1≤9﹣3x,移项合并得:5x≤8,解得:x≤1.6;(2),由①得:x>﹣2,由②得:x≤15,则不等式组的解集为﹣2<x≤15.17.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;18.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.19.【解答】证明:∵DE⊥BC于E,DF⊥AC于F,∴∠DEB=∠DFG=90°,在Rt△DBE与Rt△DGF中,∴Rt△DBE≌Rt△DGF(HL),∴DE=DF,∴CD平分∠ACB.20.【解答】解:根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1﹣y2=﹣x+20,∵x>15,∴﹣x<﹣15,∴﹣x+20<5,若y1<y2,则﹣x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则﹣x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则﹣x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.21.【解答】解:如图所示,△ABC即为所求.22.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.23.【解答】解:(1)PD=PE,理由如下:连接PC,如图连接PB∵△ABC是等腰直角三角形,P是AB中点∴CP⊥AB,∠ACP=∠BCP=∠ACB=45°∴∠ACP=∠B=∠BCP=45°∴BP=CP∵∠DPC+∠CPE=90°=∠BPE+∠CPE∴∠DPC=∠PBE且BP=CP,∠ACP=∠B∴△DPC≌△PEB∴DP=PE(2)∵AC=BC=2,∠C=90°∴AB=2∴AP=BP=CP=△PCE是等腰三角形当PC=PE=时,即B,E重合,BE=0当PC=CE=时,E在线段BC上,则BE=2﹣当PE=EC,且∠PCB=45°∴∠PEC=90°∴EC=1∴BE=1。

2018-2019学年江西省南昌市八年级(下)期中数学试卷

2018-2019学年江西省南昌市八年级(下)期中数学试卷

2018-2019学年江西省南昌市八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.1.(3分)下列各式中,一定是二次根式的是()A.B.C.D.2.(3分)化简的结果是()A.﹣2 B.±2 C.2 D.43.(3分)在四边形ABCD中,AB=CD,BC=AD,若∠A=135°,则∠B的度数是()A.45°B.55°C.90°D.135°<4.(3分)直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10 B.8 C.6 D.55.(3分)若=a,=b,则用含a,b的式子表示是()A.2a B.2b C.a+b D.ab6.(3分)如图,点A的坐标为(﹣1,2),点B的坐标为(2,1),有一点C在x轴上移动,则点C到A、B两点的距离之和的最小值为()A.B.4 C.3 D.7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()|A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形8.(3分)如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再选两个做为补充,使▱ABCD变为正方形.下面四种组合,错误的是()A.①②B.①③C.②③D.②④二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)二次根式有意义,则x的取值范围是.10.(3分)若x=+1,y=﹣1,则x2y的值是.11.(3分)如图,四边形ABCD中,对角线AC⊥BD,E、F、G、H分别是各边的中点,若AC=8,BD=6,则四边形EFGH的面积是.:12.(3分)在矩形ABCD中,对角线AC与BD相交于点O,若∠ACB=30°,则∠AOB 的度数是.13.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(1)计算:;#(2)计算:16.(6分)先化简,再求值:÷,其中x=4.17.(6分)已知△ABC的三边长为a,b,c,且a=,b=,c=(1)求证:∠C=90°;(2)当三角形的面积与正方形的面积相等时,求正方形的周长.18.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.…四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED①△BEC是否为等腰三角形?为什么?②若AB=2,∠ABE=45°,求BC的长.20.(8分)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;…(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.21.(8分)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,D是AC的中点,CE ∥AB,动点P以每秒1个单位长度的速度从点B出发向点A移动,连接PD并延长交CE于点F,设点P移动的时间为t秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当PF=4时,求t的值.五、探究题(本大题共1小题,共10分)【22.(10分)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD =4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.2018-2019学年江西省南昌市八年级(下)期中数学试卷参考答案与试题解析"一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.1.(3分)下列各式中,一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、当a<﹣1时,不是二次根式;B、当a<1时,不是二次根式;C、当﹣1<a<1时,不是二次根式;D、是二次根式;`故选:D.【点评】本题考查的是二次根式的定义,形如(a≥0)的式子叫做二次根式.2.(3分)化简的结果是()A.﹣2B.±2C.2D.4【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.【解答】解:==2.故选:C.【点评】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.<3.(3分)在四边形ABCD中,AB=CD,BC=AD,若∠A=135°,则∠B的度数是()A.45°B.55°C.90°D.135°【分析】证明四边形ABCD是平行四边形,得出AD∥BC,由平行线的性质得出∠A+∠B=180°,即可得出答案.【解答】解:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣135°=45°;【故选:A.【点评】本题考查了平行四边形的判定以及平行线的性质;熟练掌握平行线的性质,证明四边形ABCD是平行四边形是解题的关键.4.(3分)直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10B.8C.6D.5【分析】利用勾股定理求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:两条直角边的边长分别为6和8,根据勾股定理得,斜边==10,所以,斜边上的中线的长=×10=5.~故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,是基础题,熟练掌握性质是解题的关键.5.(3分)若=a,=b,则用含a,b的式子表示是()A.2a B.2b C.a+b D.ab【分析】直接利用二次根式的性质变形得出答案.【解答】解:∵=a,=b,∴=×=ab.故选:D..【点评】此题主要考查了算术平方根,正确将二次根式变形是解题关键.6.(3分)如图,点A的坐标为(﹣1,2),点B的坐标为(2,1),有一点C在x轴上移动,则点C到A、B两点的距离之和的最小值为()A.B.4C.3D.【分析】作点A关于x轴的对称点A′,连接A′B交x轴于点C,则线段A′B的长即为点C到A、B两点的距离之和的最小值.【解答】解:作点A关于x轴的对称点A′,连接A′B交x轴于点C,∵A(﹣1,2),∴A′(﹣1,﹣2),|∵B(2,1),∴A′B==3.故选:A.【点评】本题考查的是轴对称﹣最短路线问题,熟知两点之间,线段最短是解答此题的关键.7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【分析】对等式进行整理,再判断其形状..【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.8.(3分)如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再选两个做为补充,使▱ABCD变为正方形.下面四种组合,错误的是()A.①②B.①③C.②③D.②④【分析】根据要判定四边形是正方形,则需能判定它既是菱形又是矩形进而分别分析得出即可.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,;所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.:【点评】本题考查了正方形的判定方法:先判定四边形是菱形,再判定四边形是矩形;或先判定四边形是矩形,再判定四边形是菱形;那么四边形一定是正方形;熟练掌握正方形的判定方法是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.^【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(3分)若x=+1,y=﹣1,则x2y的值是.【分析】将x2y变形为xy•x,然后将x和y的值代入求解即可.【解答】解:∵x=+1,y=﹣1,∴xy=()(=2﹣1=1,∴x2y=xy•x=1×=.故答案为:.【点评】本题考查了二次根式的化简求值,解答本题的关键在于对原式进行恰当的变形并熟练掌握二次根式的化简求值.$11.(3分)如图,四边形ABCD中,对角线AC⊥BD,E、F、G、H分别是各边的中点,若AC=8,BD=6,则四边形EFGH的面积是12.【分析】根据E、F、G、H分别是各边的中点,利用三角形中位线定理求出EH和EF,判定四边形EFGH是矩形,然后即可四边形EFGH的面积.【解答】解:∵E、F、G、H分别是四边形ABCD各边的中点,∴EH∥BD且EH=BD,FG∥BD且=BD,∴EH∥FG,EH=FG,同理EF∥HG,EF=HG,又∵AC⊥BD,-∴四边形EFGH是矩形,∴四边形EFGH的面积=EF×EH=AC×BD=×8××6=12.【点评】此题主要考查学生对三角形中位线定理和矩形的判定与性质等知识点的理解和掌握,此题难度不大,属于中档题.12.(3分)在矩形ABCD中,对角线AC与BD相交于点O,若∠ACB=30°,则∠AOB 的度数是60°.【分析】根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC =∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,$∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故答案为60°【点评】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.13.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为4.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,)∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4).#【分析】当△ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论.【解答】解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);"(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.[过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);故答案为:(2,4)或(3,4)或(8,4);【点评】本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.¥三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(1)计算:;(2)计算:【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的除法法则运算,再分母有理化和利用负整数指数的意义计算,然后合并即可.【解答】解:(1)原式=﹣(+)=﹣﹣=﹣;|(2)原式=﹣(+1)+=4﹣﹣1+=3.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.(6分)先化简,再求值:÷,其中x=4.【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷=~==,当x=4时,原式==.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.17.(6分)已知△ABC的三边长为a,b,c,且a=,b=,c=(1)求证:∠C=90°;(2)当三角形的面积与正方形的面积相等时,求正方形的周长.》【分析】(1)计算a2+b2、c2的值相等即可说明∠C=90°;(2)设正方形的边长为x,则有,用a、b表示出x即可.【解答】证明:(1)∵,∴∠C=90°.(2)解:设正方形的边长为x,则有,∴.∴正方形的周长是4x=.【点评】本题主要考查了勾股定理、勾股定理的逆定理,勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.、18.(6分)如图是由6个形状、大小完全相同的小矩形组成的大矩形,其中小矩形的长为2,宽为1,请用无刻度的直尺在矩形中完成以下作图(保留作图痕迹,不写作法).(1)在图1中,画出一个面积为5的正方形;(2)在图2中,画出一个面积为4的非特殊的平行四边形.【分析】(1)直接利用正方形的判定方法得出答案;(2)直接利用平行四边形的判定方法得出答案.【解答】解:(1)如图正方形ABCD;/(2)如图平行四边形EFGH.【点评】此题主要考查了应用设计与作图,正确掌握平行四边形以及正方形的判定方法是解题关键.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED①△BEC是否为等腰三角形?为什么?②若AB=2,∠ABE=45°,求BC的长."【分析】①由矩形的性质得出∠A=90°,AD∥BC,证出∠BCE=∠CED,再由已知条件得出∠BCE=∠BEC,即可得出△BEC是等腰三角形;②根据三角函数求出BE,即可得出BC.【解答】解:①△BEC为等腰三角形;理由如下:∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠BCE=∠CED,∵EC平分∠BED,∴∠BEC=∠CED,!∴∠BCE=∠BEC,∴BC=BE,即△BEC是等腰三角形;②∵∠ABE=45°,∠A=90°,∴BE=AB=2,∴BC=BE=2.【点评】本题考查了矩形的性质、等腰三角形的判定以及三角函数;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.20.(8分)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.¥(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE 对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,(∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,|∴四边形BCED′是平行四边形;∵AD=AD′,∵AB=2,AD=1,∴AD=AD′=BD′=CE=BC=1,∴▱BCED′是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,:连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,/∴PD′+PB的最小值为.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.21.(8分)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,D是AC的中点,CE ∥AB,动点P以每秒1个单位长度的速度从点B出发向点A移动,连接PD并延长交CE于点F,设点P移动的时间为t秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当PF=4时,求t的值.~【分析】(1)根据勾股定理,可得AB的长,根据面积的不同表示方法,可得答案;(2)根据两组对边分别平行的四边形是平行四边形,可得答案;(3)根据已知条件判定△CDF≌△ADP,即可得出AP=CF,进而得到四边形APCF为平行四边形,依据AC=PF,即可得到四边形APCF为矩形.再根据勾股定理即可得到PB的长,进而得出t=1.8.【解答】解:(1)在Rt△ABC中,AB=5,BC=3,∴.如图,过C作CH⊥AB于H,则由,得.∵CE∥AB,^∴AB与CE之间的距离为2.4.(2)∵CE∥AB,∴当PF∥BC时,四边形PBCF是平行四边形.∵D为AC的中点,∴P为AB的中点.∴t=PB=AB=2.5.、(3)∵CE∥AB,∴∠DCF=∠DAP,∠DFC=∠DP A.∵D为AC的中点,∴CD=AD,∴△CDF≌△ADP(AAS).∴AP=CF,∴四边形APCF为平行四边形.∵AC=4,PF=4.<∴AC=PF.∴四边形APCF为矩形.∴CP⊥AB.在Rt△CPB中,CP=2.4,BC=3,∴.∴t=1.8.【点评】此题考查了平行四边形的判定与性质、矩形的判定与性质以及勾股定理的运用,熟练掌握平行四边形的判定与性质是解本题的关键.【五、探究题(本大题共1小题,共10分)22.(10分)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD =4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.【分析】(1)求出∠DAC=∠BAE,再利用“边角边”证明△ACD和△ABE全等,再根据全等三角形对应边相等即可得证;(2)连接BE,先求出△ADE是等边三角形,再根据全等三角形对应边相等可得BE=CD,全等三角形对应角相等可得∠BEA=∠CDA=30°,然后求出∠BED=90°,再利用勾股定理列式进行计算即可得解;(3)过B作BF⊥BD,且BF=AE,连接DF,先求出四边形ABFE是平行四边形,根据平行四边形对边相等可得AB=EF,设∠AEF=x,∠AED=y,根据平行四边形的邻角互补与等腰三角形的性质求出∠CAD,从而得到∠CAD=∠FED,然后利用“边角边”证明△ACD和△EFD全等,根据全等三角形对应边相等可得CD=DF,然后利用勾股定理列式计算即可得解.【解答】(1)如图1,证明:∵∠DAE=∠BAC,∴∠DAE+∠CAE=∠BAC+∠CAE,即∠DAC=∠BAE.在△ACD与△ABE中,,∴△ACD≌△ABE(SAS),∴CD=BE;(2)连接BE,∵CD垂直平分AE∴AD=DE,∵∠DAE=60°,∴△ADE是等边三角形,∴∠CDA=∠ADE=×60°=30°,∵△ABE≌△ACD,∴BE=CD=4,∠BEA=∠CDA=30°,∴BE⊥DE,DE=AD=3,∴BD=5;(3)如图,过B作BF⊥BD,且BF=AE,连接DF,则四边形ABFE是平行四边形,∴AB=EF,设∠AEF=x,∠AED=y,则∠FED=x+y,∠BAE=180°﹣x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°﹣2y,∠CAD=360°﹣∠BAC﹣∠BAE﹣∠EAD=360°﹣(180°﹣2y)﹣(180°﹣x)﹣y =x+y,∴∠FED=∠CAD,在△ACD和△EFD中,,∴△ACD≌△EFD(SAS),∴CD=DF,而BD2+BF2=DF2,∴CD2=BD2+4AH2.【点评】本题考查了勾股定理,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,综合性较强,难度较大,作辅助线构造出全等三角形与直角三角形是解题的关键.。

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。

福建省2018-2019学年八年级(下)期中数学试卷(3份)

福建省2018-2019学年八年级(下)期中数学试卷(3份)

2018-2019学年福建省福州市福清市八年级(下)期中数学试卷一、选择题(共10小题,每小题4分,共40分)1.(4分)以5、12、13为三边长的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形2.(4分)函数中自变量x的取值范围是()A.x≠﹣1B.x>﹣1C.x≠1D.x≠03.(4分)下列函数中,y的值随x值的增大而增大的函数是()A.y=﹣2x B.y=﹣2x+1C.y=x﹣2D.y=﹣x﹣2 4.(4分)矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则BC的长是()A.2B.4C.2D.45.(4分)父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致相吻合的图象是()A.B.C.D.6.(4分)下列命题正确的是()A.一组对边平行且相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直的四边形是菱形D.邻边相等的四边形是正方形7.(4分)下列不是轴对称图形的是()A.等腰三角形B.平行四边形C.矩形D.菱形8.(4分)如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误9.(4分)商场销售甲种服装每件的利润为40元,乙种服装每件的利润为30元.计划购进这两种服装共100件,其中甲种服装不少于65件,不超过75件.在5月1日当天对甲种服装以每件优惠a(0<a<10)元的价格进行优惠促销活动,乙种服装价格不变,则商场进货()件甲种服装能获得最大利润.A.65B.70C.75D.10010.(4分)如图,直线a、b、c分别过正方形ABCD的三个顶点A、D、C,且互相平行,若直线a、b的距离为2,直线b、c的距离为4,则正方形ABCD的边长为()A.4B.C.D.6二、填空题(共6小题,每小题4分,共24分)11.(4分)如图所示,字母B所代表的正方形的面积是.12.(4分)已知等腰三角形的周长为20厘米,其中一腰长为x厘米,底边长为y厘米,则y与x的函数关系式是(不要求写自变量的取值范围).13.(4分)如图,在平行四边形ABCD中,已知AD=8,AB=6,DB平分∠ADC交BC边于点E,则BE等于.14.(4分)一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为.15.(4分)如图,在Rt△ABC中,AB=BC=8,∠B=90°,将△ABC折叠,使得点A与BC边的中点D重合,折痕为EF,则线段BF的长为.16.(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且BN=3,AN=4,MN=1,则AC的长是.三、解答题.(共9小题,共86分)17.(8分)如图,四边形ABCD是菱形,对角线AC与BD相交于点O,∠ACD=30°,AB=4.求AC的长(结果保留根号).18.(8分)如图,在4×3长方形网格中,每个小正方形的边长都是1,线段AB、CD的端点都在格点上.(1)请在网格中画出线段EF,使得EF的长为;(2)请问由三条线段AB、CD、EF能否组成直角三角形,并说明理由.19.(8分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.20.(8分)在平面直角坐标系中,直线AB经过A(﹣1,5),P(a,0),B(3,﹣3).(1)求直线AB的函数解析式;(2)求△AOP的面积.21.(8分)在△ABC中,AB=AC,E点是AC的中点,且BC=10,CD=8,BD=6.(1)求证:∠CDB=90°;(2)求DE的长.22.(10分)某市对居民用水采用分段阶梯收费,月用水量不超过10吨,每吨按3元收费,月用水量超过10吨的收费方法为:其中的10吨按每吨3元收费,超过10吨的部分按每吨4元收费,设某户居民本月用水量为x吨,应交水费y元,(1)请求出y与x的函数解析式;(2)某户居民本月交水费50元,求他本月用水多少吨?23.(10分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人们称它为对钩函数(的一支).下表是y与x的几组对应值:x…1234…y…4322234…请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,已描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;(2)请根据图象写出该函数的一条性质:.(3)当a<x≤4时,y的取值范围为2≤y≤4,则a的取值范围为.24.(12分)已知.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=2,点D、E分别是AB、AC的中点,分别延长DE、BC到点G,F,使得DG=BF,连接FG.(1)求证:四边形DBFG是矩形.(2)如图2,连接CG,若CA平分∠BCG.①求BF的长.②如图3,连接DF,分别交AC、CG于点M、N.求证:△MCN是等腰三角形.25.(14分)在平面直角坐标系中,若要把一条直线平移到某个位置,经常可通过方式一:上(下)平移,或者方式二:左(右)平移的其中一种达到目的.现有直线l1:y=﹣x ﹣1交y轴于点A,若把直线l1向右平移8个单位长度得到直线l2,直线l2交y轴于点D.(1)求直线l2的解析式,并说明直线l1若按方式一是如何平移到直线l2的位置.(2)若直线l1上的一点B(a,b),点B按方式一平移后在直线l2上的对应点记为点C,①若点P在直线l1上,且PB=PC,求点P的坐标(用含a的式子表示).②当b=0时,试证明直线l3:y=(m﹣1)x+(m+)(m≠1)必将四边形ABCD的面积二等分.2018-2019学年福建省福州市福清市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分)1.【解答】解:∵52+122=132,∴以5、12、13为三边长的三角形是直角三角形,故选:A.2.【解答】解:根据题意得:x+1≠0,解得:x≠﹣1.故选:A.3.【解答】解:A、k=﹣2<0,y随x的增大而减小,所以A选项错误;B、k=﹣2<0,y随x的增大而减小,所以B选项错误;C、k=1>0,y随x的增大而增大,所以C选项正确;D、k=﹣1<0,y随x的增大而减小,所以D选项错误.故选:C.4.【解答】解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=BD=2AO=4,则BC===2,故选:C.5.【解答】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.6.【解答】解:A、一组对边平行且相等的四边形是平行四边形,正确,符合题意;B、有一个角是直角的平行四边形是矩形,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、领边相等的矩形是正方形,故错误,故选:A.7.【解答】解:A、等腰三角形是轴对称图形,故本选项错误;B、平行四边形不是轴对称图形,故本选项正确;C、矩形是轴对称图形,故本选项错误;D、菱形是轴对称图形,故本选项错误.故选:B.8.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.9.【解答】解:设甲种服装购进x件,总利润为w元,根据题意得65≤x≤75,w=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,∵0<a<10,∴10﹣a>0,w随x的增大而增大,∴当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.故选:C.10.【解答】解:如图,过点A作AE⊥b于E,过点C作CF⊥b于F,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE+∠CDF=90°,且∠ADE+∠EAD=90°,∴∠CDF=∠DAE,且AD=CD,∠AED=∠CFD=90°,∴△ADE≌△CDF(AAS)∴DE=AE=2,CF=DE=4,∴AD===2,故选:C.二、填空题(共6小题,每小题4分,共24分)11.【解答】解:根据勾股定理我们可以得出:字母B所代表的正方形的面积是=225﹣81=144.故答案为:144.12.【解答】解:由题意得:2x+y=20,即可得:y=20﹣2x,故答案为:y=20﹣2x.13.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故答案为:2.14.【解答】解:∵从图象可知:一次函数y=kx+b的图象与x轴的交点坐标是(﹣2,0),∴关于x的方程kx+b=0的解为x=﹣2,故答案为:x=﹣2.15.【解答】解:∵AB=BC=8,D是BC的中点,∴BD=CD=4,由折叠知DF=AF,∴设BF=x,则AF=8﹣x,在Rt△DBF中,DF2=BD2+BF2,∴(8﹣x)2=42+x2,解得:x=3.即BF=3.故答案为:3.16.【解答】解:延长BN交AC于D,∵AN平分∠BAC,∴∠NAB=∠NAD,∵BN⊥AN,∴∠ANB=90°,在△ANB和△AND中,,∴△ANB≌△AND(ASA),∴AD=AB=5,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=2,∴AC=AD+CD=2+5=7;故答案为:7.三、解答题.(共9小题,共86分)17.【解答】证明:∵四边形ABCD是菱形,∴CD=AB=4,OA=OC,OB=OD,AC⊥BD,在Rt△DOC中,∠ACD=30°,∴DO=,在Rt△DOC中,∠DOC=90°,∴OC2+OD2=CD2,∴OC==,∴AC=2OC=.18.【解答】解:如图所示,(1)线段EF即为所求;(2)三条线段AB、CD、EF不能组成直角三角形,理由如下:由勾股定理可计算得:AB=,CD=,EF=,∴CD2+EF2=10+5=15AB2=13∴CD2+EF2≠AB2,根据勾股定理的逆定理可知:这个三角形不是直角三角形.19.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD 求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.20.【解答】解:(1)设直线AB的解析式为:y=kx+b,k≠0,依题意得:A(﹣1,5),B(3,﹣3)在直线AB上,∴,解得:,∴直线AB的解析式为:y=﹣2x+3;(2)依题意得:点P(a,0)在直线AB上,∴﹣2a+3=0,∴a=,∴.21.【解答】(1)证明:∵CD2+BD2=82+62=100,BC2=102=100,∴CD2+BD2=BC2,∴△BDC为直角三角形,∠CDB=90°;(2)解:由(1)得:∠CDB=90°∴∠ADC=90°,在Rt△ADC中,AE=CE,∴DE=,设AC=x,则AB=x,DE=,AD=x﹣6,在Rt△ADC中,∠ADC=90°,∴AD2+CD2=AC2(x﹣6)2+82=x2,解得:,∴DE=.22.【解答】解:(1)当0≤x≤10时,y=3x;当x>10时,y=3×10+4(x﹣10),∴y=4x﹣10;(2)由(1)得:当x=10时,y=30,∵50>30,∴当y=50时,4x﹣10=50,∴x=15.∴该居民本月用水量为15吨.23.【解答】解:(1)如图所示:(2)当0<x≤1时,y随x的增大而减小;或写成:当x=1时,函数有最小值为2.故答案为:当0<x≤1时,y随x的增大而减小(答案不唯一,写单调性或最值中的一种都可以);(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为:.故答案为:.24.【解答】证明:(1)如图1,∵点D、E分别是AB、AC的中点,∴DE∥BC,∴DG∥BF,∵DG=BF,∴四边形DBFG是平行四边形,∴∠B=90°,∴▱DBFG是矩形;(2)①如图2,过C作CH⊥DG于H,∴∠ADE=∠DHC=90°,∵AE=CE,∠AED=∠CEH,∴△ADE≌△CHE(AAS),∴CH=AD=,EH=DE=1,设CF=x,则BF=2+x,GH=CF=x,EG=x+1,∵AC平分∠BCG,∴∠BCA=∠ACG,∵DG∥BF,∴∠GEC=∠BCA,∴∠GEC=∠ACG,∴EG=CG=x+1,Rt△CGF中,由勾股定理得:CG2=CF2+GF2,(x+1)2=x2+()2,x=3,∴BF=2+3=5;②∵DE∥CF,∴△DEM∽△FCM,∴,由勾股定理得:AC==4,DF==4,CG==4,∵E是AC的中点,∴EC=AC=2,∴MC=EC==,同理得:DM==,FM=3,∵DG∥CG,∴=,∴FN=DF==,∴MN=4﹣﹣=,∴MN=CM,∴△MCN是等腰三角形.25.【解答】解:(1)y=﹣x﹣1,当y=0时,﹣x﹣1=0,x=﹣2,∴直线l1与x轴交点坐标为(﹣2,0),按方式二平移后的对应点为(6,0),且在直线l2上,设直线l2的解析式为y=﹣x+b,∴﹣×6+b=0,b=3,∴直线l2的解析式为:y=﹣x+3,∴3﹣(﹣1)=4,∴直线l1若按方式一向上平移4个单位得到直线l2;(2)①如图1,∵点B(a,b)在直线l1:y=﹣x﹣1上,∴b=﹣a﹣1,∴点B(a,﹣a﹣1),由(1)得,点C(a,﹣a+3),且BC∥y轴,∴BC的中点坐标为(a,﹣a+1),∵PB=PC,∴点P在BC的垂直平分线上,又∵BC⊥x轴,∴点P的纵坐标为﹣a+1,设点P的横坐标为x p,∴﹣a+1=﹣﹣1,∴x p=a﹣4,∴点P的坐标为(a﹣4,﹣a+1);②如图2,根据题意得:B(﹣2,0),D(0,3),由平移可知BC∥AD,BC=AD,∴四边形ABCD是平行四边形,连接BD、AC,交点记为点E,则E是BD的中点,∴E(﹣1,),且过点E的直线把平行四边形ABCD的面积二等分,把x=﹣1代入y=(m﹣1)x+(m+)中,得y=,即当m≠1时,直线l3必过E点,直线l3:y=(m﹣1)x+(m+)(m≠1)必将四边形ABCD的面积二等分.2018-2019学年八年级第二学期期中数学试卷一、选择题1.二次根式有意义的条件是()A.x≤3B.x<3C.x≥3D.x>32.与可以合并的二次根式是()A.B.C.D.3.下列运算正确的是()A.+=B.=2C.•=D.÷=2 4.下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12 5.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直6.如图,在▱ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E,则DE的长是()A.4B.3C.3.5D.27.如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是()A.正方形B.矩形C.菱形D.平行四边形8.如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以O为圆心,OB长为半径作弧,交数轴于点C,则OC长为()A.3B.C.D.9.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得对角线AC=40cm,则图1中对角线AC的长为()A.20cm B.30cm C.40cm D.20cm10.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.﹣1D.2﹣二、填空题(本题共6小题,每小题4分,共24分)11.若+(n﹣1)2=0,则m﹣n=.12.己知a、b为两个连续整数,且a<<b,则a+b=.13.如图,在△ABC中,若∠ACB=90°,∠B=55°,点D是AB的中点,则∠ACD的度数是.14.如图,将▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF为.15.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是.16.如图,▱OABC的顶点O、A、C的坐标分别为(0,0)、(a,0)、(b,c),求顶点B的坐标.三、解答题(本题共9小题,共86分)17.计算:×﹣2÷18.当x=+1,y=﹣1时,求代数式x2﹣y2+xy的值.19.如图,A,B,D三点在同一直线上,△ABC≌△BDE,其中点A,B,C的对应点分别是B,D,E,连接CE.求证:四边形ABEC是平行四边形.20.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.21.若要化简我们可以如下做:∵3+2=2+1+2=()2+2××12=(+1)2∴==+1仿照上例化简下列各式:(1)(2)22.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在边BC上有一点M,将△ABM 沿直线AM折叠,点B恰好在AC延长线上的点D处,求CM的长.23.如图,▱ABCD的对角线AC、BD相交于点O,且∠OBC=∠OCB.(1)求证:四边形ABCD为矩形;(2)过B作BE⊥AO于E,∠CBE=3∠ABE,BE=2,求AE的长.24.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.25.我们知道三角形任意两条中线的交点是三角形的重心.重心有如下性质:重心到顶点的距离是重心到对边中点距离的2倍.请利用该性质解决问题(1)如图1,在△ABC中,AF、BE是中线,AF⊥BE于P.若BP=2,∠FAB=30°,则EP=,FP=;(2)如图1,在△ABC中,BC=a,AC=b,AB=c,AF、BE是中线,AF⊥BE于P.猜想a2、b2、c2三者之间的关系并证明;(3)如图2,在▱ABCD中,点E、F、G分别是AD、BC、CD的中点,BE⊥BG,AB=3,AD=2,求AF的长.参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个正确的选项)1.二次根式有意义的条件是()A.x≤3B.x<3C.x≥3D.x>3【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.解:根据二次根式有意义,得:x﹣3≥0,解得:x≥3.故选:C.2.与可以合并的二次根式是()A.B.C.D.【分析】将各选项中的二次根式化简,被开方数是5的根式即为正确答案.解:A.与不是同类二次根式,不可以合并,故本选项错误;B.与不是同类二次根式,不可以合并,故本选项错误;C.=2,故与是同类二次根式,故本选项正确;D.=5,故与不是同类二次根式,故本选项错误.故选:C.3.下列运算正确的是()A.+=B.=2C.•=D.÷=2【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式==2,所以D选项正确.故选:D.4.下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.5.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直【分析】根据矩形、菱形的性质逐个判断即可.解:菱形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线互相垂直,矩形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线相等;即菱形具有而矩形不一定具有的特征是对角线互相垂直,故选:D.6.如图,在▱ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E,则DE的长是()A.4B.3C.3.5D.2【分析】根据角平分线及平行线的性质可得∠ABE=∠AEB,继而可得AB=AE,根据ED =AD﹣AE=AD﹣AB即可得出答案.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠EBC,又∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴ED=AD﹣AE=AD﹣AB=7﹣4=3.故选:B.7.如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是()A.正方形B.矩形C.菱形D.平行四边形【分析】根据有一个角是直角的平行四边形是矩形即可证明;解:连接AC、BD.AC交FG于L.∵四边形ABCD是菱形,∴AC⊥BD,∵DH=HA,DG=GC,∴GH∥AC,HG=AC,同法可得:EF=AC,EF∥AC,∴GH=EF,GH∥EF,∴四边形EFGH是平行四边形,同法可证:GF∥BD,∴∠OLF=∠AOB=90°,∵AC∥GH,∴∠HGL=∠OLF=90°,∴四边形EFGH是矩形.故选:B.8.如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以O为圆心,OB长为半径作弧,交数轴于点C,则OC长为()A.3B.C.D.【分析】根据题意可以得到OA=2,AB=1,∠BAO=90°,然后根据勾股定理即可求得OB的长,然后根据OB=OC,即可求得OC的长.解:由题意可得,OA=2,AB=1,∠BAO=90°,∴OB=,∵OB=OC,∴OC=,故选:D.9.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得对角线AC=40cm,则图1中对角线AC的长为()A.20cm B.30cm C.40cm D.20cm【分析】在图1,图2中,连接AC.在图2中,由勾股定理求出BC,在图1中,只要证明△ABC是等边三角形即可解决问题.解:如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=40cm,∴AB=BC=AC=40cm,在图①中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=40cm,故选:C.10.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2﹣2B.﹣1C.﹣1D.2﹣【分析】由题意可得∠ACD=45°=∠BDC=∠ACB,BD=,由CE平分∠ACD,可求∠BEC=∠BCE,即BC=BE=1,即可求DE的长度.解:∵四边形ABCD是正方形∴BC=CD=1,∠BCD=90°,∠ACD=45°=∠BDC=∠ACB∴BD=∵CE平分∠ACD∴∠ACE=∠DCE=22.5°∴∠BCE=67.5°∵∠BEC=∠BDC+∠DCE∴∠BEC=67.5°∴∠BEC=∠BCE∴BE=BC=1∴DE=BD﹣BE=﹣1故选:C.二、填空题(本题共6小题,每小题4分,共24分)11.若+(n﹣1)2=0,则m﹣n=2.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:由题意得,m﹣3=0,n﹣1=0,解得m=3,n=1,所以,m﹣n=3﹣1=2.故答案为:2.12.己知a、b为两个连续整数,且a<<b,则a+b=5.【分析】先估算出的取值范围,得出a,b的值,进而可得出结论.解:∵4<7<9,∴2<<3.∵a、b为两个连续整数,∴a=2,b=3,∴a+b=2+3=5.故答案为:5.13.如图,在△ABC中,若∠ACB=90°,∠B=55°,点D是AB的中点,则∠ACD的度数是35°.【分析】先根据在直角三角形中,斜边上的中线等于斜边的一半,得出CD=BD,进而得到∠B=∠DCB=55°,再根据∠ACB=90°,即可得出∠ACD的度数.解:∵△ABC中,∠ACB=90°,点D是斜边AB的中点,∴CD=BD=AB,∴∠B=∠DCB=55°,又∵∠ACB=90°,∴∠ACD=90°﹣55°=35°,故答案是:35°.14.如图,将▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF为4.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故答案为:415.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是.【分析】根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB===,∵四边形OABC是矩形,∴AC=OB,∴AC=16.如图,▱OABC的顶点O、A、C的坐标分别为(0,0)、(a,0)、(b,c),求顶点B的坐标.【分析】过C作CD⊥OA,利用平行四边形的性质其对边相等,进而得出B点的横纵坐标.解:过C作CD⊥OA,在▱OABC中,O(0,0),A(a,0),∴OA=a.又∵BC∥AO,∴点B的纵坐标与点C的纵坐标相等,∴B(a+b,c).三、解答题(本题共9小题,共86分)17.计算:×﹣2÷【分析】首先计算乘除,再化简后计算加减即可.解:原式=﹣2,=2﹣2×,=2﹣.18.当x=+1,y=﹣1时,求代数式x2﹣y2+xy的值.【分析】将x、y的值代入原式=(x﹣y)(x+y)+xy,再根据二次根式的混合运算顺序和运算法则计算可得.解:当x=+1,y=﹣1时,原式=(x﹣y)(x+y)+xy=()(+1+﹣1)+(+1)×(﹣1)=2×2+(3﹣1)=4+2.19.如图,A,B,D三点在同一直线上,△ABC≌△BDE,其中点A,B,C的对应点分别是B,D,E,连接CE.求证:四边形ABEC是平行四边形.【分析】根据全等三角形的性质可得AC=BE,∠A=∠DBE,根据平行线的判定可得AC ∥BE,再根据平行四边形的判定即可求解.【解答】证明:∵△ABC≌△BDE,∴AC=BE,∠A=∠DBE,∴AC∥BE,∴四边形ABEC是平行四边形.20.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.21.若要化简我们可以如下做:∵3+2=2+1+2=()2+2××12=(+1)2∴==+1仿照上例化简下列各式:(1)(2)【分析】(1)根据完全平方公式把4+2化为(+1)2,根据二次根式的性质化简;(2)把8﹣4化为(﹣)2,根据二次根式的性质化简.解:(1)4+2=3+2+1=()2+2+12=(+1)2,∴=+1;(2)8﹣4=6﹣4+2=()2﹣2××+()2=(﹣)2,∴=﹣.22.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在边BC上有一点M,将△ABM 沿直线AM折叠,点B恰好在AC延长线上的点D处,求CM的长.【分析】由勾股定理可求AB的长,由折叠的性质可求CD=1,DM=BM,由勾股定理可求解.解:∵∠ACB=90°,BC=3,AC=4,∴AB===5,∵将△ABM沿直线AM折叠,点B恰好在AC延长线上的点D处,∴AD=AB=5,BM=DM,∴CD=1,∵DM2=CM2+CD2,∴(3﹣CM)2=CM2+1,∴CM=.23.如图,▱ABCD的对角线AC、BD相交于点O,且∠OBC=∠OCB.(1)求证:四边形ABCD为矩形;(2)过B作BE⊥AO于E,∠CBE=3∠ABE,BE=2,求AE的长.【分析】(1)根据等角对等边得出OB=OC,根据平行四边形性质求出OC=OA=AC,OB=OD=BD,推出AC=BD,根据矩形的判定推出即可.(2)根据矩形的性质和∠CBE=3∠ABE,得出∠ABE=22.5°,在EB上取一点H,使得EH=AE,易证AH=BH,设AE=EB=x,则AH=BH=x,构建方程即可解决问题.【解答】(1)证明:∵∠OBC=∠OCB,∴OB=OC,∵四边形ABCD是平行四边形,∴OC=OA=AC,OB=OD=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴∠ABC=90°,∵∠CBE=3∠ABE,∴∠ABE=×90°=22.5°,在EB上取一点H,使得EH=AE,易证AH=BH,设AE=EB=x,则AH=BH=x,∵BE=2,∴x+x=2,∴x=2﹣2.24.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG ≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD =EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.25.我们知道三角形任意两条中线的交点是三角形的重心.重心有如下性质:重心到顶点的距离是重心到对边中点距离的2倍.请利用该性质解决问题(1)如图1,在△ABC中,AF、BE是中线,AF⊥BE于P.若BP=2,∠FAB=30°,则EP=1,FP=;(2)如图1,在△ABC中,BC=a,AC=b,AB=c,AF、BE是中线,AF⊥BE于P.猜想a2、b2、c2三者之间的关系并证明;(3)如图2,在▱ABCD中,点E、F、G分别是AD、BC、CD的中点,BE⊥BG,AB=3,AD=2,求AF的长.【分析】(1)由三角形的重心定理得出BP=2EP=2,AP=2FP,得出EP=1,由直角三角形的性质得出AP=BP=2,即可得出FP=AP=;(2)设PF=m,PE=n,由==,得到AP=2m,PB=2n,再由勾股定理即可得出结论;(3)连接AC、EC,由平行四边形的性质得出AD=BC,AD∥BC,证明四边形AFCE 是平行四边形,得出AF=CE,由平行线得出△AEQ∽△CBQ,得出===,设AQ=a,EQ=b,则CQ=2a,BQ=2b,证明EG是△ACD的中位线,由三角形中位线定理得出EG∥AC,得出BE⊥AC,由勾股定理得得出方程,求出a2=,得出BQ2=4b2=,b2=,在Rt△EQC中,由勾股定理求出CE,即可得出AF的长.解:(1)∵在△ABC中,AF、BE是中线,∴BP=2EP=2,AP=2FP,∴EP=1,∵AF⊥BE,∠FAB=30°,∴AP=BP=2,∴FP=AP=;故答案为:1,;(2)a2+b2=5c2;理由如下:连接EF,如图1所示:∵AF,BE是△ABC的中线,∴EF是△ABC的中位线,∴EF∥AB,且EF=AB=c,∴==,设PF=m,PE=n,∴AP=2m,PB=2n,在Rt△APB中,(2m)2+(2n)2=c2,即4m2+4n2=c2,在Rt△APE中,(2m)2+n2=(b)2,即4m2+n2=b2,在Rt△FPB中,m2+(2n)2=(a)2,即m2+4n2=a2,∴5m2+5n2=(a2+b2)=c2,∴a2+b2=5c2;(3)连接AC、EC,如图2所示:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵点E,F分别是AD,BC,CD的中点,∴AE=CE,∴四边形AFCE是平行四边形,∴AF=CE,∵AD∥BC,∴△AEQ∽△CBQ,∴===,设AQ=a,EQ=b,则CQ=2a,BQ=2b,∵点E,G分别是AD,CD的中点,∴EG是△ACD的中位线,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,由勾股定理得:AB2﹣AQ2=BC2﹣CQ2,即9﹣a2=(2)2﹣4a2,∴3a2=11,∴a2=,∴BQ2=4b2=(2)2﹣4×=,∴b2=×=,在Rt△EQC中,CE2=EQ2+CQ2=b2+4a2=16,∴CE=4,∴AF=4.2018-2019学年福建省厦门市同安区八年级(下)期中数学试卷一.选择题(共10小题,满分40分)1.要使式子有意义,则x的值可以是()A.2B.0C.1D.92.化简的结果是()A.2B.2C.﹣2D.±23.如图,在△ABC中∠A=90°,则三条边长a,b,c之间数量关系满足()A.a+b=c B.b+c=a C.b2+c2=a2D.a2+b2=c24.在▱ABCD中,∠A:∠B:∠C:∠D的值可能是()A.5:2:2:5B.5:5:2:2C.2:5:2:5D.2:2:5:5 5.矩形的一边长是4cm,一条对角线的长是4cm,则矩形的面积是()A.32cm2B.32cm2C.16cm2D.8cm26.下列性质中矩形具有而平行四边形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.每条对角线平分一组对角7.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.cm2C.cm2D.cm28.若=a,=b,则等于()A.ab B.C.0.1a+0.1b D.0.lab9.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个10.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为P A,PB的中点,对下列各值:①线段MN的长;②△P AB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤二.填空题(共6小题,满分24分)11.化简:()2=,=.12.写出“全等三角形的面积相等”的逆命题.13.已知Rt△ABC中,∠ABC=90°,D是斜边AC的中点,若BD=3cm,则AC=.14.计算:=.15.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=25,大正方形的面积为13,则小正方形的面积为.16.如图,四边形ABCD是菱形,AC=8,DB=6,P、Q分别为AC、AD上的动点,连接DP、PQ,则DP+PQ的最小值为.三.解答题(共9小题,满分86分)17.计算:218.先化简,再求值:(m﹣)(m+)﹣m(m﹣6),其中m=.19.如图,在▱ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.将▱ABCD放在平面直角坐标系中,对角线AC,BD交于坐标原点O,B(﹣4,﹣3),C(0,﹣3),请根据要求画出图形,并求出▱ABCD的面积和周长.21.如图,已知正方形CDEF的面积为169cm2,且AC⊥AF,AB=3cm,BC=4cm,AF=12cm,试判断△ABC的形状,并说明你的理由.。

2018-2019学年辽宁省沈阳市皇姑区虹桥中学八年级(下)期中数学试卷

2018-2019学年辽宁省沈阳市皇姑区虹桥中学八年级(下)期中数学试卷

2018-2019学年辽宁省沈阳市皇姑区虹桥中学八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列方程中,是二元一次方程的是()A.3x-2y=4zB.6xy+9=0C.A+4y=6D.x42.(3分)下列各组数是二元一次方程组的解的是()[y-x=lA.侦1B.(x=0 c.侦7D.ly=2ly=l ly=0[y=-23.(3分)要组成一个三角形,三条线段长度可取()A.9,6,13B.2,3,5C.18,9,8D.3,5,94.(3分)若x>y f则下列式子错误的是()A.x-3>y-3B.JL>X.335.(3分)下列图形中有稳定性的是()C.- 2x<-2yD.3-x>3-yA.正方形B.长方形C.直角三角形D.平行四边形6.(3分)一个多边形的外角和与它的内角和相等,则多边形是()A.三角形B.四边形C.五边形D.六边形7.(3分)如图,/若ZA=70°,ZB=40°B,ZC=32°.则ZBDC=()A.102°AB.110°C.142°D.148°8.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折9.(3分)如图所示,已知△ABC中,ZA=80°,若沿图中虚线剪去ZA,则Z1+Z2等于()C.260°D.315°10.(3分)给出下列命题:①三角形的一个外角等于两个内角和;②若ZA+ZB=ZC,则AABC是直角三角形;③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.正确的命题有()A.1个B.2个C.3个D.4个二、填空题:(每题3分,共30分)11.(3分)将方程x+4y=2改写成用含y的式子表示x的形式.12.(3分)不等式组P X<2X+4的最大整数解是_______.[x+6《3x13.(3分)已知在△A BC中,若则ZkABC中最大的角度数为°.5314.(3分)已知等腰三角形的两条边长分别为2和5,则它的周长为.15.(3分)一个多边形的内角和为1080°,若每个内角都相等,则每个外角的度数是_______16.(3分)A3、CD相交于点。

山东省乐陵市2018-2019学年八年级下学期期中考试数学试题 含解析

山东省乐陵市2018-2019学年八年级下学期期中考试数学试题 含解析

2018-2019学年八年级下学期期中考试数学试题一、选择题.(每题3分,共48分)1.下列各组数中,能作为直角三角形三边长的是()A.1、2、3 B.3、5、7 C.32、42、52 D.5、12、132.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m3.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C.D.4或4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.115.已知四边形ABCD,有以下四个条件:(1)AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD是平行四边形的有()个.A.1 B.2 C.3 D.46.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm7.如果点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,那么m与n的关系是()A.m>n B.m<n C.m=n D.不能确定8.在四边形ABCD中,∠A=∠B=∠C=90°,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A.BC=CD B.AB=CD C.∠D=90°D.AD=BC9.一次函数y=kx﹣6(k<0)的图象大致是()A.B.C.D.10.下列图象中,哪些表示y是x的函数?有()个.A.1个B.2个C.3个D.4个11.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P12.已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限13.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形14.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y随x的增大而增大15.如图,在正方形ABCD的外侧作等边三角形ADE,那么∠BED为()A.60°B.45°C.30°D.15°16.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.二、填空题.(每题3分,共24分)17.函数y=﹣中自变量x的取值范围是.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.20.已知一次函数y=kx+k﹣3的图象经过点(2,3),则k的值为.21.将直线y=2x﹣1沿y轴正方向平移2个单位,得到的直线的解析式为.22.请写出一个图象经过点(1,1)的一次函数的表达式:.23.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.24.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的序号是三、解答题(共计78分)25.有一块田地的形状和尺寸如图所示,求它的面积.26.已知:如图,在▱ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.27.已知:如图,在矩形ABCD中,AB=3,BC=4.将△BCD沿对角线BD翻折得到△BED,BE交AD于点O.(1)判断△BOD的形状,并证明;(2)直接写出线段OD的长.28.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.29.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=2x的交点为P(2,m),与x轴的交点为A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.30.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车(不能超员)它们的载客量和租金如下:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.31.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)32.阅读以下内容并回答问题:如图1,在平面直角坐标系xOy中,有一个△OEF,要求在△OEF内作一个内接正方形ABCD,使正方形A,B两个顶点在△OEF的OE边上,另两个顶点C,D分别在EF和OF两条边上.小丽感到要使四边形的四个顶点同时满足上述条件有些困难,但可以先让四边形的三个顶点满足条件,于是她先画了一个有三个顶点在三角形边上的正方形(如图2).接着她又在△OEF内画了一个这样的正方形(如图3).她发现如果再多画一些这样的正方形,就能发现这些点C位置的排列图形,根据这个图形就能画出满足条件的正方形了.(1)请你也实验一下,再多画几个这样的正方形,猜想小丽发现这些点C排列的图形是;(2)请你参考上述思路,继续解决问题:如果E,F两点的坐标分别为E(6,0),F(4,3).①当A1的坐标是(1,0)时,则C1的坐标是;②当A2的坐标是(2,0)时,则C2的坐标是;③结合(1)中猜想,求出正方形ABCD的顶点D的坐标,在图3中画出满足条件的正方形ABCD.参考答案与试题解析一.选择题(共16小题)1.下列各组数中,能作为直角三角形三边长的是()A.1、2、3 B.3、5、7 C.32、42、52 D.5、12、13 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵1+2=3,∴三条线段不能组成三角形,不能组成直角三角形,故A选项错误;B、∵52+32≠72,∴三条线段不能组成直角三角形,故B选项错误;C、∵322+422≠522,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+122=132,∴∴三条线段能组成直角三角形,故D选项正确;故选:D.2.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.3.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C.D.4或【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.11【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选:C.5.已知四边形ABCD,有以下四个条件:(1)AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD是平行四边形的有()个.A.1 B.2 C.3 D.4【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定定理知,(1),(2)不符合是平行四边形的条件;(3)(4)满足四边形是平行四边形.故选:B.6.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.【解答】解:A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、4+6=10,不能构成三角形,故此选项错误;D、10+10>15,能够成三角形,故此选项正确;故选:D.7.如果点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,那么m与n的关系是()A.m>n B.m<n C.m=n D.不能确定【分析】先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【解答】解:∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,1<3,∴m>n.故选:A.8.在四边形ABCD中,∠A=∠B=∠C=90°,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A.BC=CD B.AB=CD C.∠D=90°D.AD=BC【分析】根据正方形的判定方法即可判定;【解答】解:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形,∴当BC=CD时,四边形ABCD是正方形,故选:A.9.一次函数y=kx﹣6(k<0)的图象大致是()A.B.C.D.【分析】一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.【解答】解:∵一次函数y=kx﹣6中,k<0∴直线从左往右下降又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选:D.10.下列图象中,哪些表示y是x的函数?有()个.A.1个B.2个C.3个D.4个【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【解答】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以第四个错误.故选:C.11.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选:A.12.已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限【分析】根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣3且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.13.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形【分析】根据菱形对角线互相垂直平分的判定方法进行解答.【解答】解:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选:D.14.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y随x的增大而增大【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【解答】解:A.它的图象必经过点(﹣1,4),错误;B.它的图象经过第一、二、四象限,错误;C.当x>1时,y<0,正确;D.y随x的增大而减小,错误;故选:C.15.如图,在正方形ABCD的外侧作等边三角形ADE,那么∠BED为()A.60°B.45°C.30°D.15°【分析】由正方形性质可得AB=AD,∠BAD=90°,由等边三角形性质可得AE=AD,∠DAE=∠AED=60°,再根据等腰三角形性质和三角形内角和定理即可求得∠BED.【解答】解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ADE是等边三角形∴AE=AD,∠DAE=∠AED=60°∴AB=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°∴∠ABE=∠AEB=(180°﹣∠BAE)=15°∴∠BED=∠AED﹣∠AEB=60°﹣15°=45°故选:B.16.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律S n=()n﹣1,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为1,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,∴S n=()n﹣1.当n=2019时,S2019=()2019﹣1=()2018,故选:B.二.填空题(共8小题)17.函数y=﹣中自变量x的取值范围是﹣2<x≤3 .【分析】二次根式有意义的条件就是被开方数大于或等于0.分式有意义的条件是分母不为0,列不等式组求解.【解答】解:根据题意,得,解得:﹣2<x≤3,则自变量x的取值范围是﹣2<x≤3.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为 3 .【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.19.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为24 .【分析】首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.【解答】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=24.故答案为:24.20.已知一次函数y=kx+k﹣3的图象经过点(2,3),则k的值为 2 .【分析】将点(2,3)代入y=kx+k﹣3可得关于k的方程,解方程求出k的值即可.【解答】解:将点(2,3)代入一次函数y=kx+k﹣3,可得:3=2k+k﹣3,解得:k=2.故答案为:2.21.将直线y=2x﹣1沿y轴正方向平移2个单位,得到的直线的解析式为y=2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=2x﹣1向上平移2个单位后,所得直线的表达式是y=2x﹣1+2,即y=2x+1.故答案为:y=2x+1.22.请写出一个图象经过点(1,1)的一次函数的表达式:y=2x﹣1(不唯一).【分析】可设这个一次函数解析式为:y=kx﹣1,把(1,1)代入即可.【解答】解:设这个一次函数解析式为:y=kx﹣1,把(1,1)代入得k=2,∴这个一次函数解析式为:y=2x﹣1(不唯一).23.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是x>3 .【分析】观察函数图象得到当x>3时,函数y=x+b的图象都在y=kx+6的图象上方,所以关于x的不等式x+b>kx+6的解集为x>3.【解答】解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.24.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的序号是①③【分析】根据函数的图象直接判断后即可确定正确的答案.【解答】解:①∵正比例函数y1=ax经过一三象限,∴a>0正确;②∵一次函数y2=﹣x+b的图象交y轴的正半轴,∴b>0,∴b<0错误;③∵当x<0时y1=ax的图象位于x轴的下方,、∴y1<0正确;④观察图象得当x>2时y1>y2,∴y1<y2错误,故答案为:①③.三.解答题(共8小题)25.有一块田地的形状和尺寸如图所示,求它的面积.【分析】在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD 的面积.【解答】解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC==5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.26.已知:如图,在▱ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.【分析】只要证明四边形DEBF是平行四边形即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥BE,又∵DE∥BF,∴四边形DEBF是平行四边形,∴DE=BF.27.已知:如图,在矩形ABCD中,AB=3,BC=4.将△BCD沿对角线BD翻折得到△BED,BE交AD于点O.(1)判断△BOD的形状,并证明;(2)直接写出线段OD的长.【分析】(1)根据矩形的性质和翻折的性质可得结论;(2)设OD=x,则AO=4﹣x,BO=OD=x,根据勾股定理列方程可得结论.【解答】(本小题满分5分)解:(1)△BOD为等腰三角形,证明如下:…………………………………………………………………(1分)∵矩形ABCD,∴AD∥BC.∴∠ADB=∠DBC.…………………………………………………………………………(2分)又∵△BCD沿对角线BD翻折得到△BED,∴∠OBD=∠DBC.…………………………………………………………………………(3分)∴∠OBD=∠ADB.∴OB=OD.∴△BOD为等腰三角形.…………………………………………………………………………(4分)(2)设OD=x,则AO=4﹣x,BO=OD=x,由勾股定理得:OB2=AB2+AO2,∴x2=32+(4﹣x)2,∴x=,∴OD=.……………………………………………………………………………(5分)28.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF =∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.29.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=2x的交点为P(2,m),与x轴的交点为A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.【分析】(1)把点P(2,m)代入直线y=2x可求m的值;(2)先求得PB=4,根据三角形面积公式可求AB=3,可得A1(5,0),A2(﹣1,0),再根据待定系数法可求k的值.【解答】解:(1)∵直线y=2x过点P(2,m),∴m=4.(2)∵P(2,4),∴PB=4.又∵△PAB的面积为6,∴AB=3.∴A1(5,0),A2(﹣1,0).当直线y=kx+b经过A1(5,0)和P(2,4)时,可得k=.当直线y=kx+b经过A2(﹣1,0)和P(2,4)时,可得k=.综上所述,k=.30.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车(不能超员)它们的载客量和租金如下:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.【分析】(1)由甲种客车载客量多于乙种客车可得出:若只租甲种客车,所需辆数最少,由租用甲种客车还需要6辆及只有6名教师可得出共需租车6辆;(2)设租用甲种客车x辆,则租用乙种客车(6﹣x)辆,根据所租客车可乘载人数及租车总费用不超过2300元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数可得出各租车方案,再求出各租车方案的租车总费用,比较后即可得出结论.【解答】解:(1)∵45>30,∴若只租甲种客车,所需辆数最少.又∵45×5=225<234+6,且教师只有6名,∴共需租车6辆.(2)设租用甲种客车x辆,则租用乙种客车(6﹣x)辆,依题意,得:,解得:4≤x≤5.∵x为整数,∴x=4,5,∴共有2种租车方案,方案1:租甲种客车4辆,乙种客车2辆;方案2:租甲种客车5辆,乙种客车1辆.方案1所需费用=400×4+280×2=2160(元),方案2所需费用=400×5+280=2280(元).∵2160<2280,∴方案1租甲种客车4辆,乙种客车2辆最省钱.31.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.32.阅读以下内容并回答问题:如图1,在平面直角坐标系xOy中,有一个△OEF,要求在△OEF内作一个内接正方形ABCD,使正方形A,B两个顶点在△OEF的OE边上,另两个顶点C,D分别在EF和OF两条边上.小丽感到要使四边形的四个顶点同时满足上述条件有些困难,但可以先让四边形的三个顶点满足条件,于是她先画了一个有三个顶点在三角形边上的正方形(如图2).接着她又在△OEF内画了一个这样的正方形(如图3).她发现如果再多画一些这样的正方形,就能发现这些点C位置的排列图形,根据这个图形就能画出满足条件的正方形了.(1)请你也实验一下,再多画几个这样的正方形,猜想小丽发现这些点C排列的图形是一条线段;(2)请你参考上述思路,继续解决问题:如果E,F两点的坐标分别为E(6,0),F(4,3).①当A1的坐标是(1,0)时,则C1的坐标是(,);②当A2的坐标是(2,0)时,则C2的坐标是(,);③结合(1)中猜想,求出正方形ABCD的顶点D的坐标,在图3中画出满足条件的正方形ABCD.【分析】(1)直接得出结论;(2)先确定出直线OF的解析式,①将x=1代入直线OF解析式在求出y,即可得出结论;②将x=2代入直线OF解析式在求出y,即可得出结论;③先求出直线C1C2的表达式为y=x和直线EF的表达式为y=﹣+9,进而求出C点坐标为(,2),即可得出结论.【解答】解:(1)一条线段;故答案为:一条线段;(2)∵F(4,3).∴直线OF的表达式是y=x,①∵四边形A1B1C1D1是正方形,∴A1D1=A1B1,把x=1代入直线y=x中,得y=,∴OB1=OA1+A1B1=1+=,∴C1的坐标是(,),故答案为:(,);②∵四边形A2B2C2D2是正方形,∴A2D2=A2B2,把x=2代入直线y=x中,得y=,∴OB2=OA2+A2B2=2+=,∴C2的坐标是(,),故答案为:(,);③设过C1,C2两点的一次函数表达式是y=kx+b(k≠0).代入C1,C2两点得解得,∴直线C1C2的表达式为y=x,设过E(6,0),F(4,3)两点的一次函数表达式是y=k'x+b'(k'≠0).代入E,F两点得解得,所以直线EF的表达式为y=﹣x+9直线EF:y=﹣x+9与直线C1C2:y=x的交点坐标为C.解得x=,y=2.∴C点坐标为(,2).把y=2代入y=x,解得x=,∴D点坐标为(,2)即:所画四边形ABCD如图3所示,。

江苏省南京外国语学校2018-2019年第二学期期中考试八年级数学试卷(解析版)

江苏省南京外国语学校2018-2019年第二学期期中考试八年级数学试卷(解析版)

2018-2019学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)如图“数字图形”中,中心对称图形有()A.1个B.2个C.3个D.4个2.(2分)一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球3.(2分)下列调查中,适合采用抽样调查的是()A.对乘坐高铁的乘客进行安检B.调意本班学装的身高C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.调查一批英雄牌钢笔的使用寿命4.(2分)中华汉字,源远流长.某校为了传承中华优秀传统文化,组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校随机抽取了其中200名学生的成绩进行统计分析,下列说法正确的是()A.这3000名学生的“汉字听写”大赛成绩的全体是总体B.每个学生是个体C.200名学生是总体的一个样本D.样本容量是30005.(2分)在1x,25ab,﹣0.7xy+y3,mm n+,5b ca-+中,分式有()A.2个B.3个C.4个D.5个6.(2分)菱形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.邻边相等D.对边平行7.(2分)若x+1x=3,求2421xx x++的值是()A.18B.110C.12D.148.(2分)如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)二、填空题(每小题2分,共20分)9.(2分)(1)当x时,分式211xx-+有意义;(2)当x时,分式3||3xx-+的值为0.10.(2分)已知反比例函数的解析式为y=||2ax-.则a的取值范围是.11.(2分)一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是事件(填“必然”、“随机”或“不可能”)12.(2分)当m=时,解分式方程53xx--=3mx-会出现增根.13.(2分)若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是.14.(2分)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为.15.(2分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.16.(2分)对于反比例函数y=﹣2x,下列说法正确的是.①图象分布在第二、四象限;②当x>0时,y随x的增大而增大;③图象经过点(1,﹣2);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2.17.(2分)如图,已知一次函数y=ax+b和反比例函数y=kx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为.18.(2分)已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ=°时,GC=GB.三、解答题(共64分)19.(10分)计算:(1)(2a b cd -)3÷32a d •(2c a)2 (2)(22221-a b a ab --)÷a a b+ 20.(10分)解方程:(1)23x -=3x(2)1x x -﹣1=232x x +- 21.(6分)先化简(21a a +﹣a +1)÷21a a -,然后将﹣1、0、12、1、2中,所有你认为合适的数作为a 的值,代入求值.22.(3分)如图4×4的正方形网格中,将△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,请用尺规作图法确定旋转中心O 点(保留作图痕迹,标出O 点).23.(7分)某学校为了解今年八年级学生足球运球的掌握情况,随机抽取部分八年级学生足球运球的测试成绩作为一个样本,按A 、B 、C 、D 四个等级进行如图不完整的统计图根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是 度;(2)补全条形统计图、扇形统计图;(3)该校八年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?24.(6分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m 和2000m ,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.25.(7分)为打造美丽校园,小明、小红为校园内的一块空地分别提供了如图甲、乙的设计方案,其中阴影部分都用于绿化,图甲空白区域修建一座雕像,图乙空白区域修建石子小路.已知S 甲表示图甲中绿化的面积S 乙表示图乙中绿化的面积.(1)S 甲= (用含a ,b 的代数式表示);(2)设k =F ZS S , ①请用含a ,b 的代数式表示k 并化简;②当2S 甲﹣S 乙=98a 2时,求k 的值.26.(8分)如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.27.(7分)平面直角坐标系xOy 中,点A 、B 分别在函数y 1=3x (x >0),与y 2=﹣3x (x <0)的图象上,A 、B 的横坐标分别为a 、b .(a 、b 为任意实数)(1)若AB ∥x 轴,求△OAB 的面积;(2)作边长为2的正方形ACDE ,使AC ∥x 轴,点D 在点A 的左上方,那么,当a ≥3时,CD 边与函数y 1=3x(x >0)的图象有交点,请说明理由.2018-2019学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.【分析】利用中心对称图形的定义回答即可.【解答】解:2,0,1,9四个数中中心对称图形有2,0,1共3个,故选:C.【点评】考查了中心对称图形的定义,解题的关键是了解中心对称图形的定义,难度不大.2.【分析】个数最多的就是可能性最大的.【解答】解:因为白球最多,所以被摸到的可能性最大.故选:A.【点评】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.【分析】对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【解答】解:A、对乘坐高铁的乘客进行安检,必须普查;B、调意本班学生的身高,必须普查;C、为保证某种新研发的战斗机试飞成功,对其零部件进行检查,必须普查;D、调查一批英雄牌钢笔的使用寿命,适合抽样调查;故选:D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.4.【分析】解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全校3000名学生参加的“汉字听写”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A 、这3000名学生的“汉字听写”大赛成绩的全体是总体,正确;B 、每个学生的“汉字听写”大赛成绩是个体,错误;C 、200名学生的“汉字听写”大赛成绩是总体的一个样本,错误;D 、样本容量是200,错误;故选:A .【点评】考查统计知识的总体,样本,个体等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.5.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:1x ,25ab ,﹣0.7xy +y 3,m+n m ,5b c a -+中,分式有1x ,m+n m ,5b c a-+一共3个.故选:B .【点评】本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字母则不是分式.6.【分析】菱形拥有平行四边形的全部性质,且菱形的各边长相等且对角线互相垂直,分析A 、B 、C 、D 选项的正确性,即可解题.【解答】解:菱形具有平行四边形的全部性质,(A )平行四边形对角相等,故本选项错误;(B )平行四边形对边相等,故本选项错误;(C )邻边平行的平行四边形为菱形,故本选项正确,(D )平行四边形对边平行,故本选项错误.故选:C .【点评】本题考查了平行四边形对边平行且相等的性质,考查了菱形各边长相等的性质,本题中熟练掌握菱形的性质是解题的关键.7.【分析】把x +1x =3两边平方后,得到即221x x+=7,先计算出原代数式的倒数4221x x x ++=2211x x ++的值后,再计算原代数式的值. 【解答】解:∵x +1x=3, ∴(x +1x )2=9,即221x x +=9﹣2=7,∴4221x xx++=2211xx++=7+1=8,∴2421xx x++=18.故选:A.【点评】此题要熟悉完全平方公式,同时注意先求它的倒数,可以约分,简便计算.8.【分析】根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD 的对角线交点M的坐标.【解答】解:∵对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.【点评】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.二、填空题(每小题2分,共20分)9.【分析】(1)根据分式有意义的条件可得x+1≠0,再解即可;(2)根据分式值为零的条件可得3﹣|x|=0,且x+3≠0,再解即可.【解答】解:(1)由题意得:x+1≠0,解得:x≠﹣1,故答案为:≠﹣1;(2)由题意得:3﹣|x|=0,且x+3≠0,解得:x=3,故答案为:=3.【点评】此题主要考查了分式值为零和有意义的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零;式有意义的条件是分母不等于零.10.【分析】根据反比例函数解析式中k 是常数,不能等于0解答即可.【解答】解:由题意可得:|a |﹣2≠0,解得:a ≠±2,故答案为:a ≠±2.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k 的取值范围解答.11.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是必然事件.故答案为:必然.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.【解答】解:分式方程可化为:x ﹣5=﹣m ,由分母可知,分式方程的增根是3,当x =3时,3﹣5=﹣m ,解得m =2,故答案为:2.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【分析】根据解分式方程的方法求出题目中分式方程的解,然后根据关于x 的方程333x m m x x++--=3的解为正数和x ﹣3≠0可以求得m 的取值范围. 【解答】解:333x m m x x++--=3, 方程两边同乘以x ﹣3,得x+m﹣3m=3(x﹣3)去括号,得x+m﹣3m=3x﹣9移项及合并同类项,得2x=﹣2m+9系数化为1,得x=292m-+,∵关于x的方程333x m mx x++--=3的解为正数且x﹣3≠0,∴29229302mm-+⎧>⎪⎪⎨-+⎪-≠⎪⎩,解得,m<92且m32≠.【点评】本题考查分式方程的解,解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.14.【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【解答】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=kx,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=6x,故答案为:y=6 x【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.【分析】根据反比例函数的性质对各小题进行逐一分析即可.【解答】解:∵k=﹣2<0,∴①图象分布在第二、四象限,正确;②当x>0时,y随x的增大而增大,正确;③图象经过点(1,﹣2),正确;④若点A(x1,y1),B(x2,y2)都在图象上,且0<x1<x2,则y1<y2故错误.正确的有:①②③,故答案为:①②③.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象既是轴对称图形,又是中心对称图形是解答此题的关键.17.【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,则不等式ax+b<kx的解集是﹣2<x<0或x>1.故答案为:﹣2<x<0或x>1.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.18.【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=360°﹣60°=300°.故答案为:60或300【点评】本题考查了旋转的性质,矩形的性质,利用分类讨论思想解决问题是本题的关键.三、解答题(共64分)19.【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得.【解答】解:(1)原式=(﹣6333a b c d )•32d a •224c a =﹣338a b c; (2)原式=[21()()()a b a b a a b -+--]•a b a+ =[2()()()()a a b a a b a b a a b a b +-+--+]•a b a+ =()()a b a a b a b -+-•a b a+ =21a . 【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.20.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x =3x ﹣9,解得:x =9,经检验x =9是分式方程的解;(2)去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.21.【分析】先化简分式,然后代入a 求值.【解答】解:原式=2211a a a -++)÷21a a - =11a +•21a a -=1 aa -∵a2﹣1≠0,a≠0,a≠±1,0,当a=2时,原式=211 22 -=,当a=12时,原式=﹣1.【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键.22.【分析】利用关于点对称图形的性质得出对应点到旋转中心的距离相等,进而作出对应点连线的垂直平分线进而得出其交点.【解答】解:如图所示;O点即为所求.【点评】此题主要考查了图形的旋转变换,利用关于点对称的图形性质得出是解题关键.23.【分析】(1)先由B等级人数及其所占百分比求出总人数,由各等级人数之和等于总人数得出C等级人数,从而可用360°乘以C等级人数占总人数的比例即可得;(2)由各等级人数之和等于总人数得出C等级人数,根据百分比概念求出A、C等级对应的百分比,由百分比之和等于1求出D等级对应的百分比,从而补全图形;(3)用总人数乘以样本中A等级对应的百分比即可得.【解答】解:(1)18÷45%=40,即在这次调查中一共抽取了40名学生,在扇形统计图中,C对应的扇形的圆心角是:360°×40418540---=117°,故答案为:117;(2)C等级的人数为:40﹣4﹣18﹣5=13,A 等级对应的百分比为440×100%=10%,C 等级对应的百分比为1340×100%=32.5%, 则D 等级对应的百分比为1﹣(10%+45%+32.5%)=12.5%,补全图形如下:(3)估计足球运球测试成绩达到A 级的学生有300×10%=30(人).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【分析】设小明的速度为3x 米/分,则小刚的速度为4x 米/分,根据时间=路程÷速度结合小明比小刚提前4min 到达剧院,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x 米/分,则小刚的速度为4x 米/分, 根据题意得:20004x ﹣12003x=4, 解得:x =25,经检验,x =25是分式方程的根,且符合题意,∴3x =75,4x =100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.【分析】(1)根据S 甲=边长为a 的正方形的面积﹣边长为2b 的正方形的面积列式即可;(2)①先根据S 乙=边长为a 的正方形的面积﹣长为a 、宽为b 的长方形的面积×2求出图乙中绿化的面积,再代入k =F ZS S 化简即可; ②根据2S 甲﹣S 乙=98a2列出方程,即可求出k 的值. 【解答】解:(1)S 甲=a2﹣(2b )2=a2﹣4b2.故答案为a2﹣4b2;(2)①S 乙=a2﹣2ab ,k =F Z S S =22242a b a ab --=(2)(2)(2)a b a b a a b +--=2a b a+;②∵2S 甲﹣S 乙=98a2, ∴2(a2﹣4b2)﹣(a2﹣2ab )=98a2, 化简,得a2﹣16ab+64b2=0,∴a =8b ,∴k =2a b a +=828b b b +=54. 【点评】本题考查了列代数式,正方形、长方形的面积以及分式的化简,正确求出甲、乙两图中绿化的面积是解题的关键.26.【分析】(1)由三角形中位线定理推知ED ∥FC ,2DE =BC ,然后结合已知条件“EF ∥DC ”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB =2DC ,即可得出四边形DCFE 的周长=AB +BC ,故BC =16﹣AB ,然后根据勾股定理即可求得.【解答】(1)证明:∵D 、E 分别是AB 、AC 的中点,∴ED 是Rt △ABC 的中位线,∴ED ∥FC .BC =2DE ,又 EF ∥DC ,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC =EF ,∵DC 是Rt △ABC 斜边AB 上的中线,∴AB =2DC ,∴四边形DCFE 的周长=AB +BC ,∵四边形DCFE 的周长为16cm ,AC 的长8cm ,∴BC =16﹣AB ,∵在Rt △ABC 中,∠ACB =90°,∴AB 2=BC 2+AC 2,即AB 2=(16﹣AB )2+82,解得:AB=10cm,【点评】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.27.【分析】(1)点A、B的坐标分别为(a,3a)、(b,﹣3b),AB∥x轴,则33a b=-,即可求解;(2)设点A(a,3a),则点C(a﹣2,3a),点D(a﹣2,32a+),点F(a﹣2,32a-),验证2﹣FC≥0,即可求解【解答】解:(1)A、B的横坐标分别为a、b,则点A、B的坐标分别为(a,3a)、(b,﹣3b),AB∥x轴,则33a b =-,则a=﹣b,AB=a﹣b=2a,S△OAB=12×2a×3a=3;(2)如图所示:∵a≥3,AC=2,则直线CD在y轴右侧且平行于y轴,CD一定与函数有交点,设交点为F,设点A(a,3a),则点C(a﹣2,3a),点D(a﹣2,32a+),点F(a﹣2,32a-)则2﹣FC=2﹣32a-+3a=2(1)(3)(2)a aa a+--,∵a≥3,∴a﹣3≥0,a﹣2>0,故2﹣FC≥0,FC≤2,即点F在线段CD上,即当a≥3时,CD边与函数y1=3x(x>0)的图象有交点.【点评】本题考查的是反比例函数和正方形的性质,该类问题最重要的就是,确定关键点如点D、F的坐标,进而求解.。

2018-2019学年山东省济南市槐荫区八年级(下)期中数学试卷

2018-2019学年山东省济南市槐荫区八年级(下)期中数学试卷

2018-2019 学年山东省济南市槐荫区八年级(下)期中数学试卷副标题题号一二三总分得分一、选择题(本大题共12 小题,共 48.0分)1.下列式子中,是一元一次不等式的是()A. x2< 1B. y-3>0C. a+b=1D. 3x=22.不等式 x< 3 的解集在数轴上表示为()A. B.C. D.3.如图, A、 B 两点被一座山隔开, M、 N 分别是 AC、 BC中点,测量 MN 的长度为 40m,那么 AB 的长度为()A.40mB.80mC.160mD.不能确定4. 若 a>b,则下列不等式成立的是()A.a+1<b+1B.a-5<b-5C.>-3bD. >-3a5.如图,在 ?ABCD 中,点 E、 F 分别在边 AB 和 CD 上,下列条件不能判定四边形 DEBF 一定是平行四边形的是()A. AE=CFB. DE=BFC. ∠ADE=∠CBFD. ∠AED=∠CFB6.设“ ▲ ”、“ ●”、“ ■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲● ■)、、这三种物体按质量从大到小排列应为(A.、、B.▲、、 C. 、、●D. 、、■■ ● ▲■ ●■ ▲● ▲7.如图,在菱形 ABCD 中,AB =6,∠ABD =30 °,则菱形ABCD 的面积是()A. 18B. 18C.36D. 368.不等式组的解集是x> 1,则 m 的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤09.用“&”定义新运算:对于任意实数a b都有a& b=2a-b,如果x&(1&3)=2,那,么 x 等于()A. 1B.C.D. 210.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素 C 含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素 C 含量(单位 ?千克)600100原料价格(元 ?千克)84现配制这种饮料10kg,要求至少含有4200 单位的维生素C,若所需甲种原料的质量为 xkg,则 x 应满足的不等式为()A. 600x+100(10-x)≥4200B.8x+4( 100-x)≤ 4200C. 600x+100(10-x)≤ 4200D.8x+4( 100-x)≥ 420011.观察图中菱形四个顶点所标的数字规律,可知数2019 应标在()A. 第504个菱形的左边B. 第505个菱形的左边C. 第504个菱形的上边D. 第505个菱形的下边12.如图,已知正方形 ABCD 的边长为 4,P 是对角线 BD 上一点,PE⊥BC 于点 E,PF⊥CD 于点 F ,连接 AP,EF .给出下列结论:① PD = EC;②四边形 PECF 的周长为 8;③△APD 一定是等腰三角形;④ AP=EF;⑤ EF 的最小值为 2 ;⑥ AP⊥EF .其中正确结论的序号为()A. ①②④⑤⑥B. ①②④⑤C. ②④⑤D. ②④⑤⑥二、填空题(本大题共 6 小题,共24.0 分)13.x 的与 12 的差不小于 6,用不等式表示为 ______.14.一个多边形的内角和是 1800°,这个多边形是 ______ 边形.15.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB≠AD ,过 O作 OE⊥BD 交 BC 于点 E.若△CDE的周长为10,则平行四边形ABCD 的周长为 ______.16.如图,在 Rt△ABC 中,∠ACB=90°, D 、E、 F 分别是 AB、BC、 CA 的中点,若 CD =3cm,则 EF=______ cm.17.如图,边长为 1 的菱形 ABCD 中,∠DAB=60 度.连接对角线AC,以 AC 为边作第二个菱形ACC1D 1,使∠D 1AC=60 °;连接AC1,再以 AC1为边作第三个菱形AC 1C2D 2,使∠D2AC1=60 °;,按此规律所作的第n 个菱形的边长为______.18.如图,已知正方形ABCD 的边长为8,点 O 是 AD 上一个定点, AO=5,点 P 从点 A出发,以每秒 1 个单位长的速度,按照 A→ B→ C→ D 的方向,在正方形的边上运动,设运动的时间为t(秒),当t 的值为 ______时,△AOP 是等腰三角形.三、解答题(本大题共9 小题,共78.0 分)19.解一元一次不等式< x+1,并在数轴上表示出它的解集.20.如图,在 ?ABCD 中, BE⊥AC, DF ⊥AC 垂足分别为 E、 F ,求证: AF=CE.21.如图在 8×8 的正方形网格中,△ABC 的顶点在边长为 1的小正方形的顶点上.(1)填空:∠ABC=______, AC=______;(2)画出一个以 A、B、 C、 D 为顶点的平行四边形,使顶点 D 也在格点上,并求这个平行四边形的面积.22. 比较下面两列算式结果的大小(在横线上选“>”“<““=”)22×4×34 +3 ______2(-2)2+2 2______2 ×( -2)×222+22______2 ×2×2( 1)通过观察归纳,得20002+20012______2 ×2000 ×2001.( 2)写出能反映这种规律的一般结论:______.( 3)用所学知识说明所得结论的正确性.23.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买 2 支钢笔和 3 本笔记本共需62 元,购买 5 支钢笔和 1 本笔记本共需90 元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80 件作奖品,根据规定购买的总费用不超过1100 元,则工会最多可以购买多少支钢笔?24.如图所示, O 是矩形 ABCD 的对角线的交点, DE∥AC, CE∥BD .(1)求证:四边形 OCED 是菱形.(2)若∠AOD =120°, DE=2 ,求矩形 ABCD 的面积.25.阅读下面材料,根据要求解答问题:求不等式(2x-1)( x+3)> 0 的解集.解:根据“同号两数相乘,积为正”可得:①或②解不等式组①得:x>.解不等式组②得x< -3.∴不等式( 2x-1)( x+3)> 0 的解集为x>或 x< -3.请你仿照上述方法解决下列问题:(1)求不等式( 2x-3)( x+1)< 0 的解集.(2)求不等式≥0的解集.ABC中,点O是AC上的一动点,过点O作直线MN BC MN26. 已知:如图,△∥ ,设交∠BCA 的平分线于点E,交∠BCA 的外角∠ACG 的平分线于点 F ,连接 AE、 AF .(1)求证:∠ECF =90°;( 2)当点 O 运动到何处时,四边形AECF 是矩形?请说明理由;(3)在( 2)的条件下,△ABC 应该满足条件: ______,就能使矩形 AECF 变为正方形.(直接添加条件,无需证明)27.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图( 1),若三角板两条直角边的外沿分别交正方形的边AB, BC 于点 M ,N,则① OM +ON=MB+NB;② AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.2A为顶点的45°BC CD于点M N 如图(),若以角的两边分别交正方形的边、,.交对角线 BD 于点 E、 F,我发现: BE2+DE 2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图 2 中画出图形并写出小化所说的具体的旋转方式:______.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图( 3),设顶点为 E 的45°角位于正方形的边AD 上方,这个角的两边分别经过点 B、C,连接 EA,ED ,那么线段 EB,EC,ED 也存在确定的数量关系:( EB+ED)2=2EC2,请你证明这个结论.答案和解析1.【答案】B【解析】解:A 、未知数次数是 2,属于一元二次不等式,故本选项错误;B、符合一元一次不等式的定义,故本选项正确;C、含有2 个未知数,属于二元一次方程,故本选项错误;D、含有 1 个未知数,是一元一次方程,故本选项错误;故选:B.根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是 1的不等式就可以.本题考查的是一元一次不等式的定义,只要熟练掌握一元一次不等式的定义即可轻松解答.2.【答案】B【解析】解:由于x<3,所以表示 3 的点应该是空心点,折线的方向应该是向左.故选B.不等式 x< 3 表示所有< 3 的数组成的集合,即数轴上 3 左边的点的集合.本题考查不等式解集的表示方法,将不等式的解集在数轴上表示出来,体现了数形结合的思想,是我们必须要掌握的知识,也是中考的常考点.不等式 x< 3 的解集用数轴表示时,3 应为空心点,且解集向左,本题考查用数轴表示不等式的解集.3.【答案】B【解析】解:∵M 、N 分别是 AC、BC 中点,∴NM 是△ACB 的中位线,∴AB=2MN=80m ,故选:B.根据三角形中位线定理计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.4.【答案】D【解析】解:A 、∵a> b,∴a+1>b+1,故此选项错误;B、∵a> b,∴a-5>b-5,故此选项错误;C、∵a> b,∴-3a<-3b,故此选项错误;D、∵a> b,∴ >,故此选项正确;故选:D.直接利用不等式的基本性质分别判断得出答案.此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.5.【答案】B【解析】解:A 、由 AE=CF,可以推出 DF=EB,DF∥EB,四边形 ABCD 是平行四边形;B、由 DE=BF,不能推出四边形 ABCD 是平行四边形,有可能是等腰梯形;C、由∠ADE= ∠CBF,可以推出△ADE ≌△CBF,推出 DF=EB,DF∥EB,四边形ABCD 是平行四边形;D、由∠AED= ∠CFB,可以推出△ADE ≌△CBF,推出 DF=EB,DF∥EB ,四边形ABCD 是平行四边形;故选:B.根据平行四边形的判断方法一一判断即可;本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】C【解析】解:设▲、●、■的质量为 a、b、c,由图形可得:,由①得:c>a,由②得:a=2b,故可得 c> a>b.故选:C.设▲、●、■的质量为 a、b、c,根据图形,可得 a+c> 2a,a+b=3b,由此可将质量从大到小排列.本题考查了不等式的性质及等式的性质,解答本题关键是根据图形列出不等式和等式,难度一般.7.【答案】B【解析】解:过点 A 作 AE⊥BC 于 E,如图:,∵在菱形 ABCD 中,AB=6 ,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=3,∴菱形 ABCD 的面积是=18 ,故选:B.根据菱形的对角线平分对角求出∠ABC=60°,过点 A 作 AE⊥BC 于 E,可得∠BAE=30°,根据 30 °角所对的直角边等于斜边的一半求出 AE=3,然后利用菱形的面积公式列式计算即可得解.本题考查了菱形的邻角互补的性质,作辅助线求出菱形边上的高线的长度是解题的关键.8.【答案】D【解析】解:不等式整理得:,由不等式组的解集为 x>1,得到 m+1≤1,解得:m≤0,故选:D.表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.9.【答案】C【解析】解:∵a&b=2a-b,∴x& (1&3 )=x& (1×2-3)=x& (-1)=2x+1=2,∴x=.故选:C.由题意对于任意实数 a,b 都有 a&b=2a-b,可以根据新定义,先算1&3 ,然后再算 x& (1&3 ),再根据x& (1&3 )=2,解出 x.此题主要考查了实数的运算,解这种关于定义一种新运算的题目,关键是搞清楚新的运算规则,按规则解答计算.10.【答案】A【解析】解:若所需甲种原料的质量为 xkg,则需乙种原料(10-x)kg.根据题意,得 600x+100(10-x)≥4200.故选:A.首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有 4200 单位的维生素 C”这一不等关系列不等式.能够读懂表格,会把文字语言转换为数学语言.11.【答案】B【解析】解:观察图形发现菱形的四个角上的数字排列规律为 1为下边,2 为上边,3 为左边,4 为右边,∵2019=504 4+3×,∴2019 应该在第 505 个菱形的左 边,∴所以数 2019 应标在第 505 个菱形左 边,故选:B .首先发现四个数的排列 规律,然后设第 n 个菱形中 标记的最大的数 为 a n ,观察给定图形,可找出规律“a =4n ”,依此规律即可得出 结论 .n本题考查了规律型中的 图形的变化类,根据菱形顶点上标数的变化找出变化规律是解题的关键.12.【答案】 A【解析】解:① 如图,延长 FP 交 AB 与 G ,连 PC ,延长 AP 交 EF 与 H ,∵GF ∥BC ,∴∠DPF=∠DBC ,∵四边形 ABCD 是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°, ∴∠PDF=∠DPF=45°, ∴PF=EC=DF ,∴在 Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴DP=EC .故① 正确;②∵PE ⊥BC ,PF ⊥CD ,∠BCD=90°,∴四边形 PECF 为矩形,∴四边形 PECF 的周长 =2CE+2PE=2CE+2BE=2BC=8,故② 正确;③∵点 P 是正方形 ABCD 的对角线 BD 上任意一点, ∠ADP=45 度,∴当∠PAD=45 度或 67.5 度或 90 度时,△APD 是等腰三角形,故③ 错误.④∵四边形 PECF 为矩形,∴PC=EF ,∠PFE=∠ECP ,由正方形 为轴对称图形,∴AP=PC ,∠BAP=∠ECP , ∴AP=EF ,∠PFE=∠BAP , 故④ 正确;⑤ 由 EF=PC=AP ,∴当 AP 最小时,EF 最小,则当 AP ⊥BD 时,即AP= BD==2 时,EF 的最小值等于 2 ,故⑤ 正确;⑥∵GF ∥BC , ∴∠AGP=90°,∴∠BAP+∠APG=90°, ∵∠APG=∠HPF ,∴∠PFH+∠HPF=90°, ∴AP ⊥EF , 故⑥ 正确;本题正确的有:①②④⑤⑥ ;故选:A .① 根据正方形的 对角线平分对角的性质,得△PDF 是等腰直角三角形,在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,求得 DP= EC .② 先证明四边形 PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为 2BC ,则四边形 PECF 的周长为 8;③ 根据 P 的任意性可以判断 △APD 不一定是等腰三角形;④ 由② ,PECF 为 则 过 正方形的 轴对 证矩形, 通 称性, 明 AP=EF ; ⑤ 当 AP 最小时,EF 最小,EF 的最小值等于 2 ;⑥ 证明 ∠PFH+∠HPF=90°,则 AP ⊥EF .本题考查了正方形的性 质,全等三角形的判定及性 质,垂直的判定,等腰三角形的性 质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真13.【答案】x-12≥6【解析】解:根据题意,得x-12≥6.理解:差不小于 6,即是最后算的差应大于或等于 6.读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.【答案】12【解析】解:设这个多边形是 n 边形,根据题意得:(n-2)×180=1800,解得:n=12.∴这个多边形是 12 边形.故答案为:12.首先设这个多边形是 n 边形,然后根据题意得:(n-2)×180=1800,解此方程即可求得答案.此题考查了多边形的内角和定理.注意多边形的内角和为:(n-2)×180°.15.【答案】20【解析】解:∵四边形 ABCD 是平行四边形,∴OB=OD ,AB=CD ,AD=BC ,∵OE⊥BD,∴BE=DE,∵△CDE 的周长为 10,即 CD+DE+EC=10,∴平行四边形 ABCD 的周长为:AB+BC+CD+AD=2 (BC+CD )=2(BE+EC+CD )=2(DE+EC+CD )=2×10=20.故答案为:20.由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得 OB=OD,AB=CD ,AD=BC ,又由 OE⊥BD ,即可得 OE 是 BD 的垂直周长为 10,即可求得平行四边形 ABCD 的周长.此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.16.【答案】3【解析】解:∵∠ACB=90°,D 为 AB 中点,∴AB=2CD ,∵CD=3cm,∴AB=6cm ,∵E、F 分别是 BC、CA 的中点,∴EF=AB=3cm ,故答案为:3.首先根据在直角三角形中,斜边上的中线等于斜边的一半可得 AB=2CD=6cm ,再根据中位线的性质可得 EF= AB=3cm.此题主要考查了三角形中位线的性质以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.17.【答案】()n-1【解析】解:连接 DB,∵四边形 ABCD 是菱形,∴AD=AB .AC ⊥DB ,∵∠DAB=60°,∴△ADB 是等边三角形,∴DB=AD=1 ,∴BM=,∴AM==,同理可得 AC1=AC= (2AC=(3,),2= AC1=3)n-1按此规律所作的第 n 个菱形的边长为()故答案为(n-1.)根据已知和菱形的性质可分别求得 AC ,AC 1,AC 2的长,从而可发现规律根据规律不难求得第 n 个菱形的边长.此题主要考查菱形的性质以及学生探索规律的能力.18.【答案】5或10.5或20【解析】解:∵四边形 ABCD 是正方形∴AB=BC=CD=AD=8 ,∠D=90°∵AO=5,∴OD=3若 AP=AO=5 ,即t=若AP=OP,即点P 在AO 的垂直平分线上,∴点 P 在 BC 上,且 BP=2.5∴t=若 AO=OP=5,即点 P 在 CD 上,∴PD==4∴t=故答案为:5 或 10.5 或20由正方形的性质可得 AB=BC=CD=AD=8 ,∠D=90°,OD=3,分AP=AO ,AP=PO,AO=OP 三种情况讨论,由等腰三角形的性质可求 t 的值.本题考查了正方形的性质,等腰三角形的性质类讨论思想解决问题,利用分是本题的关键.19.【答案】解:,x< 2x+2x-2x< 2-x< 2在数轴上表示出它的解集为:【解析】先去分母、再去括号、移项、合并同类项、系数化为 1 即可求出此不等式的解集,再在数轴上表示出其解集即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是能正确求出不等式的解集.20.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD, AB∥CD,∴∠BAE=∠DCF .又 BE⊥AC, DF ⊥AC,∴∠AEB=∠CFD =90 °.在△ABE 与△CDF 中,,∴△ABE≌△CDF ( AAS),∴AE=CF ,∴AE+EF=CF +EF,即 AF=CE.【解析】由全等三角形的判定定理 AAS 证得△ABE ≌△CDF,可得AE=CF,即可解决问题;本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.21.【答案】135°2【解析】解:(1)有网格的特点可知∠ABC=135°,AC==2.故答案为:135°,2;(1)根据网格的特点及勾股定理即可得出 结论;(2)画出?ABCD ,利用平行四边形的面积公式即可得出 结论 .本题考查的是作图-应用与设计作图,熟知平行四边形的性质是解答此 题的关键.2222.【答案】 > > = > a +b ≥2ab解:42+32>2×4×322(-2)+2 >2×(-2)×222+22=2×2×2(1)(20002+20012)-2 ×2000×2001=1>0;故20002+20012>2×2000×2001.(2)设 a ,b 是任意实数,则 a 2+b 2≥ 2ab .3a 2 22≥0,得 2 2≥ 2ab ()由 +b -2ab= a-ba +b ( )结论:a 2+b 2≥2ab ;22≥ 2ab .故答案为:>;>=;>;a +b(1)根据题意得出规律解答即可;(2)根据规律解答即可;(3)通过作差法比 较大小,然后总结出规律,并借助数学知识验证规 律是否成立.此题考查数字的规律问题,比较代数式的大小可使用作差法,即左 边式子 -右边式子;若差大于 0,则左>右;若差小于 0,则左<右;若差等于 0,则左 =右.23.【答案】 解:( 1)设一支钢笔需 x 元,一本笔记本需 y 元,由题意得解得:答:一支钢笔需16 元,一本笔记本需 10 元;( 2)设购买钢笔的数量为 x ,则笔记本的数量为80-x ,由题意得16x+10 (80-x ) ≤ 1100答:工会最多可以购买50 支钢笔.【解析】(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买 2 支钢笔和 3 本笔记本共需 62 元,购买 5 支钢笔和 1 本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为 x,则笔记本的数量为 80-x,根据总费用不超过1100 元,列出不等式解答即可.此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.24.【答案】解:(1)∵DE∥AC,CE∥BD,∴四边形 OCED 是平行四边形.∵四边形 ABCD 是矩形,∴OD =OC.∴四边形 OCED 是菱形.(2)∵四边形 ABCD 是矩形,且∠AOD =120°,∴△OCD 是等边三角形,∴CD =OC=DE=2,∴AC=4 , AB=2,在 Rt△ABC 中,利用勾股定理可得BC=.∴矩形 ABCD 的面积 =2×2=4.【解析】(1)先证明四边形 OCED 是平行四边形,再证明 OD=OC,根据一组邻边相等的平行四边形是菱形进行判定;(2)根据∠AOD=120°,DE=2,推导出 AC=4 ,AB=2 ,利用勾股定理求出 BC 长,矩形面积 =AB× BC .本题主要考查了矩形的性质、菱形的判定和性质以及勾股定理.解题的关键是熟知特殊四边形的判定和性质.25.【答案】解:(1)(2x-3)(x+1)<0可得:①或②,解不等式①得:无解;∴不等式( 2x-3)( x+1 )< 0 的解集为: -1< x<;( 2)≥0可得:①或②,解不等式①得:x≥3;解不等式组②得:x< -2;∴不等式≥0的解集为: x≥3或 x< -2;【解析】(1)将不等式转换为两个不等式组①或②,分别求解;2转换为两个不等式①或②别()将不等式,分求解;本题考查二元一次不等式的解法;能够将二元一次不等式转化为一元一次不等式组是解题的关键.26.【答案】(1)证明:∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE ,∠OCF =∠GCF ,∴∠ECF= ×180 °=90 °;(2)解:当点 O 运动到 AC 的中点时,四边形 AECF 是矩形.理由如下:∵MN ∥BC,∴∠OEC=∠BCE ,∠OFC =∠GCF ,又∵CE 平分∠BCO, CF 平分∠GCO ,∴∠OCE=∠BCE ,∠OCF=∠GCF ,∴∠OCE=∠OEC ,∠OCF =∠OFC ,∴EO=CO,FO=CO,∴OE=OF ;又∵当点 O 运动到 AC 的中点时, AO=CO,∴四边形 AECF 是平行四边形,∵∠ECF=90 °,∴四边形 AECF 是矩形;【解析】(1)由已知MN ∥BC,CE、CF 分别平分∠BCO 和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得 EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O 运动到 AC 的中点时,则由EO=CO=FO=AO ,所以这时四边形 AECF 是矩形.(3)由已知和(2)得到的结论,点O 运动到 AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,则推出四边形 AECF 是矩形且对角线垂直,所以四边形 AECF 是正方形.此题考查的是正方形和矩形的判定,角平分线的定义,平行线的性质,等腰三角形的判定等知识.解题的关键是由已知得出 EO=FO,确定(2)(3)的条件.27.【答案】将△ABE绕点A逆时针旋转90°得到△ADG.连接GF【解析】解:【片断一】:图如1 中,① 错误,② 正确;理由:如图 1 中,∵四边形 ABCD 是正方形,∴AC ⊥BD ,OB=OC=OD=OA ,∠ABO= ∠OCN=45°,∵∠MON= ∠BOC,∴∠MOB= ∠NOC,∴△MOB ≌△NOC,∴BN=CN ,∴AM+CN=AM+BM=AB=OA=OD,①正确的结论:OM 2+ON2=BM2+BN2.理由:∵OM 2+ON2=MN2,BM2+BN2=MN2,【片断二】:图如 2 中,将△ABE 绕点 A 逆时针旋转 90°得到 △ADG .连接 GF .理由:∵AF=AF ,∠GAF= ∠EAF=45°,AG=AE ,∴△AFG ≌△AFE ,∴EF=GF ,∵∠ADG= ∠ABE= ∠ADF=45°,∴∠FDG=90°,∴GF 2=DF 2+DG 2,∴EF 2=BE 2+DF 2.故答案为:将△ABE 绕点 A 逆时针旋转 90°得到 △ADG .连接 GF .【片断三】:图如 3 中,过点 C 作 EC 的垂线交 EB 延长线于 F ,∵∠ECF=∠DCB=90°,∴∠DCE=∠BCF ,∵CD=CB ,CE=CF ,∴△CDE ≌△CBF ,∴ED=FB ,∴EB+ED=EB+FB=EF ,又因为 EC 2+FC 2=EF 2,2 2∴(EB+ED )=2EC .【片断一】如图 1 中,① 错误 .结论:OM 2+ON 2=BM 2+BN 2.② 正确.只要证明△MOB ≌△NOC 即可解决 问题;【片断二】如图 2 中,将△ABE 绕点 A 逆时针旋转 90°得到 △ADG .连接 GF .理第21 页,共 22页由勾股定理即可证明;【片断三】如图 3 中,过点 C 作 EC 的垂线交 EB 延长线于 F,构造全等三角形即可解决问题;本题考查四边形综合题、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.第22 页,共 22页。

2018年江苏省镇江市八年级下数学期中试题及答案

2018年江苏省镇江市八年级下数学期中试题及答案

江苏省镇江市2017-2018学年度第二学期八年级数学期中试卷解析版一、填空题(共12题,每小题2分,共计24分)1.调查市场上某品牌酸奶的质量情况,采用调查方式是.(填“普查”或“抽样调查”)【考点】:普查与抽样调查【答案】:抽样调查2.把一个正六边形绕着其对称中心旋转一定的角度,要使旋转后的图形与原来的图形重合,那么旋转的角度至少是°.【考点】:旋转对称图形【解析】:正六边形旋转最小的角度,360° 6=60°【答案】:60°3.在菱形ABCD中,AC=10,BD=24,则菱形的边长等于 .【考点】:菱形的性质【解析】:菱形的对角线相互垂直平分,对角线的一半分别为5,12,根据勾股定理,可以求出菱形的边长. 【答案】:134.如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出巧克力口味雪糕的数量是支.【考点】:统计图【解析】:可以通过红豆口味的雪糕数量和所占百分比,求出总的雪糕数量,再根据巧克力的百分比,求出巧克力的口味的雪糕的数量.【答案】:1005.某种玉米种子在相同条件下发芽试验的结果如下:考点:频数与频率解析:通过频率估计出概率,发芽的频率稳定在0.8附近.答案:0.86.“平行四边形的对角线相等”是事件.(填“必然”、“随机”、“不可能”)【考点】:确定事件、随机事件、不可能事件【解析】:矩形和正方形属于特殊的平行四边形,且它们的对角线相等.【答案】:随机7.在平行四边形ABCD中,AC、BD相交于点O,已知AC=10,BD=6,则边AB的取值范围是.考点:平行四边形的对角线的性质、三角形的三边关系解析:平行四边形的对角线相互平分,根据三角形的三边关系,求解.答案:2<AB<88.如图,平行四边形ABCD与平行四边形DCFE周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为°.【考点】:平行四边形性质的运用【解析】:根据题意,可得AD=DE,求出∠ADE的度数即可求出∠DAE的度数.【答案】:20°9.如图,把∆ABC绕着点A顺时针旋转α后,得到∆AB,C,,若∠C=20°,点C、B,、C,共线,则∠α= °.【考点】:图形的旋转【解析】:图形的旋转,旋转之后的图形,有对应的边、对应的角相等,得出∆C,AC为等腰三角形,根据共线的条件,可以求出∠α的度数.【答案】:140°10.已知,在矩形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交边AD于F.若AB=3,EF=1,则AD= .【考点】:角平分线、矩形的性质【解析】:角平分线交于矩形的一边,有等腰三角形,注意两条角平分线可以重叠,也可以不重叠,故有两解.【答案】:5或711.如图,在正方形ABCD中,点F在边BC上,把∆ABF沿着AF折叠,点B落在正方形内一点E处,射线DE与射线AF交于点G,则∠AGD= .【考点】:图形的折叠AE=,设∠BAF=α,从而求出∠DAE(用含α表示),再利用【解析】:将∆ABF沿着AF折叠之后,得到AD外角可知∠AEB=∠EAG+∠AGE=∠ADE,最后利用∆ADE内角和为1800.【答案】:45°12.如图,在四边形ABCD中, A=90°,AB=9,AD=12,点E、F分别是AB、AD的中点,点H是线段EF上的一个动点,连接CH,点P是线段CH的中点,当点H从点E沿着EF向终点F运动的过程中,点P 移动的路径长为.【考点】:动点、三角形的中位线【解析】:如图所示,当点H与点E重合时,中点P的位置为P1,当点H与点F重合时,中点P的位置为P2,点P运动的路径即为P1P2的长度.要求得P1P2的长度,即要求出EF的长度,EF的长度可以根据勾股定理求出.15答案:4二、选择题(共6题,每小题3分,共计18分)13、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D【考点】:轴对称图形和中心对称图形的概念【解析】:A既是轴对称图形又是中心对称图形,B是轴对称图形,C是中心对称图形,D是轴对称图形【答案】:A14、今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是()A、每位考生的数学成绩B、3500名考生的数学成绩C、被抽取的800名考生的数学成绩D、被抽取的800名学生【考点】:样本的概念【解析】:A是个体,B是总体,C是样本答案:C15、下列命题中正确的是()A、有一组邻边相等的四边形是菱形B、有一个角是直角的平行四边形是矩形C、对角线垂直的平行四边形是正方形D、一组对边平行的四边形是平行四边形【考点】:特殊四边形的判定【解析】:A、有一组邻边相等的平行四边形是菱形,C对角线垂直的平行四边形是菱形D、两组组对边平行的四边形是平行四边形【答案】:B16、顺次连接下列各四边形各边中点所得的四边形一定是矩形的是()A、等腰梯形B、矩形C、平行四边形D、对角线互相垂直的四边形【考点】:中点四边形【解析】:顺次连接任意四边形各边中点所得的四边形一定是平行四边形,如果四边形的对角线相等所得中点四边形是菱形,如果对角线垂直所得中点四边形是矩形 【答案】:D17、如图,在菱形ABCD 中,AB=2,∠DAB=60°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB ,C ,D ,,则图中阴影部分的面积为( )A 、1+3B 、2+3C 、3D 、3-3【考点】:菱形的性质【解析】:设线段C ,D ,与线段BC 的交点为E ,由菱形性质可得∠CD ,E=60°,∠D ,CE=30°,所以∠CED ,=90°,S 阴影部分的面积=S △ABC - S △CD ,E ,S △ABC =21S 菱形ABCD =3, CD ,=AC-AD ,=23-2,则D ,E=3-1,CE=3-3,可以求出S △CD ,E =23-3 ;从而得出S 阴影部分的面积 【答案】:D18、如图,在矩形ABCD 中,∠CAD=68°,将矩形ABCD 绕点D 逆时针旋转90°得到矩形DGEF ,顶点G 在边CD 上,AC 的对应边为GF ,连接BE ,则∠CBE 的度数为( ) A 、23° B 、30° C 、22° D 、18°【考点】:旋转的性质 【解析】:连接BD 和DE ,则三角形BDE 为等腰直角三角形,所以∠BED=45°,因为∠GED=90°-68°=22°,所以∠BEG=45°-22°=23°,因为BC ∥GE ,所以∠CBE=∠BEG=23° 【答案】:A三、解答题(共8小题,共计78分)19、已知,在四边形ABCD 中,AD=AC=BC ,∠B=∠D=40° (1)求∠DAC 的度数(2)求证:四边形ABCD 是平行四边形【考点】:平行四边形的判定 【解析】:因为AD=AC ,∠D=40°,所以∠ACD=40°,∠DAC=180°-40°-40°=100° (3)因为AC=BC ,∠B=40°,所以∠BAC=40°,所以∠BAC=∠ACD ,所以AB ∥CD ,又因为∠DAB+∠B=180°,所以AD ∥BC ,所以四边形ABCD 是平行四边形【考点】:用样本估计总体、频数(率)分布表、扇形统计图、频数(率)分布直方图【答案】:(1)a=8 b=0.3 (2)72° (3)16021.如图,在正方形网格中,每个小正方形的边长为1个单位长度,平面直角坐标系xoy 的原点O 在格点上,x 轴、y 轴都在网格线上,△ABC 的顶点A 、B 、C 都在格点上 (1)将△ABC 向左平移两个单位得到△A 1B 1C 1,请在图中画出△A 1B 1C 1 (2)△ABC 和△A 2B 2C 2关于原点O 成中心对称,请在图中画出△A 2B 2C 2(3)请写出C 2的坐标_________,并判断以点B 1、C 1、B 2、C 2为顶点的 . 【考点】:平移变换、中心对称作图、矩形判定【答案】:(1)略 (2)略 (3) (-3,-1) 矩形22、如图,在矩形ABCD 中,AB=3,E 在边AD 上,且AE=4,点F 是CD 的中点,EF 平分∠BED ,求DE 的长【考点】:勾股定理、等腰三角形、全等三角形 【解析】:延长EF 交BC 的延长线于点G ,则△DEF ≌△CGF ,所以DE=CG ;因为EF 平分∠BED ,所以∠BEF=∠DEF ,又因为AD ∥BG ,所以∠DEF=∠BGF ,所以∠BEF=∠BGF ,所以BE=BG ;在RT △ABE 中由勾股定理得BE=5,所以BG=5,设DE=x ,则BG=4+2x ,所以CG=ED=21【答案】:21 23.(本题满分10分)如图,在平面直角坐标系中,四边形ABCD 是正方形,点A ()a ,2、C 都在直线x y 21=上,且点C 在点A 的右侧,求点C 的坐标.【考点】:一次函数、正方形的性质和全等三角形【解析】:因为点A 在直线x y 21=上,将A 点坐标代入求出a 值,然后DC AD =,∠ADC=090,考虑到分别从A 、C 两点向x 轴作垂线交于E 、F 两点,从而得到△AED ≌△DFC ,令b DE =,从而得出C 点坐标,且点C 在直线x y 21=上,将C 点坐标代入求出b 值,进而求出C 点坐标.【答案】()3,6C24. (本题满分8分)我们数学上将内角度数小于0180的四边形叫做凹凸四边形,形如上图(1),(2),(4)是凸四边形,(3)不是凸四边形.操作:已知如图,两个全等的三角形纸片△ABC 和△DEF ,其中4,3,6===BC AC AB ,按照下列要求把这两个三角形纸片无缝拼接,且没有重叠,画出所有可能的示意图,并写出所拼出图形的周长.(1)拼接成轴对称的凸四边形,写出对应的周长. (2)拼接成中心对称的凸四边形,写出对应的周长. 【考点】:特殊四边形的综合题 【解析】:首先根据题目所给材料,理解凸四边的特点就是每一个内角都小于0180.结合题目所给的△ABC 和△DEF 三边的数值或者观察,可知∠ACB=∠DFE>090.第一问中,要组成轴对称图形,考虑对称性和不重叠的关系,所以有以下情况:第一种A 、C 两点分别与D 、F 两点对应重合; 第二种C 、B 两点分别与F 、E 两点对应重合; 第三种A 、B 两点分别与D 、E 两点对应重合.但是第一种和第二种不属于凸四边形,只有第三种符合题意要求. 在第二问中,要求组成中心对称图形,所以有以下情况:第一种A 、C 两点分别与F 、D 两点对应重合,且此时四边形ABCE 为平行四边形; 第二种C 、B 两点分别与E 、F 两点对应重合,同理得到四边形ABDC 为平行四边形; 第三种A 、B 两点分别与E 、D 两点对应重合,同理得到四边形DCEF 为平行四边形。

2018-2019学年湖南省常德市市直学校八年级(下)期中数学试卷(解析版)

2018-2019学年湖南省常德市市直学校八年级(下)期中数学试卷(解析版)

2018-2019学年湖南省常德市市直学校八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A. 75∘B. 60∘C. 45∘D. 30∘2.下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B. C. D.3.如图,在矩形ABCD中,对角线AC,BD相交于点O,BD=12,∠ACB=30°,则AB=()A.9B.6C.12D. 244.如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是()A. DA=DEB. BD=CEC. ∠EAC=90∘D. ∠ABC=2∠E5.如图,∠BAC=90°,AD⊥BC,则图中互余的角有()A. 2对B. 3对C. 4对D. 5对6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,已知BC=8,AC=6,则斜边AB上的高是()A. 10B. 5C. 245D. 1257.在长,宽,高分别为12cm,4cm,3cm的木箱中,放一根木棒,能放进去的木棒的最大长度为()A. 5cmB. 12cmC. 13cmD. √153cm8.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30cm.突然一阵大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,如果知道红莲移动的水平距离为60cm,则水深是()cm.A. 35B. 40C. 50D. 45二、填空题(本大题共8小题,共24.0分)9.七边形的内角和等于______度.10.点P(3,-1)关于y轴的对称点Q的坐标是______.11.直角三角形两条边长分别为6cm、8cm,则第三边长为______.12.如图,将线段AB平移,使B点到C点,则平移后A点的坐标为______.13.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=______.14.如图,△ABC中,D、E分别为AB、AC边上的中点,若DE=6,则BC=______.15.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是______米.16.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次交换,如此这样,连续经过2020次变换后,正方形ABCD的对角线交点M的坐标变为______.三、解答题(本大题共10小题,共72.0分)17.已知,Rt△ABC中,∠ACB=90°,AB=6cm,D为AB中点,DE⊥AC于E,∠A=30°,求BC,CD和AC的长.18.已知:如图∠B=∠E=90°,AC=DF,FB=EC,求证:AB=DE.19.如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.20.如图,矩形ABCD的两条对角线AC、BD相交于点O,∠AOD=120°,AB=2.求矩形边BC的长和矩形ABCD的面积.21.如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时30海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行1.5小时到达小岛C的正南方D点.求船从A到D一共走了多少海里?22.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.23.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.(1)试说明:AF=FC;(2)如果AB=12,BC=16,求AF的长.25.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.26.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是______,位置关系是______;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.答案和解析1.【答案】D【解析】解:∵在一个直角三角形中,有一个锐角等于60°,∴另一个锐角的度数是90°-60°=30°.故选:D.根据直角三角形两锐角互余的性质列式进行计算即可得解.本题主要考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.2.【答案】C【解析】解:A、是轴对称图形不是中心对称图形;B、既不是轴对称图形又不是中心对称图形;C、既是轴对称图形又是中心对称图形;D、是轴对称图形不是中心对称图形.故选:C.逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.本题考查了中心对称图形以及轴对称图形,解题的关键是牢记中心对称图形及轴对称图形的特点.本题属于基础题,难度不大,解决该题型题目时,对折(或旋转)图形验证其是否为轴对称(或中心对称)图形是关键.3.【答案】B【解析】解:在矩形ABCD中,∠ABC=90°,AC=BD=12,∵∠ACB=30°,∴AB=AC=6,故选:B.由矩形的性质得出AC=BD=12,再根据直角三角形30°角所对的直角边等于斜边的一半即可得出结果.本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.4.【答案】B【解析】解:∵四边形ABCD是菱形∴AB∥CE,AB=DA=DC=BC,∠ABC=2∠ABD,BD⊥AC∴∠OAD+∠ODA=90°又∵BD∥AE,∴四边形ABDE是平行四边形,∠EAD=∠OAD∴AB=DA=DE,∠E=∠ABD∴∠EAD+∠ODA=90°即∠EAC=90°,∠ABC=2∠E,故不成立的是B.故选:B.依题意推出∠OAD+∠ODA=90°,四边形ABDE是平行四边形,然后基于推论得出AB=DA=DE,∠E=∠ABD,∠EAD+∠ODA=90°,则∠EAC=90°,∠ABC=2∠E.此题主要考查菱形的基本性质:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.5.【答案】C【解析】解:∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④.故共4对.故选:C.此题直接利用直角三角形两锐角之和等于90°的性质即可顺利解决.本题主要考查了直角三角形的性质,根据互余定义,找到和为90°的两个角即可.6.【答案】C【解析】解:∵BC=8,AC=6,∴AB=10,∵S△ABC =×6×8=×10×CD,∴CD=,故选:C.根据勾股定理求得AB的长,再根据三角形的面积公式求得CD即可.此题运用了直角三角形面积的不同表示方法及勾股定理的综合应用.7.【答案】C【解析】解:如图,连接AC、AD.在Rt△ABC中,有AC2=AB2+BC2=160,在Rt△ACD中,有AD2=AC2+CD2=169,∵AD=,∴能放进去的木棒的最大长度为13.故选:C.要判断能否放进去,关键是求得该木箱中的最长线段的长度,即AD的长,通过比较它们的大小作出判断.此题主要考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.8.【答案】D【解析】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即(h+30)2=h2+602,解得:h=45.故选:D.仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.本题考查正确运用勾股定理,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.9.【答案】900【解析】解:(7-2)•180=900度,则七边形的内角和等于900度.n边形的内角和是(n-2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.10.【答案】(-3,-1)【解析】解:点P(3,-1)关于y轴的对称点Q的坐标是(-3,-1).故答案为:(-3,-1).根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y)即可得出答案.本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要熟记的内容,比较简单.11.【答案】10或2√7【解析】解:设第三边为x(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2所以第三边长为10或2本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.【答案】(-1,1)【解析】解:∵由图可知A点的坐标为(0,1),B点的坐标为(1,2),C点的坐标为(0,2),∴由B到C,图形向左平移1个单位长度,∴点A(0,1)平移后的点的坐标为(-1,1).故答案填:(-1,1).首先根据图形可以得到B、C两点的坐标,然后比较点B与点C的坐标,观察坐标变化规律,得出规律,从而确定平移后A点的坐标.此题主要考查图形平移的性质,在图形平移过程中发现平移规律,图形的平移与图形上某点的平移相同.13.【答案】4.8【解析】解:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,AB==5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=4.8,故答案为:4.8.根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.14.【答案】12【解析】解:如图所示,∵D、E分别为AB、AC边上的中点,∴DE是△ABC的中位线,∴DE=BC,∴BC=12.故答案是12.由于D、E分别为AB、AC边上的中点,那么DE是△ABC的中位线,根据三角形中位线定理可求BC.本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.15.【答案】8【解析】解:∵AC=4米,BC=3米,∠ACB=90°,∴折断的部分长为=5(m),∴折断前高度为5+3=8(米).故答案为:8.由题意得,在直角三角形中,知道了两直角边,运用勾股定理直接解答即可求出斜边.此题主要考查了勾股定理的应用,训练了学生对勾股定理在实际生活中的运用能力.16.【答案】(-2018,2)【解析】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),∴正方形ABCD的对角线交点M的坐标(2,2)∵把正方形ABCD先沿x轴翻折,再向左平移1个单位为一次交换∴第一次变换后点M坐标(1,-2),第二次变换后点M坐标(0,2),第三次变换后点M坐标为(-1,-2),第四次变换后点M坐标为(-2,2)…可以发现第n次后,当n为偶数,点M坐标(2-n,2),n是奇数,点M坐标为(2-n,-2)∴连续经过2020次变换后,点M坐标为(-2018,2)故答案为:(-2018,2)由正方形的性质可得点M坐标,由折叠性质和平移性质可得点M坐标变化的规律,即可求解.本题考查了翻折变换,坐标与图形变化-对称和平移,找到点M坐标变化规律是本题的关键.17.【答案】解:∵Rt△ABC中,∠ACB=90°,AB=6cm,D为AB中点,∴CD=12AB=3cm,∵∠A=30°,∴BC=12AB=12×6cm=3cm;由勾股定理得:AC=√AB2−BC2=√62−32=3√3(cm).【解析】根据直角三角形斜边上的中线性质求出CD,根据含30°角的直角三角形的性质求出BC,再根据勾股定理求出AC即可.本题考查了角三角形斜边上的中线性质和含30°角的直角三角形的性质、勾股定理等知识点,能根据性质得出CD=AB和BC=AB是解此题的关键.18.【答案】证明:∵FB=EC,∴BF+FC=FC+CE,∴BC=EF,在Rt△ABC和Rt△DEF中{BC=EFAC=DF∴Rt△ABC≌Rt△DEF(HL),∴AB=DE.【解析】首先得出BC=EF,进而利用HL证明Rt△ABC≌Rt△DEF,即可得出答案.此题主要考查了全等三角形的判定,熟练掌握全等三角形的判定利用“HL”定理得出是解题关键.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,{∠ABE=∠CDF∠AEB=∠CFDAB=CD,∴△ABE≌△CDF(AAS).∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.【解析】首先证明AE∥CF,△ABE≌△CDF,再根据全等三角形的性质可得AE=CF,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF是平行四边形,根据平行四边形的性质可得AF=CE.此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等.20.【答案】解:∵∠AOD=120°,∴∠AOB=180°-120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB =OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,BD=AC=4.在直角△ABC中,BC=√AC2−AB2=√42−22=2√3,则矩形的面积是:AB×BC=2×2√3=4√3.【解析】由矩形的性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,证出△AOB是等边三角形,得出OA=OB=AB=2,AC=2OA=4,BD=AC=4.由勾股定理求出BC==2,即可得出矩形的面积.本题考查了矩形的性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明△AOB是等边三角形是解题的关键.21.【答案】解:由题意知∠CAD=30°,∠CBD=60°,∴∠ACB=30°.在△BCD中,∠CBD=60°,∴∠BCD=30°,∴AB=BC=2BD.∵船从B到D走了1.5小时,船速为每小时30海里,∴BD=45海里.∴AB=BC=90海里.∴AD=90+45=135(海里).因此船从A到D一共走了135海里.【解析】根据直角三角形30°角所对的直角边等于斜边的一半,先求出BC的长度,再根据两个方位角可以证明AB=BC,然后AB与BD相加即可得解.本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等角对等边的性质,解答本题的关键正确的识别图形.22.【答案】(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵{BF=CEBD=CD,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.∴△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.【解析】先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.23.【答案】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥BC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵{DB=CB∠DBE=∠CBE BE=BE,∴△BDE≌△BCE(SAS);(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴四边形ABED为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.24.【答案】解:(1)∵四边形ABCD是矩形∴AD∥BC∴∠DAC=∠ACB,∵将△ABC沿AC对折至△AEC位置∴∠ACB=∠ACE∴∠ACE=∠DAC∴AF=FC(2)∵四边形ABCD是矩形∴AB=CD=12,BC=AD=16∵CF2=FD2+CD2,且AF=FC,∴AF2=(AD-AF)2+CD2,∴AF=12.5【解析】(1)由矩形的性质可得AD∥BC,可得∠DAC=∠ACB,由折叠的性质可得∠DAC=∠ACB=∠ACE,可得结论;(2)由勾股定理可求AF的长.本题考查了翻折变换,矩形的性质,熟练运用勾股定理求线段的长度是本题的关键.25.【答案】解:(1)设经过x(s),四边形PQCD为平行四边形即PD=CQ所以24-x=3x,解得:x=6.(2)设经过y(s),四边形PQBA为矩形,即AP=BQ,所以y=26-3y,解得:y=132.(3)设经过t(s),四边形PQCD是等腰梯形.过Q点作QE⊥AD,过D点作DF⊥BC,∴∠QEP=∠DFC=90°∵四边形PQCD是等腰梯形,∴PQ=DC.又∵AD∥BC,∠B=90°,∴AB=QE=DF.在Rt△EQP和Rt△FDC中,{EQ =DF PQ=DC,∴Rt △EQP ≌Rt △FDC (HL ). ∴FC =EP =BC -AD =26-24=2. 又∵AE =BQ =26-3t ,∴EP =AP -AE =t -(26-3t )=2. 得:t =7.∴经过7s ,PQ =CD . 【解析】(1)设经过ts 时,四边形PQCD 是平行四边形,根据DP=CQ ,代入后求出即可; (2)设经过ts 时,四边形PQBA 是矩形,根据AP=BQ ,代入后求出即可;(3)设经过t (s ),四边形PQCD 是等腰梯形,利用EP=2列出有关t 的方程求解即可.此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解.26.【答案】相等 互相垂直【解析】解:(1)AF 与BE 的数量关系是:AF=BE ,位置关系是:AF ⊥BE .答案是:相等,互相垂直; (2)结论仍然成立.理由是:∵正方形ABCD 中,AB=AD=CD , ∴在△ADE 和△DCF 中,,∴△ADE ≌△DCF , ∴∠DAE=∠CDF ,又∵正方形ABCD 中,∠BAD=∠ADC=90°, ∴∠BAE=∠ADF , ∴在△ABE 和△ADF 中,,∴△ABE ≌△ADF ,∴BE=AF ,∠ABM=∠DAF , 又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°, ∴在△ABM 中,∠AMB=180°-(∠ABM+∠BAM )=90°, ∴BE ⊥AF ;(3)第(1)问中的结论都能成立.理由是:∵正方形ABCD 中,AB=AD=CD , ∴在△ADE 和△DCF 中,,∴△ADE ≌△DCF , ∴∠DAE=∠CDF ,又∵正方形ABCD 中,∠BAD=∠ADC=90°, ∴∠BAE=∠ADF , ∴在△ABE 和△ADF 中,,∴△ABE ≌△ADF ,∴BE=AF ,∠ABM=∠DAF , 又∵∠DAF+∠BAM=90°,∴∠ABM+∠BAM=90°, ∴在△ABM 中,∠AMB=180°-(∠ABM+∠BAM )=90°, ∴BE ⊥AF .(1)易证△ADE ≌△DCF ,即可证明AF 与BE 的数量关系是:AF=BE ,位置关系是:AF ⊥BE . (2)证明△ADE ≌△DCF ,然后证明△ABE ≌△ADF 即可证得BE=AF ,然后根据三角形内角和定理证明∠AMB=90°,从而求证; (3)与(2)的解法完全相同.本题考查了正方形和等边三角形的性质以及全等三角形的判定与性质,证明∠BAE=∠ADF 是解题的关键.。

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)

2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷

2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷

2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)若二次根式有意义,则x的取值范围为()A.x<2B.x>2C.x≤2D.x≥22.(3分)下列图形既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.74.(3分)用配方法解方程x2﹣4x=1时,原方程应变形为()A.(x﹣2)2=1B.(x+2)2=5C.(x﹣2)2=5D.(x+2)2=1 5.(3分)学习组织“超强大脑”答题赛,参赛的11名选手得分情况如表所示,那么这11名选手得分的中位数和众数分别是()分数(分)60809095人数(人)2234A.86.5和90B.80和90C.90和95D.90和906.(3分)在▱ABCD中,若∠A+∠C=80°,则∠B的度数为()A.100°B.130°C.140°D.150°7.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m的值是()A.﹣1B.0C.1D.28.(3分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角9.(3分)如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直=3,S△BOF=5,则平行四边形ABCD的面线EF分别交AD于点E,BC于点F,S△AOE积()A.24B.32C.40D.4810.(3分)如图,在▱ABCD中,P是对角线BD上的一点,过点作EF∥AB与AD和BC 分别交于点E和点F,连接AP,CP.已知AE=4,EP=2,∠ABC=60°,则阴影部分的面积是()A.2B.4C.4D.8二、填空题(共6小题,每小题4分,共24分):11.(4分)化简=.12.(4分)一组数据1、2、3、4、5的方差是.13.(4分)公园新增设了一台滑梯,该滑梯高度AC=1米,滑梯AB的坡比是1:3,则该滑梯AB的长是米.14.(4分)已知一个正多边形的每一个外角都是30°,则这个正多边形是正边形.15.(4分)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价元.16.(4分)如图,已知∠ACB=90°,AC=4,∠CAB=60°,D为AC的中点,E为AB上的一动点,以AD、DE为一组邻边构造▱ADEP,连接CP,则CP的最小值是.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.(8分)计算:(1);(2)﹣.18.(8分)解方程:(1)2x2﹣10x=0;(2)2(x+2)2﹣18=0.19.(6分)如图,在所给的6×6方格中,每个小正方形的边长都是1.按要求画多边形,使它的各个顶点都在方格的顶点上.(1)在图甲中画一个面积为5的平行四边形.(2)在图乙中画一个平行四边形使它的周长不是整数.20.(6分)某班进行“闪亮之星”的推选工作,经过自荐和第一轮筛选后,甲、乙两位同学进入终选.如表为甲、乙两位同学的得分情况.其中人气分的计算方法是:根据班级主科老师和同学的投票结果,老师一票记10分,同学一票记2分,两个分数相加即为人气分.学生人气分学习行规工作分分分老师票数学生票数分数甲420a859585乙22570909290(1)a=,b=;(2)经全班同学讨论决定,候选人的最终得分将根据如图所示的百分比折算后计入总分,经计算,甲同学的最终得分为87分,请你求出乙同学的最终得分,并判断哪位同学当选.21.(7分)某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.22.(11分)如图,在Rt△AOB中,点C为线段AB的中点,OB=4,∠A=30°,点P从点O出发以每秒1个单位的速度先沿OB方向运动到点B,再沿BA方向运动到终点A,设点P运动时间为t秒,以OP,OC为邻边构造▱OPDC.(1)当点P在线段OB上时,S▱OPDC=(用含t的代数式表示);(2)在整个运动过程中,当▱OPDC的面积为6时,求t的值;(3)连接OD,作点C关于直线OD的对称点C′(点C与点C′不重合),当点C′落在△AOB的边上时,求t的值(直接写出答案).2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.4.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.【点评】本题考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.【点评】本题考查了平行四边形的性质,注意掌握平行四边形的对角相等、邻角互补的性质是解题的关键.7.【点评】此题考查了一元二次方程判别式的知识.此题难度不大,注意若一元二次方程有两个相等的实数根,则可得△=0.8.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.9.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.10.【点评】本题考查了平行四边形的判定与性质、平行线的性质、三角函数定义、三角形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题(共6小题,每小题4分,共24分):11.【点评】本题考查了根据二次根式的意义与化简,二次根式规律总结:当a≥0时,=a;当a<0时,=﹣a.12.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【点评】此题主要考查了解直角三角形的应用,正确得出BC的长是解题关键.14.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.16.【点评】本题考查了平行四边形的性质,直角三角形的性质,解决本题的关键是利用全等三角形的性质求出OP的长,也考查了垂线段最短.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【点评】本题考查了解一元二次方程,解决本题的关键是掌握解一元二次方程的方法.19.【点评】本题考查作图﹣应用与设计,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【点评】本题考查了加权平均数,熟记公式是解题的关键.21.【点评】考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了含30度角的直角三角形的性质,翻折的性质,等边三角形的性质和判定,平行四边形的性质,根据题意画出符合题意的图形是解题的关键.。

2018-2019学年浙江省衢州市数学八年级下期中试卷-附详细答案

2018-2019学年浙江省衢州市数学八年级下期中试卷-附详细答案

2018-2019学年浙江省衢州市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)方程x (x ﹣2)=3x 的解为( )A .x=5B .x 1=0,x 2=5C .x 1=2,x 2=0D .x 1=0,x 2=﹣52.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.703.(3分)不能判定四边形ABCD 为平行四边形的条件是( )A .AB ∥CD ,AD=BC B .AB ∥CD ,∠A=∠C C .AD ∥BC ,AD=BC D .∠A=∠C ,∠B=∠D 4.(3分)实数a ,b 在数轴上对应点的位置如图所示,化简|a |+的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b5.(3分)如图,在平行四边形ABCD 中,都不一定成立的是( )①AO=CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB=∠CAD .A .①和④B .②和③C .③和④D .②和④6.(3分)若关于x 的方程mx 2﹣mx +2=0有两个相等的实数根,则m 的值为( ) A .0 B .8 C .4或8 D .0或87.(3分)利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( ) A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45°8.(3分)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.109.(3分)摩拜共享单车计划2017年10、11、12月连续3月对深圳投放新型摩拜单车,计划10月投放深圳3000台,12月投放6000台,每月按相同的增长率投放,设增长率为x,则可列方程()A.3000(1+x)2=6000B.3000(1+x)+3000(1+x)2=6000C.3000(1﹣x)2=6000D.3000+3000(1+x)+3000(1+x)2=600010.(3分)如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE 等于()A.AB B.AC C.AB D.AC二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:(+)×=.12.(3分)已知一组数据:3,3,4,5,5,则它的方差为.13.(3分)已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.14.(3分)某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为.15.(3分)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE的面积是.16.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.17.(3分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为°.18.(3分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、解答题(本大题共7小题,19-23每题6分,24-25每题8分,共46分)19.(6分)计算:(1)3﹣﹣(2)(2+4﹣3)20.(6分)解方程:(1)3(x﹣1)2=x(x﹣1)(2)x2+1=3x.21.(6分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,9,8,8;乙:9,6,10,8,7;(1)将下表填写完整:(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会.(填“变大”或“变小”或“不变”)22.(6分)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%,从六月起强化管理,该厂产量逐月上升,七月份产量达到648吨.(1)该厂五月份的产量为吨;(直接填结果)(2)求六、七两月产量的平均增长率.23.(6分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.24.(8分)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.25.(8分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.四、附加题(本题有2小题,每题10分,共20分)26.(10分)如图所示中的几个图形是五角星和它的变形.(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.27.(10分)如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.2018-2019学年浙江省衢州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选:B.2.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.3.(3分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D【解答】解:A、“AB∥CD,AD=BC”是四边形ABCD的一组对边平行,另一组对边相等,该四边形可以是等腰梯形,不可以判定四边形ABCD是平行四边形.故本选项符合题意;B、根据“AB∥CD,∠A=∠C”可以判定AD∥BC,由“两组对边相互平行的四边形为平行四边形”可以判定四边形ABCD为平行四边形.故本选项不符合题意;C、“AD∥BC,AD=BC”是四边形ABCD的一组对边平行且相等,可以判定四边形ABCD是平行四边形.故本选项不符合题意;D、“∠A=∠C,∠B=∠D”是四边形ABCD的两组对角相等,可以判定四边形ABCD是平行四边形;故本选项不合题意;故选:A.4.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.(3分)如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.6.(3分)若关于x的方程mx2﹣m x+2=0有两个相等的实数根,则m的值为()A.0 B.8 C.4或8 D.0或8【解答】解:根据题意得△=(﹣m)2﹣4•m•2=0,解得m1=0,m2=8,而m≠0,所以m的值为8.故选:B.7.(3分)利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.8.(3分)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.10【解答】解:∵四边形ABCD是平行四边形,周长为18,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=9,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1.5,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.故选:C.9.(3分)摩拜共享单车计划2017年10、11、12月连续3月对深圳投放新型摩拜单车,计划10月投放深圳3000台,12月投放6000台,每月按相同的增长率投放,设增长率为x,则可列方程()A.3000(1+x)2=6000B.3000(1+x)+3000(1+x)2=6000C.3000(1﹣x)2=6000D.3000+3000(1+x)+3000(1+x)2=6000【解答】解:设增长率为x,由题意得3000(1+x)2=6000.故选:A.10.(3分)如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE 等于()A.AB B.AC C.AB D.AC【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:(+)×=13.【解答】解:原式=(2+)×=×=13.故答案为13.12.(3分)已知一组数据:3,3,4,5,5,则它的方差为.【解答】解:这组数据的平均数是:(3+3+4+5+5)÷5=4,则这组数据的方差为: [(3﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(5﹣4)2]=.故答案为:13.(3分)已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.14.(3分)某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为30%.【解答】解:设该公司这两年缴税的年均增长率为x,依题意得:200(1+x)2=338,解得x=0.3=30%.故答案是:30%.15.(3分)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△A DE的面积是6.【解答】解:∵D、E分别为AC、AB的中点,∴AD=AC=4,DE=BC=3,DE∥BC,∴∠ADE=∠C=90°,∴△ADE的面积=×AD×DE=6,故答案为:6.16.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.17.(3分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为95°.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,∴∠D=360°﹣100°﹣70°﹣95°=95°.故答案为:95.18.(3分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12.【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,=2S△ABD,∴S四边形AFBD又∵BD=DC,=2S△ABD,∴S△ABC=S△ABC,∴S四边形AFBD∵∠BAC=90°,AB=4,AC=6,=AB•AC=×4×6=12,∴S△ABC=12.∴S四边形AFBD故答案为:12三、解答题(本大题共7小题,19-23每题6分,24-25每题8分,共46分)19.(6分)计算:(1)3﹣﹣(2)(2+4﹣3)【解答】解:(1)原式=6﹣3﹣=;(2)原式=(4+﹣12)=(﹣8)=2﹣8.20.(6分)解方程:(1)3(x﹣1)2=x(x﹣1)(2)x2+1=3x.【解答】解:(1)方程整理,得3(x﹣1)2﹣x(x﹣1)=0因式分解,得(x﹣1)[3(x﹣1)﹣x]=0于是,得x﹣1=0或2x﹣3=0,解得x1=1,x2=;(2)方程整理,得x2﹣3x+1=0∵a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴x==,即x1=,x2=.21.(6分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,9,8,8;乙:9,6,10,8,7;(1)将下表填写完整:(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会变小.(填“变大”或“变小”或“不变”)【解答】解:(1)甲平均数为(8+7+9+8+8)÷5=8,甲的方差为: [(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.4,乙的环数排序后为:6,7,8,9,10,故中位数为8;故答案为:8,0.4,8;(2)选择甲.理由是甲的成绩较稳定.(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差为:[(9﹣8)2+(6﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(8﹣8)2]=<2,∴方差会变小.故答案为:变小.22.(6分)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%,从六月起强化管理,该厂产量逐月上升,七月份产量达到648吨.(1)该厂五月份的产量为450吨;(直接填结果)(2)求六、七两月产量的平均增长率.【解答】解:(1)500(1﹣10%)=450(吨),故答案为:450;(2)设六、七两个月的产量平均增长率为x,依题意得:450(1+x)2=648,(1+x)2=1.44,解得x1=0.2=20%,x2=﹣2.2=﹣220%(不合题意舍去),答:六、七两月产量的平均增长率为20%.23.(6分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.24.(8分)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD,CE是△ABC的中位线,∴D,E是AB,AC的中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.25.(8分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.【解答】解:(1)如图所示:(2)设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.四、附加题(本题有2小题,每题10分,共20分)26.(10分)如图所示中的几个图形是五角星和它的变形.(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.【解答】解:(1)如图:由三角形外角的性质,得∠C+∠E=∠1,∠B+∠D=∠2.由三角形的内角和定理,得∠A+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;(2)如图:由三角形外角的性质,得∠C+∠E=∠1,∠A+∠D=∠2,由三角形的内角和定理,得∠B+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;(3)∵∠ECD是△BCE的一个外角,∴∠ECD=∠B+∠E(三角形的一个外角等于它不相邻的两个内角的和),∴∠CAD+∠B+∠ACE+∠D+∠E=∠CAD+∠ACE+∠D+∠ECD=∠CAD+∠ACD+∠D=180°,故∠CAD+∠B+∠ACE+∠D+∠E等于180°,没有变化.27.(10分)如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.【解答】(1)证明:∵BF=BE,CG=CE,∴BC为△FEG的中位线,∴BC∥FG,BC=FG,又∵H是FG的中点,∴FH=FG,∴BC=FH.又∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,∵CE=CB,∴∠BEC=∠EBC=75°,∴∠BCE=180°﹣75°﹣75°=30°,∴∠DCB=∠DCE+∠BCE=10°+30°=40°,∴∠DAB=40°.。

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度八年级(下)
期中数学测试题(三)
温馨提示:
为了目标我们必须拼搏!
一个阶段的紧张学习,你们辛苦了!但前面的路还很长,还需要我们共同努力,面对今天的考试,请你认真、仔细,放下思想包袱,认真答好每一道题。

一、选择题
1.如图,Rt△ABC,∠B=90°,∠C=30°,AC=5cm,则AB的长为()
A.4cm B.3cm C.2.5cm D.2cm
2.已知a>b,则下列不等式中正确的是()
A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣3
3.如图,将四边形ABCD先向左平移2个单位长度,再向上平移1个单位长度,那么点B的对应点B′的坐标是()
A.(4,﹣1)B.(﹣4,﹣1) C.(4,1) D.(5,1)
4.不等式2x﹣5≤4x﹣3的解集在数轴上表示应为()
A.B.C.D.
5.如图,在△ABC中,AB=AC,AE是经过点A的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,AD=CE,则∠BAC的度数是()
A.45° B.60° C.90° D.120°
6.如图,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在边BC上,若∠B′C′B′=46°,则∠C的度数为()
A.56° B.60° C.67° D.70°
7.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()
A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点
C.△ABC三条高所在直线的交点D.△ABC三条角平分线的交点
8.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()
A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格
B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格
C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°
D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°
9.若关于x的一元一次不等式组无解,则a的取值范围是()
A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣1
10.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A、B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有()
A.4个B.6个C.8个D.10个
二、填空题
11.命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:.
12.如果2x﹣5<2y﹣5,那么﹣x ﹣y(填“<、>、或=”)
13.如图,图形B是由图形A旋转得到的,则旋转中心的坐标为

14.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖如图,在△ABC中,AB=4,BC=6,∠B=80°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则∠B′A′C=.
16.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E.若点Q是OC上与O、P不重合的另一点,则以下结论中,一定成立的是(填序号)
①PD=PE;②OC垂直平分DE;③QO平分∠DQE;④△DEQ是等边三角形.
17.不等式组的整数解共有个.
18.如图所示,∠AOB=45°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD= .
三、解答题(本题66分)
19.解下列不等式(组),并把解集在数轴上表示出来.
(1)≤5﹣x (2).
20.如图,在Rt△ABC中,∠A=90°,BE平分∠ABC,过点E作BC的垂线交BC于点D,CE=BE.求证:AB=CD.
21.某中学举行了社会主义核心价值教育知识竞赛,试卷共20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表队的得分目标为不低于88分,问这个队至少要答对多少道题才能达到目标要求?
22.如图,已知△abc的三个顶点的坐标分别为A(﹣6,4),B(﹣4,0),C(﹣2,2).
(1)将△ABC向右平移5个单位得,得△A1B1C1,画出图形,并直接写出点A1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,得△A2B2C2,画出图形,并直接写出点B2的坐标.
23.如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.
求证:E点在线段AC的垂直平分线上.
24.如图,在平面直角坐标系中,点A的坐标为(﹣2,0),等边△AOC经过平移或轴对称或旋转都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度.
(2)连接AD,交OC于点E,求AD的长.
25.甲、乙两家超市以相同的价格出售同样的商品.为了吸引顾客,各自推出不同的优惠方案.在甲超市累计购买商品超过300元之后,超出部分按原价八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价八五折优惠.设顾客累计购物x元(x>300).
(1)若设两家超市购物所付费用分别为y1,y2,请你分别写出y1,y2与x之间的函数关系式.
(2)顾客到哪家超市购物更优惠?
26.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.
(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;
(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.。

相关文档
最新文档