八年级数学下册 一次函数的概念教案

合集下载

新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

新人教版八年级数学下册《十九章 一次函数  19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。

19.2.2一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)

19.2.2一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)

19.2.2 一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)教学目标1.了解一次函数的定义和概念;2.学会绘制一次函数的图像;3.掌握一次函数的性质和使用方法。

教学准备1.教材:2022-2023学年人教版八年级数学下册;2.教具:白板、黑板、彩色粉笔、直尺、铅笔。

教学过程1. 导入新知•引出问题:我们在前几节课学过的函数都是二次函数或三次函数,那么一次函数是如何定义的呢?它和其他函数有什么不同之处?•学生思考并回答问题。

2. 学习新知•引导学生打开教材第19页,阅读19.2.2节的内容,了解一次函数的定义和概念。

•进行示范演示,并让学生一起完成例题。

3. 拓展应用•将学生分成小组,进行小组赛。

•每组从现实生活中选择一个具体问题,使用一次函数解决,并讲解解题步骤和思路。

•学生通过小组讨论,提出问题并解决问题,培养团队合作能力和问题解决能力。

4. 巩固练习•随堂练习:教师提供一些练习题,让学生进行课堂练习。

•将答案在黑板上进行公开讲解,指导学生进行自我纠错。

5. 归纳总结•总结本节课学习的要点,强调一次函数的特点和性质。

课后作业1.阅读教材第19页的相关内容,加深对一次函数的理解;2.完成课后习题第2、3题。

教学反思本节课通过引入问题的方式激发了学生的学习兴趣,使学生主动思考和回答问题,培养了他们的思维能力。

同时,采用了小组赛的形式,增强了学生的合作意识和团队精神。

在拓展应用环节中,学生通过解决具体问题的方式,将理论知识应用到实践中,提高了他们的问题解决能力。

通过课堂练习和归纳总结等环节,巩固了学生对一次函数的理解和掌握程度。

在以后的教学中,可以在导入新知环节引入更多的问题,加强学生的探究性学习。

八年级下册数学教案《一次函数的图象与性质》

八年级下册数学教案《一次函数的图象与性质》

八年级下册数学教案《一次函数的图象与性质》学情分析1、本节课包括两个重点:一次函数的图象画法和一次函数图象性质。

2、一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面学习二次函数、反比例函数都打下了基础。

同时,在整个初中阶段,一元一次方程,一元一次不等式都存在于相应的一次函数中,三者相互依存,紧密联系,也为方程、不等式、函数的解法的互相转化补充提供了新的途径。

而二元一次方程与直线,二元一次方程组的解与相应两直线交点坐标的等价关系也使学生更为深刻地理解数形结合的数学思想,所以整节课在教材中有着承上启下的重要地位。

教学目的1、理解直线y = kx+b 与直线y = kx之间的位置关系。

2、会选择两个合适的点,画出一次函数的图象。

3、根据图象和表达式y = kx+b,探索并理解k>0和k<0的图象的变化情况,掌握一次函数的性质。

教学重点一次函数的图象和性质。

教学难点一次函数的性质。

教学方法讲授法,演示法,谈话法,练习法教学过程一、复习回顾复习正比例函数的图象与性质。

y = kx(k≠0)过(0,0)(1,k)的直线。

k>0时,x,y同号,函数图象在一、三象限,y随x的增大而增大。

k<0时,x,y异号,函数图象在二、四象限,y随x的增大而减小。

二、探究一次函数图象的平移规律1、学生在同一坐标中画出下列函数图象。

(1)y = x-1y = xy = x+1(2)y = 2x-1y = -2xy = -2x+12、学生从以下3个角度观察上述函数。

①解析式②表格③图象思考:一次函数y = kx+b(k≠0)的图象是什么形状?它与直线y = kx (k≠0)有什么关系?归纳:一次函数y = kx+b(k≠0)的图象可以由直线y = kx平移|b|个单位长度得到(当b>0时,向上平移,当b<0时,向下平移)。

一次函数y = kx+b(k≠0)的图象也是一条直线,我们称它为直线kx+b。

3、师:由于一次函数的图象是直线,因此只要确定两个点,便可画出图象。

《一次函数(第2课时)》教案 人教数学八年级下册

《一次函数(第2课时)》教案 人教数学八年级下册

19.2.2 一次函数第2课时一、教学目标【知识与技能】使学生理解函数y=kx+b(k≠0)与函数y=kx(k≠0)图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.【过程与方法】通过从具体的一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.【情感态度与价值观】在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】一次函数的图象和性质.【教学难点】一次函数性质的理解.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)教师问:我们最快捷、最正确地画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?学生答:画正比例函数y=kx(k≠0)的图象,一般地,过原点和点(1,k).教师问:你能用这种方法作出一次函数的图象吗?这是今天我们学习的内容!(二)探索新知1.出示课件4-8,探究一次函数的图象教师问:正比例函数与一次函数有何关系?学生回忆并回答:一次函数y=kx+b(k≠0),当b=0时,一次函数则为正比例函数y=kx,因此,正比例函数是当常数项b=0时的一次函数,是特殊的一次函数.教师问:正比例函数的图象是什么图形?如何简便地画出正比例函数的图象?为什么?学生回忆思考并回答:正比例函数的图象是一条经过原点的直线.根据两点确定一条直线,只要确定直线上的两个点即可画出正比例函数的图象.教师问:正比例函数有何性质?这些性质是由什么确定的?师生总结:当k>0时,直线y=kx经过第一、三象限,从左向右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即y随x的增大而减小.教师问:在同一坐标系内,画出函数y=-6x与y=-6x+5的图象.师生一起解答:列表:描点、连线:教师问:比较上面两个函数图象的相同点与不同点.填出你的观察结果并与同伴交流.学生答:这两个函数的图象形状都是一条直线,并且倾斜程度相同.函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点(0,5),即它可以看作由直线y=-6x向上平移5个单位长度得到.教师问:(1)画一次函数 y =2x-3 的图象.学生答:列表:描点、连线:教师问:(2)在同一坐标系内画正比例函数y=2x的图象.学生答:如下图:教师问:比较上面两个函数的图象回答下列问题:教师依次展示问题:(1)这两个函数的图象形状都是______,并且倾斜程度______.学生答:一条直线,相同(2)函数y=2x的图象经过_______,函数y=2x-3的图像与y轴交于点(_______),即它可以看作由直线y=2x向___平移___个单位长度而得到.学生答:原点,(0,-3),下,3(3)在同一直角坐标系中,直线 y=2x -3与y=2x的位置关系是________.学生答:平行.教师总结点拨:(出示课件8)一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移|b|个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).教师问:一次函数y=kx+b(k≠0)与x轴的交点坐标是什么?,0).学生答:(-bk教师问:怎样画一次函数的图象最简单?为什么?学生答:由于两点确定一条直线,画一次函数图象时我们只需描,0)或 (1,k+b),连线即可.点(0,b)和点(-bk考点1:画一次函数的图象用你认为最简单的方法画出下列函数的图象:(1) y=-2x-1;(2) y=0.5x+1.(出示课件9)师生共同讨论解答如下:解:列表:描点、连线:教师强调:也可以先画直线 y=-2x与 y=0.5x,再分别平移它们,也能得到直线y=-2x-1与y=0.5x+1.出示课件10,学生自主练习后口答,教师订正.2.出示课件11-12,探究一次函数的性质教师问:画出函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的图象.学生答:列表:描点、连线:教师问:观察函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的图象.一次函数y=kx+b(k、b是常数,k≠0)中,k的正、负对函数图象有什么影响?师生总结:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.考点1:利用一次函数的性质比较大小P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象上的两点,下列判断中,正确的是( )(出示课件13)A.y1>y2 C.当x1<x2时,y1<y2B. y1<y2 D.当x1<x2时,y1>y2学生独立思考后,师生共同解答.解析:因为-0.5<0,所以y随x增大而减小.故选:D.教师强调:反过来也成立:y越大,x就越小.出示课件14,学生自主练习后口答,教师订正.3.出示课件15-16,探究一次函数经过象限与字母k,b的关系教师问:根据一次函数的图象判断k,b的正负:教师依次展示学生答案:学生1回答:(1)b>0,k>0.学生2回答:(2)b=0,k>0.学生3回答:(3)b<0,k>0.学生4回答:(4)b>0,k<0.学生5回答:(5)b=0,k<0.学生6回答:(6)b<0,k<0.教师问:根据上面一次函数的图象说出直线经过的象限:教师依次展示学生答案:学生1回答:(1)经过第一、二、三象限.学生2回答:(2)经过第一、三象限.学生3回答:(3)经过第一、三、四象限.学生4回答:(4)经过第一、二、四象限.学生5回答:(5)经过第二、四象限.学生6回答:(6)经过第二、三、四象限.教师问:一次函数y=kx+b中,k,b的正负对函数图象及性质有什么影响?教师依次展示学生答案:学生1回答:当k>0时,直线y=kx+b由左到右逐渐上升,y 随x的增大而增大.① b>0时,直线经过第一、二、三象限;② b<0时,直线经过第一、三、四象限.学生2回答:当k<0时,直线y=kx+b由左到右逐渐下降,y 随x的增大而减小.① b>0时,直线经过第一、二、四象限;② b<0时,直线经过第二、三、四象限.考点1:利用一次函数的性质求字母的值已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值:(1)函数值y 随x的增大而增大;(2)函数图象与y 轴的负半轴相交;(3)函数的图象过第二、三、四象限.(出示课件17)学生独立思考后,师生共同解答.解:(1)由题意得1-2m>0,解得m<12.(2)由题意得1-2m≠0且m-1<0,即m<1且m≠12(3)由题意得1-2m<0且m-1<0,解得1<m<1.2出示课件18,学生自主练习,教师给出答案.(三)课堂练习(出示课件20-24)练习课件第20-24页题目,约用时20分钟.(四)课堂小结(出示课件25)(五)课前预习预习下节课(19.2.2第3课时)的相关内容. 知道利用待定系数法求一次函数解析式的步骤.七、课后作业1、教材第93页练习第1,2,3题.2、七彩课堂第130-131页第2、4、9题.八、板书设计一次函数第2课时1.一次函数的图象考点12.一次函数的性质考点13.一次函数经过象限与字母k,b的关系考点13.例题讲解九、教学反思成功之处:本课教学内容的本质是通过研究具体一次函数的图象特征和函数性质,抽象得到一般的一次函数的图象特征和函数性质,在这个过程中使学生认识到由具体到一般的研究问题的方法.同时在学生了解了正比例函数y=kx的图象和性质的基础上,通过比较一次函数y=kx+b与正比例函数y=kx解析式上的区别,得到一次函数图象与正比例函数图象之间的关系,进而得到一次函数的图象和性质,也使学生体会到当两个函数有密切联系时,通过类比以前研究函数的方法来研究新的函数.在“观察图象——分析解析式——归纳结论”的过程中,培养学生的数形结合的能力.不足之处:八年级的学生是好奇、好学、好动的,但因为时间较紧,在教学过程中没有留下更多的时间,通过让学生自己动手画图,同学之间交流画法,谈谈想法等活动的时间也不够充分,学生的主体性没有得到充分发挥,没有最大限度地激发学生的求知欲.补救措施:在小结的设计上给学生一个充分从事数学活动的机会,应充分体现学生是数学学习的主人的理念.学生所发表的见解不一定全都是本节课的重点,只要是学生的观点正确又的确是他的知识收获,教师就应该给予认可和鼓励.。

人教版数学八年级下册19.2《一次函数图象与性质》教案

人教版数学八年级下册19.2《一次函数图象与性质》教案

人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。

本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。

但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。

三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。

2.理解一次函数的性质,能够解释一次函数图象的变换。

3.能够运用一次函数解决实际问题,提高学生的数学应用能力。

四. 教学重难点1.一次函数的图象特征和性质的理解。

2.一次函数图象的实际应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。

六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。

2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。

3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。

七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。

3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。

4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。

5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。

人教版数学八年级下册《一次函数与一元一次方程》教案1

人教版数学八年级下册《一次函数与一元一次方程》教案1

人教版数学八年级下册《一次函数与一元一次方程》教案1一. 教材分析人教版数学八年级下册《一次函数与一元一次方程》是学生在学习了代数和几何基础知识后,进一步深化对函数和方程的理解的重要内容。

本节课通过介绍一次函数和一元一次方程的定义、性质、图像以及解法,使学生能够掌握解决实际问题的方法,提高解决问题的能力。

二. 学情分析学生在之前的学习中已经接触过函数和方程的知识,对一些基本概念和运算规则有一定的了解。

但一部分学生可能对一次函数和一元一次方程的联系和应用还不够清晰,解题时不能灵活运用。

因此,在教学过程中,要关注这部分学生的学习需求,通过具体实例和练习,帮助他们理解和掌握知识。

三. 教学目标1.知识与技能:理解一次函数和一元一次方程的定义,掌握一次函数的性质和图像,学会解一元一次方程。

2.过程与方法:通过观察、分析、归纳、实践等方法,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.一次函数的定义和性质。

2.一元一次方程的解法和应用。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、讨论和交流,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的一次函数和一元一次方程的案例和练习题。

2.准备多媒体教学设备,如PPT等。

七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数和一元一次方程的概念,激发学生的兴趣。

2.呈现(10分钟)讲解一次函数和一元一次方程的定义、性质和图像,让学生通过观察和分析,理解两者的联系。

3.操练(10分钟)让学生分组讨论和解答一些关于一次函数和一元一次方程的练习题,巩固所学知识。

4.巩固(5分钟)通过一些实际问题,让学生运用一次函数和一元一次方程的知识解决问题,提高学生的应用能力。

5.拓展(5分钟)引导学生思考一次函数和一元一次方程在实际生活中的应用,激发学生的创新意识。

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
(四)课堂练习,500字
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。

八年级数学下册《函数的概念》教案、教学设计

八年级数学下册《函数的概念》教案、教学设计
-利用数学软件或动态图象展示函数的变化过程,帮助学生建立起函数图象与实际问题的联系,提高他们分析和识别函数图象的能力。
-设计一系列具有实际背景的问题,如最佳投资方案、最短路径问题等,引导学生运用函数知识构建模型,解决实际问题。
2.针对教学难点,我计划采取以下措施:
-采用“从特殊到一般”的教学方法,先通过具体的一次函数、二次函数等案例,让学生感知函数的单调性、奇偶性等性质,再推广到一般函数。
4.针对不同学生的学习特点,教师应采用差异化教学策略,关注学生的个体差异,激发学生的学习潜能,使他们在函数学习中获得成就感。
5.注重培养学生的合作意识和团队精神,通过小组合作、讨论交流等形式,引导学生相互学习、共同进步。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握函数的定义,能从实际问题中抽象出函数关系,识别函数的三种表示方法(解析式、表格、图象)。
请同学们按时完成作业,并在作业中体现出自己的思考过程。在完成作业的过程中,如遇到问题,可随时与同学、老师交流,共同解决。期待大家在作业中展现出对本节课知识的深刻理解和运用能力!
2.函数图象的分析和识别,特别是对于不同类型函数图象的特点和性质的理解。
3.运用函数知识解决实际问题,特别是将现实问题转化为函数模型的能力。
4.函数单调性、奇偶性等性质的深入理解及其应用。
(二)教学设想
1.对于教学重点的突破,我设想采用以下策略:
-通过引入生活中的实例,如气温变化、物体运动等,让学生感受函数的实际意义,从而加深对函数定义的理解。
2.根据课堂所学的一次函数、二次函数等基本初等函数的性质,分析以下问题:
a.一次函数图象的特点及其在现实生活中的应用。
b.二次函数图象的开口方向、顶点、对称轴等性质,并举例说明。

人教版八年级数学下册教案:19.2.3一次函数与方程,不等式

人教版八年级数学下册教案:19.2.3一次函数与方程,不等式
人教版八年级数学下册教案:19.2.3一次函数与方程,不等式
一、教学内容
本节课选自人教版八年级数学下册19.2.3节,主要内容包括:
1.一次函数与一元一次方程的关系:利用一次函数图像求解一元一次方程,以及方程的解与函数图像上点的坐标关系。
2.一次函数与一元一次不等式的关系:根据一次函数图像,判断不等式的解集,并能在数轴上表示出来。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数与方程、不等式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,我鼓励学生们提出自己的观点,并进行交流。大家普遍对一次函数与方程、不等式在实际生活中的应用表现出较高的兴趣。但在讨论过程中,我也注意到有些学生参与度不高,可能是由于他们对这一知识点还不够自信。因此,我需要在今后的教学中,更加关注这部分学生,鼓励他们积极参与,提高自信心。
总体来说,今天的教学还有许多需要改进的地方。首先,我需要在讲解难点时,更加注重学生的接受程度,适时调整教学节奏,确保每一个学生都能跟上。其次,针对学生在一次函数图像与不等式解集关系上的困惑,我计划在下一节课中增加一些更具针对性的练习和案例分析,帮助他们更好地理解这一部分内容。
3.应用实际问题:结合生活实例,让学生学会运用一次函数与方程、不等式的关系解决问题,如利润问题、速度问题等。
4.练习题:通过练习题巩固一次函数与方程、不等式的转换与应用,提高学生实际操作学知识解决实际问题的能力,使学生能够结合一次函数与方程、不等式的知识,分析并解决生活中的数学问题,提升数学应用意识。

《一次函数》教案(共5则)

《一次函数》教案(共5则)

《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点、难点重点:理解一次函数和正比例函数的概念。

难点:能根据所给的条件写出简单的一次函数表达式。

二。

教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。

2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。

5厘米。

(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。

(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。

问:观察上述关系式的特点,总结规律。

(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。

特别地,当b=0时,称y是x的正比例函数。

(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。

(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。

(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。

分析:本题较为简单,由学生完成。

例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。

八年级数学教师集体备课教案一次函数的概念

八年级数学教师集体备课教案一次函数的概念

八年级数学教师集体备课教案根据实际问题列一次函数表达式.一、新课导入1.导入课题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队由大本营向上登高xkm时,他们所在位置的气温是y℃,让学生试用x表示y,然后提问:这个y关于x的函数表达式是什么函数关系呢?由此导入课题(板书课题).2.学习目标(1)知道什么样的函数是一次函数,能根据一次函数的定义求函数表达式中未知字母系数的值.(2)知道正比例函数是特殊的一次函数.(3)根据等量关系列一次函数关系式.3.学习重、难点重点:一次函数的概念.难点:根据实际问题列一次函数表达式.二、分层学习1.自学指导(1)自学内容:P89到P90练习以上的内容.(2)自学时间:10分钟.(3)自学要求:看书、动手、观察关系式的共同特点,尝试归纳一次函数的一般形式.(4)自学参考提纲:①思考中的四个解析式有什么共同特点?②请叙述一次函数的定义,注意不能忽视什么问题?③一次函数与正比例函数有什么联系和区别?④已知y=(a2-1)x+b-2,a.当a≠±1,b≠2时,它是一次函数.b.当a≠±1,b=2时,它是正比例函数.⑤完成P90的练习.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生在完成提纲时存在的问题和困难.②差异指导:对个别存在疑难问题的学生进行指导.(2)生助生:学生研讨疑难之处.4.强化(1)一次函数的定义及确定字母系数的依据.(2)展示练习的答案,并点评.(3)正比例函数与一次函数的异同点.1.自学指导(1)自学内容:一次函数意义的应用.(2)自学时间:10分钟.(3)自学要求:结合自学参考提纲进行自主学习,合作交流.(4)自学参考提纲:①下列函数中,是一次函数的是(B)本课时的教学,教师应选取适当的材料帮助学生从不同的角度认识一次函数,引导学生把握一次函数与正比例函数之间的区别和联系,并通过一定的练习指导学生巩固知识,明白正比例函数是特殊的一次函数.由特殊到一般,循序渐进,让学生经历观察、思考、讨论、分析、归纳的过程,进行更加深刻地学习.(时间:12分钟满分:100分)一、基础巩固(65分)1.(10分)下列说法中不正确的是(D)A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数2.(10分)矩形的周长为50,设它的长为x,宽为y,则y与x的函数关系式为(A)A.y=-x+25B.y=x+25C.y=-x+50D.y=x+503.(10分)王明妈妈购进一批苹果,到售货市场零售,已知卖出的苹果重量x(千克)与销售额y(元)之间的对应关系如下表.则y关于x的函数关系式是(B)A.y=2x+0.1B.y=2x+0.1xC.y=4x+0.2D.y=4x+0.2x4.(10分)若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是(A)A.(1,1)B.(-1,1)C.(-2,-2)。

人教版初中数学八年级下册19.2.2《一次函数的概念》教案

人教版初中数学八年级下册19.2.2《一次函数的概念》教案
三、教学难点与重点
1.教学重点
-一次函数的定义:y=kx+b(k≠0,k、b是常数),这是本节课的核心内容,教师需通过讲解和示例,使学生深刻理解一次函数的基本形式。
-一次函数图像的特点:一次函数的图像是一条直线,教学中应通过绘制图像和观察,让学生掌握这一特点。
-一次函数的增减性:根据k的值判断函数图像的增减趋势,教师需引导学生通过实例分析,掌握增减性的判断方法。
五、教学反思
在今天的教学中,我尝试通过生活实例导入一次函数的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学能够积极参与,但我也注意到有些学生在理解一次函数的定义上还存在困难。这让我意识到,对于基础概念的教学,需要更加细致和耐心。
在理论介绍环节,我尽力用简洁明了的语言解释一次函数的定义和图像特点,同时配合图示,希望让学生能够直观地理解。然而,从学生的提问和作业来看,对于k、b取值范围的理解仍然是他们的一个难点。未来,我考虑引入更多的实际例子,让学生在具体情境中感受这些参数的变化,以便更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如k、b的取值范围和一次函数图像的绘制,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的绘制方法。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
一、教学内容
人教版初中数学八年级下册19.2.2《一次函数的概念》教案:
1.理解一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。

一次函数 初中八年级下册数学教案教学设计课后反思

一次函数 初中八年级下册数学教案教学设计课后反思

《一次函数》教学设计一、教学目标(一)理解一次函数的概念以及它和正比例函数之间的关系;(二)确定一次函数解析式;(三)会画一次函数图像,并根据一次函数图像解决实际问题。

重点:理解一次函数的概念以及一次函数图像的性质。

难点:根据一次函数图像解决实际问题。

二、教材内容分析本课主要通过类比正比例函数来探究一次函数的概念,引导学生画出一次函数的图像并根据图像解决实际问题。

一次函数是一种最基本的初等函数,在现实生活中有着广泛的应用,而熟练掌握一次函数的性质和应用,是渗透“数形结合”的思想方法的重要途径,对今后进一步学习反函数以及二次函数具有启示作用。

三、教学方法(一)由实际问题引出一次函数解析式的过程,充分体现数学与生活之间的联系;(二)在画一次函数图像过程中体会“数形结合”的思想方法。

四、活动准备:(一)学生准备:课前认真复习正比例函数相关知识;(二)物质材料准备:课件《一次函数》。

五、活动过程:(一)课堂回顾1、引导学生利用绘制表格的方式回顾正比例函数的相关知识。

正比例函数的函数解析式为,当时,它的图像为。

(出示课件)。

当时,正比例函数的图像经过一三象限,且y随x的增大而增大。

当时,它的图像为。

(出示课件)当时,正比例函数的图像经过二四象限,且y随x的增大而减小。

(二)新课导入1、某登山队大本营所在地气温为5℃,海拔每升高1km下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y 与x的关系。

2、以下变量之间的对应关系是函数关系吗?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的变化而变化.通过列一次函数解析式归纳出一次函数的概念。

人教版八年级下册数学第1课时 一次函数的概念教案与教学反思

人教版八年级下册数学第1课时 一次函数的概念教案与教学反思

19.2.2 一次函数青海一中李清第1课时一次函数的概念【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1.一次函数的概念.2.根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系.问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系.【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.【答案】(1)C=7t-35;(2)G=h-105;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同.变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】(1)一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1 下列函数中哪些是一次函数?哪些正比例函数?①y=-2x;②2yx=-;③y=2x2-3;④y=13x+2.【答案】①④是一次函数,①是正比例函数.【教学说明】一次函数包括正比例函数.例2 某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x(年)表示,年产值用y(万)元表示,那么y与x之间有什么样的关系?(3)当年由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值.(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1克的按1千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费.【分析】因为P千克可写成(P1)+1,其中1千克付费2元,P-1千克增加费用0.5(P-1),所以c=2+0.5(P-1)=0.5P+1.5.【答案】c=2+0.5(P-1)=0.5P+1.5.当P=5时,c=0.5×5+1.5=4(元).即5千克行李的托运费是4元.【教学说明】在写系式时,应注意(P-)千克是增加的重量.类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的.四、运用新知,深化理解1.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x 的一次函数吗?3.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x的关系式.(2)求当x=2,5,8,11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16℃时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果.【答案】1.(1)v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2.y=50-5x,0≤x≤10,y是x的一次函数.3.(1)0≤x≤11时,y与x之间的关系式为y=38-6x.(2)分别为26,8,-10,-28.(3)气温是-28℃.(4)离地面9km高的地方.五、师生互动,课堂小结问题1 反思函数、正比例函数、一次函数的概念及它们间的关系.问题2 就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识.教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力. 【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

人教版数学八年级下册《一次函数实际问题》教案

人教版数学八年级下册《一次函数实际问题》教案

人教版数学八年级下册《一次函数实际问题》教案一. 教材分析《一次函数实际问题》是人教版数学八年级下册的教学内容,主要让学生了解一次函数在实际问题中的应用。

通过本节课的学习,学生将掌握一次函数的定义、性质和图象,并能解决一些简单的实际问题。

教材通过丰富的实例,引导学生认识一次函数与现实生活的联系,培养学生的数学应用能力。

二. 学情分析学生在八年级上册已经学习了函数的基本概念,对函数有一定的认识。

但实际问题中的函数应用仍然是他们的薄弱环节。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高他们的解决问题的能力。

三. 教学目标1.理解一次函数的定义和性质;2.学会用一次函数解决实际问题;3.培养学生的数学应用能力和团队协作精神。

四. 教学重难点1.一次函数的定义和性质;2.一次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生了解一次函数的实际应用;2.小组合作学习:让学生在小组内讨论、探究,提高团队协作能力;3.案例分析法:分析实际问题,培养学生解决问题的能力;4.引导发现法:教师引导学生发现一次函数的规律,提高学生的自主学习能力。

六. 教学准备1.教学PPT;2.实际问题案例;3.whiteboard 和 markers;4.学生分组名单。

七. 教学过程1. 导入(5分钟)教师通过一个简单的实际问题引入本节课的主题,如“某商品打8折后的价格是多少?”让学生尝试解答,激发学生的学习兴趣。

2. 呈现(10分钟)教师展示一次函数的定义和性质,以及一次函数图象的特点。

通过PPT和板书,引导学生理解一次函数的基本概念。

3. 操练(15分钟)教师给出几个实际问题,让学生分组讨论、探究。

学生在小组内合作解决问题,培养团队协作能力。

教师巡回指导,解答学生的问题。

4. 巩固(10分钟)教师挑选几个小组的解题过程和答案,进行讲解和评价。

让学生在评价中巩固知识,提高自己的解题能力。

八年级数学下册《一次函数的性质》教案、教学设计

八年级数学下册《一次函数的性质》教案、教学设计
作业要求:
1.请同学们认真完成作业,注意书写的规范性和解答的完整性。
2.对于实践应用题,鼓励同学们积极参与,充分运用所学知识解决实际问题。
3.拓展思考题旨在培养学生的思维品质和探究精神,同学们可以查阅资料,与同学、老师讨论,提高自己的理解深度。
八年级数学下册《一次函数的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握一次函数的定义,能够准确识别并描述一次函数的图像特征;
2.学会运用一次函数的性质解决实际问题,如分析变化规律、预测发展趋势等;
3.掌握一次函数的解析式,能够通过给定的两点或一点和斜率求解一次函数的方程;
4.能够运用一次函数的性质解释生活中的现象,提高数学应用能力。
针对以上学情分析,教师在教学过程中应采用多样化的教学手段,关注学生的个体差异,充分调动学生的积极性,帮助他们克服学习困难,提高数学素养。同时,注重培养学生的探究精神和解决问题的能力,为学生的全面发展奠定基础。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、性质及解析式的掌握,能够运用一次函数解决实际问题。
1.学生在图像识别和性质分析方面的能力差异,因材施教,针对性地进行指导;
2.学生在解决实际问题时,可能对一次函数的应用感到困惑,需要教师通过实例进行引导;
3.部分学生对数学学习的兴趣和积极性有待提高,教师应注重激发学生的学习兴趣,增强其学习动力;
4.学生在小组讨论和合作学习中,可能存在沟通不畅、协作不紧密等问题,教师需引导学生培养团队协作能力。
4.分析一次函数的性质,如单调性、奇偶性等,并结合图像进行讲解。
(三)学生小组讨论,500字
1.教师提出讨论题目,如:“一次函数的图像与性质之间的关系是什么?”

初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思

初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思
学生学情分析
经过前面的学习,学生已经掌握了函数的概念并且具有了一些分析实际问题中量与量之间的关系的能力,所以在这节课中,学生会用到前面所学。
教学过程设计
教师活动
预设学生活动
设计意图
1、提问:1.什么是函数?2.函数有哪几种表示方法?
2、提问:能否说出x的一次式的一般形式是什么样的?
3、思考:k≠0这个条件能否省略不写
4、提问:正比例函数与一次函数有怎样的关系?
1、学生回答并举例子
2、学生讨论回答
3、学生思考后回答
4、思考后回答教师的提问
1、了解函数的概念
2、理解一次函数定义
3、了解k≠0的意义
4、理解正比例函数是一次函数的特例
板书设计
自主探究,做一做:
1.某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.
(1)完成下表:
路程x/km
0
50
100
150
200
300
余油量y/L
(2)你能写出y与x之间的关系吗?
教学反思
我在这节课中通过分析变量间的关系,发展学生的数学思维;经历利用一次函数解决实际问题的过程,发展学生的数学应用能力;通过一次函数概念的引入,使学生进一步认识数学是来源于生活并用于生活,同时渗透热爱自然和生活的教育,在学生掌握了函数的概念的基础上,进一步的分析情境中量与量之间的关系,从而抽象出函数关系,让学生认识理解一次函数和正比例函数的概念以及之间的关系,为后面进一步学习一次函数的图像和性质以及一次函数的应用做铺垫,我觉得我对这节课的引入是这节课的亮点,通过举例子让学生更加清楚地学习了一次函数的概念和使用。我这节课值得总结的就是所举的例子回让一些学生觉得抽象,在以后的教学中我会尽量杜绝这种勤快的再次发生的。

人教版初中数学八年级下册 一次函数的概念-全市获奖

人教版初中数学八年级下册 一次函数的概念-全市获奖

2)它与正比例函数有什么区别?3类比正比例函数给一次函数下定义。

一般地,形如y=b (,b 是常数≠0)的函数,叫做一次函数.当b=0时, y=b 即y=正比例函数是一种特殊的一次函数.特别注意(1)自变量X 的系数K ≠0 (2)变量的次数是1(3)自变量的取值范围是全体实数,但在实际问题中要根据函数的实际意义来确定。

你学会了吗?1y=-8 2 y=x8- (3)y=52 6 4 y= 5y= 12-x (6)y=132-x 7y=2(-4) 8y=23-x 小试牛刀:=-25中,= ___ b= ____=m -3n -1为一次函数,则m = ___ , n = ___ 。

利用优教通答题器• 下列函数中,属于一次函数的是( ) A y=200 B y= C y=22 D y=8 • 下列函数中,不是一次函数的是( ) A y=-4 B y= CD y=• 下列函数中,一次函数是( ) A y=82 B y=1 C; D教师让学生小组合作交流,引导学生从解析式的形式上找共同点学生观察比较,类比正比例函数定义归纳总结一次函数的概念。

教师板书教师提问为什么,b 是常数≠0 b 可以取0吗学生回答并总结出正比例函数是特殊的一次函数引导学生类比正比例函数的定义总结一次函数引导学生与定义做比较,做出判断。

教师及时评价让学生根据一次函数的定义解决问题两名同学回答问题教师让全班同学仔细审题一起按手中的答题器大让学生体会团队合作意识发展学生的抽象思维能力和概括能力。

体验特殊和一般的辩证关系对解析式结构的 分析与比较,加深对已有知识的理解,促进认知结构的完善。

•下列函数中:①y= -;②y=;③y=;④y=7-2;⑤y=23,其中y是的一次函数的是()A ①③⑤B ①③④C ①②③④D ②③④⑤•下列函数是一次函数的有()(1)y=π,(2)y=2-1,(3)y=,(4)y=2-1-3,(5)y=2-1.A 4个B 3个C 2个D 1个•若函数y=m1是一次函数,则常数m的值是()A 0B 1C -1D -2•已知一次函数y=(m-1)|m|7,则m的值为()A 2B ±1C -1D 1•下列说法正确的是()A 一次函数是正比例函数B 正比例函数是一次函数C 正比例函数不是一次函数D 一次函数不可能是正比例函数•若函数y=(a-5)1-b b是一次函数,则a、b应满足的条件是()A a=5且b≠0B a=5且b=0C a≠5且b≠0D a≠5且b=0•若是一次函数,则a=()A ±3B 3C -3 D能力拓展已知一次函数y=b,当=1时,y=5;当=-1时,y=1.求和b 的值.若y=m-2│m│-13为一次函数,则m为何值求该函数表达式播放珠穆朗玛峰的图片同学们知道世界上最高的山峰吗珠穆朗玛峰的海拔有多高利用生活中的数学问题的第一个例子能计算出珠穆朗玛峰山顶的温度约为多少吗屏幕显示答题结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.2 一次函数 第1课时 一次函数的概念
1.一次函数的定义及解析式的特点;(重点) 2.一次函数与正比例函数的关系.(难点) 一、情境导入 1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q 与星期数t 之间的函数关系式. 2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高. 3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额? 以上3道题中的函数有什么共同特点? 二、合作探究 探究点一:一次函数的定义 【类型一】 辨别一次函数 下列函数是一次函数的是( ) A .y =-8x B .y =-8
x
C .y =-8x 2+2
D .y =-8
x +2
解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误.故选A. 方法总结:一次函数解析式的结构特
征:k ≠0;自变量的次数为1;常数项b 可
以为任意实数. 【类型二】 一次函数与正比例函数
已知y =(m -1)x 2-
|m |+n +3. (1)当m 、n 取何值时,y 是x 的一次函
数? (2)当m 、n 取何值时,y 是x 的正比例
函数?
解析:
(1)根据一次函数的定义,m -1≠0,2-|m |=1,据此求解即可;(2)根据正比例函数的定义,m -1≠0,2-|m |=1,n +3=0,据此求解即可. 解:(1)根据一次函数的定义得2-|m |
=1,解得m =±1.又∵m -1≠0即m ≠1,∴当m =-1,n 为任意实数时,这个函数是一次函数; (2)根据正比例函数的定义得2-|m |=1,n +3=0,解得m =±1,n =-3.又∵m -
1≠0即m ≠1,∴当m =-1,n =-3时,这个函数是正比例函数. 方法总结:一次函数解析式y =kx +b 的结构特征:k ≠0,自变量的次数为1,常
数项b 可以为任意实数.正比例函数y =kx 的解析式中,比例系数k 是常数,k ≠0,自变量的次数为1. 探究点二:根据实际问题求一次函数解
析式
【类型一】 列一次函数解析式 写出下列各题中y 与x 的函数关
系式,并判断y 是否是x 的一次函数或正比例函数?
(1)某村耕地面积为106(平方米),该村人均占有耕地面积y (平方米)与人数x (人)之间的函数关系; (2)地面气温为28℃,如果高度每升高1km ,气温下降5℃,气温x (℃)与高度y (km)
之间的函数关系.
解析:(1)根据人均占有耕地面积y 等于总面积除以总人数得出即可;(2)根据高度每升高1km ,气温下降5℃,得出28-5y =x 求出即可.
解:(1)根据题意得y =106
x ,不是一次函
数;
(2)根据题意得28-5y =x ,则y =-1
5x
+28
5
,是一次函数. 方法总结:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.
【类型二】 确定一次函数解析式中系数的值
已知一次函数y =kx +b 中,当自
变量x =3时,函数值y =5;当x =-4时,y =-9.求
k 和b 的值.
解析:把两组对应值分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 和b .
解:(1)∵当自变量x =3时,函数值y =5,当x =-4时,y =-9,
∴⎩⎪⎨⎪⎧3k +b =5,-4k +b =-9,解得⎩
⎪⎨⎪⎧k =2,b =-1. 方法总结:解决此类问题就是将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组解答即可.
三、板书设计
1.一次函数的定义
2.一次函数与正比例函数的区别和联系
3.根据实际问题求一次函数解析式
在本节课的教学设计与教学实践中,不仅关注学生获得的知识,而且注重知识获得
的过程和方法,同时关注学生的全面发展.由于教学方法得当,教学过程设计合理,师生互动关系平等、和谐,所以能较好的完成知识传授与促进学生发展的任务,在数学课堂教学改革的实践中取得较好的教学效果.。

相关文档
最新文档