2013年中考数学试题 中档题分类汇编 (教师版)
2013中考数学典型题汇编60页(含答案)
2013中考数学典型题汇编2013.01.06姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、计算题四、实验,探究题五、综合题六、未分类七、简答题总分得分一、选择题1、下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是 ( )A.495 B.497 C.501 D.5032、如图,已知,是斜边的中点,过作于,连结交于;过作于,连结交于;过作于,…,如此继续,可以依次得到点,…,,分别记…,的面积为,….则()A.=B.=C.=D.=3、如图,A、B是反比例函数上的两个点,轴于点C,轴于点D,连结AD、BC,则△ADB与△ACB的面积大小关系是()A. B.C. D.不能确定4、如图,和的是等腰直角三角形,,.点B与点D重合,点在同一条直线上,将沿方向平移,至点与点重合时停止.设点之间的距离为x,与重叠部分的面积为,则准确反映与之间对应关系的图象是5、下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④6、如图,水平地面上有一面积为的扇形AOB,半径OA=,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为()A. B. C. D.7、甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲 B.乙 C .丙 D.不能确定二、填空题8、如果长方形的一条边等于3m+2n,另一条边比它小m-n,这个长方形的周长为9、若|a|=4,|b|=2,且ab<0,则a+b= 。
2013年全国各地中考数学试卷分类汇编总汇免费打包 (40)
-为整数,ab≠0);(4)am÷an=amn(m,n为整数,a≠0).
【易错警示】易把同底数幂的乘法和幂的乘方相混淆,如x4·x4=x8和(x4)4=x16,即(am)n和am·an混淆.
2.(2013江苏苏州,2,3分)计算-2x2+3x2的结果为( ).
A.-5x2 B.5x2 C.-x2 D.x2
【解析】A项错误,根据同底数幂的乘法,可得a5;B项错误,根据同底数幂的除法,可得结果为a10;C项错误,根据幂的乘方,可得结果为a9; D正确,根据积的乘方可得结
?? D.??a?336
整式与因式分解
一、选择题
1.(2013湖北黄冈,4,3分)下列计算正确的是( )
A.x4?x4?x16 B.a
C.ab???a3224?a9 3?????ab?232??ab4 D.a6?a4?1 ????
【答案】D.
【方法指导】本题是等式性质的灵活运用,关键是将已知的等式变形,得出所求的代数式.
【易错警示】等式变形的方法不正确而出错.
4.(2013江苏扬州,2,3分)下列运算中,结果是a6( ).
A.a2?a3 B.a12?a2 C.a
【答】计算-2x2+3x2=(-2+3)x2=x2,所以应选D.
【方法指导】所含字母相同且相同字母的指数也相同的项叫做同类项.合并同类项时,系数相加减,相同的字母及其指数不变.
【易错警示】本题主要考查同类项的概念,以及合并同类项.对同类项的概念把握不准,合并同类项的方法不对而出错.
【解析】A选项中应为x4·x4=x4+4=x8;B选项中应为(a3)2·a4=a6·a4=a6+4=a10;C选项
--2中应为(ab2)3÷(-ab)2=a3b6÷a2b2=a32b62=ab4;D选项中(a6)÷(a4)3=a12÷a12=1.所以
(45专题全套打包)2013年全国各地中考数学试卷分类汇编总汇-5.doc
正多边形与圆一.选择题1.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A .6,32B .32,3C .6,3D .62,32【答案】:B .【解析】∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3,∴233322=+=AO ,故选B .【方法指导】本题考查了正多边形和圆,重点是了解有关概念并熟悉如何构造特殊的直角三角形,比较重要.由正方形的边长、外接圆半径、内切圆半径正好组成一个直角三角形,从而求得它们的长度.第34章 正多边形与圆2.(2013浙江台州,9,4分)如图,已知边长为2的正三形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .34-C .4D .326-【答案】:B .【解析】在正三形ABC 中,边长为2,易得AD=3;在正六边形绕中心o 旋转一周的过程中,若DE 的值最小,则E 点位于y 轴的正半轴上,在正六边形中易得OE=2,此时DE=AO-AD-OE=6-3-2=4-3。
【方法指导】本题考查等边三角形和正六边形的计算,在动态问题中,抓住旋转过程中DE 最小的特殊时刻解决问题。
3.(2013江西南昌,11,3分)如图,正六边形ABCDEF 中,AB=2,点P 是ED 的中点,连接AP ,则AP 的长为( ).x yABC EO 第9题DA .23B .4C .13D .11【答案】C【解析】连接AE 、BE ,由正六边形的性质知,△ABE 、△APE 为直角三角形,22224212AE BE AB =-=-=, 所以2212113AP AE PE =+=+=【方法指导】本题考查了正六边形的有关计算,运用正六边形的性质将正六边形转化为直角三角形或等边三角形是解题的关键。
2013全国各地中考数学试题分类汇编
2013全国各地中考数学试题分类汇编
2013年全国各地中考数学试卷分类汇编:等腰三角形
2013年全国各地中考数学试卷分类汇编:直角三角形
2013年全国各地中考数学试卷分类汇编:全等三角形
2013年全国各地中考数学试卷分类汇编:三角形的边与角
2013年全国各地中考数学试卷分类汇编:矩形菱形与正方形
2013年全国各地中考数学试题分类汇编:圆
2013年全国各地中考数学试卷分类汇编:圆的有关性质
2013年全国各地中考数学试卷分类汇编:点直线与圆的位置关系
2013年全国各地中考数学试卷分类汇编:有理数
2013年全国各地中考数学试卷分类汇编:函数与一次函数
2013年全国各地中考数学试卷分类汇编:二次函数
2013年全国各地中考数学试卷分类汇编:反比例函数
2013年全国各地中考数学试卷分类汇编:二次根式
2013年全国各地中考数学试卷分类汇编:不等式(组)
2013年全国各地中考数学试卷分类汇编:动态问题
2013年全国各地中考数学试卷分类汇编:规律探索
精心整理,仅供学习参考。
2013数学中考试题汇编答案与解析
2013中考全国100份试卷分类汇编答案与解析——圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为A. 95B. 245C. 185D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =1853、(2013河南省)如图,CD 是☉O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。
由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。
因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。
【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cm==3cm==4==25、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()==59、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5 C 6 D. 810、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;11、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()OB===12、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键13、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、(2013•内江)在平面直角坐标系中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.15、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.==cmcm16、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48度.17、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.CD=2x=∴所在圆的半径为:故答案为:.18、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.OC=1AB=2AD=2=2=2.19、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,Θ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为P13,则点P的坐标为____________.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键20、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
【中考宝典】2013年中考数学真题分类汇编(Word版,含答案)
第一单元数与式一、实数1、绝对值、相反数、倒数2、科学记数法3、实数的概念及其运算二、整式1.幂的运算、整式的乘除2.因式分解三、分式四、二次根式第二单元方程(组)与不等式组一、一次方程(方程组)二、一元一次不等式与一元一次不等式组三、一元二次方程四、分式方程第三单元函数及其图像一、函数及其图像二、一次函数三、反比例函数四、二次函数五、函数的应用第四单元图形的认识与三角形一、角、相交线与平行线二、三角形与全等三角形三、等腰三角形与直角三角形第五单元四边形一、多边形与平行四边形二、矩形、菱形、正方形三、梯形第六单元圆一、圆的有关概念及性质二、点、直线、圆和圆的位置关系三、和圆有关的计算第七单元图形与变换一、尺规作图、视图与投影二、图形的对称、平移与旋转三、图形的相似与位似四.锐角三角函数和解直角三角形第八单元概率与统计一、统计二、概率第二单元 方程(组)与不等式组一、一次方程(方程组) 1、(2013黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有( )A .1种B .11种C .6种D .9种解析:设6人的帐篷有x 顶,4人的帐篷有y 顶,依题意,有:6x+4y=60,整理得y=15-1.5x ,因为x 、y 均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从2到10的偶数共有5个,所以x 的取值共有6种可能,即共有6种搭建方案. 答案:C2.(2013广安)如果y x b a 321与12+-x y b a 使同类项,则( )A. ⎩⎨⎧=-=32y xB.⎩⎨⎧==3-2y xC.⎩⎨⎧=-=3-2y xD.⎩⎨⎧==32y x解析:y x b a 321 与12+-x y b a 是同类项,∴⎩⎨⎧+==123x y y x ,解得:⎩⎨⎧==32y x 。
答案:D3、(2013凉山州)已知方程组⎩⎨⎧=+=+5242y x y x ,则y x +的值为 ( )A .-1B .0C .2D .3 解析:利用两式相加得:9)(3=+y x ,3=+y x .答案:D4、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 ( )A .60元B .80元C .120元D .180元 解析:设衣服的进价为x 元,依题意得300×80%-x=60,解得x=180.因此这款服装每件的标价比进价多300-180=120(元).答案:C5、(2013淄博)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是 ( )+=20.35+70=1225x y A x y ⎧⎨⎩ +y=20.70+35=1225x B x y ⎧⎨⎩ +=1225.70+35=20x y C x y ⎧⎨⎩ +=1225.35+70=20x y D x y ⎧⎨⎩ 解析:确定等量关系:总票数=承认票数+儿童票数,总票钱数=成人票钱数+儿童票钱数.依据等量关系列出方程组即可.答案:B6、(2013•永州)已知(x-y+3)2+y x +2=0,则x+y 的值为( ) A .0 B .-1 C .1 D .5解析:∵ 02)3(2=+++-y x y x ,∴⎩⎨⎧=+=+-0203y x y x ,解得⎩⎨⎧=-=21y x∴121=+-=+y x 答案:C7、(2013南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .15解析:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得,解得:2x+2y=16.答案:C答案:B8、(2013毕节)二元一次方程组⎩⎨⎧=-=+112312y x y x 的解是_。
(全国120套)2013年中考数学试卷分类汇编(打包53套)-4.doc
命题1、(绵阳市2013年)下列说法正确的是( D )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直的梯形是等腰梯形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形[解析]由矩形的性质可知,只有D正确。
平行四边形的对角线是互相平行,菱形的对角线互相平分且垂直,故A、C错,等腰梯形的对角线相等B也错。
2、(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.3、(2013凉山州)下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是()A.0 B.1 C.2 D.3考点:算术平方根;点的坐标;对顶角、邻补角;中位数;众数.分析:根据邻补角、算术平方根、中位数及众数的定义、点的坐标的知识,分别进行各项的判断即可.解答:解:①邻补角是互补的角,说法正确;②数据7、1、3、5、6、3的中位数是5,众数是3,原说法错误;③|﹣5|的算术平方根是,原说法错误;④点P(1,﹣2)在第四象限,说法正确;综上可得①④正确,共2个.故选C.点评:本题考查了邻补角、中位数、众数及算术平方根的知识,掌握基础知识是解答此类题目的关键.的平方根是±y=的自变量8、(2013聊城)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形考点:命题与定理.分析:根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可.解答:解:A.根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B.根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D.正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选:C.点评:此题主要考查了矩形、菱形、正方形的判定以及正五边形的性质等知识,熟练掌握相关定理是解题关键.10、(2013•包头)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则=a;③对角线互相平行且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.=a;逆命题:若15、(2013•鄂州)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中有意义,则(17、(2013年深圳市)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
2013年中考数学试题分87个专题整理汇编
2013年中考数学试题分87个专题整理汇编2013中考全国100份试卷分类汇编一次函数1、(2013陕西)如果一个正比例函数的图象经过不同象限的两点A (2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n0D.m考点:一般考查的是一次函数或者反比例函数的图象性质及待定系数法求函数的解析式。
解析:因为A,B是不同象限的点,而正比例函数的图象要不在一、三象限或在二、四象限,由点A与点B的横纵坐标可以知:点A与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A与点B在二、四象限:点A在四象限得m2、(2013陕西)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-3考点:待定系数法求一次函数的解析式及由自变量的值确定对应的函数值。
解析:设y=kx+b,将表格中的对应的x,y的值代入得二元一次方程组,解方程组得k,b的值,回代x=0时,对应的y的值即可。
设y=kx+b,解得:k=-1,b=1,所以所以y=-x+1,当x=0时,得y=1,故选A.3、(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.4、(2013泰安)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.5、(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.6、(2013•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x考点:一次函数的性质.分析:根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.解答:解:A、B、D选项中的函数解析式k值都是整数,y随x的增大而增大,C选项y=﹣2x+8中,k=﹣2<0,y随x的增大而减少.故选C.点评:本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、(2013•娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.8、(2013•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.-2C.D.2考点:一次函数图象上点的坐标特征.分析:把点(1,2)代入已知函数解析式,借助于方程可以求得k的值.解答:解:∵正比例函数y=kx的图象经过点(1,2),∴2=k,解得,k=2.故选D.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.9、(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
2013年1月各区初三数学期末试题 中档题分类汇编 (教师版)
2013年1月各区 初三期末试题 中档题分类汇编 (教师版)一. 动点问题与函数图象1.(燕山8).如图(1)所示,E 为矩形ABC D 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分).则下列结论错误..的是( B ) A .AD =BE =5㎝ B .cos ∠ABE =53C .当0<t ≤5时,252t y =D .当429=t 秒时,△ABE ∽△QBP2(石景山8) .如图,矩形ABCD 中,BC =4,AB =3,E 为边AD 上一点,DE =1,动点P 、Q 同时从点C 出发,点P 沿CB 运动到点B 时停止,点Q 沿折线CD —DE—EB 运 动到点B 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△CPQ 的面积为y cm 2.则y 与t 的函数关系图象大致是 8.如图,矩形ABCD 中,BC =4, AB =3,E 为边AD 上一点,DE =1,动点P 、Q 同时从点C 出发,点P 沿CB 运动到点B 时停止,点Q 沿折线CD —DE —EB 运动到点B 时停止,它们运动的速度都是1cm/ 秒.设P 、Q 同时出发t 秒时,△CPQ 的面积为y cm 2.则y与t 的函数关系图象大 致是 B3(门头沟8). 如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1 个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长 度的速度沿BC →CD方向运动,当P 运动到B点时,P 、Q 两点同时停止运动.设P 点运动的时间为t 秒,△APQ 的面积为S ,则表示S 与t 之间的函数关系的图象大 致是 AA .B .C .D .A BCEDQ P 图⑴ A B C D4(顺义8).如图,等腰Rt A B C ∆(90AC B ∠=︒)的直角边与正方形D E F G 的边长均为2,且A C 与D E 在同一直线上,开始时点C 与点D 重合,让A B C ∆沿这条直线向右平移,直到点A 与点E 重合为止.设C D 的长为x ,A B C ∆与正方形D E F G 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( A )5(延庆8).已知:如图,矩形纸片ABCD 中,AB =5,BC =3,点E 在AD 上,且AE =1,点P 是线段AB 上一动点.折叠纸片,使点P 与点E 重合,展开纸片得折痕MN ,过点P 作PQ ⊥AB ,交MN 所在的直线于点Q . 设x =AP , y =PQ , 则y 关于x 的函数图象大致为 DA B C D 6(朝阳8).如图,在平行四边形ABCD 中,AB =4cm ,AD =2cm , ∠A =60°,动点E 自A 点出发沿折线AD —DC 以1cm/s 的速度运动,设点E 的运动时间为x (s ),0<x <6, 点B 与射线BE 与射线AD 交点的距离为y (cm ),则下列图象中能大致反映y 与x 之间的函数关系的是 D7(房山8). 如图,MN 是⊙O 的直径,弦BC⊥MN于点E ,6BC =. 点A 、D 分别为线段EF 、BC 上的动点. 连接AB 、AD ,设B D x =,22AB AD y -=,下列图象中,能表示y 与x 的函数关系的图象是 CAB CDBN(第8题图A. B. C. D.8(丰台9).如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与过A点的切线交于点B,且∠APB=60°,设)A B C D二.找规律1(东城12).如图所示,在△ABC中,BC=6,E,F分别是AB,AC的中点,点P在射线EF上,BP交CE于D,点Q在CE上且BQ平分∠CBP,设BP=y,PE=x.当CQ=21CE时,y与x之间的函数式是y= –x+6;当CQ=n1CE(n为不小于2的常数)时,y与x之间的函数关系式是y= –x+6(n–1).2(通州16).图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m =291n-(用含n的代数式表示).3(丰台15).如图,菱形ABCD中,AB=2 ,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O3;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为13nπ.(结果都保留π)l第16题图∙∙∙∙m2nn803586342213(燕山12).如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 在直线l 上顺时针滚动一周,滚动过程中,三个顶点B ,C ,A 依次落在P 1,P 2,P 3处,此时AP 3按此规律继续旋转,直到得点P 2012,则AP 2012=4(房山12).如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形①、②、③、④、…,则三角形⑩的直角顶点的坐标为(36,0).三. 函数图象相关问题1.(西城 12).已知二次函数c bx ax y ++=2的图象与x 轴交于(1,0)和(1x ,0),其中121x -<<-,与y 轴交于正半轴上一点.下列结论:①0>b ;②241b ac <;③a b >;④a c a 2-<<-.其中所有正确结论的序号是 ②④.2.(东城8).(0,2),B (2,0),点C 在2y x =的图象上,若△ABC 的面积为2,则这样的C 点有 D A .1 个 B .2个 C .3个 D .4个3.(石景山12).已知,在x 轴上有两点A (a ,0),B (b , 0)(其中b <a <0),分别过点A ,点B 作x 轴的垂线,交抛物线23x y =于点C ,点D .直线OC 交直线BD 于点E ,直线OD 交直线AC 于点F .若将点E ,点F 的纵坐标分别记为E y ,F y ,则E y = F y (用―>‖、 ―<‖或―=‖连接). 4(海淀 12).小聪用描点法画出了函数y =F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90︒得到图象1F ,再将图象1F 绕原点逆时针旋转90︒得到图象2F ,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (4,2)--在图象2F (答案不唯一)上(写出一个正确的即可);若点P (a ,b )在图象127F 上,则a用含b 的代数式表示) .第12题图231四. 弧长、面积、线段长的计算1(海淀8). 如图,以(0,1)G为圆心,半径为2的圆与x轴交于A、B两点,与y 轴交于C、D两点,点E为⊙G上一动点,C F A E⊥于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( B )A.2B.3C.4D62(门头沟12).如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD边上,BCABC绕点A 按顺时针方向旋转n 度后恰好与△ADE重合,则n的值是45 ,点C4,线段BC在上述旋转过程中所扫过部分的面积是14π.3(通州10). 如图,⊙O的半径为3厘米,B为⊙O外一点,OB交⊙O于点A,AB=OA.动点P从点A出发,以π厘米/秒的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为( D )秒时,BP与⊙O相切.A.1B.5 C.0.5或5.5 D.1或5 4(怀柔12).如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒) (0≤t<3),连结EF,当t值为_1或1.75或2.25_秒时,△BEF是直角三角形.5(大兴12).现有直径为2的半圆O和一块等腰直角三角板(1)将三角板如图1放置,锐角顶点P在圆上,斜边经过点B,一条直角边交圆于点Q,则BQ的长为;(2)将三角板如图2放置,锐角顶点P在圆上,斜边经过点B,一条直角边的延长线交圆于Q,则BQ的长为.图16. (朝阳12). 如图,抛物线y=4-9x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=4-9x2交于点C,连接AC,则图中阴影部分的面积为25122π-五. 图形操作问题1(海淀23). 小明利用等距平行线解决了二等分线段的问题. 作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;F E OACB 第10题图AEDC B(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;图2(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P. (可以利用图1中的等距平行线)①在图3中作出点P,使得P M P N=;②在图4中作出点P,使得2=.P M P N图3 图423. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.)(2)①②C'B'……………………4分 ……………………7分 2(平谷22). 数学课上,老师要求小明同学作△A’B’C’∽△ABC ,且''1.2B C BC=小明的作法是:(1) 作1''2B C BC =;(2) 过点'B 作'B D ∥AB ,过点'C 作'C E ∥AC ,它们相交于点'A ;'''A B C ∆就是满足条件的三角形(如图1).解答下列问题:①若△ABC 的周长为10,根据小明的作法,'''A B C ∆的周长为-------------;②已知四边形ABC D ,请你在图2的右侧作一个四边形''''A B C D ,使四边形''''A B C D ∽四边形ABC D ,且满足''12A B AB=(不写画法,保留作图痕迹).解.(1)5………………….2分 (2)画图.…………..5分3(怀柔22). 操作与实践:(1)在图①中,以线段m 为一边画菱形,要求菱形的顶点均在格点上.(画出所有符合条件的菱形)(4分)(2)在图②中,平移a 、b 、c 中的两条线段,使它们与线段n 构成以n 为一边的等腰直角三角形.(画一个即可)(1分)解:注:(1)小题画对6个4分,5个3分,4个2分,2个1分4(燕山22).如图,在边长为1的小正方形组成的网格中,△AOB 的顶点都在格点上,点A 、B 的坐标分别为(-4,4)、 (-6,2).请按要求完成下列各题:⑴ 把△AOB 向上平移4个单位后得到对应的△A 1OB 1,则点A 1、B 1的坐标分别是 ;⑵ 将△AOB 绕点O 顺时针旋转90°,画出旋转后的△A 2OB 2,在旋转过程中线段AO 所扫过的面积为 ; ⑶ 点P 1,P 2,P 3,P 4,P 5是△AOB 边上的5个格点,画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△AOB 相似.(要求:在图中联结相应线段,不用说明理由) 解:22.⑴ A 1(-4,8)、B 1(-6,6) .⑵ 如图: 线段AO 所扫过的面积为2)24(41⋅⋅π=8π.⑶ 如图.5(西城21).平面直角坐标系xOy 中,原点O 是正三角形ABC外接圆的圆心,点A 在y 轴的正半轴上,△ABC 的边长为6.以原点O 为旋转中心将△ABC 沿逆时针方向旋转α角,得到△A B C ''',点A '、B '、C '分别为点A 、B 、C 的对应点. (1)当α=60°时,①请在图1中画出△A B C ''';②若AB 分别与C A ''、B A ''交于点D 、E ,则DE 的长为_______;(2)如图2,当C A ''⊥AB 时,B A ''分别与AB 、BC 交于点F 、G ,则点A '的坐标为_______,△FBG 的周长为_______,△ABC 与△A B C '''重叠部分的面积为_______.21.解:(1)①如图7所示. (1)②DE 的长为 2 ; ………………………………2分(2)点A '的坐标为(3),△FBG 的周长为6 ,△ABC 与△A B C '''重叠部分的面积为27-.…………………………………5分11N 1NC6(石景山)20.已知:△ABC 中,102=AB ,4=AC ,26=BC .(1)如图1,点M 为AC 的中点,在线段BC 上取点N ,使△CMN 与△ABC 相似,求线段MN 的长; (2)如图2,,是由81个边长为1的小正方形组成的9×9正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,试直接写出在所给的网格中与△ABC 相似且面积最大的格点三角形的个数,并在图2中画出其中的一个(不需证明).20.解: (1)如图:①当N 为BC 中点,AB MN // 此时△CMN ∽△CAB , 有21==ABMN CACM∵102=AB ∴10=MN ; ………2分②当△1CMN ∽△CBA 时,有B CMN ∠=∠1∴ABMN BCCM 1=,又 26=BC ∴352=MN .………4分∴MN 的长为10或352(2)8个,如图(答案不唯一). ………5分7(大兴) 22. 操作:如图①,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图①画出一对以点O 为对称中心的全等三角形。
2013年全国中考数学试题分类解析汇编专题60代数几何综合(含答案)
专题60代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。
【考点】算术平方根,估算无理数的大小。
【分析】∵一个正方形的面积是15,∵9<15<16<4。
故选B 。
2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。
【考点】抛物线与x 轴的交点。
【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k。
设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC ==B 1,0),∴31,k k == ;③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k 10== 。
∴能使△ABC 为等腰三角形的抛物线的条数是3条。
故选B 。
3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。
【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。
(全国120套)2013年中考数学试卷分类汇编(打包53套)-50.doc
几何体1、(绵阳市2013年)把右图中的三棱柱展开,所得到的展开图是( B )[解析]两个全等的三角形,再侧面三个长方形的两侧,这样的图形围成的是三棱柱,一个底面相邻可以是三个长方形,只有B。
2、(2013年南京)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A、C还原后,有颜色的面在底面,故错;D还原不回去,故错,选B。
3、(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一4、(2013河南省)如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A)1 (B)4 (C)5 (D)6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
【答案】B5、(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为(),高为=6、(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错,D中底面不符合,只有A符合。
7、(2013•温州)下列各图中,经过折叠能围成一个立方体的是()8、(2013•巴中)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()9、(2013菏泽)下列图形中,能通过折叠围成一个三棱柱的是( )A .B .C .D .考点:展开图折叠成几何体.分析:根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.解答:解:A .另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.点评:本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.10、(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()B C...13、(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()14、(2013台湾、25)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?( )A .B .C .D .考点:几何体的表面积.分析:根据立体图形的面积求法,分别得出几何体的表面积即可. 解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的表面积为:6×2+3×2+2×2=22,只有选项B的表面积为:5×2+3+4+5=22.故选:B.点评:此题主要考查了几何体的表面积求法,根据已知图形求出表面积是解题关键.15、(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16、(2013•咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.。
2013年中考数学100份试卷分类汇编:统计_图文
2013中考全国 100份试卷分类汇编统计1、(德阳市 2013年某校八年级二班的 10名团员在“情系芦山”的献爱心捐款活动中, 捐款清况如下(单位:元:10, 8, 12, 15, 10, 12, 11, 9, 13, 10,则这组数据的 A 、众数是 10.5B. 方差是 3.8 C. 极差是 8D ,中位数是 10答案 :B解析 :从数据可以看出,众数为 10,极差为:15-8=7,中位数为:10.5,故 A 、 C 、 D 都错,由方差的计算公式可求得方差为 3.8,选 B2、(德阳市 2013年为了了解我市 6000名学生参加初中毕业会考数学考试的成绩情况, 从中抽取了 200名考生的成绩进行统计,在这个问中,下列说法:①这 6000名学生的数学会考成绩的全体是总体;②每个考生是个体;③ 200名考生是总体的一个样本;④样本容量是 200,其中说法正确的有A: 4个 B. 3个 C. 2个 D: 1个答案 :C解析 :每个考生的成绩是个体,故②错误, 200名考生的成绩是总体的一个样本,所以,③也错,①和④正确,选 C >3、(2013年潍坊市在某校“我的中国梦”演讲比赛中,有 9名学生参加决赛,他们决赛的最终成绩各不相同 . 其中的一名学生想要知道自己能否进入前 5名,不仅要了解自己的成绩,还要了解这 9名学生成绩的( .A. 众数B. 方差C. 平均数D. 中位数答案:D .考点 :统计量数的含义 .点评 :本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用 , 从而选择恰当的统计量为给定的题意提供所需的集中量数 , 进而为现实问题的解决提供理论支撑 . 与单纯考查统计量数的计算相比较 , 这样更能考查出学生对统计量数的意义的认识程度 .4、(绵阳市 2013年“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的 5名同学(3男两女成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是(DA . 1 6B . 15C . 25D . 3 5上表中共有 20种可能的组合, 相同组合 (同种颜色表示相同组合只算一种, 余10种组合, 其中 1男 1女的组合有 6组,所以一男一女的概率 =6/10=3/5.5、(2013陕西我省某市五月份第二周连续七天的空气质量指数分别为:111, 96, 47, 68, 70, 77, 105,则这七天空气质量指数的平均数是( A . 71.8 B . 77 C . 82 D . 95.7考点:此题一般考查统三个计量(平均数,中位数、众数的选择和计算。
2013中考数学真题及答案汇编相当经典不用花钱(八)
【答案】B 【解析】方差小的比较稳定,故选 B。 5.(2013 山西,5,2 分)下列计算错误的是( )
A.x3+ x3=2x3
B.a6÷a3=a2
C.
12 2
3
1 1 D. 3
3
【答案】B
【解析】a6÷a3= a63 a3 ,故 B 错,A、C、D 的计算都正确。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(全国120套)2013年中考数学试卷分类汇编 代数几何综合
代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。
(全国120套)2013年中考数学试卷分类汇编(打包53套)-1.doc
实数运算1、(2013•衡阳)计算的结果为()C2、(2013•常德)计算+的结果为()=3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D.2-1=12答案:D解析:9是9的算术平方根,9=3,故A错;3-8=-2,B错,(-2)0=1,C也错,选D。
4、(2013台湾、6)若有一正整数N为65、104、260三个公倍数,则N可能为下列何者?()A.1300 B.1560 C.1690 D.1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣= ﹣1 .=.6、(2013•衡阳)计算= 2 .)=4³=27、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2..8、(2013•黔西南州)已知,则a b= 1 .9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 .考点:实数大小比较.专题:计算题. 分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 . ﹣4³+211、(2013•恩施州)25的平方根是 ±5 .12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。
解析:原式=718-=+-13、(2013•遵义)计算:20130﹣2﹣1= .,故答案为:.14、(2013•白银)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0. 45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,﹣﹣(﹣﹣.15、(2013•宜昌)计算:(﹣20)³(﹣12)+.16、(2013成都市)计算:2- (2)解析:(1)2- (2)217、(2013•黔西南州)(1)计算:.)原式=1³4+1+|﹣2³﹣|18、(2013•荆门)(1)计算:³19、(2013•咸宁)(1)计算:+|2﹣|﹣(12)﹣1+2﹣.20、(2013•毕节地区)计算:.21、(2013安顺)计算:2sin60°+2﹣1﹣20130﹣|1﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、绝对值、负指数幂等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2³+﹣1﹣(﹣1)=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、绝对值、负指数幂等考点的运算.22、(2013安顺)计算:﹣++= .考点:实数的运算.专题:计算题.分析:本题涉及二次根式,三次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:﹣++=﹣6++3=﹣.故答案为﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.23、(2013•玉林)计算:+2cos60°﹣(π﹣2﹣1)0.零指数幂的运算,然后特殊角的三角函数值后合并即可得解:原式=2+2³﹣24、(2013•郴州)计算:|﹣|+(2013﹣)0﹣()﹣1﹣2sin60°.﹣2³25、(2013•钦州)计算:|﹣5|+(﹣1)2013+2sin30°﹣.﹣1+2³26、(2013•湘西州)计算:()﹣1﹣﹣sin30°.﹣27、(13年北京5分14)计算:10)41(45cos 22)31(-+︒--+-。
(45专题全套打包)2013年全国各地中考数学试卷分类汇编总汇-27.doc
二次根式一、选择题1.(2013江苏苏州,3,3分)若式子12x -在实数范围内有意义,则x 的取值范围是( ). A .x >1 B .x <1 C .x ≥1 D .x ≤1【答案】C .【解析】被开方数x -1≥0,可得x ≥1.所以应选C .【方法指导】二次根式有意义的条件是被开方数为非负数.2.(2013山东临沂,5,3分)计算14893-的结果是( )A .3-B .3C .1133-D .1133【答案】B . 【解析】48-931=34-33=3,故选B. 【方法指导】分别对每个二次根式进行化简,然后合并被开方数相同的二次根式. 【易错点分析】不会被开方数为分数的二次根式的化简.3.(2013四川宜宾,4,3分)二次根式2)3(-的值是( )A .-3B .3或-3C .9D . 3 【答案】D .【解析】根据93-2=)(=3得应选D.【方法指导】本题考查了二次根式的化简a a =2,(1)当a >0时原式=a ;(2)当a<0时原式=-a;(3)当a=0时原式=0,解题时要注意性质符号. 4.(2013四川南充,2,3分)0.49的算数平方根的相反数是( ) A .0.7 B .﹣0.7 C .±0.7 D .0【答案】:B .【解析】根据算数平方根的定义得0.49的算术平方根为0.7,再根据相反数的定义得应选B .【方法指导】本题考查算术平方根及相反数的概念. 算术平方根的概念:一个正数a 的正的平方根叫做a 的算术平方根;0的算术平方根是0.相反数概念:只有符号不同的两个数互为相反数. 5.(2013江苏泰州,2,3分)下列计算正确的是( ) A .4333=1- B .23=5+ C .12=22D .322=52+ 【答案】C .【解析】A.4333=1-,错误在于合并时漏掉3;B .23=5+错误,因为本身不能够合并; C .12=22计算正确; D .322=52+错误,因为本身不能够合并. 【方法指导】本题考查了二次根式的运算.二次根式的加减关键在于合并同类二次根式,二次根式的乘除关键会正、逆用运算法则:)0,0(≥≥=⋅b a ab b a ,)0,0(>≥=b a bab a . 6.(2013四川凉山州,5,4分)如果代数式1xx -有意义,那么x 的取值范围是 A .x ≥0 B .1x ≠C .0x >D .x ≥0且1x ≠【答案】D.【解析】 式子有意义的条件是分母不为0,分子的被开方数为非负数. 由题意得0,10,x x ≥⎧⎨-≠⎩ 解得x ≥0且1x ≠.【方法指导】本题考查代数式有意义的条件,当代数式是几种代数式组合而成的时候,要使每一个都得有意义才可以的.常见的代数式有意义的条件是:如果是二次根式时,则被开数为非负数,如果是分式时,分母不能为0,当出现0次幂时,底数不能为0,等.7.(2013广东湛江,8,4分)函数3y x =+中,自变量x 的取值范围是( )A .3x >-B .3x ≥-C .3x ≠-D .3x ≤- 【答案】B.【解析】由30x +≥,解得3x ≥-,本题选B 【方法指导】本题考查了函数自变量的取值范围。
(全国120套)2013年中考数学试卷分类汇编 几何综合
几何综合1、(2013某某某某,6,3分)下列图形中,∠2>∠1 ()答案:C解析:由对顶角相等,知A中∠1=∠2,由平行四边形的对角相等,知B中∠1=∠2,由对顶角相等,两直线平行同位角相等,知D中∠1=∠2,由三角形的外角和定理,知C 符合∠2>∠12、(2013•某某)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD 和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为①③④(请将所有正确的序号都填上).考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.分析:根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE 为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.解解:∵△ACE是等边三角形,答:∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③说法正确,故答案为①③④.点评:本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.3、(2013•某某)如图,在等腰直角△ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A.1个B.2个C.3个D.4个考点:等腰直角三角形;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:结论(1)错误.因为图中全等的三角形有3对;结论(2)正确.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.解答:解:结论(1)错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论(2)正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论(3)正确,理由如下:∵△AOD≌△COE,∴CE=AD,∴CD+CE=CD+AD=AC=OA.结论(4)正确,理由如下:∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.∵△AOD≌△COE,∴OD=OE,又∵OD⊥OE,∴△DOE 为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.∵∠DEO=∠COE=45°,∠COE=∠COE,∴△OEP∽△OCE,∴,即OP•OC=OE2.∴DE2=2OE2=2OP•OC,∴AD2+BE2=2OP•OC.综上所述,正确的结论有3个,故选C.点评:本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.4、(2013•某某)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8 .考几何变换综合题.点:分析:如解答图所示,本题要点如下:(1)证明矩形的四个顶点A、B、C、D均在菱形EFGH的边上,且点A、C分别为各自边的中点;(2)证明菱形的边长等于矩形的对角线长;(3)求出线段AP的长度,证明△AON 为等腰三角形;(4)利用勾股定理求出线段OP的长度;(5)同理求出OQ的长度,从而得到PQ的长度.解答:解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠PAF+∠PAE=2∠PAB+2∠PAD=2(∠PAB+∠PAD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.点评:本题是几何变换综合题,难度较大.首先根据题意画出图形,然后结合轴对称性质、矩形性质、菱形性质进行分析,明确线段之间的数量关系,最后由等腰三角形和勾股定理求得结果.5、(2013•莱芜)下列说法错误的是()A.若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B.2+与2﹣互为倒数C.若a>|b|,则a>bD.梯形的面积等于梯形的中位线与高的乘积的一半考点:相交两圆的性质;绝对值;分母有理化;梯形中位线定理.分析:根据相交两圆的性质以及互为倒数和有理化因式以及梯形的面积求法分别分析得出即可.解答:解:A、根据相交两圆的性质得出,若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心,故此选项正确,不符合题意;B 、∵2+与2﹣=互为倒数,∴2+与2﹣互为倒数,故此选项正确,不符合题意;C 、若a >|b|,则a >b ,此选项正确,不符合题意;D 、梯形的面积等于梯形的中位线与高的乘积,故此选项错误,符合题意;故选:D .点评: 此题主要考查了相交两圆的性质以及分母有理化和梯形面积求法等知识,正确把握相关定理是解题关键.6、(2013年潍坊市)如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.(2)若BC BE BD ⋅=2试判断直线CD 与⊙O 的位置关系,并说明理由.答案:..90,,.2.90,90.//90)1(2相切与,即理由如下:的位置关系为相切与)直线(为矩形四边形是平行四边形,四边形又的直径,为证明:O CD CD BD BED BDC BDC BED CBD DBC BDBC BE BD BC BE BD O CD BEDF BED EDA DFB FBC BC AD ABCD DFB DEB O BD Θ∴⊥︒=∠=∠∴∆∆∴∠=∠=∴⋅=Θ∴︒=∠=∠︒=∠=∠∴∴︒=∠=∠∴Θ考点:平行四边形的性质,矩形的判定,,相似三角形的判定,直径对的圆周角是直角,圆的切线的判定等知识的综合运用.点评:关键是掌握矩形的判定方法,三角形相似的判定方法,圆的切线的判定方法.7、(2013•某某)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm ),从点N 沿折线NF ﹣FM (NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则,AM 的长分别是 18cm 、31cm .考点:圆的综合题分析:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′,设圆孔半径为r.在Rt△KBG中,根据勾股定理,得r=16(cm).根据题意知,圆心O 在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.则根据图中相关线段间的和差关系求得=QG﹣QN′=44﹣26=18(cm),AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm).解答:解:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′.设圆孔半径为r.在Rt△KBG中,根据勾股定理,得BG2+KG2=BK2,即(130﹣50)2+(44+r)2=1002,解得,r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.∴QN′=KN′﹣KQ=42﹣16=26(cm),KM′=49(cm),∴=QG﹣QN′=44﹣26=18(cm),∴AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm),综上所述,,AM的长分别是18cm、31cm.故填:18cm、31cm.点评:本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值.8、(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.3考点:平移的性质;等边三角形的性质;菱形的判定与性质.分析:先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.解答:解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC , ∵AB=CD,∴四边形ABCD 是平行四边形, ∴BD、AC 互相平分,故②正确; 由①可得AD=AC=CE=DE ,故四边形ACED 是菱形,即③正确. 综上可得①②③正确,共3个. 故选D . 点评: 本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD 是等边三角形,难度一般.9、(2013某某压轴题)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.考点:本题某某近年来考查的有:折叠问题,勾股定理,矩形性质,正方形的性质,面积问题及最值问题,位似的性质应用等。
(全国120套)2013年中考数学试卷分类汇编(打包53套)-15.doc
反比例函数应用题1、(2013•曲靖)某地资源总量Q 一定,该地人均资源享有量与人口数n的函数关系图象=;故,的实际意义n=是>2、(2013•绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()y=得,,解得;(7≤x≤)所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;×3=5,不在14≤x≤﹣×2=14≤x≤×2=≈8.3,14≤x≤3、(2013•玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y (℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?中,进一步求解可得答案.y=600=,y=x≤20),得解答该类问题的关键是确4、(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?,=13.5工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=,得y=,得(2≤x≤3)(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.考点:反比例函数的应用;分式方程的应用.分析:(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.解答:解:(1)∵每天运量×天数=总运量∴nt=4000∴n=;(2)设原计划x天完成,根据题意得:解得:x=4经检验:x=4是原方程的根,答:原计划4天完成.点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系.7、(2013浙江丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为x m,DC的长为y m。
2013年中考数学试卷分类汇编 代数几何综合
形式 y=a(x﹣2)2+3,将 A 的坐标代入求出 a 的值,即可确定出抛物线解析式;
4
(2)设直线 AC 解析式为 y=kx+b,将 A 与 C 坐标代入求出 k 与 b 的值,确定出直线 AC 解析式,与抛物线解析式联立即可求出 D 的坐标; (3)存在,分两种情况考虑:如图所示,当四边形 ADMN 为平行四边形时,DM∥AN,DM=AN, 由对称性得到 M(3, ),即 DM=2,故 AN=2,根据 OA+AN 求出 ON 的长,即可确定出 N
轴作垂线 MM1、NN1,垂足分别为 M1、N1,因为∠MPO=∠NPO,所以 Rt△MPM1∽Rt△NPN1,
1
所以 MM1 PM1 ,………………(1) NN1 PN1
不妨设 M(xM,yM)在点 N(xN,yN)的左侧,因为 P 点在 y 轴正半轴 上,
则(1)式变为 xM xN
t yM t yN
1
-2
-1
O
-1
12 3
x
为 A(x1 ,0), B(x2 ,0) A,那么它的表达式可表示
6
(第 24 题图)
为: y a(x x1 )(x x2 ) ]
考点:此题在陕西的中考中也较固定,第(1)问主要考查待定 系数法求二次函数的解析式,二次函数与坐标轴的交点坐标, 抛物线的对称性等简单问题。第二问主要考查二次函数综合应用之点的存在性问题;包括 最短距离与面积的最值等(等腰三角形,平行四边形,正方形,相似三角形,相似,全等 等问题。考查问题的综合能力要求较高,基本上都是转化为求点的坐标的过程。 解析:本题中(1)由抛物线的轴对称性可知,与 x 轴的两个交点关于对称轴对称,易求出 对称轴; (2)由提示中可以设出函数的解析式,将顶点 D 与 E 的坐标表示出来,从而将两个三角形 的边长表示出来,而相似的确定过程中充分考虑到分类即可解决此题; 解:(1)对称轴为直线:x=2。
2013年中考数学总复习中档题集锦
2013年中考数学总复习中档题集锦2013年中考数学总复习中档题集锦1.如图,△ABC中,AB=AC,∠BAC=90°,D、E是BC上的两点,且∠DAE=45°.将△AEC绕着点A顺时针旋转90°后,得到△AFB,连接DF.(1)请猜想DF与DE之间有何数量关系?(2)证明你猜想的结论.2.如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.23.已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C 是的中点,连接BD,连接AD,分别交CE、BC于点P、Q.(1)求证:P是AQ的中点;(2)若tan∠ABC=,CF=8,求CQ的长.4.已知:如图,△ABC中,AB=AC ,以AB为直径的⊙O交BC于点D,过点D作DF⊥AC于点F,交BA的延长线于点E.求证:(1)BD=CD;(2)DE是⊙O的切线.5.如图,在△ABC中,D是BC边的中点,E、F 分别在AD及其延长线上,CE∥BF,连接BE、CF.34(2)如图2,若AB=6,AM=4,求AC的长.8.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.二.选择题59.如图,菱形ABCD的周长为20cm,sin∠BAD=,DE⊥AB于点E,下列结论中:①S ABCD=15cm2;②BE=1cm;③AC=3BD.正确的个数为()A.0个B.1个C.2个D.3个第9题图第10题图第11题图10.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点A′在AB上,则旋转角α的大小可以是()A.30°B.45°C.60°D.90°611.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°12.如图所示的半圆中,AD是直径,且AD=3,AC=2,则cos∠B的值是()A .B .C .D .第12题图第13题图13.如图,边长为1的正方形ABCD绕着点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()7A .B .C.1﹣D.1﹣14.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________(请写出所有正确说法的序号).第14题图第15题图第16题图15.如图,半圆直径AB=2,P为AB上一点,点C、D为半圆的三等分点.则阴影部分的面积为_________.816.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为_________cm.17、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨.受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为哪种方案获利最多,为什么?918、某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?1019、某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球. 已知A、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元 . 现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球 . 若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.20、元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:(1)把上表中x、y的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,猜想y与x 的函数关系,并求出函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年1月各区 初三期末试题 中档题分类汇编 (教师版)一. 动点问题与函数图象1.(燕山8).如图(1)所示,E 为矩形ABC D 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分).则下列结论错误..的是( B ) A .AD =BE =5㎝ B .cos ∠ABE =53C .当0<t ≤5时,252t y =D .当429=t 秒时,△ABE ∽△QBP2(石景山8) .如图,矩形ABCD 中,BC =4,AB =3,E 为边AD 上一点,DE =1,动点P 、Q 同时从点C 出发,点P沿CB 运动到点B 时停止,点Q 沿折线CD —DE —EB 运 动到点B 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△CPQ 的面积为y cm 2.则y 与t 的函数关系图象大致是 8.如图,矩形ABCD 中,BC =4, AB =3,E 为边AD 上一点,DE =1,动点P 、Q 同时从点C 出发,点P 沿CB 运动到点B 时停止,点Q 沿折线CD —DE —EB 运动到点B 时停止,它们运动的速度都是1cm/ 秒.设P 、Q 同时出发t 秒时,△CPQ 的面积为y cm 2.则y 与t 的函数关系图象大 致是 B3(门头沟8). 如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1 个单位长度的速度沿AB向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长 度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t 秒,△APQ 的面积为S ,则表示S 与t 之间的函数关系的图象大 致是 AA .B .C .D .A BCEDQ P 图⑴A B C DCA QB D4(顺义8).如图,等腰Rt ABC ∆(90ACB ∠=︒)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让ABC ∆沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,ABC ∆与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( A )5(延庆8).已知:如图,矩形纸片ABCD 中,AB =5,BC =3,点E 在AD 上,且AE =1,点P 是线段AB 上一动点.折叠纸片,使点P 与点E 重合,展开纸片得折痕MN ,过点P 作PQ ⊥AB ,交MN 所在的直线于点Q . 设x =AP , y =PQ , 则y 关于x 的函数图象大致为 DA B C D 6(朝阳8).如图,在平行四边形ABCD 中,AB =4cm ,AD =2cm , ∠A =60°,动点E 自A 点出发沿折线AD —DC 以1cm/s 的速度运动,设点E 的运动时间为x (s ),0<x <6, 点B 与射线BE 与射线AD 交点的距离为y (cm ),则下列图象中能大致反映y 与x 之间的函数关系的是 D7(房山8). 如图,MN 是⊙O 的直径,弦BC⊥MN于点E ,6BC =. 点A 、D 分别为线段EF 、BC 上的动点. 连接AB 、AD ,设BD x =,22AB AD y -=,下列图象中,能表示y 与x 的函数关系的图象是 CAB CDB(第8题图A. B. C. D.8(丰台9).如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与过A点的切线交于点B,且∠APB=60°,设A B C二.找规律1(东城12).如图所示,在△ABC中,BC=6,E,F分别是AB,AC的中点,点P在射线EF上,BP交CE于D,点Q在CE上且BQ平分∠CBP,设BP=y,PE=x.当CQ=21CE时,y与x之间的函数式是y= –x+6;当CQ=n1CE(n为不小于2的常数)时,y与x之间的函数关系式是y= –x+6(n–1).2(通州16).图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m =291n-(用含n的代数式表示).3(丰台15).如图,菱形ABCD中,AB=2 ,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为13nπ.(结果都保留π)l第16题图∙∙∙∙m2nn803586342213(燕山12).如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 在直线l 上顺时针滚动一周,滚动过程中,三个顶点B ,C ,A 依次落在P 1,P 2,P 3处,此时AP 3按此规律继续旋转,直到得点P 2012,则AP 2012=4(房山12).如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形①、②、③、④、…,则三角形⑩的直角顶点的坐标为(36,0).三. 函数图象相关问题1.(西城 12).已知二次函数c bx ax y ++=2的图象与x 轴交于(1,0)和(1x ,0),其中121x -<<-,与y 轴交于正半轴上一点.下列结论:①0>b ;②241b ac <;③a b >;④a c a 2-<<-.其中所有正确结论的序号是 ②④.2.(东城8).(0,2),B (2,0),点C 在2y x =的图象上,若△ABC 的面积为2,则这样的C 点有 D A .1 个 B .2个 C .3个 D .4个3.(石景山12).已知,在x 轴上有两点A (a ,0),B (b , 0)(其中b <a <0),分别过点A ,点B 作x 轴的垂线,交抛物线23x y =于点C ,点D .直线OC 交直线BD 于点E ,直线OD 交直线AC 于点F .若将点E ,点F 的纵坐标分别记为E y ,F y ,则E y = F y (用―>‖、 ―<‖ 或―=‖连接). 4(海淀 12).小聪用描点法画出了函数y =F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90︒得到图象1F ,再将图象1F 绕原点逆时针旋转90︒得到图象2F ,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (4,2)--在图象2F (答案不唯一)上(写出一个正确的即可);若点P (a ,b )在图象127F 上,则a用含b 的代数式表示) .第12题图231四. 弧长、面积、线段长的计算1(海淀8). 如图,以(0,1)G为圆心,半径为2的圆与x轴交于A、B两点,与y 轴交于C、D两点,点E为⊙G上一动点,CF AE⊥于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( B )A.2B.3C.4D.62(门头沟12).如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD边上,BCABC绕点A 按顺时针方向旋转n 度后恰好与△ADE重合,则n的值是45 ,点C,线段BC在上述旋转过程中所扫过部分的面积是14π.3(通州10). 如图,⊙O的半径为3厘米,B为⊙O外一点,OB交⊙O于点A,AB=OA.动点P从点A出发,以π厘米/秒的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为( D )秒时,BP与⊙O相切.A.1B.5 C.0.5或5.5 D.1或5 4(怀柔12).如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒) (0≤t<3),连结EF,当t值为_1或1.75或2.25_秒时,△BEF是直角三角形.5(大兴12).现有直径为2的半圆O和一块等腰直角三角板(1)将三角板如图1放置,锐角顶点P在圆上,斜边经过点B,一条直角边交圆于点Q,则BQ的长为;(2)将三角板如图2放置,锐角顶点P在圆上,斜边经过点B,一条直角边的延长线交圆于Q,则BQ的长为.图16. (朝阳12). 如图,抛物线y=4-9x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=4-9x2交于点C,连接AC,则图中阴影部分的面积为25122π-五. 图形操作问题1(海淀23). 小明利用等距平行线解决了二等分线段的问题. 作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;F E OACB 第10题图EDC B(2)以点A 为圆心,CE 长为半径画弧交AB 于点M ; ∴点M 为线段AB 的二等分点.图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB 的三等分点;图2(2)点P 是∠AOB 内部一点,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,请找出一个满足下列条件的点P . (可以利用图1中的等距平行线)①在图3中作出点P ,使得PM PN =; ②在图4中作出点P ,使得2PM PN =.图3 图423. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.) (2)① ②C'B'……………………4分 ……………………7分 2(平谷22). 数学课上,老师要求小明同学作△A’B’C’∽△ABC ,且''1.2B C BC =小明的作法是: (1) 作1''2B C BC =; (2) 过点'B 作'B D ∥AB ,过点'C 作'C E ∥AC ,它们相交于点'A ;'''A B C ∆就是满足条件的三角形(如图1).解答下列问题:①若△ABC 的周长为10,根据小明的作法,'''A B C ∆的周长为-------------;②已知四边形ABCD ,请你在图2的右侧作一个四边形''''A B C D ,使四边形''''A B C D ∽四边形ABCD ,且满足''12A B AB =(不写画法,保留作图痕迹). 解.(1)5………………….2分 (2)画图.…………..5分3(怀柔22). 操作与实践:(1)在图①中,以线段m 为一边画菱形,要求菱形的顶点均在格点上.(画出所有符合条件的菱形)(4分)(2)在图②中,平移a 、b 、c 中的两条线段,使它们与线段n 构成以n 为一边的等腰直角三角形.(画一个即可)(1分)解:注:(1)小题画对6个4分,5个3分,4个2分,2个1分4(燕山22).如图,在边长为1的小正方形组成的网格中,△AOB 的顶点都在格点上,点A 、B 的坐标分别为(-4,4)、 (-6,2).请按要求完成下列各题:⑴ 把△AOB 向上平移4个单位后得到对应的△A 1OB 1,则点A 1、B 1的坐标分别是 ;⑵ 将△AOB 绕点O 顺时针旋转90°,画出旋转后的△A 2OB 2,在旋转过程中线段AO 所扫过的面积为 ; ⑶ 点P 1,P 2,P 3,P 4,P 5是△AOB 边上的5个格点,画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△AOB 相似.解:22.⑴ A 1(-4,8)、B 1(-6,6) .⑵ 如图:线段AO 所扫过的面积为2)24(41⋅⋅π=8π.⑶ 如图.5(西城21).平面直角坐标系xOy 中,原点O 是正三角形ABC外接圆的圆心,点A 在y 轴的正半轴上,△ABC 的边长为6.以原点O 为旋转中心将△ABC 沿逆时针方向旋转α角,得到△A B C ''',点A '、B '、C '分别为点A 、B 、C 的对应点. (1)当α=60°时,①请在图1中画出△A B C ''';②若AB 分别与C A ''、B A ''交于点D 、E ,则DE 的长为_______;(2)如图2,当C A ''⊥AB 时,B A ''分别与AB 、BC 交于点F 、G ,则点A '的坐标为_______,△FBG 的周长为_______,△ABC 与△A B C '''重叠部分的面积为_______.21.解:(1)①如图7所示. ……………………………………1分②DE 的长为 2 ; ………………………………2分 (2)点A '的坐标为(,△FBG 的周长为 6 , △ABC 与△A B C '''重叠部分的面积为27-.…………………………………5分111N6(石景山)20.已知:△ABC 中,102=AB ,4=AC ,26=BC .(1)如图1,点M 为AC 的中点,在线段BC 上取点N ,使△CMN 与△ABC 相似,求线段MN 的长; (2)如图2,,是由81个边长为1的小正方形组成的9×9正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,试直接写出在所给的网格中与△ABC 相似且面积最大的格点三角形的个数,并在图2中画出其中的一个(不需证明).20.解:(1)如图:①当N 为BC 中点,AB MN // 此时△CMN ∽△CAB ,有21==AB MN CA CM ∵102=AB∴10=MN ; ………2分 ②当△1CMN ∽△CBA 时,有B CMN ∠=∠1∴AB MN BC CM 1=, 又 26=BC∴352=MN .………4分∴MN 的长为10或352(2)8个,如图(答案不唯一). ………5分7(大兴) 22. 操作:如图①,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图①画出一对以点O 为对称中心的全等三角形。