列方程解应用题复习题(工程与行程问题)

合集下载

方程法解行程问题

方程法解行程问题

【例6】 (★★★★☆) A、B两地相距22. 4千米.有一支游行队伍从A地出发,向B地匀速前 1. 公式:路程=速度×时间 进;当游行队伍队尾离开A地时,甲、乙两人分别从A、B两地同时出 ⑴ 一般都利用路程相等. 发.乙向A地步行;甲骑车先追向队头,追上队头后又立即骑向队尾, ⑵ 未知数,时间或者速度. 到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第 2. 有关方程. 5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时, ⑴ 未知数要尽量少. 甲恰好第一次到达B地,那么此时乙距A地还有___千米. ቤተ መጻሕፍቲ ባይዱ 方程要尽量简单. 【今日讲题】 例3,例4,例5
【例2】 (★★★) 康仔、阿学两人同时从A地出发前往B地,康仔每分钟走80米,阿学每 分钟走60米.康仔到达B地后,休息了半个小时,然后返回A地,康仔 离开B地15分钟后与正向B地行走的阿学相遇.A、B两地相距_____米.
【例3】 (★★★☆) 甲、乙两人分别从A、B两地同时相向出发,往返跑步,第一次相遇地 点距离AB的中点100米,甲到B地、乙到A地后立即返回,乙的速度保 持不变,甲的速度变为原来的2倍,第二次相遇恰好在AB的中点,那 么,A、B两地相距_______米。
1
【例4】 (★★★☆) A、B两地相距285千米,有甲、乙、丙3人,甲、乙从A地,丙从B地 同时出发相向而行,已知甲每小时行36千米,乙每小时行30千米,丙 每小时行24千米,问几个小时后,丙正好处于甲、乙之间的中点?
【例5】 (★★★☆) 甲与乙、丙两人相距280米. 甲、乙、丙每分钟依次走90米、80米、72 米. 如果他们同时同向出发,那么经过几分钟,甲与乙、丙的距离相 等?
行程问题——方程与比例方法(二)

列方程解应用题常见题型归纳

列方程解应用题常见题型归纳

列方程解应用题常见题型归纳【一】行程问题基本数量关系:路程=速度×时间〔1〕相遇问题〔甲乙相向而行〕:甲走的路程+乙走的路程=两地的距离;〔2〕追及问题:①同地不同时出发:前者走的路程=追者走的路程;②同时不同地出发:前者走的路程-追者走的路程=两地的距离。

〔3〕航行问题:①顺水速度=静水速度+水速;②逆水速度=静水速度-水速;所以顺水速度-逆水速度=2×水速寻找等量关系的方法:抓住两码头之间距离不变,水流速度不变,船在静水中的速度不变等特点来建立等量关系。

〔4〕环形跑道问题:①同时同地反向出发:甲跑的路程+乙跑的路程=跑道周长;②同时同地同向出发〔〕:甲跑的路程-乙跑的路程=跑道周长。

【二】工程问题工作量=人均效率x人数x时间;工作量=工作效率x工作时间甲、乙合作:甲、乙工作量之和=总工作量【三】储蓄问题利息=本金x利率;本金和=本金+利息;利率=〔利息/本金〕x100%;利息税=利息x税率。

【四】利润问题利润=售价-进价;利润率=〔利润/进价〕x100%;售价-进价=进价x利润率;售价=标价x折扣;销售额=成本x〔1+利润率〕;销售额=成本x〔1-亏本百分率〕。

【五】其他问题①数字类问题基本关系:假设一个三位数,百位数字为a,十位数字为b,个位数字为c,那么这个三位数可表示为:100a+10b+c。

②等体积问题基本关系:变形前的体积〔容积〕=变形后的体积〔容积〕③比例类问题基本关系:全部数量=各种成分的数量之和。

【注】一般设其中一份为x,各种成分按比例表示出来。

④劳动力调配问题基本关系:抓住调配前后,总人数不变。

一元一次方程应用题练习1、用一个底面是20cm×20cm的长方体容器〔已装满水〕向一个长、宽、高分别为16cm、10cm、5cm的长方体铁盒内倒水,当铁盒装满水时,求长方体容器中水的高度下降多少?2、A、B两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行,经过10小时后相遇,求甲、乙的速度?3、一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求〔1〕轮船在静水中的速度;〔2〕甲、乙两码头之间的距离。

苏教版小学数学五年级行程问题工程问题解决问题

苏教版小学数学五年级行程问题工程问题解决问题

1、某工地需要要黄土44.5吨,用一辆载重2.5吨的汽车运了10次,余下改用一辆载重1.5吨的汽车运,还要运多少次?2、化肥厂计划36天生产化肥540吨,实际每天多生产5吨,实际需要几天完成?3、农具厂原来制造5台农具用刚材1.8吨,技术革新后制造一台可节约用钢0.04吨,原来制造240台农具的刚材,现在可以制造多少台?4、幼儿园买来5条毛巾和5块肥皂,买毛巾共用21.5元,买肥皂共用13.2元,一条毛巾比一块肥皂贵多少元?(用两种方法解答)5、水果店运来45筐,苹果比梨多10筐,柑橘的筐数是苹果的1.2倍。

运来柑橘比梨多多少筐?6、甲、乙两工人程在山的两边同时开凿同一个山洞,甲队每天开13.8米,乙队每天开15.2米,40天开通。

这个山洞全长多少米?7、江南纺织厂两个生产小组共同织布3240米,甲组每天织布118米,乙组每天织布125米,两组合织多少天后还剩324米?19、一个工厂制造一台机器原来需144小时,改进技术后,制造一台机器可以少用48小时。

原来制造60台机器的时间现在可多制造多少台?20、小佳买本子比买铅笔多花0.5元,买了3支铅笔,每支铅笔0.15元,买了5本子,每本多少钱?9、某化肥厂十月份上半个月生产化肥200.5吨,比下半个月多产40.2吨。

十月份生产化肥多少吨?10、一个农机厂村有一批煤,原计划每天烧1.2吨,可以烧25天,实际烧30天,每天烧多少天?1.一个三角形的底边长4.3厘米,面积是17.2厘米。

它的高是多少厘米?2.去年小明比他爸爸小28岁,今年爸爸的年龄是小明的8倍。

小明今年多少岁?3.果园里梨树和桃树共有365棵,桃树的棵树比梨树的2倍多5棵。

果园里梨树和桃树各有多少棵?4.一辆汽车第一天行了3小时,第二天行了5小时,第一天比第二天少行90千米。

平均每小时行多少千米?5.甲、乙两地相距1000米,小华从甲地、小明从乙地同时相向而行,小华每分钟走80米,小明每分钟走45米。

列方程解应用题50道

列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。

求汽车行驶的时间x。

- 解析:汽车行驶的路程为速度乘以时间,即60x千米。

总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。

可列方程60x=230,解得x = 23/6小时。

2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。

经过x小时两车相遇,求x的值。

- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。

经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。

3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。

- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。

小明每秒比小亮多跑5 - 3 = 2米。

可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。

4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。

- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。

5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。

列方程解应用题100道附详解

列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。

列方程解应用题-行程问题专题

列方程解应用题-行程问题专题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速【典型例题】例1、某队伍长450 ,以的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A城顺流而下,乙船到B地时接到通知,需立即返回到C地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是,水流速度为每小时,A、C两地间的距离为。

如果乙船由A地经B地再到达C地,共用了4 ,问乙船从B地到C地时甲船驶离B地有多远?例3、甲、乙两人在400 长的环形跑道上练习百米赛跑,甲的速度是14 ,乙的速度是16 。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

一元一次方程的应用——行程问题专题练习(解析版)

一元一次方程的应用——行程问题专题练习(解析版)

一元一次方程的应用——行程问题专题练习一、相遇问题1、小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得().A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4-x)=25答案:C解答:∵是相向而行,∴路程和=速度和×时间,∴3(4+x)=25,选C.2、甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为().A. 75×1+(120-75)x=270B. 75×1+(120+75)x=270C. 120(x-1)+75x=270D. 120×1+(120+75)x=270答案:B解答:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270.3、汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是______米.答案:640解答:首先进行单位的统一,72千米/时=20米/秒,设听到回响的时候,汽车离山谷的距离是x米,由题意得,2x=340×4-20×4,即2x+4×20=4×340.解得x=640.4、A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇以后两车相距100km时,甲车共行驶了多少小时?答案:甲车共行驶了4小时.解答:设甲车共行驶了x小时,72x+48(x-2560)=360+100,解得x=4答:甲车共行驶了4小时.5、甲骑摩托车,乙骑自行车从相距25km的两地相向而行.(1)甲,乙同时出发经过0.5小时相遇,且甲每小时行驶路程是乙每小时行驶路程的3倍少6km,求乙骑自行车的速度.(2)在甲骑摩托车和乙骑自行车与(1)相同的前提下,若乙先出发0.5小时,甲才出发,问:甲出发几小时后两人相遇?答案:(1)14km/h.(2)甲出发0.36小时后两人相遇.解答:(1)设乙骑自行车的速度为xkm/h,则甲的速度为(3x-6)km/h,根据题意可得(x+3x-6)×0.5=25,解得x=14,3x-6=36(km/h),答:乙骑自行车的速度为14km/h.(2)由题意可得14250.53614-⨯+=0.36(小时),答:甲出发0.36小时后两人相遇.6、小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?答案:两人的行进速度分别是16{km/h},4{km/h},相遇后经过8h小强到达A地.解答:设小刚的速度为x{km/h},则相遇时小刚走了2xkm,小强走了(2x-24)km,由题意得,2x-24=0.5x,解得:x=16,则小强的速度为:(2×16-24)÷2=4{km/h},2×16÷4=8h.答:两人的行进速度分别是16{km/h},4{km/h},相遇后经过8h小强到达A地.二、追及问题7、《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是().A. 100x=60(x-100)B. 60x=100(x-100)C. 100x=60(x+100)D. 60x=100(x+100)答案:B解答:根据题意得60x=100(x-100).8、甲、乙两人练习长跑,已知甲每分钟跑300米,乙每分钟跑260米,若乙在甲前方120米处与甲同时、同向起跑,则甲在______分钟后追上乙.答案:3解答:设甲x分钟后追上乙,由题意,得:300x=260x+120,解得x=3.故答案为:3.9、五一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,则哥哥出发后______分钟追上弟弟和妈妈.答案:30解答:设出发后x小时追上弟弟和妈妈,由题意,得:(6-2)x=2×1,解得x=12,故哥哥出发后12小时追上,即30分钟.10、2012年11月北京降下了六十年来最大的一场雪,暴雪导致部分地区供电线路损坏,该地供电局立即组织电工进行抢修.抢修车装载着所需材料先从供电局出发,20分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.若抢修车以每小时30千米的速度前进,吉普车的速度是抢修车的速度的1.5倍,求供电局到抢修工地的距离.答案:供电局到抢修工地的距离为30千米.解答:设供电局到抢修工地的距离为x千米,由题意,有203060x-= 1.530x⨯.解得x=30.答:供电局到抢修工地的距离为30千米.11、列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率高,负氧离子多,真正达到了身心愉悦的进行体育锻炼.张老师和李老师登一座山,张老师每分钟登高10米,并且先出发30分钟,李老师每分钟登高15米,两人同时登上山顶,求这座山的高度.答案:这座山的高度为900米.解答:设这座山的高度为x 米, 由题意列方程:1015x x =30, 15x -10x =4500,5x =4500,x =900,答:这座山的高度为900米.12、某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?答案:学生队伍步行的速度为每小时4千米.解答:设学生队伍步行的速度为每小时x 千米,则张老师骑自行车的速度为每小时(x +8)千米, 根据题意,得34x =14(x +8), 解这个方程,得x =4,答:学生队伍步行的速度为每小时4千米.三、环形跑道及多次相遇问题13、学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行5.5米,两人从同一地点出发,反向而行,每隔______秒两人相遇一次. 答案:50解答:设每隔x 秒两人相遇一次,根据题意得:2.5x +5.5x =400,解得x =50.14、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇,已知每秒钟甲比乙多行0.1米,那么两人第三次相遇的地点与点A沿跑道上的最短距离是______米.答案:176解答:方程法:设乙每秒行x米,则甲每秒行(x+0.1)米,依题意有8×60(x+x+0.1)=400×3,解得x=1.2,则在8分钟内,乙共行1.2×60×8=576(米),去掉乙走过了一整圈400米,还余176米,由于不足200米,故是相遇地点沿跑道距A点的最短距离.算术法:在8分钟内,甲比乙共多行0.1×60×8=48米,这时一共有了三圈,每圈甲比乙多行16米,即相遇地是越过此出发地始终端的400米跑道的中点16÷2=8(米).三圈累计,越过8×3=24(米).∴第三次相遇点距A沿跑道的距离是176米或224米,较小值176米是所求的最短距离.15、学校为提高同学身体素质,开展了冬季体育锻炼活动.班主任老师让甲、乙二人在长为400米的圆形跑道上进行跑步训练,已知甲每秒钟跑5米,乙每秒钟跑3米.请列方程解决下面的问题.(1)两人同时同地同向而跑时,经过几秒钟两人首次相遇?(2)两人同时同地背向而跑时,首次相遇时甲比乙多跑了多少米?答案:(1)200秒.(2)100米.解答:(1)设x秒钟两人首次相遇.由题意得:5x-3x=400,解得:x=200.答:两人同时同地同向而跑时,经过200秒钟两人首次相遇.(2)设y秒钟两人首次相遇.由题意得:5x+3x=400,解得:y=50,5×50-3×50=100(米).答:两人同时同地背向而跑时,首次相遇时甲比乙多跑了100米.16、小智和小康相约在学校的环形跑道上练习长跑.小智以5米/秒、小康以4米/秒的速度从同一地点同时出发,背向而行.途中小智的鞋带掉了,因此花了2秒停在原地系鞋带.当两人第一次相遇时,小康走了全程的511.那么跑道一圈的长度是多少米?答案:440米.解答:设两人第一次相遇时,小康跑了x秒,小智跑了x-2秒.5(x-2):4x=6:5整理得:24x=25x-50,解得:x=5050×4÷5×11=440(米)答:跑道一圈的长度是440米.17、已知甲乙两人在一个400米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置.(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?答案:(1)20秒后两人首次相遇,此时他们在直道AB上,且离B点20米的位置.(2)40秒后两人再次相遇.(3)他们第100次相遇时,在跑道AD上.解答:(1)设x秒后两人首次相遇,依题意得到方程4x+6x=200.解得x=20.甲跑的路程=4×20=80米,答:20秒后两人首次相遇,此时他们在直道AB上,且离B点20米的位置.(2)设y秒后两人再次相遇,依题意得到方程:4y+6y=400.解得y=40.答:40秒后两人再次相遇.(3)第1次相遇,总用时20秒,第2次相遇,总用时20+40×1,即60秒,第3次相遇,总用时20+40×2,即100秒,第100次相遇,总用时20+40×99,即3980秒,则此时甲跑的圈数为:3980×4÷400=39.8,400×0.8=320,此时甲在AD弯道上.即他们第100次相遇时,在跑道AD上.四、顺逆流问题18、一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水流速度为3千米/时,则轮船在静水中的速度是().A. 18千米/时B. 15千米/时C. 12千米/时D. 20千米/时答案:B解答:设轮船在静水中的速度为x千米/小时.根据顺水路程=逆水路程,顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.得:2(3+x)=3(x-3),解得:x=15.选B.19、甲乙两地相距180千米,已知轮船在静水中的航速是a千米/时,水流速度是10千米/时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是().A. 40千米B. 50千米C. 60千米D. 140千米答案:A解答:∵轮船在静水中的航速是a千米/时,水流速度是10千米/时,∴轮船顺流航行的速度为(a+10)千米/时.由题意,得:3(a+10)=180,解得a=50.∴轮船逆流航行的速度为:a-10=50-10=40(千米/时),∴轮船逆流行驶1小时后离乙地的距离是:1×40=40(千米).选A.20、轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.设两码头间的距离为xkm ,则列出方程正确的是( ).A. (20+4)x +(20-4)x =5B. 20x +4x =5C.20x +4x =5 D. 204x + +204x -=5 答案:D解答:设两码头间的距离为xkm ,则船在顺流航行时的速度是:24km /时,逆水航行的速度是16km /时. 根据等量关系列方程得:204x + +204x -=5. 选D.21、船在江面上航行,测得水的平均流速为5千米/小时,若船逆水航行3小时,再顺水航行2小时,共航行120千米,设船在静水中的速度为x 千米/小时,则列方程为______. 答案:3(x -5)+2(x +5)=120解答:船在顺水中的速度=船在静水中的速度+水流的速度,船在逆水中的速度=船在静水中的速度-水流的速度,路程=速度×时间,船的逆水路程+船的顺水路程=共航行的路程,故答案为3(x -5)+2(x +5)=120.22、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,静水中速度是每小时12千米,问这机帆船往返两港要多少小时? 答案:机帆船往返两港要64小时.解答:解答本题需要两大步骤:首先求出水流的速度,其次,利用已求的水流速度求出帆船往返所需要的时间.设轮船顺流航行需要x 小时,依题意可列:x +x +5=35,解得:x =15.可求得水速为:136036021520-()=3(千米/时)则帆船往返两港所需要的时间为:360123+ +360123-=64(小时).23、某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共用3小时,若水流速度为2千米/小时,船在静水中的速度为8千米/小时.已知甲、丙两地间的距离为2千米,求甲、乙两地间的距离是多少千米.(注:甲、乙、丙三地在同一条直线上)答案:甲乙两地间的距离为12.5km 或10km .解答:(1)丙在甲地和乙地之间,设甲乙两地距离为x , 则28x ++282x --=3, 解得:x =12.5.(2)丙不在甲地和乙地之间,设甲乙两地距离为x , 则28x ++282x +-=3, 解得:x =10.答:甲乙两地间的距离为12.5km 或10km .五、变速问题24、某人开车从甲地到乙地办事,原计划2小时到达,但因路上堵车,平均每小时比原计划少走了25千米,结果比原计划晚1小时到达,问原计划的速度是多少.答案:原计划每小时行驶75千米.解答:设原计划每小时行驶x 千米,根据题意,得:2x =3(x -25),解得:x =75,答:原计划每小时行驶75千米.25、一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟,如果每小时行12千米,就要迟到10分钟,问规定的时间是多少小时?他去的单位有多远?答案:规定的时间是1.5小时,他去的单位有20千米远.解答:设规定的时间为x 小时.由题意,得15(x -1060)=12(x +1060), 解这个方程,得x =1.5, 则路程为12×(1.5+1060)=20(千米). 答:规定的时间是1.5小时,他去的单位有20千米远.26、某人因有急事,预定搭乘一辆小货车从A 地赶往B 地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的车速是每小时36千米,求两地间路程.答案:两地间的路程是162千米.解答:设两地间路程为x 千米. 由题意得:36x -(1336x +23236x )=32, 解得:x =162,答:两地间的路程是162千米.27、列方程解决实际问题:京张高铁是2022年北京冬奥会的重要交通基础设施,最高运营时速为350公里.但考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段分为地下清华园隧道和地上区间两部分,运行速度分别设置为120公里/小时和200公里/小时.日前,清华园隧道正式开机掘进,这标志着京张高铁建设全面进入攻坚阶段.已知此路段的地下清华园隧道比地上区间多1公里,运行时间比地上多1.5分钟.求清华园隧道全长是多少公里.答案:11km .解答:设清华园隧道地上运行时间为xh ,地下运行时间为(x +1.560)h . 1.560h =140h , 120(140+x )=200x +1, x =140. 清华园隧道地上部分是:200×140=5km . 清华园隧道地下部分是:5+1=6km .5+6=11km .答:隧道总长为11km .28、老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带多余一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.答案:先由学生A 步行,老师乘摩托车带学生B 行驶24千米,然后学生B 下车继续步行至博物馆,老师立即返回接学生A ,乘摩托车带学生A 至博物馆.解答:先由学生A 步行,老师乘摩托车带另一名学生B ,一段时间后,学生B 下车步行至博物馆,老师单独返回接学生A ,乘摩托车带学生A 至博物馆,并使得3人刚好同时到达博物馆.由方案可知,两学生步行的路程相同,设两学生步行的路程为x 千米,则乘摩托车的距离为(33-x )千米,老师返回时所经过的路程为(33-2x )千米. 依题意得:5x =3320x -+33225x -,解得x =9. ∴所用时间为5x +3320x -=95+33920-=3小时,满足题目要求. 答:先由学生A 步行,老师乘摩托车带学生B 行驶24千米,然后学生B 下车继续步行至博物馆,老师立即返回接学生A ,乘摩托车带学生A 至博物馆.29、列方程解应用题:由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路和普通公路的行驶速度都是80千米/时;B 车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A 、B 两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?答案:甲、乙两地之间的距离是252千米.解答:设甲、乙两地之间的距离是x 千米, 根据题意得:240380x - =1370x +40100, 解得x =252.答:甲、乙两地之间的距离是252千米.六、过桥和过隧道问题30、博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A. 2075B. 1575C. 2000D. 1500答案:B解答:设火车的长为x 米,∵学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来∴火车相对于学生一分钟能跑多少米:120000450060+ =2075米, 一分钟火车能跑2075米而火车头与队伍头相遇到火车尾与队伍尾离开共60s ,也就是一分钟,∴500+x =120000450060+, 解得x =1575,∴火车的长度应该是2075m -500m =1575m .选B.31、一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为______.答案:300米解答:设火车的长度为x 米,则火车的速度为15x , 依题意得:45×15x =600+x , 解得:x =300.故答案是:300米.32、一列火车长150m ,每秒钟行驶19m ,全车通过长800m 的大桥,需要多长时间? 答案:50秒解答:设需要x 秒19x =150+800x =50,答:需要50秒.故答案为50秒.33、已知某一铁路桥长1000m ,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40S .求火车的速度.答案:20千米/小时解答:设火车的长度为x 米,则100060x +=100040x - x =200速度为(1000-200)÷40=20千米/小时34、一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.答案:火车的长度是180米,火车的速度为108千米/时.解答:设火车的长度是x 米,根据题意得出:72030x +=6x , 解得:x =180,1806=30m /s , 故火车速度为:30×3600÷1000=108(千米/时).答:火车的长度是180米,火车的速度为108千米/时.35、一列火车匀速行驶,经过一条长300m 的隧道需要12s 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是7s .(1)设火车的长度为xm ,用含x 的式子表示,从火车头进入隧道到车尾离开隧道这段时间内火车的平均速度(2)求这列火车的长度(3)若这列火车从甲地到乙地,速度提高10%,则可以提前503分钟到达,求甲乙两地的距离(火车的长度忽略不计)答案:(1)30012x + (2)420(3)660km 解答:(1)30012x + (2)300127x x +=,420x = (3)设距离为Skm .火车的平均速度为30042012+=60m /s =3.6km /min . 1.13.6 3.6S S -⨯=503S =660km .36、一辆车长为4米的小轿车和一辆车长为20米的大货车,在长为1200米隧道的两个入口同时开始相向而行,小轿车的速度是大货车速度的3倍,大货车速度为10m /s .(1)求两车相遇的时间.(2)求两车从相遇到完全离开所需的时间.(3)当小轿车车头和大货车车头相遇后,求小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间.答案:(1)30s.(2)所需的时间为0.6s.(3)时间为0.48s或0.8s.解答:(1)设两车相遇的时间ts,(30+10)t=1200,t=30.两车相遇的时间为30s.(2)设两车完全离开的时间的时间t’s,依题意得,(30+10)t’=1200+4+20,t’=30.6,t’-t=30.6-30=0.6两车从相遇到完全离开所需的时间为0.6s.(3)设小轿车车头与大货车车头之间的距离为xm,①两车相遇期间:x=4[(20-x)+4],解得x=19.2,t=19.21030+=0.48;②两车分离后:x=4(x-20-4),解得:x=32,t=323010+=0.8.小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间为0.48s或0.8s.。

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)列方程解应用题(行程问题)相遇是行程问题的基本类型,在相遇问题中可以用速度×时间=路程的公式求解全程。

下面我们来看几个例子。

例1:AB两地相距352千米。

甲乙两辆汽车从A、B两地相对开出。

甲车每小时行36千米,乙车每小时行44千米。

乙车因有事,在甲车开出32千米后才出发。

求出两车相遇需要多少小时?分析解答:为了求出两车相遇的时间,需要找到速度和、时间和和总路程之间的关系式。

根据已知条件,可以设相遇时间为X小时,列出方程:36+44)×x+32=352解方程得到X=4,因此两车相遇需要4小时。

练题:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。

1小时后,货车从乙地开往甲地,每小时行60千米。

货车出发几小时后与客车相遇?例2:甲乙两人从A、B两地相向而行,甲每分钟行52米,乙每分钟行48米。

两人走了10分钟后交叉而过,且相距64米。

甲从A地到B地需要多少分钟?分析解答:为了求出甲从A地到B地需要的时间,需要知道A、B两地的路程和甲的速度。

设A、B两地相距X米,则可以列出方程:52+48)×10-X=64解方程得到X=936,因此甲从A地到B地需要18分钟。

练题:从A地到B地,水路比公路近40千米。

上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B地。

轮船的速度是每小时24千米,汽车的速度是每小时40千米。

求A地到B地水路、公路是多少千米?例3:XXX和XXX分别从一座桥的两端同时相向出发,往返于两端之间。

XXX每分钟走60米,XXX每分钟走75米。

经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。

设这座桥长X米,则可以列出方程:3X=(60+75)×6解方程得到X=270,因此这座桥长270米。

列方程(组)解应用题

列方程(组)解应用题

---------------------------------------------------------------最新资料推荐------------------------------------------------------列方程(组)解应用题列方程(组)解应用题 (三年中考、模拟试题汇编) 行程问题1、一列火车从北京出发到广州大约需要 15 小时,火车出发后按原来的时间匀速行驶 8 小时后到达武汉,由于 2009 年 12 月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州平均时速是原来的 2 倍还多 50 公里,所需要时间比原来缩短了 4 个小时,求从北京到武汉的平均时速和提速后武汉到广州的平均时速。

2、小明乘坐火车从某地到上海去参观世博园,已知此次行程为 2160 千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用 6小时.求小明乘坐动车组到上海需要的时间.3、九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校 120 千米,一部分学生乘慢车先行,出发 1 小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的 1.5 倍,求慢车的速度.4、京通公交快速通道开通后,为响应市政府绿色出行的号召,家住通州新城的小王上班由自驾车改为乘坐公交车。

已知小王家距上班地点 18 千米。

他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的 2 倍还多 9 千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 3/7。

小王用自驾车方式上班平均每小时行驶多少千米? 5、 .在1 / 92019 年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修。

供电局距离抢修工地 15 千米,抢修车装载着所需材料先从供电局出发, 15 分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地。

初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。

我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。

原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。

下面我们将行程问题归归类,由易到难,逐步剖析。

1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。

甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】310080=-x x .例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。

求火车的速度和长度。

【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长-火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。

小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。

2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。

10.列方程解应用题──有趣的行程问题(含答案)+

10.列方程解应用题──有趣的行程问题(含答案)+

10.列方程解应用题──有趣的行程问题(含答
案)+
有趣的行程问题
一、问题描述
小明打算去旅行,他主要选择骑自行车或者搭乘公交车两种方式进行。

根据不同的目的地和时间,他需要分别列出合适的方程来解决行程问题。

二、骑自行车行程问题
小明打算去朋友家玩,他骑自行车的速度是每小时20公里。

假设朋友家距离小明家60公里,我们设从小明家出发的时间为0点,求小明几点能到达朋友家。

解答:
设小明到达朋友家的时间为t小时,则高度H与t之间存在线性关系,即H = 20t。

根据题意可得到方程20t = 60,解得t = 3。

因此小明将于3点到达朋友家。

三、公交车行程问题
小明打算搭乘公交车去游乐园,按照公交车时刻表,公交车每隔15分钟一班。

假设小明家距离游乐园10公里,公交车的速度是每小时30公里,求小明什么时候出门才能保证不需要等待公交车。

解答:
设小明等待公交车的时间为t分钟,则高度H与t之间存在线性关系,即H = 30t。

又公交车每隔15分钟一班,因此小明需要等待的时间必须是15的倍数。

将H代入方程可得到30t = 10,解得t = 20。

因此小明将在20分钟时出门,正好赶上下一趟公交车。

四、总结
通过以上两个行程问题的解答,我们可以看到列方程解应用题在解决行程问题时起到了重要的作用。

通过设定适当的方程,在已知条件下求解未知数,可以帮助我们找到最佳的解决方案。

希望通过这个简单的应用题,能够让大家对列方程解应用题有更深的理解。

答案:
一、小明将在3点到达朋友家。

二、小明将在20分钟时出门。

列方程解应用题分类练习卷(2)-

列方程解应用题分类练习卷(2)-

列方程解应用题分类练习卷(2)行程问题举例:路程=速度×时间 V顺=V静+V水 V顺=V静-V水1.甲、乙两人登一座高山,甲每分钟登高10米,且先出发30分钟, 乙每钟登高15米,两人同时到达山顶.甲用多少时间登山?这座山有多高?2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程, 最后以8米/秒的速度冲刺激到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?3.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加20千米,只需5小时即可到达,求甲、乙两地的路程.4.小明原计划骑车以12千米/时的速度,由A地去B地, 这样便可在规定时间到达B地,但因故将原计划出发时间推迟了20分钟,只好以15千米/时的速度前进, 结果比规定时间早4分钟到达B地,求A、B两地的距离.5.一架飞机在两城之间飞行,风速为24千米/时,顺风飞行需要2小时50分, 逆风飞行需要3小时,求无风时的飞机的航行速度和两城之间的路程.6.A、B两地相距480千米,一列慢车以每小时60千米的速度从A地开出,一列快车以65千米/时的速度从B地开出.(1)若两车同时开出,相向而行,多少时间相遇?(2)若慢车先开出1小时,两车同向而行,快车开出多少小时追上慢长?(3)右两车同时开出,相背而行,多少小时后两车相距620千米?(4)若慢车先开出1小时,相向而行,慢车开出多少小时后两车相距620千米?工程问题举例:工作量=工作效率×工作时间=人均工效×工时×人数1.食堂有煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备, 耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.一项工程,甲工程队单独做40天可以完成,乙工程队单独做80天可以完成, 现由甲先单独做10天,然后与乙共同完成余下的工程,问甲工程队一共做了多少天?3.某工程,甲、乙、丙单独做分别要10天、12天、20天完成。

五年级列方程解应用题(行程问题)

五年级列方程解应用题(行程问题)
240+40x=70x
30x=240
x=8
答:8小时后乙车追上甲车.
解答:设乙车每小时行x千米,
85×2.4+2.4x=456
பைடு நூலகம்204+2.4x=456
2.4x=252
x=105
答:乙车每小时行105千米.
4、甲乙两列火车分别从相距600千米的两地同时相向而行,2.5小时后两车还相距220千米。已知甲车每小时行80千米,乙车每小时行多少千米?
解答:设乙车每小时行x千米,由题意得,
1、甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?
解:设这辆汽车平均每小时行x千米,
5x+74.5=300
5x+74.5-74.5=300-74.5
5x=225.5
5x÷5=225.5÷5
x=45.1
所以x=45.1是方程的解。
答:这辆汽车平均每小时行45.1千米.
80×2.5+2.5x+220=600,
200+2.5x+220=600,
2.5x+420=600,
2.5x=600﹣420,
2.5x=180,
x=72
答:乙车每小时行72千米。
5、两个码头之间相距100千米,甲、乙两艘轮船分别同时从两个码头出发向相反方面开出,甲船每小时行38千米,乙船每小时行32千米。经过几小时两船相距450千米?(列方程解)
2、两地铁路长568千米,甲乙两列火车同时从两地相对开出,甲火车每小时行驶154千米,乙火车每小时行驶130千米,经过几小时两车相遇?(列方程解答)
解答:设经过x小时相遇

列方程解应用题(行程问题)

列方程解应用题(行程问题)

一、行程问题1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?(6.5千米)3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.(108)4.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?(200千米/小时)5.已知有12名旅客要从A地赶往40千米外的火车站B乘车外出旅游,列车还有3个小时从B站出站,且他们只有一辆准载4人的小汽车可以利用.设他们的步行速度是每小时4千米,汽车的行驶速度为每小时60千米.(1)若只用汽车接送,12人都不步行,他们能完全同时乘上这次列车吗?(不能)(2)试设计一种由A地赶往B站的方案,使这些旅客都能同时乘上这次列车.按此方案,这12名旅客全部到达B站时,列车还有多少时间就要出站?(所设方案若能使全部旅客同时乘上这次列车即可.若能使全部旅客提前20分钟以上时间到达B站,可得2分加分,但全卷总分不超过100分.)(8.75分)注:用汽车接送旅客时,不计旅客上下车时间.6.一辆客车以30千米/小时的速度从甲地出发驶向乙地,经过45分钟后,一辆货车以每小时比客车快10千米的速度从乙地出发向甲地.若两车刚好在甲乙两地的中点相遇,求甲乙两地的距离.(180)7.A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇以后两车相距100km时,甲车共行驶了多少小时?(4小时)11.甲步行上午6时从A地出发于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙是什么时间追上甲的?(下午1点20分)8.李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5000米,用时15分钟.求自行车路段和长跑路段的长度.(3000,2000)9.A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.(3 或3+2/3)10.学校田径队的小翔在400米跑测试时,先以6米/秒的速度跑完大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分5秒,问小翔在离终点处多远时开始冲刺?(40米)。

六年级行程问题以及工程问题应用题答案解析

六年级行程问题以及工程问题应用题答案解析

六年级行程问题以及工程问题应用题答案解析1.甲乙两人从北京和天津出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?解析:根据题意,甲和乙的相对速度为48+44=92千米/小时,所以他们能相遇的时间为138/92=1.5小时。

2.一辆汽车从甲地到乙地,如果每小时行45千米,就要晚0.5小时到达,如果每小时行50千米,就可提前0.5小时到达。

问甲、乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:0.5=(x/45)-(x/50),解得x=450千米。

3.从甲地到乙地,小轿车每小时行驶90千米,大客车每小时行驶55千米,乘小轿车要用4.4小时,乘大客车要用几小时?解析:设乘大客车需要的时间为x小时,根据题意,可以列出方程:55x=90*4.4,解得x=7.2小时。

4.甲、乙两列火车同时从A、B两城相向开出,4小时相遇。

相遇时,两车所行路程的比是3:4,已知乙车每小时行60千米,求A、B两城相距多少千米?解析:设A、B两城相距x千米,根据题意,可以列出方程:4(60+3x)=4(60+4x),解得x=420千米。

5.XXX开车从甲地到乙地,3小时行驶330千米,照这样计算,还需5小时就可以到达乙地,甲乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:3(110)+5(110)=x,解得x=880千米。

6.两辆汽车同时从北京和上海出发,相向而行,每小时分别行115千米和95千米,京沪高速公路长1260千米,大约经过几小时两车相遇?解析:根据题意,两车的相对速度为115+95=210千米/小时,所以它们相遇的时间为1260/210=6小时。

7.一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时比第一小时多行16千米,这时距离乙地还有94千米,甲乙两地间的公路长多少千米?解析:设甲乙两地间的公路长为x千米,根据题意,可以列出方程:x=(1/4)x+(1/4)x+16+94,解得x=220千米。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2。

5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4。

8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱。

第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题复习题(工程与行程问题)
1、有一项工程必须在规定日期内完成,如果甲独做则刚好如期完成,如果甲乙独做就要超过规定日期6天才能完成,现由甲、乙合做4天,剩下的工程由乙独做,刚好如期完成,问原规定的日期是几天?
2、甲、乙二人合干某项工程,合干4天后,乙另有任务调出,甲又单独干2天才完成,已知单独完成这项工程,甲比乙少用3天,问甲乙单干各用几天?
3、完成某项工程,单独完成,甲比乙少用5 天,若甲先做2天,乙再做3天,能完成全部工程的40%,问甲乙合做用多少天?
4、某任务,甲、乙二人合作用20小时完成,甲独做要比乙独做多9小时,才能完成,问他们二人单独完成任务各需多少小时?
5、汽车走108千米的距离,当走到36千米处时,发生障碍,以后每小时的速度减慢9小千米,到达时预定时间晚24分钟,求汽车原来的速度?
6、A、B两个水管齐开注满水池用20小时,单开A管注满水池要比单开B管注满水池多用9小时,问单开一个水管注满水池各用多少时间?
7、甲、乙两地的距离是135千米,两辆汽车从甲地开往乙地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车和大汽车速度的比是5:2,求两辆汽车的速度各是多少?
8、甲、乙两人得走14千米,甲比乙快半小时,已知甲与乙速度的比是8:7,求两人的速度各是多少?
9、一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数?
10、把45千克食盐加水制成浓度为30%的盐水,问需加水多少千克?
11、某项工作,若甲单独完成,恰好在规定日期内完成,如果由乙单独做,就要超过日期3天才能完成,现由甲、乙两人合做2天,剩下由乙单独做完成,恰好在规定的时间内完成,问规定的工期是多少天?
12、某人加工期1500个零件后,改进了技术,这样效率提高到原来的2.5倍,因此,加工1500 个零件比原来提高前18个小时,问前后两种方法每小时各加工多少个零件?。

相关文档
最新文档