中考数学动点问题专项训练
中考数学动点问题(含答案)
中考数学之动点问题一、选择题:1. 如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停顿,设点P运动的路程为*,△ABP的面积为y,如果y关于*的函数图象如图2所示,则△ABC的面积是〔〕A、10B、16C、18D、20二、填空题:1. 如上右图,C为线段AE上一动点〔不与点A,E重合〕,在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_______________________〔把你认为正确的序号都填上〕。
三、解答题:1.〔2008年大连〕如图12,直角梯形ABCD中,AB∥CD,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C作CH⊥AB,垂足为H.点P为线段AD上一动点,直线PM∥AB,交BC、C H于点M、Q.以PM为斜边向右作等腰Rt△PMN,直线MN交直线AB于点E,直线PN交直线A B于点F.设PD的长为*,EF的长为y.⑴求PM的长(用*表示);⑵求y与*的函数关系式及自变量*的取值范围(图13为备用图);⑶当点E在线段AH上时,求*的取值范围(图14为备用图).2.〔2008年福建宁德〕如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时0<x<,△DCQ的8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为*秒()8面积为y1平方厘米,△PCQ的面积为y2平方厘米.⑴求y1与*的函数关系,并在图2中画出y1的图象;⑵如图2,y2的图象是抛物线的一局部,其顶点坐标是〔4,12〕,求点P的速度及AC的长;⑶在图2中,点G是*轴正半轴上一点〔0<OG<6=,过G作EF垂直于*轴,分别交y1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<*<6时,求线段EF长的最大值.3.〔2008年白银〕如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为〔4,3〕.平行于对角线AC 的直线m 从原点O 出发,沿*轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t 〔秒〕. (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t=秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?假设有,求出最大值;假设没有,要说明理由.参考答案一、选择 A二、填空:〔1〕〔2〕〔3〕〔5〕 三、解答: 2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =*, ∴x y 231=. 图象如下图.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*, ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是〔4,12〕,∴12444212=⋅+⋅-k k . 解得23=k .图1C Q → B图2则点P 的速度每秒23厘米,AC =12厘米. 方法二:观察图象知,当*=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得 12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过〔0,0〕,〔4,12〕,〔8,0〕,∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*,∴kx kx y 42122+-=. ②比拟①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差〔或△PDQ 面积〕. ②由⑵得 x x y 64322+-=.〔方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=〕∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)〔4,0〕,〔0,3〕; 2分 (2) 2,6; 4分 (3) 当0<t ≤4时,OM =t .由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. 8分S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积=12-)4(23-t -21〔8-t 〕〔6-t 43〕-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t .7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t .8分 以下同方法一. (4) 有最大值.方法一: 当0<t ≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; 11分当4<t <8时, ∵ 抛物线S=t t 3832+-的开口向下,它的顶点是〔4,6〕,∴ S <6. 综上,当t=4时,S 有最大值6. 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如下图. 11分显然,当t=4时,S有最大值6. 12分说明:只有当第〔3〕问解答正确时,第〔4〕问只答复"有最大值〞无其它步骤,可给1分;否则,不给分.。
中考数学专题复习《四边形的动点问题》测试卷(附带答案)
中考数学专题复习《四边形的动点问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 菱形ABCD 的周长为8 60ABC ∠=︒ 点P Q 分别是BC BD 上的动点 则CQ PQ +的最小值为( )A .2B 3C .22D .12.如图 矩形ABCD 中 6AB = 8BC = P 是边BC 上一个动点 连接PD 在PD 上取一点E 满足2PC PE PD =⋅ 则BE 长度的最小值为( )A .6.4B 34C 733-D .1343.如图 在矩形ABCD 中 10cm AB = 点E 在线段AD 上 且6cm AE = 动点P 在线段AB 上 从点A 出发以2cm/s 的速度向点B 运动 同时点Q 在线段BC 上.以cm/s v 的速度由点B 向点C 运动 当EAP 与PBQ 全等时 v 的值为( )A .2B .4C .4或65D .2或1254.如图 点D 是ABC 的边AB 的延长线上一点 点F 是边BC 上的一个动点(不与点B 重合)以,BD BF 为邻边作平行四边形BDEF 又,AP BE AP BE =∥(点P E 在直线AB 的同侧) 如果14BD AB =那么PBC 的面积与ABC 面积之比为( )A .14B .35C .15D .345.如图 在矩形ABCD 中 6AB = 8BC =.点E 在边AD 上 且6ED = M N 分别是边AB BC 上的动点 P 是线段CE 上的动点 连接PM PN 使PM PN =.当PM PN +的值最小时 线段PC 的长为( )A .2B .C .4D .6.如图 在四边形ABCD 中 AD BC ∥ 30,60,6,4B C AB AD ∠=︒∠=︒==EF 是BC 上的两动点 且4EF = 点E 从点B 出发 当点F 移动到点C 时 两点停止运动.在四边形AEFD 形状的变化过程中 依次出现的特殊四边形是( )A .平行四边形→菱形→矩形→平行四边形B .平行四边形→菱形→正方形→平行四边形C .平行四边形→菱形→正方形→菱形D .平行四边形→矩形→菱形→平行四边形7.如图 在正方形ABCD 中 E 为对角线AC 上与A C 不重合的一个动点 过点E 作EF AB ⊥与点F EG BC ⊥于点G 连接DE FG 若AED a ∠= 则EFG ∠=( )A .90a -︒B .180a ︒-C .45a -︒D .290a -︒8.已知 如图 菱形ABCD 的四个顶点均在坐标轴上 点()3,0A - ()0,4B ()6,0E .点P 是菱形ABCD 边上的一个动点 连接PE 把PE 绕着点E 顺时针旋转90︒得到FE 连接PF .若点P 从点C 出发 以每秒5个单位长度沿C D A B C →→→→方向运动 则第2025秒时 点F 的坐标是( )A .()6,9B .()10,6-C .()10,6D .()2,6二 填空题9.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .10.如图 在矩形ABCD 中 6AB = 12AD = E 是线段AD 上一动点 以E 为直角顶点在EB 的右侧作等腰三角形EBF 连接DF 设DF t = 当t 为整数时 点F 位置有 个.11.如图 MEN ∠=90︒ 矩形ABCD 的顶点B C 分别是MEN ∠两边上的动点 已知BC =10 CD =5 点D E 之间距离的最大值是 .12.如图 正方形ABCD E 为与点D 不重合的动点 以DE 为一边作正方形DEFG .连CF CG 当DE CF CG ++的值最小时 正方形DEFG 的边长为 .13.如图 正方形ABCD 中 P 为BD 上一动点 过点P 作PQ AP ⊥交CD 边于点Q .点P 从点B 出发 沿BD 方向移动 若移动的路径长为6 则AQ 的中点M 移动的路径长为 .三 解答题14.在正方形ABCD 中 点E 为边BC 上一个动点(点E 不与点B C 重合) 连接AE 点F 在对角线AC 的延长线上 连接EF 使得EF AE =.作点F 关于直线BC 的对称点G 连接CG EG ,.(1)依题意补全图形 (2)求证:BAE GEC ∠=∠(3)用等式表示线段AC CE CG ,,之间的数量关系 并证明.15.如图 矩形ABCD 中 AD AB > 点P 是对角线AC 上的一个动点(不包含A C 两点) 过点P 作EF AC ⊥分别交射线AB 射线AD 于点E F .(1)求证:AEF BCA △∽△ (2)连接BP 若BPAB且F 为AD 中点 求APPC的值 (3)若2=AD AB 移动点P 使ABP 与CPD △相似 直接写出AFAB的值.16.在梯形ABCD 中 已知DC AB ∥ 90DAB ∠=︒ 3DC = 6DA = 9AB = 点E 在射线AB 上 过点E 作EF AD ∥ 交射线DC 于点F 设AE x =.(1)当1x =时 直线EF 与AC 交于点G 如图1 求GE 的长 (2)当3x >时 直线EF 与射线CB 交于点H .①当39x <<时 动点M (与点A D 不重合)在边AD 上运动 且AM BE = 联结MH 交AC 于点N 如图2 随着动点M 的运动 试问:CH HN 的值有没有变化 如果有变化请说明你的理由 如果没有变化 请你求出:CH HN 的值 ①联结AH 如果HAE CAD ∠=∠ 求x 的值.17.如图1 在ABCD 中 60A ∠=︒ 4=AD 8AB =.(1)请计算ABCD 的面积(2)如图2 将ADC △沿着AC 翻折 D 点的对应点为D 线段CD '交AB 于点M 请计算AM 的长度(3)如图3 在(2)的条件下 点P 为线段CM 上一动点 过点P 作PN AC ⊥于点NPG AD '⊥交AD '的延长线于点G .在点P 运动的过程中7PN PG +的长度是否为定值?如果是 请计算出这个定值 如果不是 请说明理由.18.如图1 四边形ABCD 中AD BC ∥90B 4tan 3C = 10CD =.(1)线段AB =(2)如图2 点O 是CD 的中点 E F 分别是AD BC 上的点 将DEO 沿着EO 翻折得GEO 将COF 沿着FO 翻折使CO 与GO 重合.①当点E 从点D 运动到点A 时 点G 走过的路径长为52π 求AD 的长①在①的条件下 若E 与A 重合(如图3)Q 为EF 中点 P 为OE 上一动点 将FPQ 沿PQ 翻折得到F PQ ' 若F PQ '与APF 的重合部分面积是APF 面积的14求AP 的长.参考答案:1.B 2.C3.D 4.D 5.D 6.A 7.C 8.D 910.1111.5+51213.14.(1)解:如图所示(2)解:①正方形ABCD ①45BAC ACB ∠=∠=︒ 90B①AE EF = ①EAC EFC ∠=∠①45BAE EAC BAC ∠+∠=∠=︒ ①45FEC EFC ACB ∠+∠=∠=︒ ①BAE FEC ∠=∠①点F 与点G 关于直线BC 的对称 ①HEF GEC ∠=∠ ①BAE GEC ∠=∠ (3)解:AC CG =+ 证明:①正方形ABCD ①AB BC = 45ACB ∠=︒ 90B①AC =①45FCH ACB ∠=∠=︒①点F 与点G 关于直线BC 的对称 ①45GCH FCH ∠=∠=︒ EF EG = ①AE EG =①FH BC ⊥交BC 延长线于H ①90GHC ∠=︒ ①45HGC HCG ∠=∠=︒ ①CH GH = ①2CG CH = ①2CH =在ABE 和EHG 中 BAE GEH B EHGAE EG ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS ABE EHG ≌ ①AB EH = ①EH CE CH =+①)2222AC CE CH CE CE CG ⎫=+==+⎪⎪⎭即2AC CE CG +.15.(1)证明: 四边形ABCD 是矩形 EF AC ⊥90ABC FAE ∴∠=∠=︒ 90APE ∠=︒ 90AEF EAC ∴∠+∠=︒ 90BCA EAC ∠+∠=︒ AEF BCA ∴∠=∠ AEF BCA ∴∽(2)BP AB =BAP BPA ∴∠=∠90BAP E BPA BPE ∠+∠=︒-∠+∠E BPE ∴∠=∠12AB BP BE AE ∴===设BC 交FE 于点G四边形ABCD 是矩形AD BC ∴∥ AD BC =AFE BGE ∴∽12BG BE AF AE ∴== 12BG AF ∴= 1122AF AD BC ∴== 34CG BC BG AD ∴=-= AD BC ∥AFP CGP ∴∽122334ADAP AF PC GC AD ∴===(3或54.理由如下:四边形ABCD 是矩形AD BC ∴∥ AD BC = AB CD =①当ABP CDP ∽△△时 1AP ABCP DC== ∴P 是AC 的中点AD BC ∥ACB FAP ∴∠=∠ tan tan ACB FAP ∴∠=∠即12PF AB AB AP BC AD === 设PF a = 则2AP a =5AF a ∴= 4AC a =2222(2)5AC AB BC AB AB AB =++455AB a ∴ 554455AF a AB a == ①当ABP CPD ∽时 AP AB CD CP= AP CP AB CD ∴⋅=⋅设AB CD x == AP t =则2AD BC x == 225AC AB BC x +5CP x t ∴=-2(5)t x t x ∴-=解得51x ± 51AB ±∴= 由①知12PF AB AB AP BC AD === 1122PF AP t ∴==5AF ∴=AFAB∴==554AFAB-∴=或554+或54.16.(1)DC AB∥①CFG AEG∽∴FC FGAE EG=EF AD∥∴四边形AEFD是平行四边形DF AE∴=AD EF=1AE x==1DF∴=3CD=2CF∴=又6AD=6EF∴=6FG EG∴=-∴261EGEG-=2EG(2)①:CH HN的值没有变化.过点C作CG AB⊥于点G6CG AD ∴== 3DC AG ==9AB =6GB ∴=CGB ∴是等腰直角三角形222CB CG GB ∴=+62CB ∴=45B ∠=︒ 90HEB ∠=︒45EHB ∴∠=︒B EHB ∴∠=∠HE BE ∴=AM BE =AM HE ∴=AM HE ∥∴四边形AMHE 是平行四边形A MHB ∴∥CNH CAB ∴∽ ∴CH CB HN AB= 9AB = ∴6222CH HN == ①当39x <<时 由①得HE BE =9HE x ∴=-在Rt CDA △中 31tan 62CD CAD AD ∠=== 在Rt AEH △中 9tan HE x HAE AE x-∠== CAD HAE ∠=∠∴192x x-= 6x ∴=当9x >时 同理可得BE EH =9EH x BE ∴=-= 同理12EH AE = ∴912x x -= 18x ∴=综上所述 x 的值为6或18.17.(1)解:作CE AB ⊥交AB 延长线于点E①四边形ABCD 是平行四边形①AD BC ∥ 60DAB CBE ∠=∠=︒ 4AD BC == 8AB CD ==在Rt CBE △中 122BE BC == =CE①ABCD 的面积为8AB CE ⨯=⨯=(2)解:①四边形ABCD 是平行四边形①AB CD ∥①ACD CAB ∠=∠由折叠的性质得ACD ACM ∠=∠①ACM CAM ∠=∠①MA MC =设MA MC x == 则10ME AB BE AM x =+-=-在Rt CBE △中 由勾股定理得()(22210x x =-+解得: 5.6x = 即AM 的长度为5.6(3)解:①10AE AB BE =+= CE =①2247AC AE CE =+①ACM CAM ∠=∠ 90AEC CNP ∠=∠=︒①AEC CNP ∽△△ ①2334727PN CE CP AC ==37PN 由折叠的性质得CAD CAD '∠=∠ ①60CAD CAM ∠+∠=︒①60CAD ACM CD G ''∠+∠=︒=∠过点C 作CF AG ∥交GP 的延长线于点F①PG AD '⊥①PF CF ⊥ 60PCF CD G '∠=∠=︒ ①12CF CP = 223PF CP CF =-= 37PN PF == 7PN PG +的长度是FG 的长度过点C 作CH AG ⊥交AG 的延长线于点H①四边形CFGH 是矩形①FG CH = 由折叠的性质得8C D CD '==又60CD H '∠=︒ ①142D H CD ''== ①2243CH CD D H ''-综上 7PN PG +的长度是定值 这个定值为318.(1)解:如图1作DG BC ⊥于G①90DGB ∠=︒①AD BC ∥ 90B ∠=︒①18090A B ∠∠=︒-=︒①四边形ABGD 是矩形①AB DG = ①4tan 3C =①4sin 5C = ①4sin 1085AB DG CD C ==⋅=⨯= 故答案为:8(2)解:①如图2作AH CD ⊥ 交CD 的延长线于点H①AD BC ∥①ADH C ∠=∠ ①4tan 3AH ADH DH =∠= 设4AH a = 3DH a = 则5AD a =①DEO 沿着EO 翻折得GEO①OG OD = DOE GOE ∠∠=①点G 的轨迹是以O 为圆心 5为半径的弧 ①551802n ππ⋅⋅= ①90n =︒①45AOE ∠=︒ ①tan 1AH AOD OH=∠= ①4OH AH a ==由OH DH OD -=得435a a -=①5a =①420OH a == 525AD a ==①①将DEO 沿着EO 翻折得GEO 将COF 沿着FO 翻折使CO 与GO 重合 ①DOE GOE ∠∠= COF GOF ∠∠=①90EOF ∠=︒①45AOD ∠=︒①45COF ∠=︒如图3作FW CD ⊥于W 设QF '交AP 于R ①4tan 3FW C CW == 设4FW x = 3CW x = ①tan 1FW COF OW∠== ①4OW FW x ==由OW CW OC +=得435x x += ①57x =①2047FW OW x ===①OF =由①知: AO ==①2007AF == 当QF '交AP 于R 时 取OA 的中点X 连接QX ①Q 是AF 的中点 ①QX OF ∥①12QX OF == 90AXQ AOF ∠∠==︒ 12APQ PQF APF S S S == ①14PQR APF S S = ①12PQR APQ S S =①点R 是AP 的中点由折叠得:PQF PQF '∠=∠ ①2QR AP AQ AR== ①15027RQ AQ ==①RX ==①AR AX RX =-=①2AP AR ==如图4当PF '交AQ 于R 时同理可得:R 是AQ 的中点2PF FQ PR RQ== ①2PF PF PR '==①R 是PF '的中点①四边形APQF'是平行四边形①110027 AP QF QF AF='===综上所述:8032AP=1007.。
中考数学几何图形中的动点问题专题训练
中考数学几何图形中的动点问题专题训练(58分)一、选择题(每题6分,共18分)1. 如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =S 13矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )A. B. C.5D.2934241图6-1-1 第1题答图【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =131213×5×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D.52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩形边上一动点P 沿A →B →C →D 的路径移动.设点P 经过的路径长为x ,PD 2=y,则下列能大致反映y 与x 的函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP =x,∴y =x 2+a 2;②当图6-1-22a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x ,∴PD 2=y =(5a -x )2,y =∴能大致反映y 与x{x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a <x ≤3a ),(x -5a )2(3a <x ≤5a ),)的函数关系的图象是选项D 中的图象.3.如图6-1-3,在Rt △ABC 中,∠C =90°,∠BAC =30°,AB =8,以2为边长的正方形DEFG 的一边3GD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿AB 的方向以每秒1个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( A )【解析】 首先根据在Rt △ABC 中,∠C =90°,∠BAC =30°,AB =8,分别求出AC ,BC ,以及AB 边上的高线各是多少;然后根据图示,分三种情况:①当0≤t ≤2时;②当2<t ≤6时;③当6<t ≤8时,分别求出正方形33DEFG 与△ABC 的重合部分的面积S 的表达式,进而判断出正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是哪个即可.S ={36t 2(0≤t ≤23),2t -23(23<t ≤6),-233t 2+(2+83)t -263(6<t ≤8).)二、解答题(共20分)4.(20分) 如图6-1-4,已知矩形ABCD 中,AB =4,AD =m ,动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连结CP ,作点D 关于直线PC 的对称点E .设点P 的运动时间为t (s).图6-1-3(1)若m =6,求当P ,E ,B 三点在同一直线上时对应的t 的值.(2)已知m 满足:在动点P 从点D 到点A 的整个过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3.求所有这样的m的取值范围.图6-1-4【解析】 (1)如答图①,P ,E ,B 三点在同一直线上,连结EC .①在Rt △BEC 中,计算BE 的值;②在Rt △ABP 中,利用勾股定理列出关于t 的方程,解出t 值即可求;(2)如图②,P ,E ,B 三点在同一直线上,连结EC ,过点E 作EF ⊥BC 于F .①在Rt △EFC 中,利用勾股定理求出CF ;②利用相似三角形的判定与性质求得BF ;③根据m =BC =BF +CF 计算m 的值.解:(1)如答图①,P ,E ,B 三点在同一直线上,连结EC .∵四边形ABCD 是矩形,∴AB =CD ,AD =BC .∵PD =t ,m =6,∴PA =6-t .∵点D ,点E 关于直线PC 对称.∴PE =t ,EC =DC =AB =4,∠CEP =∠CDP =90°.在Rt △BCE 中,∵BC =6,CE =4,∴BE ===2.BC 2-EC 262-425在Rt △ABP 中,∵AB 2+AP 2=BP 2,即42+(6-t )2=(2+t )2,5解得t =6-2.5(2)如答图②,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ =3,CE =DC =4.易证四边形EMCQ 是矩形,∴CM =EQ =3,∠M =90°,∴EM ==,BC 2-CM 27∵∠DAC =∠EDM ,∠ADC =∠M ,第4题答图①∴△ADC ∽△DME ,∴=,即=,AD DM DC EM AD 747∴AD =4.7第4题答图② 第4题答图③如答图③,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3.作EQ ⊥BC 于Q ,延长QE 交AD 于M .则EQ =3,CE =DC =4.在Rt △ECQ 中,QC =DM ==,由△DME ∽△CDA ,42-327∴=,即=,∴AD =,DM CD EM AD 741AD 477综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围是≤m <4.47775.(20分) 如图6-1-5,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设=n .AD AE图6-1-5(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示的值;AD AB(3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.【解析】 设AE =a ,则AD =na .(1)由轴对称性质得到AE =FE ,结合“等边对等角”得到∠EAF =∠EFA .由垂直得到两个角的互余关系,根据“等角的余角相等”可得到结论;(2)由对称性质得BE ⊥AF ,先证∠ABE =∠DAC ,进而证得△ABE ∽△DAC ,根据相似三角形的对应边成比例建立关系式,通过适当变形求解;(3)由特例点F 落在线段BC 上,确定n =4,根据条件点F 落在矩形内部得到n >4,判断出∠FCG <90°.然后分∠CFG =90°和∠CGF =90°两种情况,由(2)的结论和相似三角形的性质分别建立关于n 的等式,求得n 的值.解:设AE =a ,则AD =na .(1)证明:由对称得AE =FE ,∴∠EAF =∠EFA .∵GF ⊥AF ,∴∠EAF +∠FGA =∠EFA +∠EFG =90°.∴∠FGA =∠EFG ,∴FG =EF ,∴AE =GE .(2)当点F 落在AC 上时(如答图①),由对称得BE ⊥AF ,∴∠ABE +∠BAC =90°,∵∠DAC +∠BAC =90°,∴∠ABE =∠DAC .又∵∠BAE =∠D =90°,∴△ABE ∽△DAC ,∴=.AB DA AE DC ∵AB =DC ,∴AB 2=AD ·AE =na ·a =na 2.∵AB >0,∴AB =a ,∴==.n AD AB na n an (3)若AD =4AB ,则AB =a .当点F 落在线段BC 上时(如答图②),EF =AE =n 4AB =a .此时a =a ,n 4∴n =4.∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.第5题答图①第5题答图② 第5题答图③①若∠CFG =90°,则点F 落在AC 上,由(2)得=,∴n =16.AD ABn ②若∠CGF =90°(如答图③),则∠CGD +∠AGF =90°.∵∠FAG +∠AGF =90°,∴∠CGD =∠FAG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ∽△DGC .∴=,AB DG AE DC∴AB ·DC =DG ·AE ,即=(n -2)a ·a ,(n 4a )2 解得n 1=8+4,n 2=8-4<4(不合题意,舍去).∴当n =16或8+4222时,以点F ,C ,G 为顶点的三角形是直角三角形.(20分)6.(20分) 如图6-1-6,正方形ABCD 的边长为6 cm ,点E ,M 分别是线段BD ,AD 上的动点,连结AE 并延长,交边BC 于F ,过M 作MN ⊥AF ,垂足为H ,交边AB 于点N .(1)如图①,若点M 与点D 重合,求证:AF =MN ;(2)如图②,若点M 从点D 出发,以1 cm/s 的速度沿DA 向点A 运动,同时点E 从点B 出发,以 cm/s 的速度沿BD 向点D 运动,设运动时间为t s.2①设BF =y cm ,求y 关于t 的函数表达式;②当BN =2AN 时,连结FN ,求FN 的长.图6-1-6【解析】 (1)由正方形性质和垂直的性质就可以得出∠ADN =∠BAF ,利用“AAS ”可以得出△ADN ≌△BAF 就可以得到结论AF =MN ;(2)①由AD ∥BF 可得△ADE ∽△FBE ,利用=可以构造y 关于t 的函数AD BF DE BE 表达式;②由(1)可知△MAN ∽△ABF ,∴=,又∵BN =2AN ,∴MA AN AB BF 6-t 2=,用含t 的代数式表示BF ,结合①中的关系式,可以构造关于t 的方程6BF 求出t 的值,从而求出BF ,最后利用勾股定理求FN 的长.解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC =AB =BC ,∠DAB =∠ABC =∠BCD =∠ADC =90°.∵MN ⊥AF ,∴∠DHA =∠NHA =90°,∴∠ADH +∠HAD =90°,∠NAH +∠HAD =90°,∴∠ADH =∠NAH .在△ADN 与△BAF 中,∴△ADN ≌△BAF ,{∠ADN =∠BAF ,AD =BA ,∠DAN =∠ABF ,)∴AF =DN ,即AF =MN .(2)①∵正方形的边长为6 cm ,∴BD ==AD =6 cm ,AB 2+AD 222∵设运动时间为t s ,根据题意,得BE =t cm ,2∴DE = BD -BE =(6-t )cm ,22∵AD ∥BF ,∴△ADE ∽△FBE ,∴ =,AD BF DE BE∵BF =y cm ,∴=,即y =,6y 62-2t 2t6t 6-t ∴y 关于t 的函数表达式为y =.6t 6-t②∵BN =2AN ,AB =6 cm ,∴AN =2 cm ,BN =4 cm ,由(1)得△MAN ∽△ABF ,又∵DM =t cm ,AM =(6-t )cm ,∴=,即=,∴BF =,MA AN AB BF 6-t 26BF 126-t 又∵y =,∴,= 解得t =2,6t 6-t 126-t 6t 6-t 当t =2时,BF =y ==3 cm ,在Rt △NBF 中,FN ==6t 6-tBN 2+BF242+32=5,∴当BN =2AN 时,FN 的长为5 cm.(22分)7.(22分) 如图6-1-7,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是PA ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和的度数;CM ︵(2)求证:AC =AB ;(3)在点P 的运动过程中.①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,若点G 恰好落在MN 上,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积比.图6-1-7【解析】 (1)由垂直平分线的性质得到等腰△PAB ,由三线合一得 ∠APM =∠BPM =∠APB =14°,∠B =90°-∠BPM =90°-14°= 76°,再利用直角12三角形斜边上的中线等于斜边的一半,得∠MDB =∠BAC =2∠DPM =28°,以此求得弧CD 的度数为2∠MDB =56°;(2)由同角的余角相等,得 ∠ACB =∠B ,AC =AB ;(3)由垂直分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1)如答图①,连结MD .∵AB ⊥MN ,AM =BM ,∴PM 垂直平分线段AB ,∴PA =PB ,在等腰三角形PAB 中,∵∠APB =28°,∴∠APM =∠BPM =∠APB =1214°,∴∠B =90°-∠BPM =90°-14°= 76°,在Rt △MPB 中,点D 为斜边BP 的中点,∴DM =DP ,∴∠MPD =∠DMP =14°,∴∠MDB =∠BAC =2∠DPM =28°,∴的度数=2∠MDB =56°;CM ︵(2)证明:由(1)可得∠B =90°-∠BPM =90°-∠BAC ,12在△ABC 中,∠ACB =180°-∠B -∠BAC =180°-(90°-∠BAC )-∠BAC 12=90°-∠BAC ,12∴∠ACB =∠B, ∴AC =AB .第7题答图① 第7题答图②(3)①若要满足题意,则点Q 必为过点A ,C ,E ,D 的垂线与线段MN 的交点,分析图形可得只有过点C ,E ,D 的垂线与线段MN 的交点满足题意.(Ⅰ)若CQ ⊥CP (如答图②点Q 1),AM =BM =1,MP =4,由勾股定理,得BP ==,由(1)(2)可得∠BAC =∠APB ,12+4217又∵∠B =∠B ,∴△ABC ∽△PBA ,∴=,得BC =,ABBC BP AB 41717∴CP =.131717由△PCQ 1∽△PMB ,得=,解得PQ 1=,CP MP PQ 1PB 134∴ MQ 1=4-PQ 1=.34(Ⅱ)若QD ⊥BP ,由EP =DP 可知 △EPQ 2≌△DPQ 2(如答图②点Q 2),∴ EQ 2⊥EP .(即过点E ,D 的垂线与线段MN 的交点重合)∵点D 为线段BP 的中点,且Q 2D ⊥BP ,∴Q 2D 垂直平分线段BP ,则Q 2P =Q 2B ,设Q 2M =x ,则Q 2B =Q 2P =4-x, 由勾股定理,得BM 2+M 2Q 2=B 2Q 2,12+x 2=(4-x )2,解得x =.185(Ⅲ)若AC ⊥CQ (如答图②点Q 3),∵∠ACQ 3=90°,∴Q 3A 为该圆的直径,∴点Q 3为MP 与圆的交点,∵∠MAC =∠MQ 3C =2∠MPC ,∠MQ 3C =∠MPC +∠Q 3CP ,∴PQ 3= CQ 3,设MQ 3=x ,则PQ 3=4-x ,AC =AB =2,∵A 3Q 2=AM 2+M 3Q 2=AC 2+C 3Q 2,∴12+x 2=22+(4-x )2,解得x =.198综上所述,MQ 的值为或或.34158198②如答图③,过点E 作AP 的中垂线,交MP于点K .过点C 作CJ ⊥AB 于点J ,连结AK ,KE ,DM .∵点M ,D 分别为AB ,BP 的中点,∴MD 为△ABP 的中位线,∴MD ∥AP ,AM =DF .又∵AM ∥ED ,∴四边形MAED 为平行四边形,∴AM =DE ,∠MDE =∠MAP ,∴DE =DF ,∵△GHE ≌△GHD ,∴ GE =GD ,∴GE =GD =DE =DF ,则△GDE 为正三角形,∠GDE =60°.第7题答图③∵∠EDF =90°-60°-30°,∴∠DEF =(180°-∠EDF )=75°,12∴∠APM =15°,则∠AKM =2∠APM =30°,∴MK =,AK =KP =2,tan75°=tan ∠MAP ===2+,3PM MA 2+313∴tan ∠MAP =tan ∠HEP =tan75°=2+,3∵EH 为△AMP 的中位线,∴EH =,GH =,1232∴tan ∠HEP ==2+,HP =(2+),∴MG =1,PH EH 3123∵∠MAC =2∠MPA =30°,AM =1,CJ =AC =AB =1,1212∴MI =,IG =1-,AJ =,33333∴S △ACG =IG ·AJ =××=,S △EDG =ED ·GH =×1×=,1212(1-33)33-1212123234∴==.S △ACGS △DEG 3-12346-233。
(中考数学)动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
中考数学总复习《动点问题》专项提升训练(带答案)
中考数学总复习《动点问题》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________例题1.如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A B C D解:连接BD,过B作BE⊥AD于E,当0≤x<2时,点M在AB上在菱形ABCD中,∠A=60°,AB=4∴AB=AD∴△ABD是等边三角形∴AE=ED=12AD=2,BE=√3AE=2√3∵AM=2x,AN=x∴AMAN=ABAE=2∵∠A=∠A∴△AMN∽△ABE∴∠ANM=∠AEB=90°∴MN=√AM2−AN2=√3xx×√3x=√32x2∴y=12当2≤x≤4时,点M在BC上y=12AN⋅BE=12x×2√3=√3x综上所述,当0≤x<2时的函数图象是开口向上的抛物线的一部分,当2≤x≤4时,函数图象是直线的一部分故选:A.2.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC=.解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用两点之间线段最短,得到P A﹣PE≤AE.∴y的最大值为AE∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25设BE的长度为t则AB=t+1∴(t+1)2+t2=25即:t2+t﹣12=0∴(t+4)(t﹣3)=0解得t=﹣4或t=3由于t>0∴t=3∴AB=t+2=3+2=5,AD=BC=3×2=6.故答案为:6.3.如图①,在△ABC中,AB=AC,AD⊥BC于点D(BD>AD),动点P从B点出发,沿折线BA→AC方向运动,运动到点C停止,设点P的运动路程为x,△BPD的面积为y,y与x的函数图象如图②,则BC的长为.解:由题意得:AB+AC=2√13,△ABD的面积=3∵AB=AC∴AB=AC=√13∵AD⊥BC∴∠ADB=90°,BC=2BD∴AD2+BD2=AB2∴AD2+BD2=13∵△ABD的面积=3∴12AD•BD=3∴AD•BD=6∴(AD+BD)2=AD2+2BD•AD+BD2=13+2×6=25∴AD+BD=5或AD+BD=﹣5(舍去)∵AD2+BD2=AB2∴BD2+(5﹣BD)2=13∴BD=2或BD=3当BD=2时,AD=5﹣BD=3(舍去)当BD=3时,AD=5﹣BD=2∴BC=2BD=6故答案为:6.4.如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y 轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F 以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.(1)求直线AD的解析式;(2)连接MN,求△MDN的面积S与运动时间t的函数关系式;(3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.(1)解:解方程x2﹣4x﹣12=0得:x1=6,x2=﹣2∴OC=6∵四边形AOCB是菱形,∠AOC=60°∴OA=OC=6,∠BOC=1∠AOC=30°2∴CD=OC•tan30°=6×√3=2√33∴D(6,2√3)过点A作AH⊥OC于H∵∠AOH=60°OA=3,AH=OA•sin60°=6×√32=3√3∴OH=12∴A(3,3√3)设直线AD的解析式为y=kx+b(k≠0)代入A(3,3√3),D(6,2√3)得:{3k+b=3√36k+b=2√3解得:{k=−√3 3b=4√3∴直线AD的解析式为y=−√33x+4√3;(2)解:由(1)知在Rt△COD中,CD=2√3,∠DOC=30°∴OD=2CD=4√3,∠EOD=90°﹣∠DOC=90°﹣30°=60°∵直线y=−√33x+4√3与y轴交于点E∴OE=4√3∴OE=OD∴△EOD是等边三角形∴∠OED=∠EDO=∠BDF=60°,ED=OD=4√3∴∠OFE=30°=∠DOF∴DO=DF=4√3①当点N在DF上,即0≤t≤2√3时由题意得:DM=OD−OM=4√3−t,DN=4√3−2t过点N作NP⊥OB于P则NP=DN×sin∠PDN=DN×sin60°=(4√3−2t)×√32=6−√3t∴S=12DM×NP=12(4√3−t)×(6−√3t)=√32t2﹣9t+12√3;②当点N在DE上,即2√3<t≤4√3时由题意得:DM=OD﹣OM=√3−t,DN=2t﹣4√3过点N作NT⊥OB于T则NT =DN •sin ∠NDT =DN •sin60°=(2t ﹣4√3)×√32=√3t −6 ∴S =12DM ⋅NT =12(4√3−t)(√3t −6)=−√32t 2+9t −12√3; 综上,S ={√32t 2−9t +12√3(0≤t ≤2√3)−√32t 2+9t −12√3(2√3<t ≤4√3);(3)解:存在,分情况讨论:①如图,当AN 是直角边时,则CN ⊥EF ,过点N 作NK ⊥CF 于K∵∠NFC =30° OE =4√3 ∴∠NCK =60° OF =√3OE =12 ∴CF =12﹣6=6 ∴CN =12CF =3∴CK =CN ×cos60°=3×12=32 NK =CN ×sin60°=3×√32=3√32 ∴将点N 向左平移32个单位长度,再向下平移3√32个单位长度得到点C ∴将点A 向左平移32个单位长度,再向下平移3√32个单位长度得到点Q∵A(3,3√3) ∴Q (32,3√32); ②如图,当AN 是对角线时,则∠ACN =90°,过点N 作NL ⊥CF 于L∵OA =OC ,∠AOC =60° ∴△AOC 是等边三角形 ∴∠ACO =60°∴∠NCF=180°﹣60°﹣90°=30°=∠NFC∴CL=FL=12CF=3∴NL=CL•tan30°=3×√33=√3∴将点C向右平移3个单位长度,再向上平移√3个单位长度得到点N ∴将点A向右平移3个单位长度,再向上平移√3个单位长度得到点Q ∵A(3,3√3)∴Q(6,4√3);∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是(32,3√32)或(6,4√3).练习题1.如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP 长与运动时间t(单位:s)的关系如图2,则AC的长为()A.15√52B.√427C.17D.5√32.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2√3)B.(4,4)C.(4,2√5)D.(4,5)3.如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC 的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是()A B C D4.如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A B C D5.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ 的面积为y,则能反映y与x之间函数关系的图象是()A B C D6.如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为.7.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是平面内一个动点,且AP=3,Q 为BP的中点,在P点运动过程中,设线段CQ的长度为m,则m的取值范围是.8.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.=48cm2;③当14<t<22时,y 给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.9.如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,求AC•EF的值.10.在平面直角坐标系中,O为原点,菱形ABCD的顶点A(√3,0),B(0,1),D(2√3,1),矩形EFGH的顶点E(0,12),F(−√3,12),H(0,32).(1)填空:如图①,点C的坐标为点G的坐标为;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当2√33≤t≤11√34时,求S的取值范围(直接写出结果即可).11.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求CFBG的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.12.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC 的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF 时,求线段CF的长;①当m=13②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y 与m的关系式.参考答案1.C.2.C.3.A.4.A.5.B.6.8.7.72≤m≤132.8.①③⑤.9.30.10.(1)(√3,2)(−√3,32);(2)当2√33≤t≤11√34时,则√316≤S≤√3.11.(1)√2;(2)BE=2MN MN⊥BE (3)9π.12.(1)①√23;②h=﹣m2+m=﹣(m−12)2+14,∴m=12时,h最大值是14;(2)y={1−12m−1−m2(1+m)+m2(0≤m≤12) 1+m22m2+2m(m>12).。
人教版九年级数学中考动点问题专项练习及参考答案
人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。
中考数学高频考点《动点综合问题》专项测试卷-带答案
中考数学高频考点《动点综合问题》专项测试卷-带答案(16道)一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .484.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x 菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C.D.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中O为原点35OA OB==点C为平面内一动点32BC=连接AC点M是线段AC上的一点且满足:1:2CM MA=.当线段OM取最大值时点M的坐标是()A.36,55⎛⎫⎪⎝⎭B.365,555C.612,55⎛⎫⎪⎝⎭D.6125,55510.(2023·广东深圳·统考中考真题)如图1 在Rt ABC△中动点P从A点运动到B点再到C点后停止速度为2单位/s 其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A155B427C.17D.5311.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中60A∠=︒4AB=动点M N同时从A 点出发点M以每秒2个单位长度沿折线A B C--向终点C运动点N以每秒1个单位长度沿线段AD向终点D运动当其中一点运动至终点时另一点随之停止运动.设运动时间为x秒AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A .B .C .D .12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C.D.13.(2023·河南·统考中考真题)如图1 点P从等边三角形ABC的顶点A出发沿直线运动到三角形内部一点再从该点沿直线运动到顶点B.设点P运动的路程为x PByPC图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.43D.23二解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC中①C=90° 点M从点C出发沿CB方向以1cm/s 的速度匀速运动到达点B停止运动在点M的运动过程中过点M作直线MN交AC于点N且保持①NMC=45° 再过点N作AC的垂线交AB于点F连接MF将①MNF关于直线NF对称后得到①ENF已知AC=8cm BC=4cm设点M运动时间为t(s)①ENF与①ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中能否使得四边形MNEF为正方形?如果能求出相应的t值如果不能说明理由(2)求y关于t的函数解析式及相应t的取值范围(3)当y取最大值时求sin①NEF的值.AB=点O是对角线AC的中点动点P 15.(2023·吉林·统考中考真题)如图,在正方形ABCD中4cmQ分别从点A B同时出发点P以1cm/s的速度沿边AB向终点B匀速运动点Q以2cm/s的速度沿折线-向终点D匀速运动.连接PO并延长交边CD于点M连接QO并延长交折线DA ABBC CD-于点N连接PQ QM MN NP得到四边形PQMN.设点P的运动时间为x(s)(04<<)四边形PQMN的x面积为y(2cm)(1)BP的长为__________cm CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时直接写出x的值.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .参考答案一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据菱形的性质求出各点坐标 分M 的横坐标x 在01 12 23~之间三个阶段 用含x 的代数式表示出PMN 的底和高 进而求出分段函数的解析式 根据解析式判断图象即可. 【详解】解:菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 ∴2AB AD == 3OA =∴()2222231OB AB OA --= ∴123OC OB BC =+=+=∴(3A ()10B , ()3,0C 设直线AB 的解析式为y kx b =+ 将(3A ()10B ,代入 得: 03k b b +=⎧⎪⎨=⎪⎩ 解得33k b ⎧=-⎪⎨=⎪⎩ ∴直线AB 的解析式为33y x =-MN y ∥轴∴N 的横坐标为x(1)当M 的横坐标x 在01之间时 点N 在线段AB 上 PMN 中MN 上的高为1x + ∴(,33N x x ∴(3333MN x x -+∴()()2113313122PMNS MN x x x x =⋅+=⋅+= ∴该段图象为开口向上的抛物线(2)当M 的横坐标x 在12之间时 点N 在线段BC 上 PMN 中3MN = MN 上的高为1x + ∴()()113313122PMNS MN x x x =⋅+=+=∴该段图象为直线(3)当M 的横坐标x 在23~之间时 点N 在线段BC 上 PMN 中MN 上的高为1x + 由(3D ()3,0C 可得直线CD 的解析式为333y x =-+∴(,333M x x + (),0N x ∴333MN x =-+ ∴()(()21133313331322PMN S MN x x x x =⋅+=-+⋅+=++ ∴该段图象为开口向下的抛物线观察四个选项可知 只有选项A 满足条件故选A .【点睛】本题考查动点问题的函数图象 涉及坐标与图形 菱形的性质 二次函数 一次函数的应用等知识点 解题的关键是分段求出函数解析式.2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .【答案】D【分析】根据速度与时间的关系即可得出答案.【详解】解:刚开始速度随时间的增大而增大 匀速跑一段时间后减速到① 然后再加速再匀速到① 由于体力原因 应该第一个50米速度快 用的时间少 第二个50米速度慢 用的时间多故他的速度大小v (m/s )随时间t (s )变化的图像可能是D .故选:D .【点睛】本题主要考查函数的图象 要根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件 结合实际意义得出正确的结论.3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .48【答案】B 【分析】根据点D 运动的路径长为x 在图中表示出来 设,25AE z BE z ==- 在直角三角形中 找到等量关系 求出未知数的值 得到BDE △的值.【详解】解:当10x =时 由题意可知10,5AD CD ==在Rt CDB △中 由勾股定理得22222520425BD CD BC =+=+=设,25AE z BE z ==-222(25)50625BE z z z ∴=-=-+在Rt ADE △中 由勾股定理得2222100DE AD AE z =-=-在Rt DEB △中 由勾股定理得222BD DE BE =+即2242510050625z z z =-+-+解得6z =6,19DE BE ∴==1198762BDE a S ∴==⨯⨯=当25x =时 由题意可知 10CD BD ==设,25BE q AE q ==-222(25)62550AE q q q =-=-+在Rt CDA △中 由勾股定理得222221510325AD AC CD =+=+=在Rt BDE △中由勾股定理得2222100DB BD BE q =-=-Rt DEA 中 由勾股定理得222AD DE AE =+即2232510062550q q q =-+-+解得8q =6DE ∴=168242BDE b S ∴==⨯⨯= 762452a b ∴-=-=.故选:B .【点睛】本题主要考查勾股定理 根据勾股定理列出等式是解题的关键 运用了数形结合的思想解题. 4.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】B【分析】求出MN 在O 点左侧时的两段图象 即可得出结论.【详解】解:当MN 在O 点左侧 即:2t <时:①当正方形EFGH 的边GH 在AOB 的外部时 重叠部分为矩形 如图:设,HE FG 分别交AB 于点,I K①垂直于BC 的直线MN 从AB 出发 沿BC 3 ①3IE FK t ==①在矩形ABCD 中 4AB =43BC =①228AC AB BC =+=①4OA OB AB ===①ABO 为等边三角形①60OAB OBA ∠=∠=︒①tan60AI BK IE t ==÷︒=①42IK t =- ①()23422343S IK IE t t t t =⋅=-=-+ 图象为开口向下的一段抛物线①当正方形EFGH 的边GH 在AOB 的内部时 与AOB 重叠部分即为正方形EFGH 如图:由①可知:42EF IK t ==-①()242S t =- 图象是一段开口向上的抛物线当MN 过点O 时 即2t =时 ,E F 重合 此时 0S =综上:满足题意的只有B 选项故选B .【点睛】本题考查动点的函数图象问题.解题的关键是确定动点的位置 利用数形结合和分类讨论的思想进行求解.5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】A【分析】分04t ≤< 48t ≤< 812t ≤<三种情况 分别求出函数解析即可判断.【详解】解:过点D 作DH CB ⊥于H①5DE DF == 8EF = ①142EH FH EF === ①223DH DE EH =-当04t ≤<时如图,重叠部分为EPQ △ 此时EQ t = PQ DH ∥①EPQ EDH ∽ ①PQ EQ DH EH= 即34PQ t = ①34PQ t = ①2133248S t t t =⨯= 当48t ≤<时如图,重叠部分为四边形PQC B '' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=- 8FC t '=-①PB DE '∥①PB F DCF '∽ ①2PB F DCF S B F SCF ''⎛⎫= ⎪⎝⎭又183122DCFS =⨯⨯=①212128PB F S t '-⎛⎫= ⎪⎝⎭ ①()231216PB F S t '=-①DH BC ⊥ 90A B C '''∠=︒①A C DH ''∥①C QF HFD '∽①2C QF HFD S C F S HF ''⎛⎫= ⎪⎝⎭ 即2814432C QF S t '-⎛⎫= ⎪⎝⎭⨯⨯ ①()2388C QF S t '=-①()()22233331283168162PB F C QF S S S t t t t ''=-=---=-++当 812t ≤<时如图,重叠部分为四边形PFB ' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=-①PB DE '∥①PB F DCF '∽①2PB F DCF S B F S CF ''⎛⎫= ⎪⎝⎭ 即212128PB FS t '-⎛⎫= ⎪⎝⎭①()231216PB F S S t '==-综上 ()()()()22230483334816231281216t t S t t t t t ⎧≤<⎪⎪⎪=-++≤<⎨⎪⎪-≤<⎪⎩①符合题意的函数图象是选项A .故选:A .【点睛】此题结合图像平移时面积的变化规律 考查二次函数相关知识根据平移点的特点列出函数表达式是关键 有一定难度.6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分三种情况分别求出S 与x 的函数关系式 根据函数的类型与其图象的对应关系进行判断即可.【详解】解:①60MAN ∠=︒ 6AC AB ==①ABC 是边长为6的正三角形①AD 平分MAN ∠①30MAD NAD ∠=∠=︒ AD BC ⊥ 3CD DB ==①当矩形EFGH 全部在ABC 之中 即由图1到图2 此时03x <≤①EG AC ∥①30MAD AGE ∠=∠=︒①30NAD AGE ∠=∠=︒①AE EG x ==在Rt AEF 中 60EAF ∠=︒ ①33EF AE =①23S = ①如图3时 当AE AF GE AF AF CF AC +=+=+= 则162x x += 解得4x = 由图2到图3 此时34x <≤如图4 记BC EG 的交点为Q ,则EQB △是正三角形①6EQ EB BQ x ===-①()626GQ x x x =--=- 而60PQG ∠=︒ ①)3326PG QG x ==-①PQG EFHG S S S =-矩形())231263262x x =-⨯-- 233123183x =+- ①如图6时 6x = 由图3到图6 此时46x <≤如图5 同理EKB △是正三角形①6EK KB EB x ===- 162FC AC AF x =-=- 3EF x = ①EKCF S S =梯形1136622x x ⎛⎫=-+- ⎪⎝⎭ 23333x x =+ 因此三段函数的都是二次函数关系 其中第1段是开口向上 第2段 第3段是开口向下的抛物线 故选:A .【点睛】本题考查动点问题的函数图象 求出各种情况下S 与x 的函数关系式是正确解答的前提 理解各种函数所对应的图象的形状是解决问题的关键.7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m【答案】C【分析】根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a = 作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F ,则可得33m AF AB == ))333m PE PB AB PA a t =-=- 从而得到22334216PBQa St a ⎛⎫=--+ ⎪⎝⎭ 根据PBQS的最大值为3求出a 的值 从而得到4m 43m 23m AB BC AF ===,, 最后由平行四边形的面积公式进行计算即可得到答案.【详解】解:根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a =作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F120ABC ∠=︒ 60ABF ∴∠=︒33m AF AB ∴== ))333m PE AB PA a t ==-=- )2221133333322444216PBQa SBQ PE t a t t at t a ⎛⎫∴=⋅⋅=-=-+=--+ ⎪⎝⎭ 由图象可得PBQS 的最大值为323316a ∴=解得:4a =或4a =-(舍去) 4a ∴=4m 43m 23m AB BC AF ∴===,,∴平行四边形ABCD 的面积为:2432324m BC AF ⋅=故选:C .【点睛】本题主要考查了平行四边形的性质 解直角三角形 二次函数的图象与性质 熟练掌握平行四边形的性质 二次函数的图象与性质 添加适当的辅助线构造直角三角形 是解题的关键.8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】先证明菱形PQMN 是边长为x 一个角为60︒的菱形 找到临界点 分情况讨论 即可求解. 【详解】解:作PD AC ⊥于点D 作⊥QE AB 于点E由题意得AP x = 3AQ x = ①3cos30AD AP =⋅︒= ①12AD DQ AQ ==①PD 是线段AQ 的垂直平分线 ①30PQA A ∠=∠=︒①60QPE ∠=︒ PQ AP x == ①132QE AQ x == PQ PN MN QM x ==== 当点M 运动到直线BC 上时此时 BMN 是等边三角形 ①113AP PN BN AB ==== 1x = 当点Q N 运动到与点C B 、重合时①1322AP PN AB === 32x = 当点P 运动到与点B 重合时 ①3AP AB == 3x = ①当01x <≤时 233y x x ==当312x <≤时 如图,作FG AB ⊥于点G 交QM 于点R则32BN FN FB x ===- 33FM MS FS x ===- )333FR x =- ①())2231373939333332y x x -⋅--=+当332x <<时 如图,作HI AB ⊥于点I则3BP PH HB x ===- )33HI x =- ①())21333393332y x x =⋅--= 综上 y 与x 之间函数关系的图象分为三段 当01x <≤时 是开口向上的一段抛物线 当312x <≤时 是开口向下的一段抛物线 当332x <≤时 是开口向上的一段抛物线 只有选项A 符合题意 故选:A .【点睛】本题主要考查了动点问题的函数的图象 二次函数的图形的性质 等边三角形的性质 菱形的性质 三角形的面积公式 利用分类讨论的思想方法解答和熟练掌握抛物线的性质是解题的关键.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中 O 为原点 35OA OB == 点C 为平面内一动点 32BC =连接AC 点M 是线段AC 上的一点 且满足:1:2CM MA =.当线段OM 取最大值时 点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555C .612,55⎛⎫⎪⎝⎭D .6125,555 【答案】D【分析】由题意可得点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫ ⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E 先证OAM DAC ∽ 得23OM OA CD AD == 从而当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时 CD 取得最大值 然后分别证BDO CDF ∽ AEM AFC ∽ 利用相似三角形的性质即可求解.【详解】解:①点C 为平面内一动点 32BC = ①点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E①35OA OB ==①AD OD OA =+=95①23OA AD = ①:1:2CM MA = ①23OA CMAD AC==①OAM DAC ∠∠= ①OAM DAC ∽ ①23OM OA CD AD == ①当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时CD 取得最大值①35OA OB == OD =35①BD =()222235153522OB OD ⎛⎫++ ⎪ ⎪⎝⎭①9CD BC BD =+= ①23OM CD = ①6OM =①y 轴x ⊥轴 CF OA ⊥ ①90DOB DFC ∠∠==︒ ①BDO CDF ∠∠= ①BDO CDF ∽①OB BDCF CD=153529=解得185CF =同理可得 AEM AFC ∽①23ME AM CF AC ==23185= 解得125ME =①22221256565OE OM ME ⎛⎫=-- ⎪ ⎪⎝⎭①当线段OM 取最大值时 点M 的坐标是65125⎝⎭,故选D .【点睛】本题主要考查了勾股定理 相似三角形的判定及性质 圆的一般概念以及坐标与图形 熟练掌握相似三角形的判定及性质是解题的关键.10.(2023·广东深圳·统考中考真题)如图1 在Rt ABC △中 动点P 从A 点运动到B 点再到C 点后停止 速度为2单位/s 其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为( )A 155B 427C .17D .53【答案】C【分析】根据图象可知0=t 时 点P 与点A 重合 得到15AB = 进而求出点P 从点A 运动到点B 所需的时间 进而得到点P 从点B 运动到点C 的时间 求出BC 的长 再利用勾股定理求出AC 即可. 【详解】解:由图象可知:0=t 时 点P 与点A 重合 ①15AB =①点P 从点A 运动到点B 所需的时间为1527.5s ÷= ①点P 从点B 运动到点C 的时间为11.57.54s -= ①248BC =⨯=在Rt ABC △中:2217AC AB BC += 故选C .【点睛】本题考查动点的函数图象 勾股定理.从函数图象中有效的获取信息 求出,AB BC 的长 是解题的关键.11.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD 中 60A ∠=︒ 4AB = 动点M N 同时从A 点出发 点M 以每秒2个单位长度沿折线A B C --向终点C 运动 点N 以每秒1个单位长度沿线段AD 向终点D 运动 当其中一点运动至终点时 另一点随之停止运动.设运动时间为x 秒 AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是( )A .B .C .D .【答案】A【分析】连接BD 过点B 作BE AD ⊥于点E 根据已知条件得出ABD △是等边三角形 进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒ 当04t <<时 M 在AB 上 当48t ≤<时 M 在BC 上 根据三角形的面积公式得到函数关系式【详解】解:如图所示 连接BD 过点B 作BE AD ⊥于点E 当04t <<时 M 在AB 上菱形ABCD 中 60A ∠=︒ 4AB = ①AB AD =,则ABD △是等边三角形 ①122AE ED AD === 33BE AE =①2,AM x AN x ==①2AM ABAN AE== 又A A ∠=∠ ①AMN ABE ∽ ①90ANM AEB ∠=∠=︒ ①223MN AM AN x - ①21332y x x x =当48t ≤<时 M 在BC 上①1123322y AN BE x x =⨯=⨯ 综上所述 04t <<时的函数图象是开口向上的抛物线的一部分 当48t ≤<时 函数图象是直线的一部分 故选:A .【点睛】本题考查了动点问题的函数图象 二次函数图象的性质 一次函数图象的性质 菱形的性质 勾股定理 等边三角形的性质与判定 相似三角形的性质与判定 熟练掌握以上知识是解题的关键. 12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据ADMDCNBMNABCD S S S SS=---正方形 求出S 与x 之间函数关系式 再判断即可得出结论.【详解】解:ADMDCNBMNABCD S S SSS=---正方形1114444(4)(4)222x x x x =⨯-⨯-⨯---21282x x =-+ 21(2)62x =-+ 故S 与x 之间函数关系为二次函数 图像开口向上 2x =时 函数有最小值6 故选:A .【点睛】本题考查了正方形的性质 二次函数的图像与性质 本题的关键是求出S 与x 之间函数关系式 再判断S 与x 之间函数类型.13.(2023·河南·统考中考真题)如图1 点P 从等边三角形ABC 的顶点A 出发 沿直线运动到三角形内部一点 再从该点沿直线运动到顶点B .设点P 运动的路程为x PBy PC= 图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A .6B .3C .43D .23【答案】A【分析】如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时 PB PC = 23AO = 易知30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为3 可知23AO OB == 过点O 作OD AB ⊥ 解直角三角形可得cos303AD AO =⋅︒= 进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时1PB PC= ①PB PC = 3AO =又①ABC 为等边三角形①60BAC ∠=︒ AB AC =①()SSS APB APC △≌△①BAO CAO ∠=∠①30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为43①3OB = 即23AO OB ==①30BAO ABO ∠=∠=︒过点O 作OD AB ⊥①AD BD =,则cos303AD AO =⋅︒=①6AB AD BD =+=即:等边三角形ABC 的边长为6故选:A .【点睛】本题考查了动点问题的函数图象 解决本题的关键是综合利用图象和图形给出的条件.2二 解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC 中 ①C =90° 点M 从点C 出发沿CB 方向以1cm /s的速度匀速运动 到达点B 停止运动 在点M 的运动过程中 过点M 作直线MN 交AC 于点N 且保持①NMC =45° 再过点N 作AC 的垂线交AB 于点F 连接MF 将①MNF 关于直线NF 对称后得到①ENF 已知AC =8cm BC =4cm 设点M 运动时间为t (s ) ①ENF 与①ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中 能否使得四边形MNEF 为正方形?如果能 求出相应的t 值 如果不能 说明理由(2)求y 关于t 的函数解析式及相应t 的取值范围(3)当y 取最大值时 求sin ①NEF 的值.【答案】(1)85(2)⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y (3310 【详解】试题分析:(1)由已知得出CN =CM =t FN ①BC 得出AN =8﹣t 由平行线证出①ANF ①①ACB 得出对应边成比例求出NF =12AN =12(8﹣t ) 由对称的性质得出①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t 由正方形的性质得出OE =ON =FN 得出方程 解方程即可(2)分两种情况:①当0<t ≤2时 由三角形面积得出2124y t t =-+ ①当2<t ≤4时 作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH 得出GH =23NF =13(8﹣t ) 由三角形面积得出21(8)12y t =-(2<t ≤4) (3)当点E 在AB 边上时 y 取最大值 连接EM ,则EF =BF EM =2CN =2CM =2t EM =2BM 得出方程 解方程求出CN =CM =2 AN =6 得出BM =2 NF =12AN =3 因此EM =2BM =4 作FD ①NE 于D由勾股定理求出EB 22EM BM +=25 求出EF =12EB 5 由等腰直角三角形的性质和勾股定理得出DF 的长 在Rt①DEF 中 由三角函数定义即可求出sin①NEF 的值.试题解析:解:(1)能使得四边形MNEF 为正方形 理由如下:连接ME 交NF 于O 如图1所示:①①C =90° ①NMC =45° NF ①AC ①CN =CM =t FN ①BC ①AN =8﹣t ①ANF ①①ACB ①84AN AC NF BC == =2 ①NF =12AN =12(8﹣t ) 由对称的性质得:①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t ①四边形MNEF 是正方形 ①OE =ON =FN ①t =12×12(8﹣t ) 解得:t =85即在点M 的运动过程中 能使得四边形MNEF 为正方形 t 的值为85(2)分两种情况:①当0<t ≤2时 y =12×12(8﹣t )×t =2124t t -+ 即2124y t t =-+(0<t ≤2) ①当2<t ≤4时 如图2所示:作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH ①GH =23NF =13(8﹣t ) ①y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t - 即21(8)12y t =-(2<t ≤4) 综上所述:⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y .(3)当点E 在AB 边上时 y 取最大值 连接EM 如图3所示:则EF =BF EM =2CN =2CM =2t EM =2BM ①BM =4﹣t ①2t =2(4﹣t ) 解得:t =2 ①CN =CM =2 AN =6 ①BM =4﹣2=2 NF =12AN =3 ①EM =2BM =4 作FD ①NE 于D ,则EB 22EM BM +2242+=5 ①DNF 是等腰直角三角形①EF =12EB 5 DF =22 NF 32 在Rt①DEF 中 sin①NEF =DF EF 3225310【点睛】本题是四边形综合题目 考查了正方形的判定与性质 相似三角形的判定与性质 勾股定理 三角函数 三角形面积的计算 等腰直角三角形的判定与性质等知识 本题综合性强 有一定难度. 15.(2023·吉林·统考中考真题)如图,在正方形ABCD 中 4cm AB = 点O 是对角线AC 的中点 动点P Q 分别从点A B 同时出发 点P 以1cm/s 的速度沿边AB 向终点B 匀速运动 点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M 连接QO 并延长交折线DA AB -于点N 连接PQ QM MN NP 得到四边形PQMN .设点P 的运动时间为x (s )(04x <<) 四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式 并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时 直接写出x 的值.【答案】(1)()4x - x(2)()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)43x =或83x = 【分析】(1)根据正方形中心对称的性质得出,OM OP OQ ON == 可得四边形PQMN 是平行四边形 证明ANP CQM ≌即可(2)分02x <≤ 24x <≤两种情况分别画出图形 根据正方形的面积 以及平行四边形的性质即可求解 (3)根据(2)的图形 分类讨论即可求解.【详解】(1)解:依题意 1AP x x =⨯=()cm ,则()4PB AB AP x cm =-=-①四边形ABCD 是正方形①,90AD BC DAB DCB ∠=∠=︒∥①点O 是正方形对角线AC 的中点①,OM OP OQ ON ==,则四边形PQMN 是平行四边形①MQ PN = MQ NP ∥①PNQ MQN ∠=∠又AD BC ∥①ANQ CQN ∠=∠①ANP MQC ∠=∠在,ANP CQM 中ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩①ANP CQM ≌①()cm MC AP x ==故答案为:()4x - x .(2)解:当02x <≤时 点Q 在BC 上由(1)可得ANP CQM ≌同理可得PBQ MDN ≌①4,2,PB x QB x MC x =-== 42QC x =-则222MCQ BPQ y AB S S =--()()164242x x x x =--⨯--241216x x =-+当24x <≤时 如图所示则AP x = 224AN CQ x CB x ==-=-()244PN AP AN x x x =-=--=-+①()44416y x x =-+⨯=-+综上所述 ()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)依题意 ①如图,当四边形PQMN 是矩形时 此时90PQM ∠=︒①90PQB CQM ∠+∠=︒①90BPQ PQB ∠+∠=︒①BPQ CQM ∠=∠又B BCD ∠=∠①~BPQ CQM ①BP BQ CQ CM= 即4242x x x x-=- 解得:43x =当四边形PQMN 是菱形时,则PQ MQ =①()()()22224242x x x x -+=+-解得:0x =(舍去)①如图所示 当PB CQ =时 四边形PQMN 是轴对称图形424x x -=- 解得83x = 当四边形PQMN 是菱形时,则4PN PQ == 即44x -+= 解得:0x =(舍去)综上所述 当四边形PQMN 是轴对称图形时 43x =或83x =. 【点睛】本题考查了正方形的性质 动点问题 全等三角形的性质与判定 矩形的性质 平行四边形的性质与判定 菱形的性质 轴对称图形 熟练掌握以上知识是解题的关键.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HABCDEOlA ′(二)线动问题2,在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.C解决动态几何问题的常见方法有:一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O1和⊙O2内切于A ,⊙O1的半径为3,⊙O2的半径为2,点P 为⊙O1上的任一点(与点A不重合),直线PA 交⊙O2于点C ,PB 切⊙O2于点B ,则PC BP的值为 (A )2 (B )3 (C )23(D )26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O 中,C 为弧AB 的中点,D 为弧AC 上任一点(与A 、C 不重合),则(A )AC+CB=AD+DB (B) AC+CB<AD+DB(C) AC+CB>AD+DB (D) AC+CB 与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和CD 与大圆分别交于点B 、E ,则下列结论中正确的是( * ) (A )AB DE = (B )AB DE >(C )AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 .ABMND CBA中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),例1.在Rt ABCQ是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
九年级中考数学动点问题压轴题专题训练(含答案)
九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。
初三数学中考复习 动点或最值问题专题训练及答案
初三数学中考复习 动点或最值问题 专题复习训练题一、选择题1.如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A ′BC ′关于直线l 对称,D 为线段BC ′上一动点,则AD +CD 的最小值是( A )A .4B .3 2C .2 3D .2+ 32.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( C )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)3.已知a ≥2,m 2-2am +2=0,n 2-2an +2=0,则(m -1)2+(n -1)2的最小值是( A )A .6B .3C .-3D .04.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53)D .(3,2)5.如图,在△ABC 中,∠B =90°,tanC =34,AB =6 cm.动点P 从点A 开始沿边AB 向点B 以1 cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2 cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ 的最大面积是( C )A.18 cm2B.12 cm2C.9 cm2D.3 cm26.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD ⊥AC于点D,点E在P的右侧,且PE=1,连接CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是( C )A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题7.如图,正方形ABCD 的边长是8,P 是CD 上的一点,且PD 的长为2,M 是其对角线AC 上的一个动点,则DM +MP 的最小值是___10__.8.如图,已知点A 是双曲线y =6x 在第三象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C 的位置也在不断变化,但点C 始终在双曲线y =k x 上运动,则k 的值是9.如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM =3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O.若△OMN 是直角三角形,则DO 的长是__256或5013__.10.如图,边长为4的正方形ABCD 内接于点O ,点E 是AB ︵上的一动点(不与A ,B 重合),点F 是BC ︵上的一点,连接OE ,OF ,分别与AB ,BC 交于点G ,H ,且∠EOF =90°,有以下结论:①AE ︵=BF ︵;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+ 2.其中正确的是__①②__.(把你认为正确结论的序号都填上)11. 如图,在平面直角坐标系中,已知点A(1,0),B(1-a ,0),C(1+a ,0)(a >0),点P 在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC =90°,则a 的最大值是__6__.12. 如图,在平面直角坐标系中,已知点A ,B 的坐标分别为(8,0),(0,23),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC 向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP,EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为3)_____.13. 如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(-1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为__4__.三、解答题14.如图,抛物线y =12x 2+bx -2与x 轴交于A ,B 两点,与y 轴交于C 点,且A(-1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.解:(1)∵点A(-1,0)在抛物线y =12x 2+bx -2上,∴12×(-1)2+b ×(-1)-2=0,解得b =-32,∴抛物线的解析式为y =12x 2-32x -2,∵y =12x 2-32x -2=12(x -32)2-258,∴顶点D 的坐标为(32,-258)(2)作出点C 关于x 轴的对称点C ′,则C ′(0,2),连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,CD 一定,当MC +MD 的值最小时,△CDM 的周长最小,设直线C ′D 的解析式为y =ax +b(a ≠0),则⎩⎨⎧b =2,32a +b =-258,解得a =-4112,b =2,∴y C ′D =-4112x +2,当y =0时,-4112x +2=0,则x =2441,∴M(2441,0)。
九年级中考数学几何动点问题专项训练(含答案)
九年级中考数学几何动点问题专项训练1如图,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 向点A 匀速运动,同时点Q 由A 出发沿AC 向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4).第1题图(1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.解:(1)由题意知BP =2t ,AP =10-2t ,AQ =2t ,∵PQ ∥BC ,∴△APQ ∽△ABC ,∴=,AP AB AQ AC即=,解得t =,10-2t 102t 8209即当t 为 s 时,PQ ∥BC ;209(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴AB 2=AC 2+BC 2,∴△ABC 为直角三角形,∴∠C =90°,如解图,过点P 作PD ⊥AC 于点D,第1题解图则PD ∥BC ,∴△APD ∽△ABC ,∴=,AP AB PD BC∴=,10-2t 10PD 6∴PD =(10-2t ),35∴S =AQ ·PD = ·2t ·(10-2t )=-t 2+6t =-(t -)2+7.5,121235656552∵-<0,抛物线开口向下,有最大值,65∴当t = 秒时,S 有最大值,最大值是7.5 cm 2;52(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =S △ABC ,12即-t 2+6t =××8×6,651212整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0,∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.2.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 以每秒1个单位长度的速度由点A 向点B 匀速运动,到达B 点即停止运动.M ,N 分别是AD ,CD 的中点,连接MN .设点D 运动的时间为t .(1)判断MN 与AC 的位置关系;(2)求在点D 由点A 向点B 匀速运动的过程中,线段MN 所扫过区域的面积;(3)若△DMN 是等腰三角形,求t的值.第2题图解:(1)MN ∥AC .证明:在△ADC 中,M 是AD 的中点,N 是DC 的中点,∴MN ∥AC ;(2)如解图①,分别取△ABC 三边中点E ,F ,G 并连接EG ,FG ,第2题解图①根据题意,可知线段MN 扫过区域的面积就是▱AFGE 的面积.∵AC =6,BC =8,∴AE =3,GC =4,∵∠ACB =90°,∴S ▱AFGE =AE ·GC =12,∴线段MN 扫过区域的面积为12;(3)依题意可知,MD =AD ,DN =DC ,MN =AC =3.121212分三种情况讨论:(ⅰ)当MD =MN =3时,△DMN 为等腰三角形,此时AD =AC =6,∴t =6.(ⅱ)当MD =DN 时,AD =DC .如解图②,过点D 作DH ⊥AC 于点H ,则AH =AC =3,12第2题解图②∵cos A ==,AB =10,AH AD AC AB即=.3AD 610∴t =AD =5.(ⅲ)当DN =MN =3时,AC =DC ,如解图③,连接MC ,则CM ⊥AD.第2题解图③∵cos A ==,即=,AM AC AC AB AM 6610∴AM =,185∴t =AD =2AM =.365综上所述,当t =5或6或时,△DMN 为等腰三角形.3653.如图,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 出发,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从点A 出发经x (x >0)秒后,△ABP 的面积是y .(1)若AB =8厘米,BE =6厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =x ;当点P 在线段AD 125上时,y =32-4x .求y 关于x的函数表达式.第3题图解:(1)∵四边形ABCD 是矩形,∴∠ABE =90°,又∵AB =8,BE =6,∴AE ===10,22BE AB +2268+如解图①,过点B 作BH ⊥AE 于点H,第3题解图①∵S △ABE =AE ·BH =AB ·BE ,1212∴BH =,245又∵AP =2x ,∴y =AP ·BH =x (0<x ≤5);12245(2) ∵四边形ABCD 是矩形,∴∠B =∠C =90°,AB =DC , AD =BC ,∵E 为BC 中点,∴BE =EC ,∴△ABE ≌△DCE (SAS),∴AE =DE ,∵y =x (P 在ED 上), y =32-4x (P 在AD 上),125当点P 运动至点D 时,可联立得,,{y =125x y =32-4x )解得x =5,∴AE +ED =2x =10,∴AE =ED =5,当点P 运动一周回到点A 时,y =0,∴y =32-4x =0, 解得x =8,∴AE +DE +AD =16,∴AD =BC =6,∴BE =3,在Rt △ABE 中,AB ==4,22-BE AE 如解图②,过点B 作BN ⊥AE 于N ,则BN =,125第3题解图②∴y =x (0<x ≤2.5),125∴y =.{125x (0<x ≤5)32-4x (5≤x ≤8))4.如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连接CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G .(1)求证:△CDE ≌△CBF ;(2)当DE = 时,求CG 的长;12(3)连接AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.第4题图(1)证明:如解图,在正方形ABCD 中,DC =BC ,∠D = ∠CBA = ∠CBF = ∠DCB = 90°,第4题解图∴∠1+∠2= 90°,∵CF ⊥CE ,∴∠2+∠3= 90°,∴∠1= ∠3,在△CDE 和△CBF 中,,{∠D = ∠CBFDC =BC ∠1= ∠3)∴△CDE ≌△CBF (ASA);(2)解:在正方形ABCD 中,AD ∥BC ,∴△GBF ∽△EAF ,∴= ,BG AE BF AF由(1)知,△CDE ≌△CBF ,∴BF = DE = ,12∵正方形的边长为1,∴AF =AB +BF = ,32AE =AD -DE = ,12∴=,BG 121232∴BG =,16∴CG =BC -BG = ;56(3)解:不能.理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG ,∴AD -AE =BC -CG ,∴DE =BG ,由(1)知,△CDE ≌△CBF ,∴DE =BF ,CE =CF ,∴△GBF 和△ECF 是等腰直角三角形,∴∠GFB = 45°,∠CFE = 45°,∴∠CFA = ∠GFB +∠CFE = 90°,此时点F 与点B 重合,点D 与点E 重合,与题目条件不符,∴点E 在运动过程中,四边形CEAG 不能是平行四边形.5. 如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,AF =AB .14(1)求证:EF ⊥AG ;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当S △PAB =S △OAB 时,求△PAB周长的最小值.第5题图(1)证明:∵四边形ABCD 是正方形,∴AD =AB =BC ,∠EAF =∠ABG =90°,∵点E ,G 分别是边AD ,BC 的中点,AF =AB ,14∴=,=,AE AB 12AF BG 12∴=,AE AB AF BG又∵∠EAF =∠ABC =90°,∴△AEF ∽△BAG ,∴∠AEF =∠BAG ,又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°,∴∠EOA =90°,即EF ⊥AG ;(2)解:EF ⊥AG 仍然成立;(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接PA,第5题解图∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上(不含端点),作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P ,此时PA +PB =PA ′+PB =BA ′最小,即△PAB 的周长最小.∵正方形ABCD 的边长为4,∴AE =AD =2,AF =AB =1,1214∴EF ==,22AF AE 5OA ==,AE ·AF EF 255∵∠AMO =∠EOA ,∠EAO =∠EAO ,∴△EOA ∽△OMA ,∴=,AEOA OA AM ∴OA 2=AM ·AE ,∴AM ==,AE OA 225∴A ′A =2AM =,45∴BA ′==,22'AB A A 4265故△PAB 周长的最小值为4+.42656.如图,在Rt △ABC 中,∠ACB =90°,∠A =45°,AB =4cm.点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ ⊥AB 交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与△ABC 重叠部分图形的面积是y (cm 2),点P 的运动时间为x (s).(1)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(2)当0<x <2时,求y 关于x 的函数解析式;(3)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.第6题图解:(1)如解图①,延长FE 交AB 于点G ,由题意,得AP =2x ,∵D 为PQ 中点,∴DQ =DP =x ,∵四边形DEFQ 为正方形,∴DQ =DE =GP =x ,∵FG ⊥AB ,∠B =45°,∴△FGB 是等腰直角三角形,∴BG =FG =PQ =2x ,∴AP +PG +BG =AB ,即2x +x +2x =4,∴x =,45第6题解图①(2)当0<x ≤时,y =S 正方形DEFQ =DQ 2=x 2,45∴y =x 2,(0<x ≤)45如解图②,当<x ≤1时,设BC 交QF 于点M ,BC 交EF 于点N ,过点C 作CH 45⊥AB 于点H ,交FQ 于点K ,则CH =2,∵PQ =AP =2x ,∴CK =2-2x ,∴MQ =2CK =4-4x ,∴FM =x -(4-4x )=5x -4,∴y =S 正方形DEFQ -S △MNF =DQ 2-FM 2,12∴y =x 2-(5x -4)2=-x 2+20x -8,12232∴y =-x 2+20x -8 (<x ≤1) ,23245第6题解图②如解图③,当1<x <2时,PQ =PB =4-2x ,∴DQ =2-x ,∴y =S △DEQ =DQ 2,12∴y =(x -2)2,12∴y =x 2-2x +2(1<x <2),12第6题解图③(3)1<x <.32【解法提示】当Q 与C 重合时,E 为BC 的中点,2x =2,∴x =1;当Q 为BC的中点时,BQ =,PB =1,∴AP =3,∴2x =3,∴x =,∴x 的取值范围是2321<x <.327.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于A 、B 两34点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由.第7题图(1)证明:如解图,连接QP ,∵y =-x +3交坐标轴于A ,B 两点,34∴A (4,0),B (0,3),∴OA =4,OB =3,AB ==5,22OB OA ∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t 4∴=,AQ AB AP AO又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q的半径,∴AB 为⊙Q 的切线;第7题解图①(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t ,∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===,MA AC PA QA 45又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴=,∴m ==-t +4;7t 4-m 4516-35t 4354②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t,第7题解图②AC =4-m ,∴=,t 4-m 45∴m =-t +4;54综上所述,m 与t 的函数关系式为m =-t +4或m =-t +4;35454(3)解:存在,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).3827827232【解法提示】①如解图③,当⊙Q 在y 轴的右侧与y 轴相切,∴OQ =QP =3t ,∴OA =OQ +QA =3t +5t =8t =4,∴t =,12第1题解图③则m =-t +4=-,35438∴C 1(-,0);38m =-t +4=,54278∴C 2(,0);278②如解图④,当⊙Q 在y 轴的左侧与y 轴相切,OA =AQ -OQ =5t -3t =2t =4,∴t =2,第7题解图④则m =-t +4=-,354272∴C 3(-,0);272m =-t +4=,5432∴C 4(,0).32综上所述,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).38278272328.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =8,∠BAD =60°.点E 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD (或AD 的延长线)于点H ,得到矩形EFHG .设点E 运动的时间为t 秒.(1)求线段EF 的长(用含t 的代数式表示);(2)求点H 与点D 重合时t 的值;(3)设矩形EFHG 与菱形ABCD 重叠部分图形的面积为S 平方单位,求S 与t 之间的函数关系式.第8题图解:(1)由题意可知AE =2t ,0≤t ≤4,∵EF ⊥AD ,∠BAD =60°,∴sin ∠BAD ==,EF AE 32∴EF =AE =t ;323(2)如解图①,∵点H 与点D 重合,菱形ABCD 中,∠DAC =∠BA =30°,AD 12=AB =8,∴在Rt △ADG 中,DG =AD ·tan30°=8×=,33833∴在矩形FEGD 中,EF =DG =,833由(1)知EF ==t ,8333∴t =;83第8题解图①(3)①当0<t ≤时,点H 在AD 上,83∵AE =2t ,∠BAD =60°,∠DAC =30°,∴EF =t ,AH =HG =EF =3t ,AF =t ,333∴FH =AH -AF =2t ,∴S =EF ·FH =t ·2t =2t 2;33②如解图②,当<t ≤4时,点H 在AD 的延长线上,83设GH 与CD 交于点M ,由(2)知∠DAC =30°,∴在菱形ABCD 中,∠BAC =30°,∵EG ∥AD ,∴∠AGE =∠DAC =30°,∴∠BAC =∠AGE ,∴AE =EG ,∵AE =2t ,EF =t ,∠BAD =60°,3∴在Rt △AFE 中,AF =AE ·cos60°=2t ×=t ,12∴DF =8-t ,∵AE =EG =FH =2t ,∴DH =2t -(8-t )=3t -8,∵AB ∥CD ,∴∠HDM =∠BAD =60°,∴在Rt △DHM 中,HM =DH ·tan60°=(3t -8),3则DH =3t -8,HM =(3t -8),3第8题解图②∴S =S 矩形HGEF -S △DHM =EF ·FH -DH ·HM =2t 2-(3t -8)·(3t -8)123123=2t 2-(9t 2-48t +64)332=2t 2-t 2+24t -32393233=-t 2+24t -32,53233∴S 与t 之间的函数关系为S=⎧<≤⎪⎪⎨⎪+-<≤⎪⎩2280383(4).3t t。
中考动点问题专项训练(含详细解析)
中考动点问题专项训练(含详细解析)中考动点问题专项训练(含详细解析)⼀、解答题1. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是;同时,点从点出发沿⽅向,在射线上匀速运动,速度是,过点作交于点,连接,,交于点.设运动时间为,解答下列问题:(1)当为何值时,四边形是平⾏四边形;(2)设的⾯积为,求与之间的函数关系式;(3)是否存在某⼀时刻,使得的⾯积为矩形⾯积的;(4)是否存在某⼀时刻,使得点在线段的垂直平分线上.2. 已知:如图,在中,,,,点从点出发,沿向点匀速运动,速度为;过点作,交于点,同时,点从点出发,沿向点匀速运动,速度为;当⼀个点停⽌运动时,另⼀个点也停⽌运动,连接.设运动时间为,解答下列问题:(1)当为何值时,四边形为平⾏四边形?(2)设四边形的⾯积为,试确定与的函数关系式;若存在,请说明理由,若存在,求出的(3)在运动过程中,是否存在某⼀时刻,使四边形值,并求出此时的距离.3. 已知:和矩形如图①摆放(点与点重合),点,,在同⼀条直线上,,,.如图②,从图①的位置出发,沿⽅向匀速运动,速度为;与交于点.同时,点从点出发,沿⽅向匀速运动,速度为.过作,垂⾜为,交于,连接,,当点停⽌运动时,也停⽌运动.设运动时间为,解答下列问题:(1)当为何值时,?(2)设五边形的⾯积为,求与之间的函数关系式;若存在,求出的值;若不存在,请(3)在运动过程中,是否存在某⼀时刻,使五边形矩形说明理由;(4)在运动过程中,是否存在某⼀时刻,使点在的垂直平分线上?若存在,求出的值;若不存在,请说明理由.4. 如图,在中,,,点从点出发,在线段上以每秒的速度向点匀速运动.与此同时,点从点出发,在线段上以每秒的速度向点匀速运动.过点作,交于点,连接,.当点到达中点时,点与同时停⽌运动.设运动时间为秒().(1)当为何值时,.(2)设的⾯积为,求出与之间的函数关系式.(3)是否存在某⼀时刻,使?若存在,求出的值;若不存在,说明理由.5. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是,过点作交于点,同时,点从点出发沿⽅向,在射线上匀速运动,速度是,连接,,与交于点,设运动时间为.(1)当为何值时,四边形是平⾏四边形;(2)设的⾯积为,求与之间的函数关系式;(3)是否存在某⼀时刻,使得的⾯积为矩形⾯积的;(4)是否存在某⼀时刻,使得点在线段的垂直平分线上.6. 已知:如图①,在中,,,,点由出发沿⽅向向点匀速运动,速度为;点由出发沿⽅向向点匀速运动,速度为;连接.若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的⾯积为,求与之间的函数关系式;(3)是否存在某⼀时刻,使线段恰好把的周长和⾯积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图②,连接,并把沿翻折,得到四边形,那么是否存在某⼀时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.7. 已知:如图,是边长为的等边三⾓形,动点,同时从,两点出发,分别沿,⽅向匀速移动,它们的速度都是,当点到达点时,,两点停⽌运动,设点的运动时间(),解答下列各问题:(1)经过秒时,求的⾯积.(2)当为何值时,是直⾓三⾓形?(3)是否存在某⼀时刻,使四边形的⾯积是⾯积的三分之⼆?如果存在,求出的值;不存在请说明理由.8. 已知:如图,在平⾏四边形中,,,,点从点出发,沿⽅向匀速运动,速度为;点从点出发,沿⽅向匀速运动,速度为,连接并延长交的延长线于点,过作,垂⾜是,设运动时间为.(1)当为何值时,四边形是平⾏四边形?(2)证明:在,运动的过程中,总有;(3)是否存在某⼀时刻,使四边形的⾯积是平⾏四边形⾯积的⼀半?若存在,求出相应的值;若不存在,说明理由.9. 如图,在梯形中,,,,,.点从点出发沿折线⽅向向点匀速运动,速度为;点从点出发,沿⽅向向点匀速运动,速度为,,同时出发,且其中任意⼀点到达终点,另⼀点也随之停⽌运动,设点,运动的时间是.(1)当点在上运动时,如图(1),,是否存在某⼀时刻,使四边形是平⾏四边形?若存在,求出的值;若不存在,请说明理由;(2)当点在上运动时,如图(2),设的⾯积为,试求出与的函数关系式;(3)是否存在某⼀时刻,使的⾯积是梯形的⾯积的?若存在,求出的值;若不存在,请说明理由;(4)在(2)的条件下,设的长为,试确定与之间的关系式.10. 已知:如图,在矩形中,,,点从点出发,沿边向点以的速度移动,与此同时,点从点出发沿边向点以的速度移动.如果、两点在分别到达、两点后就停⽌移动,回答下列问题:(1)运动开始后多少时间,的⾯积等于 ?(2)设运动开始后第时,五边形的⾯积为,写出与之间的函数表达式,并指出⾃变量的取值范围;(3)为何值时,最⼩?求出的最⼩值.11. 已知:如图①,在平⾏四边形中,,..沿的⽅向匀速平移得到,速度为;同时,点从点出发,沿⽅向匀速运动,速度为,当停⽌平移时,点也停⽌运动.如图②,设运动时间为.解答下列问题:(1)当为何值时, ?(2)设的⾯积为,求与之间的函数关系式;若存在,求出的值;若不存在,请说明理由.(3)是否存在某⼀时刻,使四边形(4)是否存在某⼀时刻,使 ?若存在,求出的值;若不存在,请说明理由.12. 在直⾓梯形中,,是直⾓,,,点从点出发,以每秒的速度沿⽅向运动,点从点出发以每秒的速度沿线段⽅向向点运动,已知动点,同时出发,当点运动到点时,,运动停⽌,设运动时间为.(1)求长;(2)当四边形为平⾏四边形时,求的值;(3)在点,点的运动过程中,是否存在某⼀时刻,使得的⾯积为平⽅厘⽶?若存在,请求出所有满⾜条件的的值;若不存在,请说明理由.答案第⼀部分1. (1)当时,四边形是平⾏四边形,此时,四边形是平⾏四边形,则,即,解得,,即当时,四边形是平⾏四边形.(2),,,,,即,解得,,,则,四边形即与之间的函数关系式为:.(3)存在.矩形⾯积为:,由题意得,,解得,或.当或时,的⾯积为矩形⾯积的.(4)存在这样的使得点在线段的垂直平分线上.当点在线段的垂直平分线上时,,由勾股定理得,,解得,(舍去),,答:时,点在线段的垂直平分线上.2. (1),,,,,当时,四边形是平⾏四边形,,即,解得,,答:当时,四边形为平⾏四边形.(2)过点作,垂⾜为,,,,,即,解得,,,,,,,即,解得,,四边形(3)存在,若四边形,则,,,解得,(舍去),,则为时,四边形,当时,,,作于,则,,,则. 3. (1)若,则.所以,即,解得:.(2)由可得,,⼜,所以,所以,即,所以.,(3)假使存在,使五边形矩形,即,则矩形整理得,解得,(舍去)..答:存在,使得五边形矩形(4)存在.易证,所以,即,所以,则,.作于点,则四边形为矩形,所以,,故:,若在的垂直平分线上,则,所以,所以,即:,整理得:,解得,(舍去).综上,存在使点在的垂直平分线上的,此时.4. (1)过点作于点,,,,,,,,,,,解得,当为时,.(2)过点作于点,交于点.如图所⽰,,,,,,,,由,可得,即,,,四边形是矩形,,,().(3)存在.由题意:,解得或.秒或秒时,.5. (1),,根据题意得:时,四边形是平⾏四边形,即,解得:;,(2)四边形因为,所以,所以,所以,则,则,,,则四边形即;,(3)矩形由题意得:,解得:或;(4)在中,,在中,,当点在线段的垂直平分线上时,,即,则,解得:或(舍去).则.6. (1)在中,.由题意知:,.若,则....(2)过点作于.,..,(3)不存在某⼀时刻,使线段恰好把的周长和⾯积同时平分.若把周长平分,则..解得:.若把⾯积平分,则..时⽅程不成⽴,不存在这⼀时刻,使线段把的周长和⾯积同时平分.(4)存在这样的时刻,使得四边形为菱形.过点作于,于.若四边形是菱形,那么.于,.于,......,解得.当时,四边形是菱形,此时,.在中,由勾股定理,得菱形边长为.7. (1)过点作,垂⾜为.由题意可知.为等边三⾓形,且边长为,,.().(2)①当时,由题意可知,..,,即.②当时,此时.,,即.当,时,是直⾓三⾓形.(3)不存在.由题意可知,,..,四边形的⾯积是⾯积的三分之⼆,.即.化简得..此⽅程⽆解.所以不存在某⼀时刻,使四边形的⾯积是⾯积的三分之⼆.8. (1)如图,连接,,四边形是平⾏四边形,,,解得,当时,四边形是平⾏四边形.(2)四边形是平⾏四边形,,,,,,,,,即在,运动的过程中,总有.(3)如图,过点作于,,,,,,,在中,由勾股定理得:,,,为等腰直⾓三⾓形,,.四边形是平⾏四边形,,,,设四边形的⾯积为,假设存在某⼀时刻,四边形的⾯积是平⾏四边形的⾯积的⼀半,,整理得:,解得:,(舍),当时,四边形的⾯积是平⾏四边形⾯积的⼀半.9. (1)不存在,理由如下:因为,,,所以,所以,设点,运动的时间是,,,使四边形是平⾏四边形,有,所以,解得:,此时点与点重合,不能构成平⾏四边形.(2)如图②,由题意可求:,,过点作,所以,可求,所以.(3)如图3,过点作,由,,可求:,所以梯形的⾯积为:,当时,,此时,的⾯积为:,由题意得:,解得:(舍去);当时,由(2)知,的⾯积为:,由题意:,解得:或(舍去),所以当时,的⾯积是梯形的⾯积的.(4)如图②,由(2)知:,,过点作,因为,所以,,可求:,,由勾股定理可求:,当时,,解得:,所以.10. (1)运动开始后第时,的⾯积等于.根据题意,得即所以或时,的⾯积等于.(2)运动开始后第时,矩形(3).所以当时,最⼩,的最⼩值是.11. (1)在中,由勾股定理得:.由平移性质可得.因为,所以.所以,即.解得.(2)如图,作于点,于点.由,可得.则由勾股定理易求.因为,,所以.所以.所以.即.求得:,.因为,所以到的距离.所以,是⾯积.(3)因为,所以.,若四边形则.即:,整理得:.解得..答:当时,四边形(4)若,则.因为,所以.所以.所以.所以,即:.,所以.故.整理得.解得(舍),.答:当时,.12. (1)如图 1,过点作于点,则四边形是矩形,,,,,.(2)当四边形为平⾏四边形时,点在上,点在上,如图 2,由题意得:,,,解得.(3)①当点在线段上时,即时,如图 3,,解得.②当点在线段时,即时,如图 4,,,,化简得:,,⽅程⽆实数解;③当点在线段上时,若点在点的右侧,即时,则有,,解得(舍去),若点和点重合,则⾯积为,不合题意.若点在的左侧,即时,则有,,解得,综上,满⾜条件的的值存在,分别为或.。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
动点综合问题(共32题)2023年中考数学真题(全国通用)(解析版)
动点综合问题(32题)统考中考真题)如图,在ABC 中,移动,到达点 A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP ,先利用勾股定理的逆定理证明ABC 是直角三角形,即90C ∠=︒,进而利用等面积法求出245CD =,则可利用勾股定理求出325AD =;再证明四边形CMPN 是矩形,得到MN CP =,故当点P 与点重合时,CP 最小,即MN 最小,此时MN 最小值为245,325AP =,则点E 的坐标为3224,55⎛⎫ ⎪⎝⎭.【详解】解:如图所示,过点C 作CD AB ⊥于D ,连接CP ,∵在ABC 中,1068AB BC AC ===,,,∴2222226810010AC BC AB +=+===,∴ABC 是直角三角形,即90C ∠=︒,∴1122ABC S AC BC AB CD =⋅=⋅, ∴245AC BC CD AB ⋅==,∴325AD =;∵90PM AC PN BC C =︒⊥,⊥,∠,∴四边形CMPN 是矩形,∴MN CP =,∴当MN 最小时,即CP 最小,∴当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,325AP AD ==, ∴点E 的坐标为3224,55⎛⎫ ⎪⎝⎭,故选:C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.【答案】C【分析】根据图象可知0=t 时,点P 与点A 重合,得到15AB =,进而求出点P 从点A 运动到点B 所需的时间,进而得到点P 从点B 运动到点C 的时间,求出BC 的长,再利用勾股定理求出AC 即可.【详解】解:由图象可知:0=t 时,点P 与点A 重合,∴15AB =,∴点P 从点A 运动到点B 所需的时间为1527.5s ÷=;∴点P 从点B 运动到点C 的时间为11.57.54s −=,∴248BC =⨯=;在Rt ABC △中:17AC =;故选:C .【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出,AB BC 的长,是解题的关键. 秒,AMN 的面积为 A . . . . 【答案】A【分析】连接BD ,过点B 作BE AD ⊥于点E ,根据已知条件得出ABD △是等边三角形,进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒,当04t <<时,M 在AB 上,当48t ≤<时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==, ∴2AM AB AN AE ==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ,∴212y x =当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分, 故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.4.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中,4AB =,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为()04x x ≤≤,DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据ADM DCN BMN ABCD S S S S S =−−−V V V 正方形,求出S 与x 之间函数关系式,再判断即可得出结论. 【详解】解:ADM DCN BMN ABCD S S S S S =−−−V V V 正方形,1114444(4)(4)222x x x x =⨯−⨯−⨯−−−,21282x x =−+, 21(2)62x =−+,故S 与x 之间函数关系为二次函数,图像开口向上,2x =时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型.A .6B .3C .43 【答案】A 【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==,过点O 作OD AB ⊥,解直角三角形可得cos303AD AO =⋅︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC =,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件. 的O 上两动点,且动时,PAB 面积的最大值是( A .8B .6 【答案】D【分析】根据一次函数与坐标轴的交点得出2OA OB ==,确定AB =PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,利用勾股定理求解即可.【详解】解:∵直线2y x =−−与x 轴、y 轴分别交于A 、B 两点,∴当0x =时,=2y −,当0y =时,2x =−,∴()()2,0,0,2A B −−,∴2OA OB ==,∴AB ==∵PAB 的底边AB =∴使得PAB 底边上的高最大时,面积最大,点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,∵CD ,O 的半径为1,∴2DP =∴OP =, ∵OE AB ⊥,∴12OE AB ==∴PE OE OP =+=,∴132PAB S =⨯=,故选:D .【点睛】题目主要考查一次函数的应用及勾股定理解三角形,垂径定理的应用,理解题意,确定出高的最大值是解题关键. 7.(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A .B .C .D .【答案】D【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变, 当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.【答案】D【分析】根据题意,得出()4,0E ,()5,3F ,勾股定理求得EF =AC =【详解】解:连接AC 、EF∵点A 的坐标为()9,0,点C 的坐标为()0,3,以,OA OC 为边作矩形OABC .∴()9,3B ,AC ==则9OA =,9BC OA ==依题意,414OE =⨯=,414BF =⨯=∴945AE =−=,则()4,0E ,∴945CF BC BF =−=−=∴()5,3F ,∴EF∵()0,3C ,∴AC EF ⋅30==故选:D .【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得,E F 的坐标是解题的关键.9.(2023·山东滨州·统考中考真题)已知点P 是等边ABC 的边BC 上的一点,若104APC ∠=︒,则在以线段,,AP BP CP 为边的三角形中,最小内角的大小为( )A .14︒B .16︒C .24︒D .26︒【答案】B 【分析】将ABP 绕点A 逆时针旋转60︒得到ACQ ,可得以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,根据邻补角以及旋转的性质得出76AQC APB ∠=∠=︒,进而即可求解.【详解】解:如图所示,将ABP 绕点A 逆时针旋转60︒得到ACQ ,∴,60AP AQ PAQ =∠=︒,BP CQ =,AQC APB ∠=∠,∴APQ △是等边三角形,∴PQ AP =,∴以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,∵104APC ∠=︒,∴76APB ∠=︒∴76AQC APB ∠=∠=︒∴PQC ∠766016=︒−︒=︒,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键. 10.(2023·甘肃武威·统考中考真题)如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为( )【答案】C 【分析】证明4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,则当P 与A ,B 重合时,PE 最长,此时PE ==0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,当P 与A ,B 重合时,PE 最长,此时PE ==运动路程为0或4,结合函数图象可得(M , 故选:C.【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.11.(2023·浙江绍兴·统考中考真题)如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出( )A .AFE △的面积B .BDF V 的面积C .BCN △的面积D .DCE △的面积【答案】D【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC =,由已知得出NF BF ME DE =,则FD NF EC ME =,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S ==,即可求解.【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FD ED EC =.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==, ∴NF BF ME DE =. ∴FD NF EC ME =. 又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD ∠=∠∴MCD NDB ∠=∠. ∴MC ND ∥.∴MNC MDC S S =.∵2DM ME =,∴1122EMC DMC MNC S S S ==.故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键. 和BCE 是位于直线的是( ) .CDE 周长的最小值为【答案】A 【分析】延长,AD BC ,则ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则,,Q P F 三点共线,各项都取得最小值,得出B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长,AD BC ,依题意60QAD QBA ∠=∠=︒∴ABQ 是等边三角形,∵P 是CD 的中点,∴PD PC =,∵DEA CBA ∠=∠,∴ED CQ ∥∴,PQC PED PCQ PDE ∠=∠∠=∠,∴PDE PCQ ≌∴PQ PE =,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设,AQ BQ 的中点分别为,G H , 则11,22GP AE PH EB == ∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE EB =,则,,Q P F 三点共线,PF 取得最小值,此时()122AE EB AE EB ==+=, 则ADE ECB △≌△,∴,C D 到AB 的距离相等,则CD AB ∥,此时PF AD ==此时ADE V 和BCE 的边长都为2,则,AP PB 最小,∴2PF ==∴PA PB ==∴PA PB +=或者如图所示,作点B 关于GH 对称点B ',则PB PB '=,则当,,A P B '三点共线时,AP PB AB '+=此时AB '=故A 选项错误,根据题意可得,,P Q F 三点共线时,PF 最小,此时PE PF ==PE PF +=,故B 选项正确; CDE 周长等于4CD DE CE CD AE EB CD AB CD ++=++=+=+,即当CD 最小时,CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵60,60GHQ GHM GDM ∠=︒∠=∠=︒,则120CHM ∠=︒如图,延长DE ,HG ,交于点N , 则60NGD QGH ∠=∠=︒,60NDG ADE ∠=∠=︒∴NGD △是等边三角形,∴ND GD HM ==,在NPD 与HPC △中,60NPD HPC N CHP PD PC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴NPD HPC ≌∴ND CH =∴CH MH =∴30HCM HMC ∠=∠=︒∴CM QF ∥,则CM DM ⊥,∴DMC 是直角三角形,在DCM △中,DC DM >∴当DC DM =时,DC 最短,122DC GH AB === ∵2CD PC PC =+∴CDE 周长的最小值为2226++=,故C 选项正确;∵NPD HPC ≌∴四边形ABCD 面积等于ADE DEC ADE NEBH S S S S S ++=+平行四边∴当BGD △的面积为0时,取得最小值,此时,,D G 重合,C H ,重合∴四边形ABCD 面积的最小值为232=D 选项正确, 故选:A . 【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E 点与F 重合时得出最小值是解题的关键.二、填空题 在ABC 中,【答案】2 【分析】如图,作ABC 的外接圆,圆心为M ,连接AM 、BM 、CM ,过M 作MD AB ⊥于D ,过B 作BN AB ⊥,交BP 的垂直平分线于N ,连接AN 、BN 、PN ,以N 为圆心,()BN PN 为半径作圆;结合圆周角定理及垂径定理易得4AM BM CM ===,再通过圆周角定理、垂直及垂直平分线的性质、三角形内角和定理易得AMC PNB ∠=∠,从而易证AMC PNB 可得21CM AC PN PB ==即122PN CM ==勾股定理即可求得AN =在APN 中由三角形三边关系AP AN PN ≥−即可求解.【详解】解:如图,作ABC 的外接圆,圆心为M ,连接AM 、BM 、CM ,过M 作MD AB ⊥于D ,过B 作BN AB ⊥,交BP 的垂直平分线于N ,连接AN 、BN 、PN ,以N 为圆心,()BN PN 为半径作圆; 60C ∠=︒,M 为ABC 的外接圆的圆心, 120AMB ︒∴∠=,AM BM =,30MAB MBA ∴∠=∠=︒,12MD AM ∴=,MD AB ⊥,12AD AB ∴==,在Rt ADM △中,222AM MD AD =+,(22212AM AM ⎛⎫∴=+ ⎪⎝⎭, 4AM ∴=,即4AM BM CM ===,由作图可知BN AB ⊥,N 在BP 的垂直平分线上,90PBN BPN ABC ∴∠=∠=︒−∠,()1802PNB PBN BPN ABC ∴∠=︒−∠+∠=∠,又M 为ABC 的外接圆的圆心,2AMC ABC ∴∠=∠,AMC PNB ∴∠=∠, CM AM PN BN =,AMC PNB ∴,CM AC PN PB ∴=, 12BP AC =, 21CM AC PN PB ∴==,即122PN CM ==,2PN BN ∴==,在Rt ABN △中,AN在APN 中,2AP AN PN ≥−=,即AP 最小值为2,故答案为:2.【点睛】本题考查了圆周角定理,垂径定理,勾股定理解直角三角形,相似三角形的判定和性质,垂直平分线的性质,30︒角所对的直角边等于斜边的一半,三角形三边之间的关系;解题的关键是结合ABC 的外接圆构造相似三角形.【答案】或6【分析】连接OD ,勾股定理求出半径,平行线分线段成比例,求出CD 的长,勾股定理求出AC 和AD 的长,分AP AD =和AP PD =两种情况进行求解即可.【详解】解:连接OD ,∵以AE 为直径的半圆O 与BC 相切于点D ,∴OD BC ⊥,OA OE OD ==,∴90ODB ∠=︒设OA OE OD r ===,则3OB OE BE r =+=+,在Rt ODB △中:222OD BD OB +=,即:(()2223r r +=+, 解得:6r =,∴6OA OE OD ===,∴9OB =,15AB =,12AE =,∵90C ODB ∠=∠=︒,∴OD AC ∥, ∴9362OB DB OA DC ===,∵DB =∴CD =∴BC DB CD =+=∴10AC =,∴AD =∵ADP △为等腰三角形,当AD AP =时,AP =当PA PD =时,∵OA OD =,∴点P 与点O 重合,∴6AP OA ==,不存在PD AD =的情况;综上:AP 的长为6.故答案为:或6.【点睛】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性质,等腰三角形的定义,确定点P 的位置,是解题的关键. 15.(2023·四川凉山·统考中考真题)如图,边长为2的等边ABC 的两个顶点AB 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.【答案】1【分析】如图所示,取AB 的中点D ,连接OD CD ,,先根据等边三角形的性质和勾股定理求出CD =再根据直角三角形的性质得到112OD AB ==,再由OC OD CD ≤+可得当O C D 、、三点共线时,OC 有最大值,最大值为1【详解】解:如图所示,取AB 的中点D ,连接OD CD ,,∵ABC 是边长为2的等边三角形,∴2CD AB BC AB ==⊥,,∴1BD AD ==,∴CD ==∵OM ON ⊥,即90AOB ∠=︒,∴112OD AB ==,∵OC OD CD ≤+,∴当O C D 、、三点共线时,OC 有最大值,最大值为1故答案为:1+【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O C D 、、三点共线时,OC 有最大值是解题的关键.【答案】27【分析】作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',此时PE PF +取得最小值,过点F '作AD 的垂线段,交AC 于点K ,根据题意可知点F '落在AD 上,设正方形的边长为a ,求得AK 的边长,证明AEP KF P '''△∽△,可得2KP AP '=',即可解答.【详解】解:作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',过点F '作AD 的垂线段,交AC 于点K ,由题意得:此时F '落在AD 上,且根据对称的性质,当P 点与P '重合时PE PF +取得最小值,设正方形ABCD 的边长为a ,则23AF AF a '==,四边形ABCD 是正方形,45F AK '∴∠=︒,45P AE '∠=︒,AC =F K AF ''⊥,45F AK F KA ''∴∠=∠=︒,AK ∴=,F P K EP A '''∠=∠,E KP EAP '''∴△∽△,2F K KP AE AP ''∴==',13AP AK '∴==,CP AC AP ''∴=−=,27AP CP '∴=', ∴当PE PF +取得最小值时,AP PC 的值是为27, 故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键. 17.(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可. 【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD ==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN =∴BN ND ==∴1AD AN ND =+,综上,AD 的长为21,故答案为:21.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键. 重合时,将ABP 沿AP 对折,得到AB P ',连接2【分析】根据折叠的性质得出B '在A 为圆心,2为半径的弧上运动,进而分类讨论当点P 在BC 上时,当点P 在DC 上时,当P 在AD 上时,即可求解.【详解】解:∵在矩形ABCD 中,2,AB AD ==∴BC AD =AC =如图所示,当点P 在BC 上时,∵2AB AB '==∴B '在A 为圆心,2为半径的弧上运动,当,,A B C '三点共线时,CB '最短,此时2CB AC AB ''=−,当点P 在DC 上时,如图所示,此时2CB '当P 在AD 上时,如图所示,此时2CB '>综上所述,CB '2,2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.【分析】首先证明出MN 是AEF △的中位线,得到12MN AE =,然后由正方形的性质和勾股定理得到AE ==BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,∵M ,N 分别是EF AF ,的中点,∴MN 是AEF △的中位线, ∴12MN AE =,∵四边形ABCD 是正方形,∴90B Ð=°,∴AE ==∴当BE 最大时,AE 最大,此时MN 最大,∵点E 是BC 上的动点,∴当点E 和点C 重合时,BE 最大,即BC 的长度,∴此时AE ==∴12MN AE ==∴MN.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点. 20.(2023·山东·统考中考真题)如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.2【分析】设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',证明90DFA ∠=︒,可知点F 在以AD 为直径的半圆上运动,当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,据此求解即可.【详解】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD , ∴122AO OF AD '===,,∴BO ==BF 2,2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F 的运动轨迹是解题的关键. 21.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD 中,5AB =,12AD =,对角线AC 与BD交于点O ,点E 为BC 边上的一个动点,EF AC ⊥,EG BD ⊥,垂足分别为点F ,G ,则EF EG +=___________.【答案】6013【分析】连接OE ,根据矩形的性质得到12BC AD ==,AO CO BO DO ===,90ABC ∠=︒,根据勾股定理得到13AC =,求得132OB OC ==,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,四边形ABCD 是矩形,90ABC ∴∠=︒,12BC AD ==,AO CO BO DO ===,5AB =,12BC =,13AC ∴==,132OB OC ∴==,111115121522222BOC BOE COE ABC S S S OB EG OC EF S ∴=+=⨯⋅+⋅==⨯⨯⨯=,∴113113113()15222222EG EF EG EF ⨯+⨯=⨯+=,6013EG EF ∴+=,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22.(2023·山东烟台·统考中考真题)如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【答案】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==∴AQ == ∵1122ABC S AB CG AQ BC =⨯=⨯,∴BC AQ CG AB ⨯===,【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.23.(2023·新疆·统考中考真题)如图,在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,点E 是AD 上一动点,将ABE 沿BE 折叠得到A BE ',当点A '恰好落在EC 上时,DE 的长为______.3【分析】过点C 作CH AD ⊥交AD 的延长线于点H ,根据平行四边形的性质以及已知条件得出120,60ADC ABC HDC ∠=∠=︒∠=︒,进而求得,DH HC ,根据折叠的性质得出CB CE =,进而在Rt ECH △中,勾股定理即可求解.【详解】解:如图所示,过点C 作CH AD ⊥交AD 的延长线于点H ,∵在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,∴120,6068ADC ABC HDC CD AB AD CB ∠=∠=︒∠=︒====,,,∴1cos 32DH DC HDC DC =⨯∠==,在Rt ECH △中,HC =∵将ABE 沿BE 折叠得到A BE ',当点A '恰好落在EC 上时,∴AEB CEB ∠=∠又AD BC ∥∴EBC AEB ∠=∠∴EBC CEB ∠=∠∴8CE BC ==设ED x =,∴3EH x =+在Rt ECH △中,222EC EH HC =+∴()(22283x =++解得:3x =(负整数)3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键. 上,若AMN 是以点 【答案】()8,6M −或28,3M ⎛⎫− ⎪⎝⎭ 【分析】如图,由AMN 是以点N 为直角顶点的等腰直角三角形,可得N 在以AM 为直径的圆H 上,MN AN =,可得N 是圆H 与直线26y x =−−的交点,当,M B 重合时,符合题意,可得()8,6M −,当N 在AM的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,证明MNK NAJ ≌,设(),26N x x −−,可得MK NJ x ==−,266212KN AJ x x ==−−−=−−,而8KJ AB ==,则2128x x −−−=,再解方程可得答案.【详解】解:如图,∵AMN 是以点N 为直角顶点的等腰直角三角形,∴N 在以AM 为直径的圆H 上,MN AN =,∴N 是圆H 与直线26y x =−−的交点,当,M B 重合时,∵()8,6B −,则()4,3H −,∴4MH AH NH ===,符合题意,∴()8,6M −,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,∴90NAJ ANJ ∠+∠=︒,∵AN MN =,90ANM ∠=︒,∴90MNK ANJ ∠+∠=︒,∴MNK NAJ ∠=∠,∴MNK NAJ ≌,设(),26N x x −−,∴MK NJ x ==−,266212KN AJ x x ==−−−=−−,而8KJ AB ==,∴2128x x −−−=, 解得:203x =−,则22263x −−=, ∴22202333CM CK MK =−=−=, ∴28,3M ⎛⎫− ⎪⎝⎭; 综上:()8,6M −或28,3M ⎛⎫− ⎪⎝⎭. 故答案为:()8,6M −或28,3M ⎛⎫− ⎪⎝⎭. 【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,难度较大,清晰的分类讨论是解本题的关键.【答案】392【分析】作出点()32C −,,作CD AB ⊥于点D ,交x 轴于点F ,此时BE DF +的最小值为CD 的长,利用解直角三角形求得1103F ⎛⎫ ⎪⎝⎭,,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG y ⊥轴于点G ,此时35BH DH +的最小值是5DG 的长,据此求解即可.【详解】解:∵直线123y x =−+与x 轴,y 轴分别交于A ,B 两点,∴()02B ,,()60A ,,作点B 关于x 轴的对称点()02B '−,,把点B '向右平移3个单位得到()32C −,,作CD AB ⊥于点D ,交x 轴于点F ,过点B '作B E CD '∥交x 轴于点E ,则四边形EFCB '是平行四边形, 此时,BE B E CF '==,∴BE DF CF DF CD +=+=有最小值,作CP x ⊥轴于点P ,则2CP =,3OP =,∵CFP AFD ∠=∠,∴FCP FAD ∠=∠,∴tan tan FCP FAD ∠=∠, ∴PF OB PC OA =,即226PF =, ∴23PF =,则1103F ⎛⎫ ⎪⎝⎭,, 设直线CD 的解析式为y kx b =+, 则321103k b k b +=−⎧⎪⎨+=⎪⎩,解得311k b =⎧⎨=−⎩,∴直线CD 的解析式为311y x =−,联立,311123y x y x =−⎧⎪⎨=−+⎪⎩,解得3910710x y ⎧=⎪⎪⎨⎪=⎪⎩, 即3971010D ⎛⎫ ⎪⎝⎭,;过点D 作DG y ⊥轴于点G ,直线423y x =−+与x 轴的交点为302Q ⎛⎫ ⎪⎝⎭,,则52BQ =, ∴332sin 552OQ OBQ BQ ∠===, ∴3sin 5HG BH GBH BH =∠=, ∴()3355555BH DH BH DH HG DH DG ⎛⎫+=+=+= ⎪⎝⎭,即35BH DH +的最小值是393955102DG =⨯=, 故答案为:392. 【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题 26.(2023·重庆·统考中考真题)如图,ABC是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【详解】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.键. 27.(2023·辽宁大连·统考中考真题)如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)4,83 (2)2218402331424443t t S t t t ⎧⎛⎫−+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪−+<≤ ⎪⎪⎝⎭⎩ 【分析】(1)根据函数图象即可求解.(2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB 与DPB 的重叠面积为S ,分别求解即可.【详解】(1)解:当0=t 时,P 点与O 重合,此时83ABO S S ==, 当4t =时,0S =,即P 点与B 点重合,∴4OB =,则()4,0B ,故答案为:4,83.(2)∵A 在y x =上,则45OAB ∠=︒设(),A a a , ∴1184223AOB S OB a a =⨯⨯=⨯⨯= ∴43a =,则44,33⎛⎫ ⎪⎝⎭A 当403t ≤≤时,如图所示,设DP 交OA 于点E ,∵45OAB ∠=︒,DP OB ⊥,则EP OP t == ∴28132S t =−当443t <≤时,如图所示,∵()4,0B ,44,33⎛⎫ ⎪⎝⎭A设直线AB 的解析式为y kx b =+, ∴404433k b k b +=⎧⎪⎨+=⎪⎩,解得:212b k =⎧⎪⎨=−⎪⎩, ∴直线AB 的解析式为122y x =−+,当0x =时,2y =,则()0,2C , ∴2OC =, ∵21tan 42DP OC CBO PD OB ∠====, ∵4BP t =−,则122DP t =−, ∴12DPB S S DP BP ==⨯()()222111144242244t t t t =⨯⨯−=−=−+, 综上所述:2218402331424443t t S t t t ⎧⎛⎫−+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪−+<≤ ⎪⎪⎝⎭⎩. 【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键.28.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =−+;2l 的解析式为15y x =−+;(2)①10,20x m y m =+=−;②3l的解析式为30y x =−+,图象见解析;(3)538a c b += 【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m −次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【详解】(1)设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =−⎧⎨=⎩,∴1l 的解析式为6y x =−+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =−+;(2)①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m −次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m −次后得到的点的横坐标为21010m m m +−=+,纵坐标为()21020m m m +−=−,∴10,20x m y m =+=−;②由于102030x y m m +=++−=,∴直线3l 的解析式为30y x =−+;函数图象如图所示:。
中考数学复习之动点问题专项训练卷
中考数学复习之动点问题专项训练卷一.选择题1.如图,△ABC和△DEF是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B与点D重合,点A,B(D),E在同一条直线上,将△ABC沿D⇒E方向平移,至点A与点E重合时停止.设点B,D之间的距离为x,△ABC与△DEF重叠部分的面积为y,则准确反映y与x之间对应关系的图象是()A.B.C.D.2.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t 的大致图象为()A.B.C.D.3.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则△ABC的面积为()A.4B.6C.12D.144.如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(点C与点A不重合),CF⊥CD交AB于F,DE⊥CD交AB于E,G为半圆中点,当点C在上运动时,设的长为x,CF+DE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二.填空题5.过反比例函数图象上一点P0(1,2n)作图象的切线(与图象只有一个交点的直线),交x轴于点A1,过A1作x轴的垂线交反比例函数图象于点P1,过点P1作图象的切线交x 轴于点A2,过A2作x轴的垂线交反比例函数图象于点P2,以此类推,可以找到无数个P 点.(1)当n=5时,属于整点(横纵坐标均为整数的点的点P有个;(2)当n=2011时,属于整点的点P有个,最后一个整点P的坐标是.6.如图所示,点P(a,﹣2a)是反比例函数图象与⊙O的一个交点,图中阴影部分的面积为5π,则k的值为.三.解答题7.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.(1)求证:AE=EF;(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,(1)中的结论是否仍然成立?;(填“成立”或“不成立”);(3)如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请证明,若不成立说明理由.8.问题提出:(1)如图,四边形ABCD是正方形,E是DC上一点,连接AE,过点A作AE的垂线交CB的延长线于点F,连接EF,则∠AEF=;问题探究:(2)如图,在四边形ABCD中,AD=CD.∠ABC=∠ADC=90°,连接BD,若BD=m,求四边形ABCD的面积;(用含m的代数式表示)问题解决:(3)如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,AC与BD交于点E,且DE=4,BE=2,求四边形ABCD的面积.9.A是直线x=1上一个动点,以A为顶点的抛物线y1=a(x﹣1)2+t和抛物线y2=ax2交于点B(A,B不重合,a是常数),直线AB和抛物线y2=ax2交于点B,C,直线x=1和抛物线y2=ax2交于点D.(如图仅供参考)(1)求点B的坐标(用含有a,t的式子表示);(2)若a<0,且点A向上移动时,点B也向上移动,求的范围;(3)当B,C重合时,求的值;(4)当a>0,且△BCD的面积恰好为3a时,求的值.10.在平面直角坐标系中,直线y=x+3与x轴、y轴分别交于点B、A,动点C以每秒2个单位长度的速度从点B向终点O运动,过点C作∠BCD=∠ABO,交直线AB于点D.设∠BDC=α°,将CD绕点C顺时针旋转α°得到线段CE,连接DE.设四边形BCED与△ABO的重叠部分面积为S(平方单位),S>0,点C的运动时间为t秒.(1)求AB的长;(2)求证:四边形BCED是平行四边形;(3)求S与t的函数关系式,并直接写出自变量取值范围.11.【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG 和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.12.综合与探究如图,抛物线y=ax2+x+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线的对称轴交x轴于点D,点B的坐标是(4,0),点C的坐标是(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E 点的坐标.13.如图甲所示,已知直线y1=﹣x+与x轴和y轴分别相交于点A,B,直线y2=kx+3﹣2k(k≠0)与y轴相交于点C,两直线交于点P.(1)求△AOB的面积;(2)如图乙所示,过点P作x轴的平行线交y轴于点D,若点B,C关于直线DP对称,求点C的坐标;(3)当△BCP是以BC为腰的等腰三角形,求直线y2的函数解析式.14.如图,矩形ABCD中,AD=10,AB=20,点P在边CD上,且与点C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,PQ的中点为M.(1)求证:△ADP∽△ABQ;(2)若△PCQ的面积为100,求DP长;(3)若BM的长为3,求DP长.。
中考数学动点问题专项训练
25、〔12分〕如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=24cm,动点P从A开场沿AD向D以1cm/s速度运动;动点Q从点C开场向B以2cm/s速度运动。
P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停顿运动,设运动时间为ts.〔1〕当t为何值时,四边形PQCD是平行四边形;〔2〕当t为何值时,四边形PQCD是直角梯形;〔3〕当t为何值时,四边形PQCD是等腰梯形24、〔10分〕如图1,△ABD与△BDC都是边长为1等边三角形.〔1〕四边形ABCD是菱形吗?为什么?〔2〕如图2,将△BDC沿射线BD方向平移到△B1D1C1位置,那么四边形ABC1D1是平行四边形吗?为什么?〔3〕在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动距离〔写出过程〕;如果不是,请说明理由〔图3供操作时使用〕.28. 如图,直线y=x+1 (k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限.〔1〕求双曲线解析式;〔2〕求A点坐标;〔3〕假设S△AOB=2,在x轴上是否存在点P,使△AOP是等腰三角形?假设存在,请直接写出P点坐标;假设不存在,请说明理由.22、〔12分〕如图,:梯形ABCD中,AD∥BC,AB=CD,E、F、G、H 分别是AD、BC、BE、CE中点.〔1〕求证:△ABE≌△DCE〔2〕四边形EGFH是什么特殊四边形?并证明你结论.〔3〕连接EF,当四边形EGFH是正方形时,线段EF与BC有什么关系?请说明理由.〔总分值10分〕如以下图,直角梯形ABCD中,AD∥BC,AD=24,BC=26,∠B=90°,动点P从A开场沿AD边向D以1速度运动,动点Q从点C开场沿CB以3速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停顿运动,设运动时间为,问为何值时,〔1〕四边形PQCD是平行四边形.〔2〕当为何值时,四边形PQCD 为等腰梯形.7.〔6分〕如图,在等腰梯形中,、分别为、中点,、分别是、中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=24cm,动点P从A开始沿AD向D以1cm/s的速度运动;动点Q从点C开始向B以2cm/s的速度运动。
P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD是平行四边形;(2)当t为何值时,四边形PQCD是直角梯形;(3)当t为何值时,四边形PQCD是等腰梯形2、(10分)如图1,△ABD和△BDC都是边长为1的等边三角形.(1)四边形ABCD 是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动的距离(写出过程);如果不是,请说明理由(图3供操作时使用).3. 如图,直线y =21x +1 (k ≠0)与x 轴交于点B ,与双曲线y =(m +5)x 2m +1交于点A 、C ,其中点A 在第一象限,点C 在第三象限.(1)求双曲线的解析式; (2)求A 点的坐标;(3)若S △AOB =2,在x 轴上是否存在点P ,使△AOP 是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.4、(12分)如图,已知:梯形ABCD 中,AD ∥BC ,AB =CD ,E 、F 、G 、H 分别是AD 、BC 、BE 、CE 的中点.(1)求证:△ABE ≌△DCE(2)四边形EGFH 是什么特殊四边形?并证明你的结论.(3)连接EF ,当四边形EGFH 是正方形时,线段EF 与BC 有什么关系?请说明理由5.(满分10分)如下图,直角梯形ABCD 中,AD ∥BC ,AD=24cm ,BC=26cm ,∠B=90°,动点P 从A 开始沿AD 边向D 以1s cm /的速度运动,动点Q 从点C 开始沿CB 以3s cm /的速度向点B 运动.P 、Q 同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts ,问t 为何值时,(1)四边形PQCD 是平行四边形.(2)当t 为何值时,四边形PQCD 为等腰梯形.6.(6分)如图,在等腰梯形ABCD 中,M BC AD ,//、N 分别为AD 、BC 的中点,E 、F 分别是BM 、CM 的中点。
(1)求证:DCM ABM ∆≅∆。
(2)四边形MENF 是什么图形?请证明你的结论。
(3)若四边形MENF 是正方形,则梯形的高与底边BC 有何数量关系?并请说明理由。
7、如图,四边形ABCD 中,点E 在边CD 上,连结AE 、BE.给出下列五个关系式:①AD ∥BC ;②DE =CE ;③∠1=∠2;④∠3=∠4;⑤AD +BC =AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.⑴用序号写出一个真命题(书写形式如:如果×××,那么××).并给出证明; ⑵用序号再写出三个真命题(不要求证明);⑶加分题:真命题不止以上四个,想一想,就能够多写出几个真命题,每多写出一个真命题就给你加1分,最多加2分.A B C D E23 418、(本小题10分)如图①,平面直角坐标系中的□AOBC ,∠AOB =600,OA =8cm ,OB =10cm ,点P 从A 点出发沿AC 方向,以1cm/s 速度向C 点运动、点Q 从B 点出发沿BO 方向,以3cm/s 的速度向原点O 运动。
其中一个动点到达端点时,另一个动点也随之停止运动。
(1)求出A 点和C 点的坐标;(4分)(2)如图②,从运动开始,经过多少时间,四边形AOQP 是平行四边形;(3分)(3)在点P 、Q 运动的过程中,四边形AOQP 有可能成为直角梯形吗?若能,求出运动时间;若不能,请说明理由。
(图③供解题时用)(3分)9.(8分)如图所示,在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =12,BC =21,AD=16。
动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动。
设运动的时间为t (秒)。
(1)设△DPQ 的面积为S ,求S 与t 之间的函数关系式; (2)当t 为何值时,四边形PCDQ 是平行四边形?(3)分别求出出当t 为何值时,① PD =PQ ,② DQ =PQ ?xxx10、(12分)如图,四边形ABCD 是直角梯形,∠B =900,AB =8cm ,AD =24cm ,BC =26cm , 点P 从点A 出发,以1cm /s 的速度向点D 运动,点Q 从点C 同时出发,以3cm /s 的速 度向点B 运动。
当其中一个动点到达端点时,另一个动点也随即停止运动。
从运动开 始,(1)经过多长时间,四边形PQCD 成为平行四边形? (2)经过多长时间,四边形PQCD 成为等腰梯形?11.如图,在ABC △中,90ACB ∠= ,且DE 是ABC △的中位线.延长ED 到F ,使DF=ED ,连接FC ,FB .回答下列问题: (1)求证:四边形BECF 是菱形.(2)当A ∠的大小满足什么条件时,菱形BECF 是正方形?请回答并证明你的结论.12.如图(1),R t △ABC 中,∠ACB=90°,中线BE 、CD 相交于点O ,点F 、G 分别是OB 、OC 的中点.(1)求证:四边形DFGE 是平行四边形;(2)如果把Rt △ABC 变为任意△ABC ,如图(2),通过你的观察,第(1)问的结论是否仍然成立?(不用证明);(3)在图(2)中,试想:如果拖动点A ,通过你的观察和探究,在什么条件下?四边形DFGE 是矩形,并给出证明;(4)在第(3)问中,试想:如果拖动点A ,是否存在四边形DFGE 是正方形或菱形?如果存在,画出相应的图形(不用证明).(第24题图)(备用图①) (备用图②)13、如图所示,在矩形ABCD 中,AB=12cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动。
如果P 、Q 同时出发,当Q 到达终点时,P 也随之停止运动。
用t 表示移动时间,设四边形QAPC 的面积为S 。
(1)试写出S 与t 的函数关系式;(2)当t 为何值时,△QAP 为等腰直角三角形?并求出此时S 的值。
14.如图,把正方形ACFG 与R t △ACB 按如图(1)所示重叠在一起,其中AC=2,∠BAC= 60,若把R t △ACB 绕直角顶点C 按顺时针方向旋转,使斜边AB 恰好经过正方形ACFG 的顶点F ,得 △A /B /C,AB 分别与A /C 、A /B /相交于D 、E ,如图(2)所示。
(1)△ACB 至少旋转多少度才能得到△A /B /C ?说明理由。
(2)求△ACB 与△A /B /C 的重叠部分(即四边形CDEF )的面积。
(若取近似值,则精确到0.1)15、(12分)如图,已知在梯形ABCD 中,AD//BC,AB=DC,对角线AC 和BD 相交于点O,E 是BC 边上的一个动点(点E 不与B 、C 两点重合),EF//BD 交AC 于点F,EG//AC 交BD 于点G 。
(1)求证:四边形EFOG 的周长等于2OB ;(2)请你将(1)的条件“梯形ABCD 中,AD//BC,AB=DC ”改为另一种四边形,其他条件不变,使得结论“四边形EFOG 的周长等于2OB ”仍成立,并将改编后的题目画出图形,写出已知,求证,不必证明。
A PB CDQ(1) A DGF O16、如图,边长为2的等边三角形OAB 的顶点A 在x 轴的正半轴上,B 点位于第一象限。
将△OAB绕点O 顺时针旋转︒30后,恰好点A 落在双曲线)0(>=x xky 上。
(1)求双曲线)0(>=x xky 的解析式; (2)等边三角形OAB 继续按顺时针旋转多少度后,A 点再次落在双曲线上?17、(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=24cm,动点P从A开始沿AD向D以1cm/s的速度运动;动点Q从点C开始向B以2cm/s的速度运动。
P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD是平行四边形; (2)当t为何值时,四边形PQCD是直角梯形; (3)当t为何值时,四边形PQCD是等腰梯形18.(10分)如图,在直角梯形ABCD 中,,8,24,90,//0cm AB cm AD B BC AD ===∠ cm BC 26=,动点P 从A 开始沿AD 边向D 以s cm /1的速度运动;动点Q 从点C 开始沿CB 边向B 以s cm /3的速度运动。
P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts 。
(1)当t 为何值时,四边形PQCD 平行为四边形? (2)当t 为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQCD 为直角梯形?19.如图12,菱形ABCD 的边CD 在菱形ECGF 的边CE 上,且D 是CE 中点。
连接BE ,DF 。
(1)观察猜想BE 与DF 之间的大小关系,并证明你的结论。
EFGCBA(2)图中是否存在旋转能够 互相重合的两个三角形?若存在,请说明旋转过程:若不存在,请说明理由。
20.(10分)如图,正方形ABCD 的对角线AC 、BD 相交于O 。
(1)(图1)若E 为AC 上一点,过A 作EB AG ⊥于G ,AG 、BD 交于F ,求证:OF OE = (2)(图2)若E 为AC 延长线上一点,EB AG ⊥交EB 的延长线于G ,AG 的延长线交DB 的延长线于F ,其他条件不变,OF OE =还成立吗?若成立,请予以证明;若不成立,请说明理由。
21.(10分)如图,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.22.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x 2于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .(1)求证:AD 平分∠CDE ;(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.23、(10分)如图所示,一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P 。