2012年高考文科数学解析分类汇编:概率
山东省各地市2012年高考数学(文科)最新试题分类大汇编23:统计与概率
【山东省青州市2012届高三2月月考数学(文)】7. 据报道,德国“伦琴”(ROSAT )卫星将在2011年10月23日某时落在地球的某个地方,砸中地球人的概率约为13200,为了研究中学生对这件事情的看法,某中学对此事进行了问卷调查,共收到2000份有效问卷,得到如下20卷份数为A .2 B. 3 C. 5 D. 10 【答案】A【山东省滕州二中2012届高三上学期期中文】15: 某单位为了了解用电量y 度与气温C x 0之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程a bx yˆ+=中2b -=,预测当气温为04C -时,用电量的度数约为________.【答案】68【山东省潍坊市重点中学2012届高三2月月考文】18.(本小题满分12分)某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率.(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者? (3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传 经验,求第4组至少有一名志愿者被抽中的概率.【答案】18.解:(Ⅰ) 由题设可知,第3组的频率为0.06×5=0.3, 第4组的频率为0.04×5=0.2,第5组的频率为0.02×5=0.1. …………2分 (Ⅱ) 第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10.因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为: 第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(Ⅲ)记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者为B 1,B 2,第5组的1名志愿者为C 1. 则从6名志愿者中抽取2名志愿者有:(A 1,A 2), (A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2), (A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有15种.其中第4组的2名志愿者B 1,B 2至少有一名志愿者被抽中的有:(A 1,B 1), (A 1,B 2), (A 2,B 1), (A 2,B 2), (A 3,B 1), (A 3,B 2), (B 1,B 2), (B 1,C 1), (B 2,C 1),共有9种, 所以第4组至少有一名志愿者被抽中的概率为93.155=…………12分【山东省潍坊市重点中学2012届高三2月月考文】6.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 则y 对x 的线性回归方程为A.1-=x yB.1+=x yC.8821+=x y D.176=y【答案】C【山东省滨州市沾化一中2012届高三上学期期末文】14.某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市 家. 【答案】20【山东济宁汶上一中2012届高三12月月考文】2.某选手参加选秀节目的一次评委打分如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A .86.5,1.2B .86.5,1.5C .86,1.2D .86,1.5 【答案】C【山东省青州市2012届高三2月月考数学(文)】18.(本小题满分12分)继“三鹿奶粉”,“瘦肉精”, “地沟油”等事件的发生之后,食品安全问题屡屡发生,引起了国务院的高度重视.为了加强食品的安全,某食品安检部门调查一个海水养殖场的养殖鱼的有关情况,安检人员从这个海水养殖场中不同位置共捕捞出100条鱼,称得每条鱼的重量(单位:kg ),并将所得数据进行统计得下表.若规定超过正常生长的速度为1.0~1.2kg/年的比重..超过15%,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题。
2012新题分类汇编:概率(高考真题+模拟新题)
概率课标理数13.K1[2011·福建卷] 盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.课标理数13.K1[2011·福建卷] 【答案】 35【解析】 从盒中随机取出2个球,有C 25种取法;所取出的2个球颜色不同,有C 13C 12种取法,则所取出的2个球颜色不同的概率是p =C 13C 12C 25=610=35. 课标文数19.I2,K1[2011·福建卷] 某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X,1,2,3,4,5f,a,0.2,0.45,b,c (1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.课标文数19.I2、K1[2011·福建卷] 【解答】 (1)由频率分布表得a +0.2+0.45+b +c =1,即a +b +c =0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b =320=0.15. 等级系数为5的恰有2件,所以c =220=0.1.从而a =0.35-b -c =0.1.所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为:{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2}.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其等级系数相等”,则A 包含的基本事件为:{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.又基本事件的总数为10,故所求的概率P (A )=410=0.4.课标数学5.K1[2011·江苏卷] 从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.课标数学5.K1[2011·江苏卷] 13 【解析】 一次随机抽取两个数共有1,2;1,3;1,4;2,3;2,4;3,4,一个数是另一个数的2倍的有2种,故所求概率为13. 课标文数9.K2[2011·安徽卷] 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15课标文数9.K2[2011·安徽卷] D 【解析】 假设正六边形的六个顶点分别为A 、B 、C 、D 、E 、F ,则从6个顶点中任取4个共有15种基本结果,所取四个点构成矩形四个顶点的结果数为3,所以概率为15.课标文数16.I2,K2[2011·北京卷] 以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.甲组 乙组 9 9 1 1⎪⎪⎪⎪⎪⎪01 X 8 9 0(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n的平均数)课标文数16.I2,K2[2011·北京卷] 【解答】 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为x =8+8+9+104=354; 方差为s 2=14⎣⎡⎦⎤⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542 =1116.(2)记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是: (A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4).用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为P (C )=416=14. 课标文数17.I2,K2[2011·广东卷]在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n,1,2,3,4,5成绩x n ,70,76,72,70,72(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.课标文数17.I2,K2[2011·广东卷] 【解答】(1)∵x =16∑6 n =1x n =75, ∴x 6=6x -∑5n =1x n =6×75-70-76-72-70-72=90, s 2=16∑6 n =1 (x n -x )2=16(52+12+32+52+32+152)=49, ∴s =7.(2)从5位同学中随机选取2位同学,共有如下10种不同的取法:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}.选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种:{1,2},{2,3},{2,4},{2,5},故所求概率为25.课标理数4.K2[2011·课标全国卷] 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34课标理数4.K2[2011·课标全国卷] A 【解析】 甲、乙两名同学参加小组的情况共有9种,参加同一小组的情况有3种,所以参加同一小组的概率为39=13.课标文数19.K2,I2[2011·辽宁卷] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(1)假设n =2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如下表:品种甲,403,397,390,404,388,400,412,406品种乙,419,403,412,418,408,423,400,413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x 1,x 2,…,x n 的样本方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为样本平均数.课标文数19.K2,I2[2011·辽宁卷] 【解答】 (1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A =“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A 包含1个基本事件:(1,2).所以P (A )=16. (2)品种甲的每公顷产量的样本平均数和样本方差分别为: x 甲=18(403+397+390+404+388+400+412+406)=400,s 2甲=18[32+(-3)2+(-10)2+42+(-12)2+02+122+62]=57.25. 品种乙的每公顷产量的样本平均数和样本方差分别为: x 乙=18(419+403+412+418+408+423+400+413)=412,S 2乙=18[72+(-9)2+02+62+(-4)2+112+(-12)2+12]=56. 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.课标文数6.K2[2011·课标全国卷] 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34课标文数6.K2[2011·课标全国卷] A 【解析】 甲、乙两名同学参加小组的情况共有9种,参加同一小组的情况有3种,所以参加同一小组的概率为39=13.课标文数18.K2[2011·山东卷] 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.课标文数18.K2[2011·山东卷] 【解答】 (1)甲校两名男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两名女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种.从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种.选出的两名教师性别相同的概率为P =49. (2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种.从中选出两名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种,选出的两名教师来自同一学校的概率为P =615=25. 课标理数10.K2[2011·陕西卷] 甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16课标理数10.K2[2011·陕西卷] D 【解析】 对本题我们只看甲乙二人游览的最后一个景点,最后一个景点的选法有C 16×C 16=36(种),若两个人最后选同一个景点共有C 16=6(种)选法,所以最后一小时他们在同一个景点游览的概率为P =C 16C 16×C 16=16. 大纲文数12.K2[2011·四川卷] 在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量α=(a ,b ).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则m n =( )A.215B.15C.415D.13大纲文数12.K2[2011·四川卷] B 【解析】 因为当OP →=(a 1,a 2),OQ →=(b 1,b 2),则以OP →,OQ →为邻边的平行四边形的面积S =|OP →||OQ →|sin ∠POQ =|OP →||OQ→|·1-cos 2∠POQ =|OP →|2|OQ →|2-O P →·OQ →2=a 21+a 22b 21+b 22-a 1b 1+a 2b 22=|a 1b 2-a 2b 1|.根据条件知平行四边形面积等于2可转化为|a 1b 2-a 2b 1|=2(※).由条件知,满足条件的向量有6个,即α1=(2,1),α2=(2,3),α3=(2,5),α4=(4,1),α5=(4,3),α6=(4,5),易知n=C 26=15.而满足(※)式的有向量α1和α4、α1和α5、α2和α6共3个,即m n =15. 大纲理数12.K2[2011·四川卷] 在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量α=(a ,b ),从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n=( ) A.415 B.13 C.25 D.23大纲理数12.K2[2011·四川卷] B 【解析】 因为当OP →=(a 1,a 2),OQ →=(b 1,b 2),则以OP →,OQ →为邻边的四边形的面积S =|OP →||OQ →|sin ∠POQ =|OP →||OQ →|·1-cos 2∠POQ =|OP →|2|OQ →|2-O P →·OQ →2=a 21+a 22b 21+b 22-a 1b 1+a 2b 22=|a 1b 2-a 2b 1|.根据条件知平行四边形面积不超过4可转化为|a 1b 2-a 2b 1|≤4(※).由条件知,满足条件的向量有6个,即α1=(2,1),α2=(2,3),α3=(2,5),α4=(4,1),α5=(4,3),α6=(4,5),易知n =C 26=15.而满足(※)式的有向量α1和α2、α1和α4、α1和α5、α2和α3、α2和α6共5个,即m n =13.课标理数16.K2,K6[2011·天津卷] 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球.这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).课标理数16.K2,K6[2011·天津卷] 【解答】 (1)(i)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15. (ii)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3,又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710. (2)由题意可知X 的所有可能取值为0,1,2.P (X =0)=⎝⎛⎭⎫1-7102=9100, P (X =1)=C 12710⎝⎛⎭⎫1-710=2150,P (X =2)=⎝⎛⎭⎫7102=49100. 所以X 的分布列是X,0,1,2P ,9100,2150,49100X 的数学期望E (X )=0×9100+1×2150+2×49100=75.课标文数15.K2[2011·天津卷] 编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号,A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8得分,15,35,21,28,25,36,18,34运动员编号,A 9,A 10,A 11,A 12,A 13,A 14,A 15,A 16得分,17,26,25,33,22,12,31,38(1)将得分在对应区间内的人数填入相应的空格:区间,[10,20),[20,30),[30,40]人数(2)从得分在区间[20,30)内的运动员中随机抽取2人,①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.课标文数15.K2[2011·天津卷] 【解答】 (1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2个得分之和大于50”(记为事件B )的所有可能结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11},共5种.所以P (B )=515=13.课标理数9.K2[2011·浙江卷] 有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( )A.15B.25C.35D.45课标理数9.K2[2011·浙江卷] B 【解析】 由古典概型的概率公式得P =1-2A 22A 22A 23+A 33A 22A 22A 55=25.课标文数8.K2[2011·浙江卷] 从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910课标文数8.K2[2011·浙江卷] D 【解析】 由古典概型的概率公式得P =1-C 33C 35=910.大纲文数14.K2[2011·重庆卷] 从甲、乙等10位同学中任选3位去参加某项活动,则所选3位中有甲但没有乙的概率为________.大纲文数14.K2[2011·重庆卷] 730【解析】 从10位同学中选3位的选法有C 310种,其中有甲无乙的选法有C 28种,故所求的概率为C 28C 310=730.课标理数4.K3[2011·福建卷] 如图1-1,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )图1-1A.14B.13C.12D.23 课标理数4.K3[2011·福建卷] C 【解析】 因为S △ABE =12|AB |·|BC |,S 矩形=|AB |·|BC |,则点Q 取自△ABE 内部的概率p =S △ABE S 矩形=12,故选C.课标文数7.K3[2011·福建卷] 如图1-2,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )图1-2A.14B.13C.12D.23课标理数15.K3[2011·湖南卷] (1) 2π (2)14【解析】 (1)S 圆=π,S 正方形=(2)2=2,根据几何概型的求法有:P (A )=S 正方形S 圆=2; (2)由∠EOH =90°,S △EOH =14S 正方形=12,故P ( |B A )=S △EOH S 正方形=122=14.课标文数15.H4,K3[2011·湖南卷] 已知圆C :x 2+y 2=12,直线l :4x +3y =25.(1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________.课标文数15.H4,K3[2011·湖南卷] (1)5 (2)16【解析】 (1)圆心到直线的距离为:d =||-2532+42=5;图1-4(2)当圆C 上的点到直线l 的距离是2时有两个点为点B 与点D ,设过这两点的直线方程为4x +3y +c =0,同时可得到的圆心到直线4x +3y +c =0的距离为OC =3,又圆的半径为r =23,可得∠BOD =60°,由图1-2可知点A 在弧BD 上移动,弧长l BD =16×c =c 6,圆周长c ,故P (A )=l BD c =16.课标理数12.K3[2011·江西卷] 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.大纲理数18.K4,K6[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望. 大纲理数18.K4,K6[2011·全国卷] 【解答】 记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P (A )=0.5,P (B )=0.3,C =A +B ,P (C )=P (A +B )=P (A )+P (B )=0.8.(2)D =C ,P (D )=1-P (C )=1-0.8=0.2,X ~B (100,0.2),即X 服从二项分布,所以期望EX =100×0.2=20.大纲文数19.K4,K5[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.大纲文数19.K4,K5[2011·全国卷] 【解答】 记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买;E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P (A )=0.5,P (B )=0.3,C =A +B ,P (C )=P (A +B )=P (A )+P (B )=0.8.(2)D =C ,P (D )=1-P (C )=1-0.8=0.2,P (E )=C 13×0.2×0.82=0.384.课标理数18.K4,K6[2011·湖南卷] 某商店试销某种商品20天,获得如下数据:日销售量(件),0,1,2,3频数,1,5,9,5试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充..至3件,否则不进货.....将频率视为概率.(1)求当天商店不进货...的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.课标理数18.K4,K6[2011·湖南卷] 【解答】(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(“当天商品销售量为1件”)=520=1 4;P(X=3)=P(“当天商品销售量为0件”)+P(“当天商品销售量为2件”)+P(“当天商品销售量为3件”)=120+920+520=34.故X的分布列为X,2,3P,14,34X的数学期望为EX=2×14+3×34=114.课标文数18.I2,K4[2011·湖南卷] 某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X =70时,Y=460;X每增加10,Y增加 5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量,70,110,140,160,200,220频率,120,,420,,,220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.课标文数18.I2,K4[2011·湖南卷] 【解答】(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量,70,110,140,160,200,220频率,120,320,420,720,320,220(2)P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210) =P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.课标文数16.K4[2011·江西卷] 某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A和B两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.课标文数16.K4[2011·江西卷] 【解答】 将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见,共有10种.令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.课标理数20.K4,K6[2011·陕西卷]图1-12如图1-12,A 地到火车站共有两条路径L 1和L 2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟),10~20,20~30,30~40,40~50,50~60L 1的频率,0.1,0.2,0.3,0.2,0.2L 2的频率,0,0.1,0.4,0.4,0.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X 表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X 的分布列和数学期望.课标理数20.K4,K6[2011·陕西卷] 【解答】 (1)A i 表示事件“甲选择路径L i 时,40分钟内赶到火车站”,B i 表示事件“乙选择路径L i 时,50分钟内赶到火车站”,i =1,2.用频率估计相应的概率可得P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,∵P (A 1)>P (A 2),∴甲应选择L 1;P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,∵P (B 2)>P (B 1),∴乙应选择L 2.(2)A ,B 分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站, 由(1)知P (A )=0.6,P (B )=0.9,又由题意知,A ,B 独立,∴P (X =0)=P (A B )=P (A )P (B )=0.4×0.1=0.04,P (X =1)=P (A B +A B )=P (A )P (B )+P (A )P (B )=0.4×0.9+0.6×0.1=0.42,P (X =2)=P (AB )=P (A )P (B )=0.6×0.9=0.54.∴X 的分布列为X,0,1,2P ,0.04,0.42,0.54∴EX =0×0.04+1×0.42+2×0.54=1.5.课标文数20.K1[2011·陕西卷] 如图1-13,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:所用时间(分钟),10~20,20~30,30~40,40~50,50~60选择L 1的人数,6,12,18,12,12选择L 2的人数,0,4,16,16,4图1-13(1)试估计40分钟内不能..赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.课标文数20.K1[2011·陕西卷] 【解答】(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:所用时间(分钟),10~20,20~30,30~40,40~50,50~60L1的频率,0.1,0.2,0.3,0.2,0.2L2的频率,0,0.1,0.4,0.4,0.1(3)A1、A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1、B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1.P(B1)=0.1+0.2+0.3+0.2=0.8.P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1).∴乙应选择L2.大纲文数19.K4,K5[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.大纲文数19.K4,K5[2011·全国卷] 【解答】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=C13×0.2×0.82=0.384.课标理数12.K5[2011·湖北卷] 在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________.(结果用最简分数表示)课标理数12.K5[2011·湖北卷] 28145【解析】所取2瓶全没有过保质期的概率为C227C230=117145,所以至少取到1瓶已过保质期的概率为1-117145=28 145.课标文数13.K5[2011·湖北卷] 在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________.(结果用最简分数表示)课标文数13.K5[2011·湖北卷] 28145 【解析】 所取2瓶全没有过保质期的概率为C 227C 230=117145,所以至少取到1瓶已过保质期的概率为1-117145=28145.大纲理数18.K5、K6[2011·四川卷] 本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ. 大纲理数18.K5、K6[2011·四川卷] 【解答】 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14. 记甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.答:甲、乙两人所付的租车费用相同的概率为516.(2)ξ可能取的值有0,2,4,6,8,P (ξ=0)=14×12=18;P (ξ=2)=14×14+12×12=516;P (ξ=4)=12×14+14×12+14×14=516; P (ξ=6)=12×14+14×14=316;P (ξ=8)=14×14=116.甲、乙两人所付的租车费用之和ξ的分布列为ξ,0,2,4,6,8P ,18,516,516,316,116所以Eξ=0×18+2×516+4×516+6×316+8×116=72.大纲理数13.K5[2011·重庆卷] 将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.大纲理数13.K5[2011·重庆卷] 1132【解析】 将一枚均匀的硬币投掷6次,可视作6次独立重复试验.正面出现的次数比反面出现的次数多的情况就是出现了4次、5次、6次正面,所以所求概率为C 46⎝⎛⎭⎫124⎝⎛⎭⎫122+C 56⎝⎛⎭⎫125⎝⎛⎭⎫12+C 66⎝⎛⎭⎫126=1132.课标理数20.K6,K7[2011·安徽卷]工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别p1,p2,p3,假设p1,p2,p3互不相等,且假定各人能否完成任务的事件相互独立.(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q1,q2,q3,其中q1,q2,q3是p1,p2,p3的一个排列,求所需派出人员数目X的分布列和均值(数学期望)EX;(3)假定1>p1>p2>p3,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小.课标理数20.K6,K7[2011·安徽卷] 【解析】本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识.【解答】(1)无论以怎样的顺序派出人员,任务不能被完成的概率都是(1-p1)(1-p2)(1-p3),所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于1-(1-p1)(1-p2)(1-p3)=p1+p2+p3-p1p2-p2p3-p3p1+p1p2p3.(2)当依次派出的三个人各自完成任务的概率分别为q1,q2,q3时,随机变量X的分布列为X,1,2,3P,q1,(1-q1)q2,(1-q1)(1-q2)所需派出的人员数目的均值(数学期望)EX是EX=q1+2(1-q1)q2+3(1-q1)(1-q2)=3-2q1-q2+q1q2.(3)(方法一)由(2)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,EX=3-2p1-p2+p1p2.根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于p1,p2,p3的任意排列q1,q2,q3,都有3-2q1-q2+q1q2≥3-2p1-p2+p1p2,(*)事实上,Δ=(3-2q1-q2+q1q2)-(3-2p1-p2+p1p2)=2(p1-q1)+(p2-q2)-p1p2+q1q2=2(p1-q1)+(p2-q2)-(p1-q1)p2-q1(p2-q2)=(2-p2)(p1-q1)+(1-q1)(p2-q2)≥(1-q1) [(p1+p2)-(q1+q2)]≥0.即(*)成立.(方法二)(i)可将(2)中所求的EX改写为3-(q1+q2)+q1q2-q1,若交换前两人的派出顺序,则变为3-(q1+q2)+q1q2-q2,由此可见,当q2>q1时,交换前两人的派出顺序可减小均值.(ii)也可将(2)中所求的EX改写为3-2q1-(1-q1)q2,若交换后两人的派出顺序,则变为3-2q1-(1-q1)q3,由此可见,若保持第一个派出的人选不变,当q3>q2时,交换后两人的派出顺序也可减小均值.综合(i)(ii)可知,当(q1,q2,q3)=(p1,p2,p3)时,EX达到最小,即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.课标理数17.I2,K6,K8[2011·北京卷] 以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.甲组,,乙组9,9,0,X,8,91,1,1,0图1-8(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n的平均数)课标理数17.I2,K6,K8[2011·北京卷] 【解答】 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10.所以平均数为x =8+8+9+104=354; 方差为s 2=14⎣⎡ ⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎦⎤⎝⎛⎭⎫10-3542=1116. (2)当X =9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取1名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18,同理可得P (Y =18)=14;P (Y =19)=14;P (Y =20)=14;P (Y =21)=18.所以随机变量Y 的分布列为:Y,17,18,19,20,21P ,18,14,14,14,18EY =17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×18+18×14+19×14+20×14+21×18=19.大纲理数18.K4,K6[2011·全国卷] 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望. 大纲理数18.K4,K6[2011·全国卷] 【解答】 记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P (A )=0.5,P (B )=0.3,C =A +B ,P (C )=P (A +B )=P (A )+P (B )=0.8. (2)D =C ,P (D )=1-P (C )=1-0.8=0.2,X ~B (100,0.2),即X 服从二项分布,所以期望EX =100×0.2=20.课标理数19.K6,K8[2011·福建卷] 某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B.已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/。
2012年高考试题分类汇编(统计与概率)
2012年高考试题分类汇编(统计与概率分别)考点1统计考法1抽样1.(2012·四川卷·文科)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。
假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为A.101 B.808 C.1212 D.2021 2.(2012·浙江卷·文科)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 . 3.(2012·江苏卷)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.4.(2012·福建卷·文科)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是 .5.(2012·天津卷·理科)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取所学校,中学中抽取所学校.6.(2012·山东卷·理科)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为A.7 B.9 C.10 D.15考法2统计图表1.(2012·江西卷·文科)小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为A .30%B .10%C .3%D .不能确定2.(2012·安徽卷·理科)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差3.(2012·陕西卷·理科)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙考法3数据的数字特征1.(2012·陕西卷·文科)对某商店一个月内每天的顾客人数进行了统计,得到3 4 5 6 7 8环数频数1 2 3o 3 4 5 6 7 8 环数频数 12 3 o9 乙8 6 5 08 8 4 0 0 7 5 2 8 0 0 3 1 1 2 3 4 0 2 80 2 3 3 7 1 2 4 4 8 2 3 8甲乙食品开支30%储蓄30%通讯开支5% 娱乐开支10% 日常开支20%鸡蛋 牛奶肉类 蔬菜 其他3040 1008050样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是A .46,45,56B .46,45,53C .47,45,56D .45,47,532.(2012·广东卷·文科)由正整数组成的一组数据1x ,2x ,3x ,4x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列) 3.(2012·山东卷·文科)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是A .众数B .平均数C .中位数D .标准差 考法4样本估计总体则样本数据落在区间[10,40)的频率为A .0.35B .0.45C .0.55D .0.65 2.(2012·广东卷·理科)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中x 的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.x12 3 4 5 62 5 0 23 3 1 24 4 8 95 5 5 7 7 8 8 9 0 0 1 1 4 7 9 1 7 83.(2012·山东卷·文科)右图是根据部分城市某年6月份的平均气温(单位:C)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5C的城市个数为11,则样本中平均气温不低于25.5C的城市个数为 .4.(2012·广东卷·文科)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (Ⅰ)求图中a的值;(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;(Ⅲ)若这100名学生语文成绩某项分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90) :x y1:12:13:44:5考点2概率分布1.(2012·重庆卷·文科)甲、乙两人轮流投篮,每人每次投一球.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.90600.02o0.030.04组距/频率70 80 10050成绩(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率.2.(2012·重庆卷·理科)甲、乙两人轮流投篮,每人每次投一球.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.3.(2012·大纲全国卷·理科)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。
高考数学真题汇编10 概率 文(解析版)
2012高考试题分类汇编:10:概率一、选择题1.【2012高考安徽文10】袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于 (A )15 (B )25 (C )35 (D )45【答案】B【解析】1个红球,2个白球和3个黑球记为112123,,,,,a b b c c c , 从袋中任取两球共有111211121312111213212223121323,;,;,;,;,;,;,;,;,,;,;,;,;,;,a b a b a c a c a c b b b c b c b c b c b c b c c c c c c c 15种;满足两球颜色为一白一黑有6种,概率等于62155=。
2.【2012高考辽宁文11】在长为12cm 的线段AB 上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为 :(A)16 (B) 13 (C) 23 (D) 45【答案】C【解析】设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)20x x ->,解得210x <<。
又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
3.【2012高考湖北文10】如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A.B.. C.D.10. 【答案】C【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形. 【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.4.【2102高考北京文3】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π(B )22π- (C )6π(D )44π- 【答案】D 【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
高考真题文科数学解析分类汇编 概率
2012高考文科试题解析分类汇编:概率1.【2012高考安徽文10】袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于(A)15(B)25(C)35(D )45【答案】B【解析】1个红球,2个白球和3个黑球记为112123,,,,,a b b c c c从袋中任取两球共有111211121312111213212223121323,;,;,;,;,;,;,;,;,,;,;,;,;,;,a b a b a c a c a c b b b c b c b cb c b c b c c c c c c c15种;满足两球颜色为一白一黑有6种,概率等于62155=2.【2012高考辽宁文11】在长为12cm的线段AB上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为:(A)16(B)13(C)23(D)45【答案】C【解析】设线段AC的长为x cm,则线段CB的长为(12x-)cm,那么矩形的面积为(12)x x-cm2,由(12)20x x->,解得210x<<。
又012x<<,所以该矩形面积小于32cm2的概率为23,故选C【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
3.【2012高考湖北文10】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆。
在扇形OAB内随机取一点,则此点取自阴影部分的概率是A. B. . C. D.【答案】C【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②.①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OAB S a a S a πππ-==-阴影扇形. 【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.4.【2102高考北京文3】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π (D )44π- 【答案】D【解析】题目中0202x y ≤≤⎧⎪⎨≤≤⎪⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122244224p ππ⨯-⨯-==⨯,故选D 【考点定位】 本小题是一道综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式、概率。
吉林省各地市2012年高考数学最新联考试题分类大汇编(12)概率.pdf
吉林省各地市2012年高考数学最新联考试题分类大汇编(12)概率 一、选择题: 10.如下图,给定两个平面向量,它们的夹角为,点C在以O为圆心的圆弧AB上,且(其中),则满足的概率为() A.B. C.D. B.1-C.D. 二、填空题: 14.(吉林省吉林市普通高中2012届高三下学期期末教学质量检测文科)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 . 三、解答题: 18. (2012年东北三省四市教研协作体第二次调研测试文科)(本小题满分12分) 对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到社区服务次数在区间内的概率,, , . 又 ,解得 ,,,. 则组的频率与组距之比为0.125. (5分)内的人数为人.(8分)内的人数为3,可分别记为,处于内的人数为2,可分别记为. 从该5名同学中取出2人的取法有共10种;至多一人内的情况有共7种,所以至多一人参加社区服务次数在区间内的概率. (12分)19. (吉林省吉林市普通高中2012届高三下学期期中教学质量检测理科)(本小题满分12分). (Ⅰ)请将上面的列联表补充完整; (Ⅱ)是否有99.5的把握认为喜欢户外运动与性别有关?并说明你的理由; (Ⅲ)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜 伽.若从喜欢户外运动的10位女性员工中任选3人,记表示抽到喜欢瑜伽 的人数,求的分布列和数学期望. 下面的临界值表仅供参考: 0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828() 19. (Ⅰ) 在全部50人中随机抽取1人的概率是,喜欢户外活动的男女员工共30,其中,男员工20人,列联表补充如下 3分 (Ⅱ有的把握认为喜欢户外运动与性别有关.7分 (Ⅲ)所有可能取值为9分 0123的分布列为 .12分 18. (吉林省吉林市普通高中2012届高三下学期期末教学质量检测文科)(本小题满分12分) 某高校在2012年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩分组:第1组,第2组,第3组第4组,第5组得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格 (Ⅰ)求出第4组的频率,并补全频率分布直方图; (Ⅱ)根据样本频率分布直方图估计样本的中位数; (Ⅲ)依题意良好的人数为人,优秀的人数为人 优秀与良好的人数比为3:2,所以采用分层抽样的方法抽取的5人中有优秀3人,良 好2人 …………8分 记从这5人中选2人至少有1人是优秀为事件 将考试成绩优秀的三名学生记为A,B,C, 考试成绩良好的两名学生记为a,b 从这5人中任选2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab 共10个基本事件 ……………9分 事件含的情况是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9个 ……10分 所以 ……………12分名学 0.05 0.03 0.07 0.06 0.04 0.02 0.01 75 80 85 90 95 100 分数。
2011-2012年高考数学 真题分类汇编 概率与统计(含解析)
概率与统计1. (2012·某某高考卷·T5·5分) 一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3! (B) 3×(3!)3(C)(3!)4(D) 9! 【答案】C【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有3!种排法,三个家庭共有33!3!3!(3!)⨯⨯=种排法;再把三个家庭进行全排列有3!种排法。
因此不同的坐法种数为4(3!),答案为C【点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题。
2. (2012·某某高考卷·T10·5分)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A)16 (B) 13 (C) 23 (D) 45【答案】C【解析】设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)32x x -<,解得48x x <>或。
又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C 【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
3.(2012·某某高考卷·T17·5分)设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x xx x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.4.(2012·某某高考卷·T8·5分)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 ( )A .21π- B .112π- C .2πD .1π【答案】A【解析】如下图所示,设OA 的中点为1O ,OB 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12OO FO 是正方形.不妨设扇形OAB 的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S . 则21234124OAB S S S S S ππ+++==⨯=扇形, ①而22132311111,12222S S S S ππππ+=⨯=+=⨯=,即1232S S S π++=, ②由①-②,得34S S =.又由图象观察可知,12214OO FO OAB O FB O AF S S S S S =---正方形扇形扇形扇形222222111111111114422πππππ=⨯-⨯-⨯-⨯=⨯-=-.故由几何概型概率公式可得,此点取自阴影部分的概率3442221OAB OAB S S S P S S πππ+-====-扇形扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.5.(2011年某某).如图,用K 、1A 、2A 三类不同的元件连接成一个系统。
2012年高考数学试题分析及2013届高考备考建议--概率与统计
(A)
6 5
(B) 6 5
(C)
2
(D) 2
2010 理科(20)(本小题满分 12 分) 某学校举行知识竞赛,第一轮选拔共设有 A , B , C , D 四个问题,规则如下:① 每位参加者计分器的初始分均为 10 分, 答对问题 A , B , C , D 分别加 1 分, 分, 分, 2 3 6 分,答错任意题减 2 分; ②每答一题,计分器显示累计分数,当累积分数小于 8 分时,答题结束, 淘汰出局;当累积分数大于或等于 14 分时,答题结束,进入下一轮;答完四题 累计分数不足 14 分时,答题结束淘汰出局; ③每位参加者按 A , B , C , D 顺序作答,直至答题结束.假设甲同学对问题 A , B , C , D 回答正确的概率依次为 3 , 1 , 1 , 1 ,且各题回答正确与否相互之间没有影响. 4 2 3 4 (Ⅰ)求甲同学能进入下一轮的概率; (Ⅱ)用 表示甲同学本轮答题的个数,求 的分布列和数学期望 E .
1 2
求 q 的值; 求随机变量 的数学期量 E ;w.w.w.k.s.5.u.c.o.m 试比较该同学选择都在 B 处投篮得分超过 3 分与选择上述方式投篮得分超过 3 分的概率的大 小。
2
(2010 理科(5)已知随机变量 服从正态分布 N (0, ) ,若 P ( 2) 0.023 ,则 P ( 2 ≤ ≤ 2) (A)0.477 (B)0.625 (C)0.954 (D)0.977 (2010 理科(6)样本中共有 5 个个体,其值分别为 a , 0,1, 2, 3 .若该样本的平均值为 1,则样本方差为
文科数学近三年考查情况汇总
考点 知识点
随机抽样 统计与统 计案 例 用样本估计总体 独立性检验 回归分析 古典概型 几何概型 第19题 第11题 第19题 第7题 第18题 2009 文科 第19题 第19题 第6题 2010 文科 2011 文科
2012-2021十年全国高考数学(文科)真题分类汇编解析 概率
13.(2016年高考数学课标Ⅰ卷文科)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A. B. C. D.
14.(2015年高考数学课标Ⅰ卷文科)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从 中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A.0.01B.0.1C.1D.10
5.(2019年高考数学课标Ⅲ卷文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
6.(2019年高考数学课标Ⅱ卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
22.(2016年高考数学课标Ⅱ卷文科)(本小题满分12分)某险种的基本保费为 (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
保费
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
17.(2014年高考数学课标Ⅰ卷文科)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.
18.(2013年高考数学课标Ⅱ卷文科)从 中任意取出两个不同的数,其和为 的概率是_______。
三、解答题
19.(2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
2012年高考真题文科数学汇编12:概率.pdf
崇祯五年十二月,余住西湖。
大雪三日,湖中人鸟声俱绝。
是日更定矣,余(ráo)一小舟,拥毳衣炉火,独往湖心亭看雪。
雾凇沆砀,天与云与山与水,上下一白。
湖上影子,惟长堤一痕,湖心亭一点,与余舟一芥,舟中人两三粒而已。
到亭上,有两人铺毡对坐,一童子烧酒炉正沸。
见余,大喜曰:“湖中焉得更有此人!”拉余同饮。
余强饮三大白而别。
问其姓氏,是金陵人,客此。
及下船,舟子喃喃曰:“莫说相公痴,更(gèng)有痴似相公者!” 更(gēng)定:更,古代夜间的计时单位,一夜分为五更,每更约两小时。
(ráo):即“桡”,撑(船) 定,完了,结束。
拿:撑,划。
拥:围裹。
毳(cuì)衣:细毛皮衣。
雾凇(sōng)沆(hàng)砀(dàng):冰花一片弥漫。
雾凇:水气凝成的冰花。
沆砀:白气弥漫的样子。
一白:全白。
长堤一痕:形容西湖长堤在雪中只隐隐露出一道痕迹。
痕:指斑迹,迹印。
一芥(jiè):一棵小草。
芥:小草,形容船小。
焉得:哪能。
更(gèng):还 大白:酒杯名 客此:在此地客居。
客,客居,作动词用。
及:等到。
舟子:船夫。
者:```````的人。
2、[译文] 崇祯五年十二月,我在杭州西湖。
下了三天大雪,湖中游人全无,连鸟声也都听不见了。
这一天天刚刚亮,我划着一只小船,穿着皮袍,带着火炉,一个人去湖心亭欣赏雪景。
树挂晶莹,白气弥漫,天、云、山、水,上上下下一片雪白。
湖上能见到的影子,只有西湖长堤一道淡淡的痕迹,湖心亭是一片白中的一点,和我的船像一片漂在湖中的草叶,船上的人像两三粒小小的芥子,唯此而已。
到了湖心亭上,已经有两个人铺着毡席,对坐在那儿,一个小仆人烧着酒炉,炉上的酒正在沸腾。
那两个人看见我,十分惊喜地说:“湖中哪能还有这样赏雪的痴情人!”拉着我一同喝酒。
我勉强喝了三大杯就告别。
问他们的姓名,原是金陵人在此地作客。
2012年数学高考试题+模拟新题分类汇编:专题K 概率(文科).pdf
第11课 中国共产党的成立 班级 姓名 小组 编号 总课时第 课时 执行时间 主备人 学习目标:知道:1.马克思主义的传播;2.毛泽东、周恩来的发展;3.陈独秀、李大钊建立早期党组织;4.早起党组织和上海党组织的作用; 理解:5.中共一大召开的时间、地点、代表及内容;6.中共成立的意义。
二、课堂目标重难点: 1.重点:中共一大的召开;中共诞生的意义。
2.难点:①中共成立的条件;②中共一大为何在上海召开的原因。
三、自主学习教材第54--58 页,完成下列练习: 1.1920年,( )等在上海建立第一个共产党早期组织。
P55 中国共产党成立的条件: 思想基础:( )在中共地点广泛传播。
干部基础:( )、( )等一批青年逐步成为马克思主义者 组织基础:各地( )的成立。
P55 中共一大的召开: 召开的时间:( )年7月23---31日。
召开的地点:( )(后来转移到浙江嘉兴南湖的游船上)。
P55 会议的内容: ①通过了党的第一个纲领。
党纲规定党的名称为( ); ②党的奋斗目标是推翻(),建立( )专政,实现 ( ); ③党的组织原则是( )集中制。
④大会确定党成立后的中心任务是( ),领导个人运动。
⑤大会还选举了党的中央领导机构-----( ),( )为书记。
P57. 中国共产党成立的意义: 中国共产党第一次全国代表大会的召开,宣告了中国共产党的成立。
中国共产党是以( )为行动指南的( )政党。
它的成立时中国历史上( )的大事。
自从有了( ),中国革命的面貌就焕然一新了。
四、课堂讨论: 1、1921年7月,中国共产党成立,它成立的条件有哪些? 3、中国共产党成立的标示志是什么?(时间、地点、内容) 4、中国共产党是一个什么性质的政党?参加这次大会的主要代表有哪些?这次大会的召开有何重大历史意义? 五、 课堂检测反馈: 1、自从有了中国共产党,中国革命的面貌 就焕然一新了。
这里的“新”主要指 ( ) ①有了新型的无产阶级政党 ②中国人民有了新的奋斗目标 ③中国革命有了新的内容 ④中国革命有了新的前景A ①②③B ①②C ①②④ D①②③④ 2. 有一部反映中国革命的影片叫《开天辟地》,你认为以下选项中最符合这一片名的历史事件是( )A 中国共产党的成立B 武昌起义 C五四运动 D同盟会的成立 材料解析: 有人说:“1901年,中国陷入无尽的黑暗中;1911年,一道闪电划过,却黑暗依旧;1921年,中国终于迎来了曙光。
北京2012年高考数学最新联考试题分类大汇编(12)概率试题解析.pdf
一、学——目标自学、自主学习 (一)学习目标:1.把握文中“梦”的含义,并从作者的“梦”中获得启示。
??2.体会课文以“梦”为主线贯穿全文的特点;?3.培养勇于探索挑战自我的深厚感情。
? (二)文学常识 1、走近作者:刘雨田,河南长葛人。
中国历史上第一位职业探险家。
刘雨田在童年时就有一个梦:走很多很多的路,走遍祖国的山山水水。
然而,他怎么也没想到自己会沿着长城旅行,而且是用自己的双脚。
2、了解背景:我国著名的长城学家罗哲文生前在文章中写道:“长城是中华民族的象征,是世界的伟大奇迹……今后是否有人能全部走完,尚有待来者。
1982年,《人民日报》上登载了一条消息:一名法国作家要从长城的一端走到另一端。
“中国的长城怎么能由外国人先走?”刘雨田的爱国之心被深深地刺痛了,那个童年的梦想也被这无法抗拒的力量唤醒了。
走!!!经过周密的准备,1984年5月13日,刘雨田从嘉峪关出发了!两年来刘雨田穿越甘肃、宁夏、内蒙、陕西、山西、河北、辽宁等七个省区。
在山海关的城头,刘雨田完成了徒步万里长城的壮举! 从此,刘雨田的脚就没再有歇下来。
17年来,刘雨田创造了一个又一个令世人震惊的奇迹。
他走过长城、丝绸之路、黄土高原、古尔班通古特沙漠、塔克拉玛干沙漠;登过天山、昆仑山、珠穆朗玛峰、鄂尔多斯高原;考察了神农架野人、喜马拉雅雪人、藏东原始森林、黄金古道…… 多年的野外生活,让刘雨田练就了极强的生存本领。
一年四季,不论严寒酷暑,他都穿一件单衣单裤;零下40度,光脚走在冰川上;零上40度,在滚烫的沙漠上晒日光浴。
这些怪异的举止,给刘雨田蒙上了一层神秘的色彩。
刘雨田拍摄了一万多张照片,写下了二百多万字的探险日记……为人类自然探险填补了一个又一个空白。
二、展——课堂交流、小组展示 (一)导入新课: 本单元我们学习了流沙河的《理想》,懂得了人生要树立远大理想,才不会迷失方向;学习了《袁隆平的“寻梦园”》,理解了他为实现自己伟大梦想而奋斗终生的精神;学习了《航天女英雄》,感受到了麦考利夫为梦想而献身的优秀品质。
2011-2012年高考数学 真题分类汇编 第三章概率(含解析)新人教版必修3
【我在高考中】人教版(2011-2012年高考真题)数学分类汇编 必修3第三章概率(含解析,6页)1.(2012·某某高考卷·T11·5分)在长为12cm 的线段AB 上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为 :(A)16 (B) 13 (C) 23 (D) 45【答案】C【解析】设线段AC 的长为x cm ,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2,由(12)20x x ->,解得210x <<。
又012x <<,所以该矩形面积小于32cm 2的概率为23,故选C 【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
2.(2012·某某高考卷·T6·5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ . 【答案】53 【解析】组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为53. 【点评】本题主要考查古典概型.在利用古典概型解决问题时,关键弄清基本事件数和基本事件总数,本题要注意审题,“一次随机取两个数”,意味着这两个数不能重复,这一点要特别注意.3.(2012·某某高考卷·T12·5分)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点则该两点间的距离为22的概率是___________. 【答案】25【解析】从这5个点中任取2个点共有10种取法;而该两点间的距离为22的点只有四个顶点分别和中心的距离符合条件,即事件A 有4种,于是两点间的距离为22的概率为42=.105P =【点评】本题主要考察随机事件的概率,分两步做即可.4.(2012·某某高考卷·T15·12分) 某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
2012年高考试题+模拟新题分类汇编专题文科K 概率(高考真题+模拟新题).pdf
15.父 母 的 心 1.理解文章一波三折,跌宕起伏的情节特点。
2.体会文中父母浓浓的爱心,淡淡的哀愁。
3.能联系生活理解主题,能体会父母亲对儿女的深情。
●重点:把握情节的曲折性;理解作品流露出的淡淡的哀愁。
1.下面是某同学制作的知识卡片,请你帮着补充完整。
川端康成(1899—1972), 日本 (国名)现当代小说家。
出生在大阪。
幼年父母即亡,后祖父母和姐姐又陆续病故。
孤独忧郁伴其一生,这也反映在他的创作中。
其作品富有印象主义色彩,语言洗练质朴,意境新颖,注重抒情和主观感觉的描写。
主要作品有《 伊豆的舞女 》《雪国》《古都》等。
1968年获“ 诺贝尔 文学奖”。
? 2.给下列加点字注音。
濑户( lài ) 吩咐( fēn ) 冷酷( kù ) 犹豫( yù ) 褴褛( lán )( lǚ )酬谢( chóu )妥( tuǒ )缘故( yuán ) 3.结合课文,解释下列词语。
褴褛:(衣服)破烂。
无精打采:打不起精神。
寒酸:本文形容穿得破烂而显得不体面。
酬谢:用金钱、礼物等表示谢意。
4.通读课文,在横线上填入恰当的词语。
问题一:细读文章,感知内容。
1.请用一句话对故事内容进行概括。
本文写一对穷夫妻最终拒绝优越的条件,不愿把自己的任何一个孩子给富人的故事。
2.本文在情节安排上有何特点? 文中的父母因家境贫穷,将自己的孩子一送二换三要回,可谓一波三折,跌宕起伏,反映了浓浓的父母爱子之心。
问题二:品味语句,把握形象。
1.“父母的心”的内涵是什么?选择你感受最深的语句来读,按“从‘ ’中,我体会到‘父母的心’包含着‘ ’ ”的句式说话。
? (1)从“今天早晨给你送来的二儿子,从眉眼长相到说话的嗓子,都和我那去世的婆婆一模一样”中,我体会到“父母的心”包含着孝心。
孝顺父母是日本传统文化中的精华,日本有这样的谚语:父恩比山高,母恩比海深。
2012高考数学知识考点精析13 概率
第十三讲概率1、 事件分为确定事件(包括必然事件与不可能事件)与随机事件。
随机事件发生的可能性的大小用概率来度量。
在n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数。
An n称为事件A 发生的频率。
随着试验次数的增加,频率稳定在某个常数上,这个常数称为事件A 发生的概率。
频率是变化的与试验次数有关,概率是不变的,与试验次数无关。
频率是概率的近似值。
2、 从多个可选答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则。
这方法叫极大自然法。
3、“事件A 的发生或事件B 发生”称为“事件A 与B 的并事件(或和事件)”,记作:“A B A B +或”,“事件A 的发生且事件B 发生”称为“事件A 与B 的交事件(或积事件)”,记作:“AB AB 或”。
若A B φ=即A B 为不可能事件,称事件A 与B 互斥,即事件A 与B 在任何一次试验中不可能同时发生。
若A B 为不可能事件且A B 为必然事件,则称事件A 与B 互为对立事件。
即事件A 与B 在任何一次试验中有且只有一次发生。
3、 概率的几个性质:()()()()()()()()()()()()()()()101010P A 12A B P A B P A P B A B P A B P A P B P A B A B P A 1P B 3A B P AB P A P B ~<<任何事件的概率在之间,不可能事件的概率为,必然事件的概率为,随机事件的概率为:,()概率的加法公式:事件与互斥时,=+事件与不互斥时,=+-事件与互为对立事件时,=-概率的乘法公式:事件与相互独立时,=。
4、 关于古典概型:基本事件的特点是:任何两个基本事件是互斥的,任何事件(不可能事件除外)都可以表示为基本事件的和。
若试验中可能出现的基本事件只有有限种,且每个基本事件出现的可能性相同,具有这两个特征的概率模型称为古典概型。
【精品解析】北京市2012年高考数学最新联考试题分类大汇编(12)概率
精品解析:北京市2012年高考数学最新联考试题分类大汇编(12)概率试题解析一、填空题:14. (2012年3月北京市朝阳区高三一模文科)已知集合{}22(,)4A x y x y =+≤,集合B =(){},,x y y m x m ≥为正常数.若O 为坐标原点,M ,N 为集合A 所表示的平面区域与集合B 所表示的平面区域的边界的交点,则MON ∆的面积S 与m 的关系式为 .241m m+ 二、解答题:16. (北京市西城区2012年1月高三期末考试理科)(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.【命题分析】本题考查随机事件的概率和独立事件的概率问题。
利用等可能事件的定义求概率,不要忘记等可能事件的两大特征:基本事件总数有限及基本事件的发生等可能.求概率的题目,找准“基本事件”很重要,因此一定要明确以什么“事件”作为基本事件,某事件A 所包含的基本事件必须与此相对应.求解等可能性事件A 的概率一般遵循如下步骤:多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.本题的第二问采用组合的知识,确定m 、n 的值。
(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分 所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C 21P X ===; 115227C C 10(3)C 21P X ===;2527C 10(4)C 21P X ===. ………………10分X :21 ……………11分11010242342121217EX =⨯+⨯+⨯=. ………………13分率)(17)(本小题满分13分) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分X……………………………………… 812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为 1. ………………………………………13分(16)(本小题满分13分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=,0.02550050b =⨯⨯=. ……………2分(Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=, 第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,16. (北京市西城区2012年4月高三第一次模拟文)(本小题满分13分)某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.11(,)a a ,),(21a a ,),(11b a ,),(21b a ,),(31b a , ),(12a a ,22(,)a a ,),(12b a ,),(22b a ,),(32b a ,),(11a b ,),(21a b ,11(,)b b ,),(21b b ,),(31b b , ),(12a b ,),(22a b ,21(,)b b ,22(,)b b ,),(32b b ,),(13a b ,),(23a b ,31(,)b b ,),(23b b ,33(,)b b ,共25种. …9分2次发言的学生恰好来自不同班级的基本事件为:),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a ,),(11a b ,),(21a b ,),(12a b ,),(22a b ,),(13a b ,),(23a b ,共12种. ………12分所以2次发言的学生恰好来自不同班级的概率为1225P =. ……13分(16)(共13分)解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-. …………2分(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=,(3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥,又n *∈N 且4n ≤,得3n =,或4n =. ……10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分(16)(北京市东城区2012年4月高考一模文科)(本小题共13分)(16)(共13分)解:(Ⅰ)设三个“非低碳小区”为C B A ,,,两个“低碳小区”为,,m n …………2分用),(y x 表示选定的两个小区,{},,,,,x y A B C m n ∈,则从5个小区中任选两个小区,所有可能的结果有10个,它们是(,)A B ,(,)A C ,(,)A m ,(,)A n ,(,)B C ,(,)B m ,(,)B n ,(,)C m ,(,)C n ,(,)m n . …………5分用D 表示:“选出的两个小区恰有一个为非低碳小区”这一事件,则D 中的结果有6个,它们是:(,)A m ,(,)A n ,(,)B m ,(,)B n ,(,)C m ,(,)C n . ………7分故所求概率为63()105P D ==. …………8分 (II )由图1可知月碳排放量不超过300千克的成为“低碳族”. …………10分由图2可知,三个月后的低碳族的比例为0.070.230.460.760.75++=>,…………12分 所以三个月后小区A 达到了“低碳小区”标准. …………13分16. (2012年3月北京市丰台区高三一模文科)(本小题共13分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统教师(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率;(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为i a (i =1,2),教龄在5至10年的教师为i b (j =1,2,3,4),那么任选2人的基本事件为12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b ,12(,)b b ,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个. ……………………9分设“任选2人中恰有一人的教龄在5年以下”为事件B , ……………………10分包括的基本事件为11(,)a b ,12(,)a b ,13(,)a b ,14(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,24(,)a b 共8个, ……………………11分 则8()15P B =. ……………………13分 所以恰有一人教龄在5年以下的概率是815.16. (2012年4月北京市房山区高三一模理科(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分随机变量ξ的分布列为:………………………12分随机变量ξ的分布列为:所以334=⨯==np E ξ …………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高考文科数学解析分类汇编:概率一、选择题错误!未指定书签。
.(2012年高考(辽宁文))在长为12cm 的线段AB 上任取一点 C . 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为 ( )A . 16B .13C .23D .45错误!未指定书签。
.(2012年高考(北京文))设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6π D .44π- 错误!未指定书签。
.(2012年高考(安徽文))袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ) A .15 B .25 C .35 D .45二、填空题错误!未指定书签。
.(2012年高考(浙江文))从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为2的概率是___________. 错误!未指定书签。
.(2012年高考(上海文))三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是______(结果用最简分数表示).三、解答题错误!未指定书签。
.(2012年高考(重庆文))(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率.错误!未指定书签。
.(2012年高考(天津文))某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.错误!未指定书签。
.(2012年高考(四川文))某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为110和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(Ⅱ)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.错误!未指定书签。
.(2012年高考(陕西文))假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(Ⅰ)估计甲品牌产品寿命小于200小时的概率;(Ⅱ)这两种品牌产品中,,某个产品已使用了200小时,试估计该产品是甲品牌的概率.错误!未指定书签。
.(2012年高考(山东文))袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.错误!未指定书签。
.(2012年高考(课标文))某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.错误!未指定书签。
.(2012年高考(江西文))如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),.C2(0,0,2)这6个点中随机选取3个点(1) 求这3点与原点O恰好是正三棱锥的四个顶点的概率;(2) 求这3点与原点O共面的概率.错误!未指定书签。
.(2012年高考(湖南文))某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.[来源:数理化网]至已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)错误!未指定书签。
.(2012年高考(大纲文))乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲.乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲.乙的比分为1比2的概率;(Ⅱ)求开始第5次发球时,甲得分领先的概率.错误!未指定书签。
.(2012年高考(安徽文))若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.2012年高考文科数学解析分类汇编:概率参考答案一、选择题错误!未找到引用源。
【答案】C【解析】设线段AC 的长为x cm,则线段CB 的长为(12x -)cm,那么矩形的面积为(12)x x -cm 2, 由(12)20x x ->,解得210x <<.又012x <<,所以该矩形面积小于32c m 2的概率为23,故选C 【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题.错误!未找到引用源。
【答案】D【解析】题目中0202x y ≤≤⎧⎪⎨≤≤⎪⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122244224p ππ⨯-⨯-==⨯,故选D 【考点定位】 本小题是一道综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式、概率.错误!未找到引用源。
【解析】选B 1个红球,2个白球和3个黑球记为112123,,,,,a b b c c c从袋中任取两球共有111211121312111213212223121323,;,;,;,;,;,;,;,;,,;,;,;,;,;,a b a b a c a c a c b b b c b c b c b c b c b c c c c c c c 15种; 满足两球颜色为一白一黑有6种,概率等于62155= 二、填空题错误!未找到引用源。
【答案】25【命题意图】本题主要了以正方形中某些点为背景的随机事件的概率问题.【解析】若使两点间的距离为2,则为对角线一半,选择点必含中心,概率为142542105C C ==. 错误!未找到引用源。
[解析] 设概率p=nk ,则27131313=⋅⋅=C C C n ,求k ,分三步:①选项目相同的二人,有23C 种;②确定上述二人所选相同的项目,有13C 种;③确定另一人所选的项目,有12C 种. 所以18121323=⋅⋅=C C C k ,故p=322718=. 三、解答题错误!未找到引用源。
【答案】:(Ⅰ)1327(Ⅱ)427独立事件同时发生的概率计算公式知112211223()()()p D p A B A B p A B A B A =+112211223()()()()()()()()()p A p B P A P B p A p B P A P B p A =+2222212114()()()()3232327=+= 错误!未找到引用源。
解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1(2)①在抽取到的6年学校中,3所小学分别记为123,,A A A ,2所中学分别记为45,A A ,大学记为6A ,则抽取2所学校的所有可能结果为{}{}{}{}{}1213141516,,,,,,,,,A A A A A A A A A A ,{}{}{}{}{}{}232425263435,,,,,,,,,,,A A A A A A A A A A A A ,{}{}{}{}36454656,,,,,,,A A A A A A A A ,共15种.②从6年学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{}{}{}121323,,,,,A A A A A A ,共3种,所以31()155P B ==.错误!未找到引用源。
[解析](1)设:“至少有一个系统不发生故障”为事件C,那么1-P(C)=1-101P=5049 ,解得P=516 分 (2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为 事件D,那么P(D)=23C 2502431000972)1011()1011(10132==-+-⨯ 答:检测中不发生故障的次数大于发生故障的次数的概率为250243 . [点评]本小题主要考查相互独立事件,独立重复试验、互斥事件等概念及相关计算,考查运用概率知识与方法解决实际问题的能力.错误!未找到引用源。
错误!未找到引用源。
解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. 错误!未找到引用源。
【命题意图】本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.【解析】(Ⅰ)当日需求量17n ≥时,利润y =85;当日需求量17n <时,利润1085y n =-,∴y 关于n 的解析式为1085,17,()85, 17,n n y n N n -<⎧=∈⎨>⎩; (Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为1(5510652075168554)100⨯+⨯+⨯+⨯=76.4; (ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为 0.160.160.150.130.10.7p =++++=错误!未找到引用源。