高速铁路有砟、无砟轨道结构及精调.

合集下载

浅谈高速铁路无砟轨道精测及调整

浅谈高速铁路无砟轨道精测及调整

浅谈高速铁路无砟轨道精测及调整.doc高速铁路无砟轨道精测及调整一、简介高速铁路是指以机车行走速度达到或超过200公里/小时的铁路,它的特点是路线以直线曲线相结合,行车速度快,列车编组少,行车安全性要求高,因此在轨道施工及检修方面要求更严格。

无砟轨道精测及调整是在精密轨道技术中的一项重要技术,它是在轨道施工及检修中必不可少的技术,它能够保证轨道施工质量,改善行车安全性,提高轨道的使用寿命,减少轨道维修次数,降低运营成本。

二、原理无砟轨道精测及调整是将轨道按照相应的技术要求,利用仪器检测轨道的参数,如内轨距、外轨距、轨调,并根据检测结果进行调整,使轨道达到规定的技术要求。

1. 检测原理无砟轨道精测及调整是利用仪器对轨道进行检测,测量轨道的参数,并依据检测结果,调整轨道,使其能够达到要求。

检测轨道参数,主要分为三部分:内轨距检测,外轨距检测和轨调检测。

内轨距检测:利用仪器测量轨道两条轨边间的距离,即内轨距,并与规定的标准值进行对比,检测轨道两条轨边间的距离是否符合要求。

外轨距检测:利用仪器测量轨道两条轨边间的距离,即外轨距,并与规定的标准值进行对比,检测轨道两条轨边间的距离是否符合要求。

轨调检测:利用仪器测量轨道上每段之间的坡度,即轨调,并与规定的标准值进行对比,检测轨道上每段间的坡度是否符合要求。

2. 调整原理根据检测结果,对轨道进行调整,使其能够达到要求。

内轨距调整:如果内轨距超出标准值,可以采取向轨道中心移动轨边的方法,将轨道内轨距调整到标准值。

外轨距调整:如果外轨距超出标准值,可以采取向轨道中心移动轨边的方法,将轨道外轨距调整到标准值。

轨调调整:如果轨调超出标准值,可以采取更改轨道中段的坡度,将轨道轨调调整到标准值。

三、技术要求1. 检测技术要求在无砟轨道精测及调整过程中,主要检测内轨距、外轨距和轨调等参数,检测精度要求如下:内轨距:±3mm外轨距:±3mm轨调:±0.01‰2. 调整技术要求在无砟轨道精测及调整过程中,主要调整内轨距、外轨距和轨调等参数,调整精度要求如下:内轨距:≤±3mm外轨距:≤±3mm轨调:≤±0.01‰四、总结无砟轨道精测及调整是高速铁路施工及检修中必不可少的技术,它能够保证轨道施工质量,改善行车安全性,提高轨道的使用寿命,减少轨道维修次数,降低运营成本。

高速铁路CRTS I型双块式无砟轨道施工精度控制

高速铁路CRTS I型双块式无砟轨道施工精度控制

高速铁路CRTS I型双块式无砟轨道施工精度控制摘要:高速铁路具有运行速度高、运营维修费用少的优点。

高车速对无砟轨道的平顺性和稳定性要求很高 ,要求在施工无砟轨道中必须对每一道影响施工精度的施工工序进行严格控制,确保施工过程中将轨道几何状态调至最佳。

关键词:双块式无砟轨道; 轨排;精调;精度一、CRTS I双块式无砟轨道设计构造CRTS I双块式无砟轨道轨道结构组成自上而下分别为钢轨、扣件、双块式轨枕、道床板、中间隔离层和底座(支承层)等,桥梁轨道结构高度为725mm,路基地段轨道结构层厚度为815mm。

二、无砟轨道施工精度控制标准高速铁路轨道施工要求有较高的精度,其施工质量需符合《高速铁路轨道工程施工质量验收标准》(TB10754-2010号)及《高速铁路轨道工程施工技术规程》(Q/CR 9605-2017)的要求。

其主要控制项有以下几项。

轨距:偏差控制为±1mm,变化率不得大于1‰;轨顶标高:偏差控制一般地段为±2mm,紧靠站台为+2,0mm;轨向:允许偏差 2mm/10m弦;线间距:允许偏差+5,0mm。

三、影响无砟轨道施工精度的原因分析及预防措施无砟轨道施工工艺采用轨排框架法进行,轨排框架施工精度高,精度控制采用轨道几何轨道几何状态测量仪精调,采用螺杆调节器进行固定,影响无砟轨道的精度因素较多。

如何在施工中有效控制轨道精度就成了施工中的一个难题。

通过生产实践研究,总结了以下影响因素并制定了以下预防措施:3.1外界环境因素3.1.1外界环境(温度)因素无砟轨道精调采用轨道几何状态测量仪,将需要调整的轨排高程、中线偏位等数据显示在轨道几何状态测量仪的电脑上,再用调整螺杆调节器的方法,反复测调,最终使轨排线形满足设计要求。

因采用的是光学仪器,受自然温度影响,温度超过 20℃或在阳光直射情况下会造成光线反射,温度热流会造成数据抖动,无法进行测量。

所以轨排精调的时间选择在无阳光照射、气温比较恒定的晚上进行,精调完成后即浇筑混凝土,如精调完成后不能及时进行混凝土浇筑,当轨排放置时间超过12h或环境温度变化超过 15℃时必须重新对轨排的精度进行检测。

高速铁路无砟轨道CRTSⅡ型轨道板精调技术

高速铁路无砟轨道CRTSⅡ型轨道板精调技术

T c n lg o rc eAdu t n f T r c eh oo yfrP ei j s s me t o CR SI T ak I
S a n Ba l sls a k o g p e i l b o l te s Tr c fHi h S e d Ra l y a wa
关键 词 无砟轨 道 C T 型轨 道板 R S1 1 精调
中图分 类号 : U18 2 8 T 9 ;U 3
文献标 识码 : B
1 概 述
轨道 板精 调是 指通过 调 整轨道 板 的高度及 平 面状 态, 使各 螺栓孔 位 置精确 安置 , 从而保 证 扣件 的安放 精
度, 减少 扣件 安放后 轨道 的调 整量 。
检核提 供 了可靠 的数据 。
在石 武 客运专 线高 速 铁路 C T 型板 式无 砟 轨 R S1 I 道 施工过 程 中 , 为保 证无砟 轨 道 的安 装精 度 , 轨 道板 在 精 调过程 中采 用 了国产 高精度 轨道 板精 调系统 配合 智 能 型全站 仪 , 轨道 基准点 G P上设 站 的测 量 方法 进 在 R 行 精调作 业 。首先 在 测 设 完 成 的 G P上 架 设 智 能 型 R
Pa g M i g i g n n qn


高速铁 路 客运 专线 对轨道 的 高平顺 、 高稳 定性 要 求非 常高 , 设计 与施 工提 出了很 高的标 给
准。结合 石 武客运 专线 建设 的经验 , 阐述 了采 用 G P点进 行 C T 型轨道 板精 调施 工方 案 , 一精 调 R R SI I 这 方案既保 证 了施 工测量 中的精 度 , 又进 一步提 高 了轨道 板精 调施 工效 率 。
设 计 [ ] 铁 道 工 程 学报 ,07( )4 J. 20 8 :9—5 2

城市轨道交通运营管理《高速铁路轨道结构类型》

城市轨道交通运营管理《高速铁路轨道结构类型》

高速铁路轨道结构类型
1、有砟轨道
•是传统的轨道结构。

•结构形式简单。

造价低,线路的弹性和减振性能较好,建设周期短,轨道超高和几何形位调整简单,噪声较小。

•缺点是轨道的横向抗力较小,桥上道床稳定性差,道床在长期的荷载作用下,易产生不均匀下沉,轨道结构破损加剧,破坏线路几何行为,使维修工作量加大,行车时空气动力作用会使道砟飞散。

1、有砟轨道
•高速铁路有砟轨道对钢轨、混凝土轨枕、扣件、道砟的材质和道床断面尺寸等要求更为严格。

•采用高强度钢轨;
•夯实道砟,必要时再设路基抗冻保护层;
•采用双块式混凝土轨枕,增加横向受力点,并提高轨枕铺设密度;
采用性能更好的弹性扣件。

2、无砟轨道
•是用耐久性好、塑性变形小的材料代替道砟材料的新型轨道结构。

•取消了碎石道砟道床,轨道保持几何状态的能力提高,轨道稳定性相应增强,维修工作减少。

•目前高速铁路轨道结构的主要开展方向。

3、优缺点比拟。

高速铁路无砟轨道精调技术

高速铁路无砟轨道精调技术

曲 线 、竖 曲 线 、超 高 等 设 计 参 数 ,轨 枕 统 一 编 码 ,录 入 轨检小车 。 [2]
标 定 工 作 ,保 证 设 备 状 态 良 好 。
(5)换算运营 贯 通 里 程,与 施 工 里 程 结 合 使 用,
(2)人员培训:对 小 车 规 范 操 作、软 件 使 用 人 员 方便动态检测数据的分析解读。
(4)检 查 扣 件 安 装 状 态 ,用 双 头 (或 单 轴 )内 燃 扳 手 补 足 扣 件 压 力 (约 250 N·m)。 3.1.3 工具准备
提 前 配 置 双 轴 头 内 燃 扳 手 、单 轴 头 电 动 扳 手 、丁 字 扳 手 、液 压 起 道 器 、无 级 手 摇 起 道 器 、撬 棍 、简 易 轨 道平车、0 级 数显道尺、机 械万能道 尺、25 m 弦 线 及 钢 尺 、塞 尺 、扭 矩 扳 手 、石 笔 、毛 刷 、钢 丝 刷 、铁 路 防 护 用品等工具。 3.2 初始数据采集 3.2.1 现场测量
自由设站完成之后,CPⅢ 控 制 点 的 坐 标 不 符 值 应满足 X、Y、H 方向控制点余差≤2 mm。 当 CPⅢ 点坐标 (X、Y、H)不符值大于表中规定 时,该 CPⅢ 点不应参与平差 计 算。 每 站 参 与 平 差 的 CPⅢ 点 数 不 少 于 6 个 [4]。
(2)每天测量之 前 都 要 在 稳 固 的 轨 道 上 校 准 超 高 传 感 器 ,校 准 后 可 在 同 一 点 进 行 正 反 两 次 测 量 ,其 偏差应在0.3mm 以内;如发生颠簸、碰撞 或气温 变 化 迅 速 ,应 再 次 校 准 。
精度满足设计时速高速行车条件。 动态调整是在联调联试期间根据轨道动态检测
情 况 对 轨 道 局 部 缺 陷 进 行 修 复 ,动 态 检 测 发 现 问 题 , 划 定 静 态 复 测 区 间 ,静 态 检 测 查 明 问 题 ,精 确 到 点 及 时解决。

无砟轨道精调方案

无砟轨道精调方案

无砟轨道精调方案无砟轨道是一种新兴的铁路轨道建设技术,相比于传统的有砟轨道,无砟轨道能够提供更好的乘坐舒适度和安全性能。

然而,由于没有砟石的支撑,无砟轨道在使用过程中有可能出现轨道下沉、变形等问题,因此需要精细调整来保证其正常运行。

本文将介绍一种无砟轨道精调方案。

首先,无砟轨道精调的目的是调整轨道线路的几何形状,包括水平曲线、垂直曲线和过渡曲线等,以实现铁路列车的平稳行驶。

在无砟轨道的建设过程中,应关注以下几个方面进行精调。

首先,需要对轨道的水平曲线进行调整。

水平曲线是铁路线路上的弯道,为了确保列车在水平曲线上的平稳行驶,需要对曲线的半径、超高和线形进行调整。

曲线的半径是指曲线的弯曲程度,半径越大,曲线的弯曲度越小。

超高是指曲线内侧轨道的相对高度,超高越大,列车在弯道上受到的侧向力越小。

线形是指轨道的曲线形式,一般有克服坡度的等速直线、缓和曲线和直线三种形式。

通过调整这些参数,可以使得曲线符合列车的行驶要求。

其次,需要对轨道的垂直曲线进行调整。

垂直曲线是指铁路线路上的坡度和倾斜度,为了确保列车在坡度和倾斜度变化的区段上平稳行驶,需要对曲线的变化率和变化幅度进行调整。

变化率是指曲线的斜率变化率,变化幅度是指曲线的高度变化幅度。

通过调整这些参数,可以使得曲线的变化符合列车的要求,避免列车在曲线变化的区段上出现颠簸和不稳定的情况。

最后,需要对轨道的过渡曲线进行调整。

过渡曲线是指连接直线轨道和曲线轨道之间的过渡段,为了确保列车在过渡段上平稳过渡,需要对曲线的长度和过渡曲线的曲线形式进行调整。

过渡曲线的长度应保证列车能够充分进行速度的变化和加减速,而曲线的形式应尽量保持平稳,避免列车在过渡段上出现颠簸和不稳定的情况。

针对无砟轨道的精调需求,可以采用以下的精调方案。

首先,根据实际情况和列车的要求,在设计阶段就要充分考虑轨道的几何形状,合理设置水平曲线、垂直曲线和过渡曲线的参数。

通过使用现代的轨道设计软件,可以模拟列车在轨道上的行驶状况,优化轨道的设计。

高速铁路客专线系列无砟道岔精调技术及标准化作业流程研究

高速铁路客专线系列无砟道岔精调技术及标准化作业流程研究

高速铁路客专线系列无砟道岔精调技术及标准化作业流程研究发布时间:2022-08-02T02:17:16.374Z 来源:《工程管理前沿》2022年第3月第6期作者:关桂凯[导读] 本文紧扣高铁客专线系列无砟道岔精调的各项作业步骤,对道岔精调关桂凯中国铁路沈阳局集团有限公司沈阳高铁基础设施段摘要:本文紧扣高铁客专线系列无砟道岔精调的各项作业步骤,对道岔精调中高低、轨向、水平、轨距、支距、框架、降低值等关键几何尺寸进行把控,提出一些现场精调中更能有效降低道岔区轨道质量指数(TQI值)、消除道岔晃车及轨道动态不平顺I、II、III、IV级超限的方法和建议。

关键词:高铁;客专线系列无砟道岔;精调1 概述哈大、沈丹、京哈高速铁路采用的无砟轨道60kg/m钢轨18、42、62号可动心轨单开道岔,道岔图号分别为客专线(07)009、客专线(07)006、客专线(10)013,对应道岔全长分别为69m、157.2m、201m,道岔直向允许通过速度均为350km/h,对应侧向允许通过速度分别为80km/h 、160km/h、220km/h,对应导曲部分圆曲线半径分别为1100m 、5000m、8200m,尖轨均采用60D40弹性可弯尖轨,尖轨尖端为藏尖式,对应曲线尖轨平面线形分别为相离半切线型、切线型、切线型。

高铁客专线系列无砟道岔精调包含如下步骤:(1)利用绝对测量小车采集现场数据,并综合分析提供最优精调数据方案。

(2)依据优化数据,指导现场精调作业。

标准化作业流程的控制、精细化作业的落实是保证高铁客专线系列无砟道岔精调效果的关键。

2 道岔精调作业准备2.1 人员准备根据实际作业量确定,每班按照7~9人标准配置。

2.2 机具、工具准备电子道尺、扭力矩扳手、电动扳手(含扳头)、无砟起道器、道岔专用工具(改道)、缓冲调距块更换专用工具、尖嘴钳、撬棍、手锤、支距尺、卷尺、钢板尺、塞尺、照明灯具等。

2.3 材料准备(1)道岔调高垫板有1mm、2mm、4mm三种,调整范围-4mm~+26mm,当调高量大于15mm时,应采用B型岔枕螺栓,一般使用1mm、2mm较多。

浅谈高速铁路无砟轨道精调施工

浅谈高速铁路无砟轨道精调施工
2 1 轨 道 动 态调 整 .
注: ①高低和轨向偏差 为 15~ 2m波长 范围空 间曲线计算 零 . 4 线到波峰的幅值 ; ② 水 平 限值 不 包 含 曲线 按 规 定设 置 的超 高 值 及 超 高顺 坡 量 ; ③ 三 角坑 限值 包 含 缓 和 曲 线 超 高 顺坡 造 成 的 扭 曲 量 ; ④车体垂向加速度 幅值评 价采用 2 低 通滤波 , OHz 车体横 向加 速 度 幅 值 评 价 采 用 l z 通 滤 波 ; OH 低 ⑤ 避 免 出 现 连续 多 波 不 平 顺 和 轨 向 、 水平 逆 向复 合 不 平顺 ;
() 4 扣件 安 装 检 查 。包 括 : 装 的正 确 性 、 矩 是 否 达 到 安 扭 标准 , 下垫板安装正确性。 轨
行调整量模拟适算 , 建立 相对平顺 和变 化基准 点 , 力求 最大
的平 顺 , 小 的 调 整 量 。将 轨 道 各 项 几 何 尺 寸 全 部 调 整 到 允 最 许 范 围之 内 , 对 轨 道 线形 进 行 优 化 。 并
1 0 00。 /1 0
1 1 1 轨道静态精调 的时间 .. 轨道精调应在应 力放散 、 锁定 形成无缝 线路 、 焊接 接头 打磨完成后开始 。
1 12 轨道 精 调 前 的准 备 ..
() 1 轨道精调仪器 、 机具 的准备与校核 。包括 : 测量仪器
( 全站仪 、 轨道几何 状态 检测仪 、 棱镜 ) 道尺 、0m弦 线 、 、 3 塞
() 3 精调基本原则 :先轨向, “ 后轨距” “ ,先高低 , 后水平” 。
( ) 成 调 整 量 表 。对 计 算 的 调 整 量 进 行 核 对 优 化 后 形 4形 成正式“ 整量表”用于现场精调作业 。 调 , ( ) 砟 轨 道 静 态 平 顺 度 允 许 偏 差 见 表 1 5无 。

高铁测量系列—无砟轨道铺轨测量与精调技术

高铁测量系列—无砟轨道铺轨测量与精调技术

无砟轨道铺轨测量与精调技术王建华(中铁七局集团有限公司,郑州 4 5 0 0 1 6 )1 概述无砟轨道是以整体道床代替碎石道床的一种新型轨道,其平顺性、稳定性、精度和标准要求高,传统的施工技术和工艺已不能满足设计和运营的要求。

这种新型的轨道结构,其静态几何状态中线为2mm,高程2mm,轨距±1mm,检测方法为全站仪配合轨道几何状态测量仪检测。

对于无砟轨道要求的高标准性,施工中一般是采用全站仪配合静态轨检小车对已铺设成型的线路轨道进行测量,人工配合进行线路调整。

使用全站仪配合轨检小车进行轨道几何状态测量是一项费时细致的工作,再加上没有成熟的调整顺序和方法,会出现调整过一遍后,再进行复测时又出现线路的几何状态不能满足规范要求,需进行反复测量反复调整。

不仅影响铺轨精调的整体进度,而且给钢轨和扣件带来一定的影响,最大的问题是不能保证联调联试的正常进行。

在现有的施工技术条件下,如何在保证精调精度的同时提高铺轨精调的速度,本文对此进行探讨,寻求一种快速的精调作业方法,提高铺轨精调的速度。

合武铁路的大别山隧道位于墩义堂至麻城之间,采用双块式无砟轨道,全长13.256km。

在隧道两端分别设置25m的过渡段,设计线间距4.6m。

隧道终点有一半径7000m的曲线伸入隧道内,伸入长度799.93m。

隧道内无砟轨道正线采用专用的双块式轨枕,按1600根/km布置。

正线铺设60kg/m U75V无螺栓孔新耐腐蚀钢轨,隧道内正线采用pandrol直列式扣件。

2 轨道几何尺寸要求2.1 轨道动态几何尺寸要求轨道动态几何尺寸的检测是通过大型轨检车进行的,利用轨检车试运营来检测轨道在负重情况下的几何状态参数,依列车运营时的平稳性和乘坐舒适度为标准来衡量。

为此,在进行静态轨道调整时,也要以线路的平顺性和相对关系为重点对线路进行静态调整。

轨检车在时速160km情况下的轨道动态检测指标如表1所示。

2.2 轨道静态几何尺寸要求轨道静态几何尺寸是指在线路不受外力的作用下,通过检测手段得到的线路平面位置、高程与设计值之间的差值,静态测量值可以显示出建成结构物的绝对位置。

高速铁路有砟轨道精调施工工法

高速铁路有砟轨道精调施工工法

高速铁路有砟轨道精调施工工法高速铁路有砟轨道精调施工工法一、前言近年来,高速铁路建设取得了飞速的发展,有砟轨道作为铁路线路建设的主要形式之一,对于保证列车行驶的平稳性和安全性具有重要意义。

本文将介绍一种高速铁路有砟轨道精调施工工法,该工法具有以下几个特点。

二、工法特点• 精确调整:该工法采用先进的技术手段和精密的设备,能够实现对有砟轨道的精确调整,确保轨道线路的水平度和平顺度。

• 施工效率高:相比传统的调整工法,该工法在减少施工时间的同时,提高了施工效率,节约了人力和物力资源。

• 技术要求低:该工法操作简单,技术要求相对较低,能够降低施工人员的技能门槛,提高工人的施工效率。

三、适应范围该工法适用于高速铁路等有砟轨道的精细调整,尤其适用于有砟轨道弯道段、特殊地质条件下的轨道实施、轨道道床沉降调整等情况。

四、工艺原理该工法通过利用激光测量仪、数控机械设备等先进工具,结合实际工程情况,采取多种技术措施进行轨道线路的精确调整。

1. 第一步:激光测量仪测量轨道线路的水平度和高程。

2. 第二步:根据测量结果,通过调整道床、轨枕等方式对轨道线路进行调整,确保轨道线路的水平度和平顺度。

3. 第三步:使用数控机械设备对轨道进行修整,确保轨道的几何形状符合设计要求。

4. 第四步:经过若干次的测量和调整,达到设计要求的高速铁路有砟轨道。

五、施工工艺1. 准备工作:确定施工区域,清理施工现场,安装激光测量仪和数控机械设备。

2. 水平度测量:利用激光测量仪对轨道线路进行水平度测量,记录测量结果。

3. 调整工程:根据测量结果,调整轨道道床和轨枕,使轨道线路达到水平状态。

4. 数控机械修整:使用数控机械设备对轨道进行修整,确保轨道几何形状的符合设计要求。

5. 反复测量和调整:重复进行水平度测量、调整工程和数控机械修整,直至轨道达到高速铁路的施工要求。

六、劳动组织施工过程中,需要组织技术人员、激光测量员、机械操作工、助理人员等,确保施工工艺质量和施工进度。

高速铁路长轨精调作业指导书

高速铁路长轨精调作业指导书

高速铁路(无砟)线路精调作业指导书二〇一一年一月一、总则1、作业目的:规范和指导高速铁路线路精调及道岔精调作业程序和标准,精调作业施工有序、可控、高效,确保高速铁路线路的整体平顺性及行车舒适度。

2、适用范围:①高速铁路线路轨道几何尺寸精调作业。

②高速铁路18号及42号板式无砟道岔精调作业。

二、线路精调作业指导书1、作业内容:①长轨应力放散锁定后对轨道的重新测量,对测量资料汇总整理和模拟调整并形成书面文件,同时统计扣件更换(或调整)的种类和数量并提报材料需求计划。

②根据模拟调整文件报表,现场核对调整位置和调整项目,确认无误后更换相应种类的扣件。

③扣件更换结束后,按规定扭力上紧螺栓,同时检查轨道调整后几何尺寸和平顺性是否达到要求。

④回收、清理更换下来的扣件并分类存放,同时清理干净道床污染物。

2、作业流程:2.1施工准备:①根据安伯格调整方案现场标定,利用道尺、弦线进行核实,达到手工检查和仪器检查基本一致,确定无误后进行调整。

②标准股的确定,曲线地段轨向以上股为轨向标准股,下股为高低的标准股;直线地段轨向以小里程往大里程方向曲线上股为基准,下股为高低的标准股。

直线地段的标准股的选择和曲线必须相同。

③内业:认真核对设计资料,确保设计线性等资料输入正确。

重点核对平面曲线要素、变坡点位置和竖曲线要素、曲线超高等。

确定基准轨(参考轨):平面位置以高轨(外轨)为基准,高程以低轨(内轨)为基准,直线区间上的基准轨参考大里程方向的曲线(对安伯格数据进行分析,并制定调整方案)。

④现场对作业地段进行静态轨距、水平逐根枕木检查,并记录在一股钢轨轨脚部位,作为作业的参考并做好记录(1至2人)。

对需调整配件的枕木,更换前后的零配件型号、尺寸要做好详细的记录。

⑤在检查几何尺寸的同时安排一人对安伯格提供的数据进行标注。

每个小组的代班人利用25米左右的弦线对安伯格数据结合轨距、水平进行复核,确定作业趋势的正确性,并画出最终标注股的作业撬。

浅谈高速铁路无砟轨道精调技术

浅谈高速铁路无砟轨道精调技术

浅谈高速铁路无砟轨道精调技术高速铁路轨道内、外部几何形态是保证动车组安全舒适运行的基础,因此无缝线路铺设后必须通过静态和动态检测来进行轨道精调工作,在运营期间,也需要按照一定周期检查轨道的几何形态,对轨道结构进行维修以达到轨道平顺度的允许偏差要求。

标签:高速铁路;无砟轨道;静态精调;动态精调高速铁路无砟轨道施工是个多工序过程,在众多工序中,精调工序是其中关键的工序。

轨道精调工作在无缝线路铺设完成后,长钢轨应力放散、锁定后即可开展。

轨道精调可分为静态调整和动态调整两个阶段。

1 静态精调静态调整是在联调联试之前,根据轨道静态测量数据将轨道几何尺寸调整到允许范围内。

合理控制轨距、水平、轨向、高低等变化率,对轨道线型进行优化调整,使轨道静态精度满足高速行车条件。

轨道精调主要采用精调小车进行检测,主要分为以下几个步骤:轨道控制网复测——轨道静态测量——轨道平顺度模拟试算——现场位置确定及复核——轨道静态调整——轨道状态检查确认。

1.1 CPⅢ控制网复测及使用经过了整个施工阶段,由于构筑物的沉降、箱梁的徐变,以及环境温度的变化,都会影响CPⅢ控制网的精度,所以在静态精调以前,必须复测整个CPⅢ控制网,重新审核评估。

CPⅢ平面控制网的复测工作主要以下几项内容:检查CPⅢ点有没有破坏、用全站仪对全线的CPⅢ点进行复测、对所测数据进行分析是否满足精度要求。

先对CPⅢ控制网标志进行全面检查,若有松动、损坏及埋设位置不正确的重新埋设并记录。

CPⅢ控制网应与原测网一致,采用自由设站交会网(后方交会)的方法测量。

复测宜联测与原测相同的高等级CPⅠ、CPⅡ控制点。

对于CPⅢ控制网复测成果存在系统性偏差或超限控制点超过20%的路段,应报设计院重新评估。

1.2 静态精调技术1.2.1 现场调整施工流程根据轨检小车采集的数据及软件调整的情况计算挡块及轨垫板材所需的规格,根据轨枕编号进行挡块及轨垫板的散放、松扣件、安装调整组件、放回并锁紧钢轨、重新测量;如有不合格的地方再进行一次调整。

浅谈高速铁路无砟轨道精调

浅谈高速铁路无砟轨道精调

项. 分析 了影响轨道精度的主要 因素 , 提 出了提 高轨 道精度的主要措 施。 【 关键词 】 高速铁路 ; 无砟轨道 ; 静 态精调 ; 动 态精调
2 0 1 0年 1 2月我参加 了京沪 高铁非先导段联调联试 工作 . 期 间主 要负责轨道 的精 调工作 . 轨 道精调工作 不仅是技术 问题 . 也是经 济问 题. 对动车的运行品质具有重要的影响 . 甚至影响其安全。 轨道精调应 优化作业组织 . 坚持作业流程。由于时间紧 、 任务重 , 为保证精 调进度 和质量 , 施工单位 、 路局 工务部 门应紧密配合 , 发挥各 自优势 。施 工单 位 对精调应负起全面责任 .负责 提供精 调小车和数据 的采集分析 . 提 供调整所需 的材 料 : 路局工务部 门应参 与测量数据 的分析 . 负责 现场 作业 质量和进度控制 . 以下简单谈 一谈我在六个月 的精调工作 中对无 砟 轨道有 几点感 悟。
◇ 交通与路建◇
科技 嚣向导
2 0 1 3 年第0 6 期
浅谈高速铁路 无砟轨道 精调
崔 振 ( 济 南铁 路 局 济 南 工 务 段 山东
【 摘
济南
2 5 0 0 3 1 )
要】 介 绍了高速铁路无砟轨道精调 的意义和相关概念 , 论 述 了轨道静 态精调和动 态精 调两个阶段各 自的标准 、 程序 、 方法及 注意事
1 . 安 伯 格 资 料 分 析 在 固 定 线 路 位 置 方 面 作 用 突 出
安伯格轨道检查小车资料能准确直观反映线路位置 . 它提供 的高 低、 轨距 、 轨向、 水平 、 扭 曲等几 何参数在 固定线路绝对及 相对位 置方 面是 以往采 用的定 桩定线 、 定 桩顺线 等原始 的传统整治方法所不 能达 到的。精 调前半期 的工作 主要抓住这一 优势 围绕资料分析 、 整治数据 展开. 采用了“ 三测 三整” 的方法进行 。 “ 一 测” 是相对粗 调阶段 . 根据小 车资料分析进行 “ 一整” , 主要 围歼 l m m以上的数值 ( 参照 1 京 沪线轨 道静 态几何 尺寸允 许偏差 ) “ 一整” 结束阶段 穿插进行 “ 二测二 整” . 主 要 修正一测一整 时测具 、 量具 、 机械、 作业及 环境因素造成 的误差 , 以 上两 测只做 人为复核 . 尽量避免人 为干扰 “ 三测三整” 全面复测 的同 时加强前期作业 质量复核 . 极值限度的确保 线路的绝对位置 采 取人 为对正 、参照动检 车图纸及测后整 治数据相 结合 的方法 .针对 O . 5 一 l m m处进行综合 治理 . 是 对线路在 0 . 5 m m范 围精 细对准 . 在允许范 围 内压 值确认 . 即绝对 范围 内的相对 调整 . 参 照动态 的图纸 波形 目的是 消灭线路 隐 性 不 良及分析 资料 中遗漏 和过整 处所 实践证 明. 此 办法 在确 定线路 位置及 总体平顺性上 行之有效 . 在 1月 中旬 的粗调动态检 查 中左 右 线 K 4 0 9 + 2 0 0 一 K 4 1 6 + 2 0 0全 线 消 灭 了所 有 振 幅 .优 良率 1 0 0 %. T Q I 平均值 2 . 6 3 . 最大值 2 . 7 1 . 最小值 2 . 4 7 总之 .安伯格资料分析在排除环境 因素 和人员技 能的前提下 . 控 制线路位置 方面的优势是 经验作业和传 统定桩 调整无法 比拟 的. 资料 调整后 的大 高低 、 大方 向平顺 、 顺直度及竖 曲线递率 比较均衡 . 是确定 线路绝对位置 的最佳选择

高速铁路无砟轨道线路精调整理技术研究及应用

高速铁路无砟轨道线路精调整理技术研究及应用

高速铁路无砟轨道线路精调整理技术研究及应用摘要:由于在施工阶段受到多种因素的影响,在无砟道床施工后,很难一次性达到要求,因此,必须使用钢轨扣。

零件系统经多次调整后,才能满足验收的要求。

由于精调操作方式的差异,会造成精调操作次数的增加和扣件的更换数量的差异,对调整的效果造成一定的影响。

本文论述不同型式的无碴轨道紧固体系对轨道线的精调原理,对无碴轨道进行的施工技术标准,质量控制通过本项目的实施,将形成一套行之有效的钢轨精细调整的新方法和新技术,为同类工程和高铁的维护与维护提供借鉴。

关键词:高速铁路;无碴轨道;调整原则;调整技术引言:由于受到各施工环节的影响,无砟道床完工后,其几何形态很难满足高铁动、静态验收要求,需要通过多次优化调整,逐步满足高铁动、静态验收要求。

轨道精调品质是影响高铁行车安全与舒适度的关键因素,在建设阶段,需要对轨道进行精调,使其在平面上“顺畅”,在海拔上“平和”,使其平直、弯圆、平顺,才能确保高铁行车的平稳、平顺与舒适[1]。

因此,开发一种高效率、高精度、高精度的无碴轨道优化设计方法,是目前我国高铁无碴轨道建设亟待解决的关键问题。

一、修整原则我国高铁无轨道所使用的扣件,按型式可划分为带肩部的不分离型和不带肩部的不分离型两种,目前已知的扣件系有WJ-7、WJ-8、SFC、Vossloh300等4种。

高速铁路无砟轨道常用扣件高程及横向最大调整量如表1所示。

表1 高铁无碴轨道常见紧固件高度和侧向最大偏差(毫米)技术革新思想:(1)根据轨道调整量的仿真分析理论,利用办公室软件编写的计算机程序,通过对轨道调整量数据的仿真分析,并与专门的轨道精调软件的处理结果进行综合比较,采用方法对轨道精调数据进行仿真分析,从而快速、快捷地实现精调方案的优化。

(2)通过在实际工程中的多次使用,发现由于轨底斜度的影响,高低调节会对水平调节数据产生影响,因此,在常规施工中,将“先轨向,后轨距”,“先高,后平”的操作原理改为“先高,后平”,“先轨向,后轨距”,“后轨向,后轨距”的精调节原理,大大降低精调节的工作量。

有砟轨道人工精调功法

有砟轨道人工精调功法

有砟轨道人工精调攻法前言有砟轨道人工精调是高速铁路技术体系的重要组成部分,为指导我段高速铁路有砟轨道线路养护维修,满足线路高可靠性、高稳定性、高平顺性的要求,特制定本功法。

本功法共分六部分,阐述了高速铁路有砟轨道人工精调主要作业方法及技术标准,规定了有砟轨道人工精调基准股选取原则和主要质量标准等。

在执行本功法过程中,希望各车间结合工作实践,认真总结经验、积累资料,如有需要补充和完善之处,请及时将意见和有关资料反馈高铁技术科,供今后修订时参考。

目录一、作业目的 (1)二、作业分类 (4)三、基准股选取原则 (4)四、人工精调攻法 (4)(一)直线段(含平直坡度段)人工精调作业 (4)(二)圆曲线段人工精调作业 (10)(三)缓和曲线段人工精调作业 (10)(四)竖曲线段人工精调作业 (11)(五)长度大于100米范围内的人工精调作业 (11)五、主要质量标准 (16)六、注意事项 (17)一、作业目的整治线路几何尺寸病害,保持线路高平顺性,满足舒适、平稳行车要求。

二、作业分类1.直线段(含平直坡度段)人工精调作业;2.圆曲线段人工精调作业;3.缓和曲线段人工精调作业;4.竖曲线段人工精调作业;5.长度大于100米范围内的人工精调作业。

三、基准股选取原则1.直线段(含平直坡度段)以右股为基准股;2.圆曲线上以曲线上股为基准股;3.缓和曲线段(含部分在直线段或圆曲线段)以曲线下股为基准股。

四、人工精调攻法(一)直线段(含平直坡度段)人工精调作业1.轨温测量。

使用轨温计对轨温进行测量,并对作业前、中、后的轨温做好记录。

2.激光弦线架设。

作业负责人根据已批准的精调方案中的对应的轨枕编号架设激光弦线,安排一人全程盯控激光弦线固定靶与光斑中心重合情况(如图1所示),发现偏离光斑中心1mm以上时及时安排重新调整。

图1专人盯控激光弦线固定靶与光斑中心重合情况3.激光弦线标定。

(1)移动靶调整。

将移动靶放置在距离主机30cm左右位置,光斑中心与移动靶中心不重合时,通过调整移动靶支杆底部的调节螺丝和横杆左端的基准顶丝调节螺钉实现移动靶上下及左右整使其重合,如图2所示。

有砟和无砟轨道过渡段精调优化算法

有砟和无砟轨道过渡段精调优化算法

有砟和无砟轨道过渡段精调优化算法目前对于有砟和无砟轨道过渡段的研究主要集中在轨道优化设计和动力性能两个方面,对于如何调整过渡段轨道以保持几何平顺性的研究很少。

有砟和无砟轨道过渡段分为有砟轨道和无砟轨道,有砟轨道正线主要通过大型捣固车来进行整正,无砟轨道通过扣件系统完成精调。

然而过渡段有砟轨道只能通过人工手动调整来完成,平面和纵断面基准轨分别采用拉弦法和道尺法进行调整,再使用道尺来控制轨距和水平完成非基准轨的调整。

现场工务人员根据轨道调整方案在凭借自己的经验进行作业,这就出现作业方法的不同导致作业效果不稳定。

因此,使用拉弦法和道尺法进行现场作业时,如何对原始方案调整量进行优化,使得现场作业效果趋于最优化是需要解决的问题。

结合现场过渡段有砟轨道的人工调整方法,通过对比分析调整前后的调整量和建模分析起道过程,建立了平面调整量优化模型和纵断面调整量优化模型。

利用C#语言研制了有砟和无砟轨道过渡段调整方案优化软件(OFBT),并与使用原始方案和经验系数方案实际调整之后的剩余调整量进行对比分析。

实测数据实验分析显示,过渡段轨道平面调整时,当调整区域的拨道量全都小于4mm,从拉弦的起点开始每隔4根轨枕进行一次调整,前后调整点位相互不影响,调整时直接使用原始方案无需优化。

当拨道量大于4mm,平面调整量优化方案与原始方案相比,在直线段时调整后的剩余最大拨道量减小1.8mm,累计剩余拨道量减小2.1倍,平均剩余拨道量减小2倍;在圆曲线段时调整后的剩余最大拨道量减小2.6mm,累计剩余拨道量减小3.3倍,平均剩余拨道量减小3倍。

过渡段轨道纵断面调整时,使用人工拉弦法存在弦线下垂问题,而道尺法可以避免这种影响。

通过使用经验系数方案进行现场作业,证明了纵断面调整量优化模型的正确性及实用性。

当实测水平与设计超高的差值不为零时,采用纵断面调整量优化方案较经验系数方案,最大剩余起道量减小0.4mm,累计剩余起道量减小1.1倍,平均剩余起道量减小1倍。

无砟轨道精调方法步骤

无砟轨道精调方法步骤

客运专线CRTSII型板式无砟轨道精调方法步骤摘要:CRTSII型板式无砟轨道精调是关系到列车运行速度是否能达到设计要求的重要因素,结合京石铁路客运专线施工。

重点阐述了无砟轨道精调的施工工艺和注意事项,并指出了轨道板精调作业对于整个高铁工程的主要性。

关键词:客运专线,CRTSII型无砟轨道,精调1. 引言我国高速铁路的轨道技术主要是无砟轨道结构和有砟轨道结构,现阶段基本以无砟轨道结构为主,其中CRTS I型板式无砟轨道普遍应用在京津城际铁路、京石客专、京沪高速铁路和沪杭高速铁路上。

CRTS I型板式无砟轨道采用了连续底座混凝土结构和轨道板纵联方式,现场施工作业简单方便、可靠性好。

轨道板精调是指通过调整轨道板的高度及平面状态,使各螺栓孔位置精确安置,从而保证扣件的安放精度,减少扣件安放后轨道的调整量2. 技术标准(1)《高速铁路设计规范》(2)《高速铁路工程测量规范》(3)《客运专线轨道几何状态测量仪暂行技术条件(科技基[2008]86号)》(4)《客运专线铁路工程静态验收指导意见(铁建设[2009]183号)》(5)《高速铁路联调联试及运行试验指导意见(铁集成[2010]166号)》(6)《京石客专、石武客专(河北段)轨道精调作业标准、组织方案及作业流程实施细则》。

根据“细则”的要求,按照以下几何状态控制标准进行作业标准控制,如表1所示:表1.几何状态控制标准轨道测量前,认真核对CP M坐标、轨道设计线型设计要素数据输入正确,确保测量仪器校核无误,设站精度达到要求,钢轨、扣件无污染,焊缝平顺,扣件扭矩和扣压力达到设计要求。

测量一般选在阴天或夜间进行,严禁在高温、雨天、大雾、大风等条件下测量,避免测量误差过大和出现假数据。

测量数据模拟调整前,必须保证数据的真实、可靠性。

扣件更换前做出相应标识,并用弦绳和道尺做必要的复核。

更换扣件时,当实际轨温在于锁定轨± 10 °C以内施工作业,当高于锁定轨温20C禁止作业,每次拆除扣件不得连续超过10—12个承轨台(防止胀轨),更换扣配件钢轨抬高量小于25mm,确保扣件更换能达到预期目的和平滑过渡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章高速铁路有砟、无砟轨道结构及精调第一节概述无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。

由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。

特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。

以下是无砟轨道的主要优势和缺点。

一、无砟轨道的优势主要有:1、轨道结构稳定、质量均衡、变形量小,利于高速行车;2、变形积累慢,养护维修工作量小;3、使用寿命长—设计使用寿命60年;二、无砟轨道的缺点主要有:1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2型板式500万。

2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。

3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型存在较大困难。

4、一旦损坏整治困难:尤其是连续式无砟轨道。

第二节无砟轨道结构一、国外铁路无碴轨道结构型式国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。

无碴轨道已成为高速铁路的发展趋势。

1.日本日本是发展无碴轨道最早的国家之一。

早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。

据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90年代则达到80%以上。

日本从20世纪60年代中期开始进行板式无碴轨道的研究到目前大规模的推广应用,走过了近40年的历程。

对于最初提出的轨道结构方案,铁道综合技术研究所相继进行了设计、部件试验、实尺模型试验、设计修改、在营业线上试铺等工作。

从津田沼、日野土木试验所内的实尺模型试验到既有线、新干线的桥梁、隧道和路基上的各种形式无碴轨道结构的试铺,总共建立了20多处近30km的试验段,开展了大量的室内、营业线上动力测试和长期观测的试验研究工作,并在试验结果的基础上,不断的改进、完善结构设计参数和技术条件,最终将普通A型(图4-3)、框架形(图4-4)等板式轨道结构作为标准定型,在山阳、东北、上越、北陆和九州新干线的桥梁、隧道和路基上大量使用。

在20世纪60年代后期到70年代中期,为解决新干线的噪声振动问题,实现高速铁路发展与社会环保兼容的目的,日本在东北新干线开工前建立了“小山试验线”,铺设了长度各200m的24种形式的轨道结构(其中包括11种板式无碴轨道),观测其噪声振动效果,在进行技术、经济分析后,将防振G型板式轨道(图4-5)作为标准形式在减振降噪区段推广铺设。

图4-3 普通A型轨道板图4-4 框架型轨道板图4-5 防振G型轨道日本板式轨道结构在土质路基上的发展与桥上、隧上板式轨道是同时起步的。

1968年提出RA型板式轨道,并在铁道综合技术研究所进行性能试验。

1971年在东海道本线100m的营业线上进行初次试铺,1974年在东海道新干线含慧桥站内共铺设2.3km,共有14处作为现场试铺。

但在个别试验段上发生了基础下沉、轨道板陷入铺装底座内等问题,为此开展了长期深入的研究。

直到1993年,改进后的板式轨道结构(图4-5)在北陆新干线正式应用,铺设长度约10.8km,占北陆新干线高崎—长野段总长的4%,为土质路基上轨道的25%。

图4-6 土质路基上RA型板式轨道总之,日本定型的板式轨道包括A型、框架型轨道板,适用于土质路基上的RA型轨道板和特殊减振区段用的防振G型轨道板,构成了适用于不同使用范围的轨道板系列。

截止到目前,板式轨道累计铺设里程已达2700多km。

日本在大量铺设板式轨道的同时,还开发了B型弹性轨枕直结轨道,在东北、上越新干线上都有铺设。

为了扩大铺设,必须降低造价。

最后,开发了简化结构的D型弹性轨枕直接轨道(图4-7),造价为B型的3/4,减振性能较防振G 型板式轨道还略有改善;同时解决了原结构部件更换困难的问题,更适合推广。

图4-7 D型弹性轨枕直结轨道近年来,日本正大力研究一种“梯子形”轨道。

由两根纵向轨枕(梁)支承钢轨,横向每隔3m用钢管将两根纵向枕连结成梯子形;在桥上纵向枕与轨道基础(梁面)之间每隔1.5m设减振支承装置组成“浮置式梯子形轨道”。

其主要特点是:低振动、低噪声;变传统横向轨枕支承钢轨的方式为纵向支承;轨道自重轻,约为有碴轨道的1/4;轨道高度的调整除利用扣件的调整量外,减振支承装置也有一定的调高功能。

铺设在桥梁上的浮置式梯子形轨道,使整体结构系统实现了从“重型和传统”到“轻型和现代化”的根本变革。

路基上的梯子形轨道,其纵向轨枕下仍然铺设有道碴,属于有碴道床与整体轨下基础的混合式结构。

可见,轨道结构的发展出现了多样化形式。

目前,梯子形轨道已完成结构的力学分析、组成部件及实尺轨道的实验室基础试验,并在美国TTC运输中心的环形线上完成了35t重轴的快速耐久性试验,通过吨位超过1亿吨。

日后,还将对高速运行的适应性以及用橡胶支承取代减振装置以降低造价等实用性作进一步研究。

2.德国德国也是研究无碴轨道较早的国家之一。

德国铁路开展无碴轨道的研究始于上世纪60年代末,1972年首次在Rheda车站试铺了无碴轨道结构(故称“Rheda”型)。

德国铁路、高校研究所以及工业界自20世纪70年代一直进行无碴轨道的研究,目前德国有20多家企业参与无碴轨道新结构的开发,形成了市场竞争的局面,推进了新技术的发展,其提出的结构型式多种多样。

德国曾试铺过10余种无碴轨道结构,其轨道的基础分钢筋混凝土和沥青混凝土两类。

钢轨的支承方式多为分散支承(即点支承),连续支承方式仍处在试铺阶段,未在路网上正式使用。

对于分散支承方式的无碴轨道,其道床结构大体上可分为两大类,一类为整体结构,另一类为直接支承方式,表4-7列出了德国铁路目前批准可在路网正式应用和可试铺进行运营考验的无碴轨道结构类型。

注:带*的为EBA 批准可在路网正式应用的无碴轨道结构型式,其余均在试铺运营考验阶段。

Rheda 型无碴轨道(图4-8)为钢筋混凝土底座上的整体结构型式之一,在大量试铺和长期观测试验的基础上,在德国铁路高速线土质路基、桥梁和隧道区段全面推广应用,所铺设的360km 无碴轨道(含80多组道岔区)中,Rheda 型约占一半以上。

Rheda 型无碴轨道结构从1972年开始试铺的普通型(带槽形板、埋入轨枕)到目前研发的2000型(无槽形板、埋入支承块)经历了近30年的发展里程。

图4-8 普通Rheda 型无碴轨道最近开发的Rheda-2000型无碴轨道(图4-9)已投入商业应用,如在荷兰及我国台湾高速铁路上都有应用。

其结构特点是:由2根桁架型配筋组成的特殊双块式轨枕取代了原Rheda 型中的整体轨枕;取消了原结构中可能开裂和渗水的槽形板,统一了隧道、桥梁和路基上的形式,也可在道岔和伸缩调节器区段应用;同时,轨道结构高度从原来得650mm降低为472mm。

Rheda-2000型中的支承块只保留承轨和预埋扣件螺栓部位的预制混凝土,其余为桁架式的钢筋骨架,使其与现场灌筑混凝土的新、老界面减至最少,有利于提高施工质量和结构的整体性。

建筑高度的下降,对降低轨道本身和线路的造价都是有利的。

将无碴轨道的造价控制到有碴轨道的1.3~1.4倍是德铁力争的目标。

图4-9 Rheda-2000型无碴轨道最典型的直接支承方式无碴轨道结构为ATD、GETRAC型,如图4-10、图4-11所示,上部的轨枕或支承块直接置于钢筋混凝土/沥青混凝土支承层上,成为一个独立的组成部分,在中部有多种方式设限位装置,以限制轨排纵、横向移动。

图4-10 ATD型无碴轨道结构(单位:mm)图4-11 GETRAC型无碴轨道结构(单位:mm)由Bögl公司开发的博格板式无碴轨道结构由预制轨道板组成,轨道板结构高度(从水硬性材料支撑顶面到钢轨顶面)474mm,分为标准预制板、特殊预制板和补偿预制板三种型式,标准板的外形尺寸6450mm×2500mm×200mm,轨道板之间用钢筋连接,板底充填水泥沥青砂浆层。

与现场浇筑的混凝土轨道板相比,博格板具有工厂化生产,加工精度高,固化时间短,不需要费时费工的现场制模和浇筑,必要时可进行轨道板高程调整等优势,但厂房和设备等一次性投入较高。

博格板式无碴轨道为二十多年前开发的一种轨道板,但一直限于小段试铺,最近得到EBA批准,在纽伦堡至英格施塔特新建线路得到大量使用,下部结构则有路基、桥梁、隧道等。

Ioarv300型扣件是目前德国铁路无碴轨道的标准型式,一般区段的无碴轨道结构设计必须与标准扣件形式相匹配。

此扣件的高低最大调整量为+26/-4mm,轨距调整量为±4mm,橡胶垫板厚度12mm,静刚度值(22.5±2.5)kN/mm。

德国铁路使用的其他型式的扣件还有336、A8、ERL/BWG和Krupp型等。

从20世纪80年代开始,原联邦德国铁路实施私有化计划,即新建和扩建铁路由联邦拨款,而养护维修则由德国铁路出资时,德国铁路董事会开始大力谋求新建铁路和扩建线路要尽量采用少维修轨道,这项措施极大地推动了无碴轨道的发展。

德国在修建高速铁路的初期,无碴轨道仅占正线的30%以下,但1998年开通的柏林—汉诺威高速铁路,无碴轨道已达80%以上。

与其他国家不同的是,德国铁路首先在车站试铺无碴轨道,接着解决了土质路基铺设无碴轨道的技术问题,然后逐步推广到隧道和桥梁上,从而为全区间铺设无碴轨道创造了有利条件。

基于高速铁路有碴轨道线路的维修工作量大,道碴粉化及道床累积变形速率加快,德国铁路根据其咨询公司对现行的有碴轨道和无碴轨道的综合技术经济比较得出的建议,决定在所有隧道内、道岔区、制动区间以及300km/h的高速线上均采用无碴轨道。

目前德国铁路累积铺设无碴轨道360km/h(含80多组道岔区),其中成规模铺设的线路包括科隆—法兰克福(300km/h,2002年开通)、柏林—汉诺威(250km/h,1998年开通)、纽伦堡—英戈城(在建中)。

二、国内无碴轨道结构国内对无碴轨道的研究始于20世纪60年代,与国外的研究几乎同时起步。

我国初期曾试铺设过支承块式、短木枕式、整体灌筑式等整体道床以及框架式沥青道床等几种形式,但正式推广应用的仅有支承块式整体道床。

支承块式整体道床在成昆线、京原线、京通线、南疆线等长度超过1km的隧道内铺设,总铺设长度约300km。

我国20世纪80年代曾试铺过沥青整体道床、由沥青混凝土铺装层与宽枕组成的整体道床以及由沥青灌注的固化道床等,并未正式推广。

相关文档
最新文档