柯西不等式的推广及应用
一般形式的柯西不等式
柯西不等式的证明
数学归纳法证明
首先证明 n=2 的情况,然后假设 n=k 时成立,推导出 n=k+1 时也成 立。
二次型的方法证明
将柯西不等式转化为二次型的形式, 利用二次型的基本性质进行证明。
02
柯西不等式的应用
在数学中的应用
证明不等式
柯西不等式是证明各种数学不等式的重要工 具,如均值不等式、几何均值-算术均值不 等式等。
广义形式的柯西不等式
总结词
广义形式的柯西不等式是在更广泛的函数空间中推广的柯西不等式,它适用于连 续函数和可积函数。
详细描述
广义形式的柯西不等式表述为,对于任意的非负可积函数$f(x)$和$g(x)$,有$int f(x) g(x) dx leq left( int f(x)^2 dx right)^{1/2} left( int g(x)^2 dx right)^{1/2}$。
用范围。
柯西不等式与其他数学知识的结合
柯西不等式与线性代数
柯西不等式在向量内积和矩阵运算中有 重要应用,研究其与线性代数的结合有 助于更深入理解线性代数的基本概念。
VS
柯西不等式与微积分
柯西不等式在微积分中也有广泛应用,如 函数极值、积分等,研究其与微积分的结 合有助于更深入理解微积分的基本思想。
一般形式的柯西不等式
目录
• 柯西不等式的定义 • 柯西不等式的应用 • 柯西不等式的推广 • 柯西不等式的局限 • 柯西不等式的进一步研究
01
柯西不等式的定义任意 的正实数序列 a1, a2, ..., an 和 b1, b2, ..., bn,有 (∑(ai^2)) * (∑(bi^2)) ≥ (∑(ai * bi))^2。
04
柯西不等式的应用及推广
。
由此证明了 且得等号成立的条件为:
.这等价于连比式 [8]。
3.2 判别式法
当 或 时,不等式显然成立
令 ,当 中至少有一个不为零时,可知A>0
构造二次函数 ,展开得: 故 的判别式
移项得 ,得证。
3.3 数学归纳法
) 当n=1时,有 ,不等式成立。
当n=2时,
因为 ,故有
当且仅当 ,即 时等号成立。
ii)假设n=k时不等式成立,即
当且仅当 时等号成立。
那么当n=k+1时,
当且仅当 , , 时等号成立,
即 时等号成立。
于是n=k+1时不等式成立。
由 ) ii)可得对于任意的自然数n,柯西不等式成立。
3.4 基本不等式法
运用基本不等式 。
记 , , , 。
则柯西不等式就等价于 ,也等价于 。
,当且仅当 ,即 时等号成立;
,当且仅当 ,即 时等号成立;
……
,当且仅当 ,即 时等号成立。
把以上 个式子相加得
。
当且仅当 时等号成立,则等价命题成立。
故柯西不等式成立。
3.5 运用推广不等式
若 为正数, 为非负数, ,实数 ,则
(当且仅当 时等号成立)。
在以上推广不等式中取 。
有 。
化简得, 。
当 为零或几个为零( 处于对称位置),不等式显然成立。
2 柯西不等式的诠释
柯西是18世纪法国、巴黎著名的数学家,他的一生获得了多项重要的成果。本文介绍的柯西不等式便是他的一个非常重要的成果。除此之外他在数学的很多领域都进行了深刻的研究,其中包括数论、代数、数学分析和微分方程等,为数学的发展做出的突出的贡献。
柯西 施瓦茨不等式
柯西施瓦茨不等式摘要:1.柯西- 施瓦茨不等式的定义2.柯西- 施瓦茨不等式的应用3.柯西- 施瓦茨不等式的证明方法4.柯西- 施瓦茨不等式与其他不等式的关系5.柯西- 施瓦茨不等式在实际问题中的应用正文:柯西- 施瓦茨不等式(Cauchy-Schwarz Inequality)是一种在向量空间中的内积不等式,是向量空间中的一种基本不等式。
该不等式是由法国数学家柯西(Cauchy)和德国数学家施瓦茨(Schwarz)在19 世纪同时独立发现的,因此被命名为柯西- 施瓦茨不等式。
柯西- 施瓦茨不等式的定义是:设x = (x1, x2,..., xn) 和y = (y1, y2,..., yn) 是两个n 维实向量,那么有(x1 * y1 + x2 * y2 +...+ xn * yn)^2 <= (x1^2 + x2^2 +...+ xn^2) * (y1^2 + y2^2 +...+ yn^2)。
柯西- 施瓦茨不等式在数学中有广泛的应用,例如在概率论、线性代数、微积分等数学领域都有其身影。
在概率论中,柯西- 施瓦茨不等式被用来证明一些概率不等式,如马尔科夫不等式和切比雪夫不等式等。
在线性代数中,柯西- 施瓦茨不等式被用来研究矩阵的性质,如矩阵的谱范数和弗罗贝尼乌斯范数等。
在微积分中,柯西- 施瓦茨不等式被用来研究多元函数的泰勒公式和多元积分的不等式等。
柯西- 施瓦茨不等式的证明方法有多种,其中最常见的证明方法是通过向量的内积和勾股定理来证明。
另外,也可以通过概率论的方法来证明柯西- 施瓦茨不等式。
柯西- 施瓦茨不等式与其他不等式有着密切的关系。
例如,当x 和y 是单位向量时,柯西- 施瓦茨不等式就变成了三角形的余弦定理。
另外,柯西- 施瓦茨不等式也可以推广到p 范数和q 范数的不等式,以及复数域的不等式等。
柯西- 施瓦茨不等式在实际问题中也有着广泛的应用。
例如,在机器学习和人工智能中,柯西- 施瓦茨不等式被用来求解一些优化问题,如支持向量机和线性回归等。
浅谈柯西不等式的应用和推广
浅谈柯西不等式的应用和推广摘 要:柯西不等式是一个熟知的重要不等式,有着相当广泛的应用。
本文运用柯西不等式及推论对证明相关命题、证明不等式等问题进行探讨,并进一步地研究柯西不等式的推广和应用。
关键词:柯西不等式;应用;推广柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的,因而被命名为柯西不等式。
柯西不等式具有对称和谐的结构,在熟练掌握柯西不等式的相关内容之后,主要是应用柯西不等式解决相关问题,可以使一些复杂繁琐的题目简单化,从而可以拓宽解题思路,节省解题时间,提高解题效率。
1 柯西不等式的基本形式定理(柯西不等式) 设有两组实数1a ,2a ,⋅⋅⋅,n a 和1b ,2b ,⋅⋅⋅,n b ,则()()()222222211221212.n n n n a b a b a b a a a b b b ++⋅⋅⋅+≤++⋅⋅⋅+++⋅⋅⋅+当且仅当i a 或i b 全为0,或i i b a λ=,R λ∈,1,2,,i n =⋅⋅⋅时取等号。
柯西不等式可以简写成: 2 柯西不等式的应用柯西不等式在数学各个分支里都有极其广泛的应用,本文对柯西不等式的应用做一些粗略的归纳,关键是分析问题后抓住问题的结构特征,找准解题的方法思路,通过变形构造出符合柯西不等式的形式及条件,从而达到化难为易、化繁为简、化陌生为熟悉的目的。
2.1 应用柯西不等式证明相关命题例1[1] 已知()000,P x y 及直线l :0Ax By C ++=()220A B +≠,求证点0P 到直线l 的距离为 证明 设点(),P x y 是直线l 上的任意一点,则0.Ax By C ++=那么的最小值就是点0P 到直线l 的距离,由Ax By C +=-且220A B +>,构造两数组A ,B 与0x x -,0.y y - 由柯西不等式,得222111.n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑1PP =()()()()()222220000AB x x y y A x x B y y ⎡⎤+-+-≥-+-⎡⎤⎣⎦⎣⎦()()()()222000000.Ax By Ax By C Ax By Ax By C =+-+=--+=++⎡⎤⎡⎤⎣⎦⎣⎦d当且仅当 时,即满足过点0P 垂直于直线l 直线时上述不等式取等号。
柯西不等式的证明、推广及应用
柯西不等式的证明、推广及应用2 柯西不等式的推广2.1 命题1若级数∑∑==ni i ni i b a 1212与收敛,则有不等式∑∑∑===≤⎪⎭⎫ ⎝⎛ni i n i i n i i i b a b a 121221。
证明:∑∑==ni i n i i b a 1212, 收敛,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛≤∑∑∑===n i i n i i n i i i b a b a 1212210i ni i b a ∑=∴1收敛,且∑∑∑=∞→=∞→=∞→≤⎪⎭⎫ ⎝⎛ni i n n i i n n i i i n b a b a 121221lim lim lim从而有不等式∑∑∑===≤⎪⎭⎫ ⎝⎛ni i n i i n i i i b a b a 121221成立。
2.2 命题2[3]若级数∑∑==ni i ni i b a 1212与收敛,且对N n ∈∀有∑∑∑===≤⎪⎭⎫ ⎝⎛ni i n i i n i i i b a b a 121221,则对定义在[]b a ,上的任意连续函数()()x g x f ,有不等式()()()()dx x g dx x f dx x g x f ba b ab a ⎰⎰⎰≤⎪⎭⎫ ⎝⎛222证明:因为函数()()x g x f ,在区间[]b a ,上连续,所以函数()()()()x g x fx g x f 22、、与在[]b a ,上可积,将[]b a ,区间n 等分,取每个小区间的左端点为i ξ,由定积分的定义得:()()()()()()()()xg dx x g x f dx x f xg dx x g x f dx x f i ni n bai ni n bani in bani in ba∆=∆=∆=∆=∑⎰∑⎰∑⎰∑⎰=∞→=∞→=∞→=∞→ξξξξ12212211lim ,lim lim ,lim令()()12211221,ξξg bfa ==,则∑∑==ni i n i i b a 1212与收敛,由柯西不等式得()()()()()()()()⎪⎭⎫ ⎝⎛∆⎪⎭⎫ ⎝⎛∆≤⎪⎭⎫ ⎝⎛∆⎪⎭⎫ ⎝⎛∆⎪⎭⎫ ⎝⎛∆≤⎪⎭⎫ ⎝⎛∆∑∑∑∑∑∑=∞→=∞→=∞→===ni i n n i i n ni i i n n i i n i i n i i i x g x f x g f x g x f x g f 121221121221lim lim lim ,ξξξξξξξξ从而有不等式()()()()dx x g dx x f dx x g x f ba b ab a ⎰⎰⎰≤⎪⎭⎫ ⎝⎛222。
柯西不等式的证明推广及应用
当且仪当 _ a 2 L : 一 一 时等号成立.
2 . 3 利 用 欧 氏空 间 中 内积性 质 证 明柯 两不 等 式 命题 线性空问 R “ 中, 对 于 向量 口= ( q , n : …a ) , 卢: ( 6 - , 6 : …6 )‘ 并定 义 内积 如 下 : a卢
定理 2 在 一 般 欧 氏 空 间 中 ,对 任 意 的 向 罐
, .
有
I ( a , 卢 ) I p I .当且仅当a , 卢线性相关时取等号.
在 一般 欧 氏 空 间 中, 由 向量 , 口 生成 的 n 维 欧 氏空 间 与 线性
则 柯 西 不 等式 等价 于 s
≥( 主 , _ ) 。 , 也等价于l 墨 ! : ! 玑 ’
当 且仅 当
a2
: ~ .一 :
, b = √
y
i =1 , 2 , … , n , 即
时等号成立, 即等价命题成立
S 2
b l
b 2
b
依 柯 两 不 等 式 有喜 喜 ≥ ( ) ’ 即
n
1 i 喜 , = I ( , n = l a / 。 ‘ √ 喜 ’
证 明方法及其推 广, 并举例说 明柯 西不等式在 不等式证 明 中的广
泛 性 和 灵 活性 .
定 理 1 设 矩 阵 A = . … 1 , B = F b . … b l 1 』 , C - C .
A B ( , J , … s ) , 则 等 于 A中所 要 的 S阶予 式 与 B中对 应 的 S阶 子式 的乘 积 之 和. 下NN J f l  ̄ 定理 1 给 出柯 西 不等 式 的行 列式 证 明 方 法.
柯西—施瓦茨不等式的推广与应用
柯西—施瓦茨不等式的推广与应用柯西—施瓦茨不等式是一个重要的几何不等式。
它表示一个轨迹在某个方向上的最大距离只能多于给定的固定距离。
这一不等式在许多不同的领域都有着广泛的应用,例如信息论、机器学习、几何优化等。
在信息论领域内,柯西—施瓦茨不等式提供了一种快速估计有效容量的方法,也就是可以根据柯西—施瓦茨不等式快速计算出通信信道的容量。
在机器学习领域,柯西—施瓦茨不等式用来计算给定数据集的最佳分类面,以此实现分类任务。
同时,柯西—施瓦茨不等式还可以用来求解很多优化问题,例如局部最小值搜索,梯度下降法等,它们都可以通过求解柯西—施瓦茨不等式来解决。
总之,柯西—施瓦茨不等式在不同领域都有着重要而深远的影响,它是几何不等式中的一颗明珠,在许多重要的计算机科学领域里都可以找到它的直接应用。
柯西—施瓦茨不等式(Kleene-Schwartz Inequality)是一个重要的数学不等式,它通过有限个变量的总和来比较他们的积和平方和的大小。
这个不等式最初是由美国数学家斯坦尼斯·柯西(Stephen Kleene)和俄国数学家谢尔盖·施瓦茨(Sergei Schwartz)在1934年提出的。
它最初是用来比较单变量的总和和它们的积和平方和的大小,但是它也可以推广到有限个变量的情况。
柯西—施瓦茨不等式的推广形式如下:∑_(i=1)^n▒〖a_i(x_i-y_i)〗^2≤2∑_(i=1)^n▒〖a_i(x_i-μ_i)〗^2+2∑_(i=1)^n▒〖a_i(μ_i-y_i)〗^2其中,a_i 是正常量,x_i 和 y_i 是两个变量,μ_i 表示变量 x_i 和 y_i 的中值。
该不等式有广泛的应用,其中最重要的是它可以用来分析不同变量之间的关系。
它可以用来分析两个变量之间的相关性,即检测它们之间是线性相关还是非线性相关。
此外,它还可以用来检验观测数据的正确性,以及分析观测数据中存在的潜在模式。
柯西不等式的应用技巧
柯西不等式的应用技巧柯西不等式是高等数学中一种重要的不等式,广泛应用于数学分析、线性代数、概率论等领域。
它由法国数学家奥古斯丁·路易·柯西于1821年提出,被认为是不等式理论的巅峰之作。
柯西不等式的应用技巧有很多,下面主要介绍其中的几种常见应用。
一、向量长度的柯西不等式推导给定n维实向量x=(x1,x2,...,xn)和y=(y1,y2,...,yn),那么它们的内积满足如下不等式:(x,y),≤√((x,x)·(y,y))其中(x,y)表示x和y的内积,(x,x)为x的长度平方,(y,y)为y的长度平方。
这个不等式可以通过Cauchy-Schwarz求平方法来证明。
应用技巧:1.在证明向量长度之间的不等式时,可以使用柯西不等式进行推导。
2.可以利用柯西不等式来估计向量长度之间的关系。
二、几何中的柯西不等式给定平面上的两个向量a=(a1,a2)和b=(b1,b2),那么它们的内积满足如下不等式:a·b,≤,a,·,b其中a·b表示a和b的内积,a,和,b,分别表示向量a和b的长度。
应用技巧:1.可以使用柯西不等式来推导平面上向量的夹角关系。
2.可以利用柯西不等式来证明平面上的几何定理。
三、数列的柯西不等式给定两个数列a=(a1,a2,...,an)和b=(b1,b2,...,bn),那么它们的内积满足如下不等式:∑(ak·bk),≤ √(∑(ak^2)·∑(bk^2))其中ak·bk表示ak和bk的乘积,∑(ak·bk)表示乘积的和,ak^2表示ak的平方,∑(ak^2)表示平方的和。
应用技巧:1.可以利用柯西不等式来证明数列的性质,例如数列的单调性、有界性等。
2.可以将柯西不等式应用于数学问题的解法中,寻找合适的数列。
四、概率论中的柯西不等式给定两个随机变量X和Y,它们之间的相关系数满足如下不等式:E(XY),≤√(E(X^2)·E(Y^2))其中E(XY)表示X和Y的期望值,E(X^2)和E(Y^2)分别表示X和Y的平方的期望值。
柯西重要不等式在实际问题应用
柯西重要不等式在实际问题应用柯西重要不等式是数学分析中的一个基本定理,它广泛应用于各个领域的实际问题中。
本文将详细探讨柯西重要不等式在实际问题中的应用,并通过具体案例进行说明。
一、简介柯西重要不等式是由法国数学家柯西在19世纪提出的,它是数学分析领域中的一项重要定理。
该不等式描述了两个函数的平方积与它们各自平方积之和的关系。
具体表述如下:对于任意实数a1, a2, …, an 和b1, b2, …, bn,有如下不等式成立:(a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) ≥ (a1b1 + a2b2 + … + anbn)^2二、应用领域柯西重要不等式广泛应用于实际问题中的各个领域,如信号处理、金融数学、物理学等。
下面将具体介绍其中的几个应用案例。
1. 信号处理在信号处理领域,柯西重要不等式可用于评估信号的相关性。
通过对信号的样本进行求平方积和求积的操作,可以得到信号之间的相关系数。
这对于信号处理算法的设计和优化非常重要。
2. 金融数学在金融数学中,柯西重要不等式可用于衡量不同投资组合的风险。
通过计算投资组合中各项资产的相关关系,可以评估整体组合的波动性和风险水平。
这对于投资者的决策和风险管理至关重要。
3. 物理学在物理学领域,柯西重要不等式可用于分析力学问题。
例如,通过运用柯西不等式,可以证明质点在受力作用下的动能与势能之间满足能量守恒定律。
这对于解决物理学中的问题具有重要意义。
三、具体案例为了更好地理解柯西重要不等式的应用,下面将介绍一个具体案例。
在某家庭聚会上,有一桌上放着各种美味的食物,其中包括苹果、橙子和葡萄。
现在我们想知道不同食物之间的相关性如何。
假设有两个人分别吃苹果和橙子,并记录下每天吃的数量。
其中一个人吃了3个苹果和2个橙子,另一个人吃了4个苹果和5个橙子。
现在我们想通过柯西重要不等式来评估苹果和橙子的相关性。
根据柯西重要不等式,我们可以计算出苹果和橙子的平方积和它们各自平方积之和如下:(3^2 + 4^2)(2^2 + 5^2) ≥ (3×2 + 4×5)^2简化计算得:(9 + 16)(4 + 25) ≥ (6 + 20)^225 × 29 ≥ 26^2725 ≥ 676由此可见,苹果和橙子的相关性是较强的。
(完整版)柯西不等式各种形式的证明及其应用
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
柯西不等式的两个推论及其运用
柯西不等式的两个推论及其运用柯西不等式(a1b1+a2b2+⋯+anbn)2≤(a12+a22+⋯+an2)(b12+b22+⋯+bn2)(aibi∈R,i=1,2⋯n)等号当且仅当a1=a2=⋯=an=0或;bi=kai,i=1,2,⋯,n;k为常数。
证明一构造二次函数f(x)=(a1x+b1)2+(a2x+b2)2+⋯+(anx+bn)2=(a12+a22+⋯+an2)x2+2(a1b1+a2b2+⋯+anbn)x+(b12+b22+⋯+bn2)因为a12+a22+⋯+an2≥0并且f(x)≥0恒成立,所以Δ=4(a1b1+a2b2+⋯+anbn)2−4(a12+a22+⋯+an2)(b12+b22+⋯+bn2)≤0即(a1b1+a2b2+⋯+anbn)2≤(a12+a22+⋯+an2)(b12+b22+⋯+bn2)当且仅当aix+bi=0(i=1,2,⋯,n)时,等号成立。
证明二设a→=(a1,a2,⋯an),b→=(b1,b2,⋯bn)是两个n维向量,则a→⋅b→=∑i=1naibi|a→|=(a→⋅a→)12=(∑i=1nai2)12|b→|=(b→⋅b→)12=(∑i=1nbi2)12由于a→b→=|a→b→|cosθ≤|a→b→|,因此(∑i=1naibi)≤(∑i=1nai2)12(∑i=1nbi2)12当cosθ=1时等号成立,即两向量共线时,命题成立。
证明三由拉格朗日恒等式容易得知柯西不等式成立∑i=1nai2∑i=1nbi2=(∑i=1naibi)2+∑1≤i<j≤n(aibj−ajbi)2证明四归纳法拉格朗日恒等式的证明:∑i−1nai2∑i=1nbi2−(∑i=1naibi)2=∑i=1n∑j−1nai2bj2−∑i=1n∑j=1naibiajbj=12∑i=1n∑i=1n(ai2bj2−2aibiajbj+aj2bi2)=∑1≤i<j−n(aibj−ajbi)2积分形式的柯西不等式设f(x),g(x)在[a,b]上可积,则(∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx当f(x)=kg(x)时,k为常数,等号成立。
柯西不等式的推广及其应用
柯西不等式的推广及其应用1 柯西不等式的定义 定义1[1](1)P 如果1212,,,,,,n n a a a b b b 为两组实数,则21122()n n a b a b a b +++ ≤ 2222221212()()n n a a a b b b ++++++并且仅当1221133111n n n n a b a b a b a b a b a b ---=-==-时,等式成立.2 柯西不等式的证明证法一 (利用均值不等式)[2](12)P P -A=21ni i a =∑,B=21ni i b =∑,C=1ni i i a b =∑,只需证明A ≥2C B由均值不等式有222111122C C a b a b B B +≥, 222222222C C a b a b B B+≥22222n n n n C C a b a b B B+≥n 个式子相加得222C CA B C B B+≥,即2C A B≥.当且仅当(1,2,,)i i a kb i n ==,等号成立.证法二 (比值证明法)[2](12)P P -要证222111()n n ni i i i i i i a b a b ===≤∑∑∑只需证明2ni i a b ⎛⎫⎪∑1≤ (2.1)2ni ia b⎛⎫⎪∑=21ni=⎛⎫⎪⎝2222211112ni in nii ii ia ba b===⎡⎤⎛⎫⎢⎥⎪⎢⎥⎪≤+⎢⎥⎪⎪⎢⎥⎝⎭⎣⎦∑∑∑=21(11)2⎡⎤+⎢⎥⎣⎦=1(2.1)式得证,故结论成立.证法三(差值法)[2](12)P P-222111()n n ni i i ii i ia b a b===-∑∑∑221111n n n ni j i j j ii j i ja b a b a b=====-∑∑∑∑22221111111(2)2n n n n n ni j j i i j j ii j i j i ja b a b a b a b=======+-∑∑∑∑∑∑2222111(2)2n ni j i j j i j ii ja b a b a b a b===-+∑∑2111()2n ni j j ii ja b a b===-∑∑≥.当且仅当i j j ia b a b=,即(1,2,)jii jaai nb b==时等式成立.证法四(利用Cauchy-schwarz不等式)[2](12)P P-在nR里,对任意两个向量1212(,,,),(,,,)n nx x x y y yξη==,ξη1122n nx y x y x y+++,因而n R对于上述定义的内积来说作成一个欧氏空间,则有不等式2,,,ηξηη≤令1212(,,),(,,)n na a ab b bξη==从而就有222222*********()()()n n n n a b a b a b a a a b b b +++≤++++++当且仅当ξ与η线性相关时等式成立.即(1,2,,)i i a kb i n ==等号成立.3 柯西不等式的几种变形变形一[3](1)P设,0(1,2,,)i i a R b i n ∈>=,则22111n i ni i ni iii a a b b===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当i i b a λ=时取等号.变形二[3](1)P设,i i a b ,同号且不为零(1,2,,i n =),则2111ni n i i ni ii ii a a b a b===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当12n b b b ===时取等号.变形三[3](1)P对任意数12,(1,2,,)i i a a R i n ∈=,有不等式2221212111n n n i i i i i i i a a a a ===⎡⎤⎡⎤⎡⎤≤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑成立,当且仅当12(1,2,)i i a a i n λ==时等号成立.变形四[3](1)P对任意1212,,,;,,,n n a a a R b b b R ∈∈,则有112222111nnn i i i i i i i a b a b ===⎡⎤⎡⎤≥⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑.变形五[4](2)P对于任意两个正实数组i a ,(1,2,,)i b i n =,有不等式1122111()()nn ni i i i i i i a b a b ===≤∑∑∑成立,当且仅当i a 与i b 成比例时等号成立.4 柯西不等式的推广推广一[4](2)P设对于由任意正实数构成的m 个数组,12,,(1,2,,)i i mi a a a i n =,有不等式1112121111()()nnnnmmii mi i i mi i i i i aa a a a a ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑ (4.1)成立,当且仅当1i a :2i a ::mi a =1i b :2i b ::mi b 时等号成立.证明 根据算术-几何平均不等式,有下述几个不等式成立1112112111m nnniimii i i a a a aaa===+++∑∑∑11112112111mm n n ni imi i i i a a a m aa a ===⎛⎫⎪⎪≥⋅⋅⋅ ⎪ ⎪⎝⎭∑∑∑; 2122212111m nnniimii i i a a a aaa===+++∑∑∑12122212111mm n n ni imi i i i a a a m aa a ===⎛⎫ ⎪⎪≥⋅⋅⋅ ⎪ ⎪⎝⎭∑∑∑;1212111nnmnnnniimii i i a a a aaa===+++∑∑∑11212111mn n mn n n ni imi i i i a a a m aa a ===⎛⎫⎪⎪≥⋅⋅⋅ ⎪ ⎪⎝⎭∑∑∑. 将上述n 个不等式相加,整理后即得(4.1)式. 当上述n 个不等式等号成立时,(4.1)式等号才成立. 当且仅当各组数对应成比例时,(4.1)式等号成立.推广二[5](2)P 柯西不等式另一个很好的推广,即著名的Hölder 不等式设110,0(1,2,,),0,0,1,i i a b i n p q p q>>=>>+=则 11111nnnpqpq i i ii i i i a b a b ===⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭∑∑∑, 当且仅当p qi i a b λ=时等号成立.证明 令11npp i i a M =⎛⎫= ⎪⎝⎭∑,11nqq i i b N =⎛⎫= ⎪⎝⎭∑则有11,nnppq q ii i i aM b N ====∑∑.由于函数()ln (0)f x x x =>为凹函数 因此有1111ln ln ln ,(1,2,,)p qp q i i i i a b a b i n p M q N p M q N ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+≤+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.从而有11ln ln p q i ii i a b a b MN p M q N ⎡⎤⎛⎫⎛⎫≤+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦因此11p qi i i i a b a b MN p M q N ⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭,(1,2,,)i n =所以11111p qnn n i i i i i i i a b a b MNp M q N ===⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭∑∑∑ =1111nnp qiii i Pqab p Mq N ==+∑∑=11p q+ =1.即1ni i i a b MN =≤∑当且仅当p i a 与qi b 成比例时等号成立.推广三[4](3)P已知,(1,2,,,1,2,,)ji j a R i n j m α+∈==,且11mj j α==∑则有12121mni i mi i a a a ααα=⋅⋅⋅∑1212111mn n n i i mi i i i a a a ααα===⎛⎫⎛⎫⎛⎫≤⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. 证明 对m 用数学归纳法 1) 当2m =时,命题成立. 2) 假设当m k =时,命题成立. 则当1m k =+时,因111k jj α+==∑,记12k j j s α+==∑,则11s α+=注意()23111k sααα++++=,有112121,1k ni i k i i a a a ααα++=⋅⋅⋅∑121121,1k sns si i k ii a a a ααα++=⎛⎫=⋅⋅ ⎪⎝⎭∑ 121121,111sk n nns si i k ii i i a a a αα++===⎛⎫⎛⎫≤⋅⋅ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 121121,111k snn n s si i k i i i i a a a ααα++===⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥≤⋅⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑∑ 121121,111k n n n i i k i i i i a a a ααα++===⎛⎫⎛⎫⎛⎫=⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑综上所述命题得证.5 柯西不等式的应用应用柯西不等式解一般题目的关键是将原问题变形使之适合柯西不等式的形式,而能否成功运 用柯西不等式的关键在于可否根据问题自身固有的特点对照柯西不等式的标准形式,构造出两组适当的数据演12,,,n a a a ;12,,,n b b b 的角色.例1 已知,x y R +∈,且44sin cos 1x y x y αα+=+,证明88333sin cos 1()x yx y αα+=+ 证明 由柯西不等式可得4422sin cos ()()1x y x y αα⎫++≥= 即44sin cos 1x y x yαα+≥+且当且仅当2α=时等号成立,即22sin cos x yαα= (5.1) 由已知44sin cos 1x y x yαα+=+ (5.2) 由(5.1)和(5.2)式解得22sin ,cos x yx y x yαα==++ 所以有8833sin cos x yαα+443311()()x y x x y y x y =+++ 31()x y =+. 例2 已知正数,,x y z 满足1x y z ++=,证明2223333x y z x y z ++++≥.证明 利用柯西不等式2222()x y z ++3131312222222()x x y y z z =++()333222222()()()x y z x y z ⎡⎤≤++++⎢⎥⎣⎦=3332()()x y z x y z ++++(1x y z ++=),又因为222x y z xy yz zx ++≥++在此不等式两边同乘以2, 再加上222x y z ++得2222()3()x y z x y z ++≤++,因为2222333()()x y z x y z ++≤++⨯2223()x y z ++故2223333x y z x y z ++++≥.例3 求函数11sin cos (,0,,(0,)2n ny a b a b n N πααα=+>∈∈的最大值.解 由[6](2)12121122()()()()n n n n n n n P n n n n a a a b b b a b a b a b +≤+++可得112(sin cos )nnna b αα+111111112212121212121(sin cos )n n n n nn n n naaabbbαα------=+(21n -)个 (21n -)个2221222121()(sin cos )n nn n n abαα---≤++=22212121()n nn n n ab---+所以11222121212sin cos ()n n n n n n n na b abαα---+≤+当且仅当11112121:sin :cos n n n na bαα--=,即21arc ()n n a tg bα-=时等号成立.所以222121212max ()n n n n n ny ab---=+.例4 已知2221,,,x y z x y z ++=是实数,求证:112xy yz zx -≤++≤. 证明 因为22()(111)x y z x y z ++=⨯+⨯+⨯所以由柯西不等式2222222()(111)()3x y z x y z ++≤++++=又由于22220()2()12()3x y z x y z xy yz zx xy yz zx ≤++=+++++=+++≤所以012()3xy yz zx ≤+++≤即112xy yz zx -≤++≤.例5 求证三角形三边上正方形的面积之和不小于该三角形面积的222a b c ++≥,其中,,,a b c 为三角形三边的长,∆为三角形的面积.证明 由三角形面积公式可得2()()()s s a s b s c ∆=---其中2a b cs ++=,于是 216()()()()a b c b c a c a b a b c ∆=+++-+-+-2222224442()b c c a a b a b c =++---由柯西不等式,有22222224444444442()()()()b c c a a b b c a c a b a b c ++≤++++=++即222222444b c c a a b a b c ++≤++当且仅当222222b c a c a b==,即a b c ==时等号成立.于是4442222224()4()a b c b c c a a b ++≥++变形为444222222222a b c b c c a a b +++++2222224443(222)b c c a a b a b c ≥++---即22222()316a b c ++≥⨯∆所以222a b c ++≥,当且仅当a b c ==时等式成立.例6 设P 为ABC ∆内的一点,M ,N ,H ,分别为P 到各边所引垂线的垂足,求所有BC CA AB PM PN PH++为最小值的点P . AB MC图1解 如图1,设ABC ∆的面积为S ,则S 111222BC PM CA PN AB PH =⨯+⨯+⨯(5.3) 由柯西不等式可知222222⎡⎤⎡⎤++++⎢⎥⎣⎦⎣⎦2≥ (5.4) 将(5.3)代入(5.4)得2()2BC CA AB BC CA AB PM PN PH S++++≥== 时等号成立, 即PM PN PH ==又S 和()AB BC CA ++分别是ABC ∆的面积和周长,故为定值, 即P 为ABC ∆内心时BC CA ABPM PN PH++为最小值.参考文献:[1] 鞠建恩.柯西不等式在初等数学中的应用[J].南平师专学报,2002,02[2] 赵朋军.柯西不等式的多种证法推广及其应用[J].商洛师范专科学校学报,2004,03 [3] 王晓凤.对柯西不等式探讨[J].通化师范学院学报,2006,03 [4] 黄 毅.柯西不等式的一个变形及其推广[J].数学教学通讯,2003,1 [5] 林银河.关于Minkowshi 不等式的讨论[J].丽水师范专科学校学报,2003,10 [6] 徐幼明.柯西不等式的推广及其应用[J].数学通讯,1996,12[7] T .Damm .A unified version of Cauchy-Schwarz and Wielandt inequality [J] .School of Information and Mathematics ,2007,1111。
柯西不等式的应用与推广
柯西不等式的应用与推广
柯西(Cauchy)不等式是指一个二元阶多项式满足所有的实根的和的绝对值的平方不能大于多项式的系数积的和。
柯西不等式的应用为:
1.当多项式的系数都是正数时,可用来证明多项式的全部正实根的和的平方大于等于多项式系数积的和;
2.可用来计算多项式全部实根的和;
3.应用于立方体定理时,可把多项式拆分为相互独立的二次多项式;
4.可用来证明实方程的实根的和的平方大于等于该实方程的常数系数的平方;
5.可用来构造椭圆和非凸椭圆。
因此,柯西不等式不仅应用于定理证明,还可以用于图形构造,数学模型分析和数学编程等多种领域。
(完整版)柯西定理及其应用
(完整版)柯西定理及其应用柯西定理及其应用柯西定理是分析数学中的一个重要定理,它在复变函数理论中有着广泛的应用。
本文将介绍柯西定理的原理以及它在几个具体问题中的应用。
柯西定理的原理柯西定理是指在复平面上,如果一个函数在一个简单闭合曲线内是全纯的(即在该曲线内的每个点上有定义且可导),那么该函数在这个曲线内的任何一点的复积分都等于零。
具体来说,设函数f(z)在曲线C内是全纯函数,则对于曲线C内任意一点z0,有以下公式成立:∮C f(z)dz = 0其中∮C表示沿曲线C的积分,f(z)dz表示f(z)乘以dz的积分。
柯西定理的应用柯西定理在许多问题的求解中起着关键作用。
下面将介绍其中几个经典的应用。
1. 柯西积分公式柯西积分公式是柯西定理的一个重要推论。
它表明,如果函数f(z)在一个围绕点z0的简单闭合曲线内是全纯的,那么函数f(z)在该曲线内的任意一点z的导数可以通过曲线上的积分来计算。
具体来说,如果函数f(z)在简单闭合曲线C内是全纯的,那么对于曲线C内任意一点z,有以下公式成立:f^(n)(z0) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z -z0)^{n+1}}dz其中f^(n)(z0)表示f(z)在z0处的n阶导数。
2. 柯西积分定理柯西积分定理是柯西定理的另一个重要推论。
它表明,如果函数f(z)在一个简单闭合曲线内是全纯的,那么函数f(z)在该曲线内的积分只取决于曲线C所围成的区域,而与曲线C的具体形状无关。
具体来说,如果函数f(z)在简单闭合曲线C内是全纯的,那么对于曲线C内的两条等价曲线C'和C'',有以下公式成立:\int_{C'} f(z)dz = \int_{C''} f(z)dz其中C'和C''是等价曲线,即它们由于同一个简单闭合曲线而围成的区域相同。
3. 柯西不等式柯西不等式是柯西定理的一个重要推论。
柯西施瓦茨不等式的应用
柯西施瓦茨不等式的应用
柯西施瓦茨不等式是一种重要的数学不等式,它在某些领域有着广泛的应用,例如微积分、线性代数、概率论等等。
以下是柯西施瓦茨不等式的几种应用:
1. 微积分中的应用:柯西施瓦茨不等式在微积分中有着广泛的应用,例如在求解微分方程时,可以利用柯西施瓦茨不等式来验证解的连续性和可导性。
2. 线性代数中的应用:柯西施瓦茨不等式在线性代数中也有着广泛的应用,例如在求解矩阵的行列式时,可以利用柯西施瓦茨不等式来验证行列式的值是否为正。
3. 概率论中的应用:柯西施瓦茨不等式在概率论中也有着广泛的应用,例如在计算概率分布的密度函数时,可以利用柯西施瓦茨不等式来验证密度函数是否具有连续性和可导性。
4. 不等式中的应用:柯西施瓦茨不等式也可以应用于证明一些数学不等式,例如柯西 - 施瓦茨不等式就是在证明向量的点积与向量的长度之间的关系时使用的。
总之,柯西施瓦茨不等式是一种非常重要的数学不等式,它在许多领域都有着广泛的应用。
柯西不等式各种形式的证明及其应用
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a bb b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc≥=等号成立条件:三角形式的证明:222111n nn k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+- 注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233112233=,,,,,,,,,cos ,,cos ,1n n n n n n m a a a a n b b b b m n a b a b a b a b m n m nm nm n a b a b a b a b =⋅=++++==≤∴++++≤令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===nk k k n k k nk kb a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渭南师范学院本科毕业论文设计题目:柯西不等式的证明应用及推广学院:渭南师范学院年级专业:学生姓名:学号:完成日期 2014年4月柯西不等式的证明应用及推广摘要本文对柯西不等式作了详细介绍,给出了柯西不等式的几种典型的证明方法。
例如构造函数法,数学归纳法,矩阵法,然后通过举例说明柯西不等式在解不等式,求最值方面的应用,并将柯西不等式进行推广,柯西不等式是赫尔德不等式的特殊形式,在此对柯西不等式的推广形式——赫尔德不等式作了简单介绍和说明,并举例说明其应用。
柯西不等式是数学中的一个非常重要的不等式,在很多领域都有广泛的应用可使一些比较困难的问题迎刃而解,充分体现了柯西不等式的重要性及较强的应用性。
关键词:柯西不等式赫尔德不等式证明推广目录摘要一前言二柯西不等式的诠释2—1 柯西不等式2—2 柯西不等式的推论2—3 柯西不等式的积分形式三柯西不等式的证明3—1 构造二次函数证明3—2 数学归纳法证明3—3 运用矩阵证明四柯西不等式的应用4—1 在不等式方面的应用4—2 在求最值方面的应用五柯西不等式的推广形式——赫尔德不等式5—1 赫尔德不等式的简单介绍5—2 赫尔德不等式的证明5—3 赫尔德不等式的积分形式5—4 赫尔德不等式的应用参考文献致谢一 前言柯西不等式在初等数学、高等代数、微积分、概率论等领域有广泛的应用。
柯西不等式的证明方法也多种多样,柯西不等式的推广形式对于一些较复杂的问题的求解、证明起到了至关重要的作用。
二 柯西不等式的诠释 2—1 柯西不等式定理一:()()212222121222212211..................nnn n bb ba a ab a b a b a +++++≤++当且仅当nn b a b a b a === (22)11时等号成立 2—2 柯西不等式的推论1、设n a a a ,......,,21是正整数,则2111n a a n i i n i i ≥⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑==,等号成立当且仅当n a a a === (21)2、2112⎪⎭⎫ ⎝⎛≥∑∑==n i i ni i a a n [1]2—3 柯西不等式的积分形式 若()()x g x f ,在[a,b]上可积,则()()()()dx x g dx x f dx x g x f ba b ab a ⎰⎰⎰≤⎪⎪⎭⎫ ⎝⎛222[2] 若()()x g x f ,在[a,b]上连续,其中等号当且仅当存在常数α,β使得()()x g x f βα=时成立(α,β不同时为零)证明:因为()()x g x f ,都在[a,b]上可积,由定积分性质推得()()()()x g x g x f x f 22,,及R t ∈∀,()()[]2x tg x f +在[a,b]上都可积,由定积分性质:()()[]()()()()022222≥++=+⎰⎰⎰⎰dx x g t dx x g x f t dx x f dx x tg x f bab ab aba因为上式对一切实数t 都成立,所以必须有()()()()044222≤-⎪⎪⎭⎫⎝⎛⎰⎰⎰dx x g dx x f dx x g x f ba b a b a [3]三 柯西不等式的证明3—1 构造二次函数证明当0......21====n a a a 或0......21====n b b b 时,不等式。
令22221......na a a A +++= , n nb a b a b a B +++=......2211 ,22221......nb b b C +++= 当n a a a ,......,11中至少有一个不为零时,可知A >0 作二次函数()()02212≥-=+-=∑=nk k k b x a C Bx Ax x f故0442≤-=∆AC B 即AC B ≤2 所以2121C A B ≤得证。
等号成立等价于()()n n b b b a a a ,......,,.....,2121λ=3—2 数学归纳法证明i 当n=1时 ()221122222121222112b a b a b a b a b a b a ++=+()()212222212222212122212221b a b a b a b a b b a a +++=++ 因为2211212222212b a b a b a b a ≥+故有()()()2221222122211b b a a b a b a ++≤+ 当且仅当2211b a b a =即2211b a b a =时等号成立。
ii 假设当n=k 时不等式成立,即()()()222212222122211..................k k k k b b b a a a b a b a b a ++++++≤+++当且仅当nn b a b a b a === (22)11时等号成立。
那么当n=k+1时,()()()221221111222112112211......2............++++++++++++++=++++k k k k k k k k k k k k b a b a b a b a b a b a b a b a b a b a b a b a ()()()21212211112222122221......2............+++++++++++++++≤k k k k k k k k b a b a b a b a b a b b b a a a ()()2121212212212121212222122221..................++++++++++++++++++≤k k k k k k k k k k b a a b b a a b b a b b b a a a =()()212221212221............++++++++k k b b b a a a =()()2222122221............nn b b b a a a ++++++ 当且仅当1112121111,......,++++++===k k k k k k k k a b b a a b b a a b b a 时等号成立 即112211......++====k k k k b a b a b a b a 时等号成立 于是当n=k+1时不等式成立由i ,ii 可得对任意的自然数n ,柯西不等式成立。
3—3 矩阵证明令A=⎪⎪⎭⎫ ⎝⎛n n b bb a a a 2121则A A T 一定半正定,x ∀有()()0≥x A x A TT T A A T 半正定⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛C B B A b b b a a a b b b a a a n n n n (21211)212从而0≥CB BA 即2B AC ≥ 得证。
四 柯西不等式的应用4—1 在不等式方面的应用例1: 证明:1233 (2332332332)332211+>++++++++n n n n 证明:左式=n3211 (3)211321121++++++2221123213211 (3)2132113213211⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=n nn ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫⎝⎛++++≤n n 321 (3213211) (321111)13113113232......32322+<--+=++++n n n nn ()13211 (32111)2+⎪⎪⎪⎪⎭⎫ ⎝⎛++++<n n n 13211 (3211)21+>++++n n n即证例2:证明 nn n n n n nn n nC C C 2323133......133133111000+>++++++ 左式=nnnnnC C C 3111 (3)1113111110++++++2002311311 (3)113112⎪⎪⎪⎪⎭⎫ ⎝⎛++++++=n n nnn nnn n C C CC<n nnnnC C C 3111 (311131111)100++++++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+n n n n n C C C 311......3113111100 ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎪⎪⎭⎫⎝⎛++++++=n n n n nn n C C C 31123111 (311131111100)=(nn nnnC C C 3111 (3111)31111100++++++)⎪⎪⎭⎫⎝⎛+n n n 3222 <n22(nn nnnC C C 3111 (3111)31111100++++++)⎪⎪⎭⎫⎝⎛+n n n n 32322 所以nn n n n n nn n nC C C 2323133......133133111000+>++++++ 即证4—2 在求最值方面的应用例3: 已知实数a,b,c,d 满足a+b+c+d=3,56322222=+++d c b a ,试求a 的最值。
解: 由柯西不等式得,()()2222613121632d c b d c b ++≥⎪⎭⎫ ⎝⎛++++即()2222632d c b d c b ++≥++由条件可得()2235a a -≥-解得 21≤≤a 当且仅当616313212dc b ==时等号成立 代入 61,31,1===d c b 时,2max =a31,32,1===d c b 时,1min =a五 柯西不等式的推广形式——赫尔德不等式5—1 赫尔德不等式的简单介绍赫尔德不等式: 设()0,,111,......2,1,0,0>=+=≥≥q p qp k b a k k则qnk q k pnk p k n k k k b a b a 11111⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===一般形式:∑∑==⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≤n k p k p k p k k k nk k C c p B b p A a p C c B b A a 13211321111 mm p nk p mk p nk p k nk k n k k a a a a a 11111211 (1)1⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑=== 其中11......1121=+++mp p p5—2 赫尔德不等式的证明证明: 令()()()()()()x X b x b x X a x a j i ni i i i ni i ,11,11,-=-=∑∑== 且()(),000==b a 其中E x 表示集合E 上的特征函数,显然()[]()[],,0,,0n L x b n L x a p p ∈∈由()()()()pba pppba ba dx x g dx x f dx x g x f 11⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡≤⎰⎰⎰可得,结论成立。