2005年高考文科数学(湖北卷)试题及答案

合集下载

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)一、选择题:1. (2005北京文)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种 【答案】B【详解】分两个步骤进行。

第一步:先考虑安排甲工程队承建的项目,有C 14种方法;第二步:其余的4个队任意安排,有44A 种方法。

故,不同的承建方案共有1444C A 种。

【名师指津】排列组合中的分步计数原理与分类计数原理做为解决此类问题的基础.2.(2005北京理)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( )A .484121214C C CB .484121214A A CC .33484121214A C C C D .33484121214A C C C【答案】A【详解】本题可以先从14人中选出12人即1214C ,然后从这12人中再选出4人做为早班即412C ,最后再从剩余的8人选出4人安排为中班即48C ,剩下的4个安排为晚班,以上为分步事件应用乘法原理可得不同的排法为:124414128C C C .【名师指津】 排列组合中的分步计数原理与分类计数原理做为解决此类问题的基础.3.(2005福建文、理)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种 解:分三种情况:情况一,不选甲、乙两个去游览:则有44P 种选择方案,情况二:甲、乙中有一人去游览:有11332343C C C P 种选择方案;情况三:甲、乙两人都去游览,有22132433C C C P 种选择方案,综上不同的选择方案共有44P +11332343C C C P +22132433C C C P =240,选(B)4.(2005湖北文)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 解:本题主要关键是抓连续编号的2张电影票的情况,可分四种情况:情况一:连续的编号的电影票为1,2;3,4;5,6,这时分法种数为222432C P P情况二:连续的编号的电影票为1,2;4,5,这时分法种数为222422C P P 情况三:连续的编号的电影票为2,3;4,5;这时分法种数为222422C P P 情况四:连续的编号的电影票为2,3;5,6,这时分法种数为222422C P P综上, 把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是222432C P P +3222422C P P =144(种)5.(2005湖南文)设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( ) A .20 B .19 C .18D .16[评析]:本题考查直线方程和排列组合知识交汇问题. 【思路点拨】本题涉及直线的位置关系与排列组合知识.【正确解答】[解法一]:从1,2,3,4,5中每次取两个不同的数的排列有25A 种其中取1,2和2,4或2,1和4,2表示相同直线.所以所得不同直线条数为:。

高中数学复习资料2005年高考文科数学试题及答案(湖北)

高中数学复习资料2005年高考文科数学试题及答案(湖北)

绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是 ( )A.9B.8C.7D.6 2.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A.1 B.2 C.3 D.4 3.已知向量a =(-2,2),b =(5,k).若|a +b |不超过5,则k 的取值范围是 ( ) A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A.60倍B.6030倍C.120倍D.12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A.163 B.83 C.316 D.38 7.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A.0B.1C.2D.3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A.1 B.2 C.3 D.49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A.168 B.96 C.72 D.144 10.若∈<<=+απαααα则),20(tan cos sin( )A.)6,0(πB.)4,6(ππ C.)3,4(ππ D.)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A.3 B.2 C.1 D.012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N(1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分. 1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c =8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H,则CH =BE =1,EH//AD,且EH =AD. 又∵AF ∥EC 1,∴∠FAD =∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF =C 1H =2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG,则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M,连C 1M,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC,且AG ⊂面AEC 1F,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0), C(0,4,0),E(2,4,1),C 1(0,4,3).设F(0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I)在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III)至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II)中所求,下同)换4只的概率为415p C (1-p),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k =-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II)解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II)解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD)。

历年高考数学真题-高考文科数学(湖北卷)试题及答案资料

历年高考数学真题-高考文科数学(湖北卷)试题及答案资料

2005湖北卷试题及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分 考试时间120分钟第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( ) A .9 B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x ey x 的图象大致是( )A B C D5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .387.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππ C .)3,4(ππD .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上13.函数x x x x f ---=4lg 32)(的定义域是 14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围18.(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n20.(本小题满分12分)如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1 (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离121.(本小题满分12分) 某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换 (Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字) 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由2005湖北卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t≥t t 的取值范围是故解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f 'Θ的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B ο得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c . .3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得2222212cos ,546428,8100.2b ac ac B a a a a =+-=+-⨯⨯∴-+=即124460,090,30120.a a B C A ===<<∴<<o o o o o Q 所得1,sin sin 303,sin sin sin sin 2a b b b a A A B B B ==⋅>⋅==>o 由得243,,4a a =<=而舍去故故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c Θ ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--ΛΛΛ两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T Λ20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力 解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且 AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离.113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n AE n 得由1⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133cos 1111=++⨯==α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力解:因为该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2. 所以寿命为1~2年的概率应为p 1-p 2. 其分布列为:寿命 0~1 1~2 2~ p 1-P 1 P 1-p 2 P 2(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1-p 1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1-p 2。

2005年高考试题及答案

2005年高考试题及答案

2005年高考文科数学全国卷Ⅲ试题及答案本试卷分第I 卷(选择题)和第II共150分. 考试时间120第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60只有一个答案是正确的) (1)已知α为第三象限角,则2α所在的象限是(A )第一或第二象限 (B )第二或第三象限(C )第一或第三象限 (D )第二或第四象限(2)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为(A )0 (B )-8 (C )2 (D )10 (3)在8(1)(1)x x -+的展开式中5x 的系数是(A )-14 (B )14 (C )-28 (D )28(4)设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为(A )16V (B )14V (C )13V (D )12V (5)设137x =,则 (A )-2<x<-1 (B )-3<x<-2 (C )-1<x<0 (D )0<x<1 (6)若ln 2ln 3ln 5,,235a b c ===,则 (A)a<b<c (B)c<b<a (C)c<a<b (D)b<a<c (7)设02x π≤<,sin cos x x =-,则(A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤ (8)22sin 2cos 1cos 2cos 2αααα⋅=+ 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径(A) tan α (B) tan 2α (C) 1 (D)12(9)已知双曲线2212y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅= 则点M到x 轴的距离为(A )43 (B )53(C (D(10)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(A )2 (B )12(C )2 (D 1 (11)不共面的四个定点到平面α的距离都相等,这样的平面α共有(A )3个 (B )4个 (C )6个 (D )7个(12)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个例如,用十六进制表示:E+D=1B ,则A ×B=(A )6E (B )72 (C )5F (D )B0第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16(13)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=(15)曲线32y x x =-在点(1,1)处的切线方程为 (16)已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是三、解答题:(17)(本小题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 18)(本小题满分12分)照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (19)(本小题满分12分)在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形, 平面V AD ⊥底面 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB(20)(本小题满分12分)在等差数列{}n a 中,公差0d ≠,2a是1a 与4a 的等差中项,已知数列1a ,3a ,1k a ,2k a , ……,n k a ,……成等比数列,求数列{}n k 的通项n k(21) (本小题满分12分)用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?(22) (本小题满分14分)设1122(,),(,)A x y B x y 两点在抛物线22y x =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当121,3x x ==-时,求直线l 2005年高考全国卷Ⅲ数学试题及答案一、DBBCA ,CCBCD ,DA 二、13.3,14.23-,15.x+y-2=0,16.3 三、解答题:(17)解:∵()1cos 2sin 2f x x x =-+……………………………………………2分1)4x π=-………………………………………………4分()01)04f x x π∴>⇔->sin(2)42x π⇔->-…………………………………………6分 5222444k x k πππππ⇔-+<-<+……………………………8分 34k x k πππ⇔<<+………………………………………………10分 又[0,2].x π∈ ∴37(0,)(,)44x πππ∈⋃………………………………………………12分 另法:22()2sin sin 22sin 2sin cos 2sin (sin cos )f x x x x x x x x x =+=+=+()f x 为正值当且仅当sin x 与sin cos x x +同号,在[0,2]x π∈上,若sin x 与sin cos x x +均为正值,则3(0,)4x π∈; 若sin x 与sin cos x x +均为负值,则7(,)4x ππ∈所以所求x 的集合为37(0,)(,)44πππ (18)解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C ,……1分则A 、B 、C 相互独立, 由题意得:P (AB )=P (A )P (B )=0.05 P (AC )=P (A )P (C )=0.1P (BC )=P (B )P (C )=0.125…………………………………………………………4分 解得:P (A )=0.2;P (B )=0.25;P (C )=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分(Ⅱ)∵A 、B 、C 相互独立,∴AB C 、、相互独立,……………………………………7分 ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为()()()()0.80.750.50.3P A B C P A P B P C ⋅⋅==⨯⨯=……………………………10分∴这个小时内至少有一台需要照顾的概率为1()10.30.7p P A B C =-⋅⋅=-=……12分(19)(本小题满分12分)四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面1)求证AB⊥面VAD;2)求面VAD与面VDB所成的二面角的大小.证法一:(1)由于面VAD是正三角形,设AD的中点为E,则VE⊥AD,而面VAD⊥底面ABCD,则VE⊥又面ABCD是正方形,则AB⊥CD,故AB⊥面(2)由AB⊥面VAD,则点B在平面VAD内的射影是A,设VD的中点为F,连AF,BF由△VAD是正△,则AF⊥VD,由三垂线定理知BF⊥VD,故∠AFB是面VAD与面VDB设正方形ABCD的边长为a,则在Rt△ABF中,,AB=a, AF=23a,tan∠AFB =33223==aaAFAB故面VAD与面VDB所成的二面角的大小为332arctan证明二:(Ⅰ)作AD的中点O,则VO⊥底面ABCD.…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分则A(12,0,0),B(12,1,0),C(-12,1,0),D(-12,0,0),V(0,02),∴1(0,1,0),(1,0,0),(,0,)22AB AD AV===-……3分由(0,1,0)(1,0,0)0AB AD AB AD⋅=⋅=⇒⊥…………4分1(0,1,0)(022ABAV AB AV⋅=⋅-=⇒⊥……5分又AB∩AV=A ∴AB⊥平面VAD…………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB=是面VAD的法向量……………………7分设(1,,)n y z=是面VDB的法向量,则110(1,,)(,1,0(1,1,230(1,,)(1,1,0)03xn VB y znzn BD y z=-⎧⎧⎧⋅=⋅-=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=-⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分∴(0,1,0)(1,cos,73AB n⋅-<>==-,……………11分又由题意知,面VAD 与面VDB所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==q p q n q m 3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=n ………………………………9分∴(0,1,0)(1,cos ,73AB n ⋅-<>==-,………………11分又由题意知,面VAD 与面VDB所成的二面角,所以其大小为arccos 7……12分 (20)解:由题意得:2214a a a =………………………………1分 即2111()(3)a d a a d +=+…………………………………………3分 又0,d ≠∴1a d =……………………………………………………4分 又1a ,3a ,1k a ,2k a ,……,n k a ,……成等比数列, ∴该数列的公比为3133a d q a d===,………………………6分 所以113n n k a a +=⋅…………………………………………8分又11(1)n k n n a a k d k a =+-=…………………………10分∴13n n k +=所以数列{}n k 的通项为13n n k +=……………………………12分(21)解:设容器的高为x ,容器的体积为V ,……………………1分 则V=(90-2x )(48-2x )x,(0<V<24)…………………………………5分=4x 3-276x 2+4320x∵V ′=12 x 2-552x+4320……………………………………………7分 由V ′=12 x 2-552x+4320=0得x 1=10,x 2=36 ∵x<10 时,V ′>0, 10<x<36时,V ′<0, x>36时,V ′>0,所以,当x=10,V 有极大值V(10)=1960………………………………10分 又V(0)=0,V(24)=0,…………………………………………………11分所以当x=10,V 有最大值V(10)=1960……………………………………12分 (22)解:(Ⅰ)∵抛物线22y x =,即22y x =,∴14p =, ∴焦点为1(0,)8F ………………………………………………1分 (1)直线l 的斜率不存在时,显然有12x x +=0……………3分 (2)直线l 的斜率存在时,设为k , 截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩………………………………5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩…………………………………7分 2212104b x x ⇒+=-+≥14b ⇒≥即l 的斜率存在时,不可能经过焦点1(0,)8F ………………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F …………9分 (Ⅱ)当121,3x x ==-时,直线l 的斜率显然存在,设为l :y=kx+b ……………………10分 则由(Ⅰ)得:22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⎨⎪+=-⎪⎩12102122k b k x x +⎧⋅+=⎪⎪⇒⎨⎪-=-⎪⎩………………………………11分14414k b ⎧=⎪⎪⇒⎨⎪=⎪⎩……………………………………………13分所以直线l 的方程为14144y x =+,即4410x y -+=………………14分。

2005年高考文科数学试题及答案(湖北)

2005年高考文科数学试题及答案(湖北)

绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7.在x y x y x y y x 2c o s ,,l o g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效.二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围. 18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .----资料来源高中数学教师交流分享QQ群545423319----整理收集不易,转载请注明出处20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔----资料来源高中数学教师交流分享QQ 群 545423319----整理收集不易,转载请注明出处).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )。

2005年全国高考文科数学试题及答案(卷Ⅲ)

2005年全国高考文科数学试题及答案(卷Ⅲ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数是( )A .-14B .14C .-28D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13V D .12V 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43 B .53C D 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A B C .2 D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( ) A .3个 B .4个 C .6个 D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人. 14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= .15.曲线32x x y -=在点(1,1)处的切线方程为 .16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是 三.解答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)一、选择题:1. (2005北京文)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种 【答案】B【详解】分两个步骤进行。

第一步:先考虑安排甲工程队承建的项目,有C14种方法;第二步:其余的4个队任意安排,有44A 种方法。

故,不同的承建方案共有1444C A 种。

【名师指津】排列组合中的分步计数原理与分类计数原理做为解决此类问题的基础.2.(2005北京理)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( )A .484121214C C CB .484121214A A CC .33484121214A C C C D .33484121214A C C C 【答案】A【详解】本题可以先从14人中选出12人即1214C ,然后从这12人中再选出4人做为早班即412C ,最后再从剩余的8人选出4人安排为中班即48C ,剩下的4个安排为晚班,以上为分步事件应用乘法原理可得不同的排法为:124414128C C C .【名师指津】 排列组合中的分步计数原理与分类计数原理做为解决此类问题的基础.3.(2005福建文、理)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种解:分三种情况:情况一,不选甲、乙两个去游览:则有44P 种选择方案,情况二:甲、乙中有一人去游览:有11332343C C C P 种选择方案;情况三:甲、乙两人都去游览,有22132433C C C P 种选择方案,综上不同的选择方案共有44P +11332343C C C P +22132433C C C P =240,选(B)4.(2005湖北文)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 解:本题主要关键是抓连续编号的2张电影票的情况,可分四种情况: 情况一:连续的编号的电影票为1,2;3,4;5,6,这时分法种数为222432C P P情况二:连续的编号的电影票为1,2;4,5,这时分法种数为222422C P P 情况三:连续的编号的电影票为2,3;4,5;这时分法种数为222422C P P 情况四:连续的编号的电影票为2,3;5,6,这时分法种数为222422C P P综上, 把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是222432C P P +3222422C P P =144(种)5.(2005湖南文)设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( ) A .20 B .19 C .18D .16[评析]:本题考查直线方程和排列组合知识交汇问题. 【思路点拨】本题涉及直线的位置关系与排列组合知识.【正确解答】[解法一]:从1,2,3,4,5中每次取两个不同的数的排列有25A 种其中取1,2和2,4或2,1和4,2表示相同直线.所以所得不同直线条数为:。

2005年高考文科数学(湖北卷)试题含答案

2005年高考文科数学(湖北卷)试题含答案

mn 的值为(
A. 3 16

B. 3 8
C. 16 3
D. 8 3
7 . 在 y = 2x , y = log 2 x, y = x2 , y = cos 2x 这 四 个 函 数 中 , 当 0 x1 x2 1 时 , 使
f ( x1 + x2 ) f (x1) + f (x2 ) 恒成立的函数的个数是(
A. (0, ) 6
B. ( , ) 64
C. ( , ) 43
D. ( , ) 32
11.在函数 y = x3 − 8x 的图象上,其切线的倾斜角小于 的点中,坐标为整数的点的个数 4
是( )
A.3
B.2
C.1
D.0
12.某初级中学有学生 270 人,其中一年级 108 人,二、三年级各 81 人,现要利用抽样方
有一项是符合题目要求的.
1.设 P、Q 为两个非空实数集合,定义集合 P+Q={a + b | a P,b Q},若P = {0,2,5},
Q = {1,2,6},则 P+Q 中元素的个数是 ( )
A.9
B.8
C.7
D.6
2.对任意实数 a,b,c,给出下列命题:
①“ a = b ”是“ ac = bc ”充要条件; ②“ a + 5 是无理数”是“a 是无理数”的充
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是
()

2005年高考湖北文科数学试题

2005年高考湖北文科数学试题

2005年高考湖北文科数学试题一、单项选择题(下列各题,只有一个正确答案,不选、错选或多选均不得分。

本类题共计40分,每小题1分)5.企业为开具信用证而存人银行一笔款项时,应( )。

A.借记“其他货币资金——信用证存款”B.贷记“其他货币资金——信用证存款”C.借记“银行存款”D.贷记“库存现金”6.“待摊费用”科目期末如有贷方余额,应在资产负债表的( )项目反映。

A.“待摊费用”B.“递延资产”C.“预提费用”D.“其他应收款”7.将于一年内到期的长期债券投资,在资产负债表中应( )。

A.在“短期投资”项目下列示B.在“长期投资”项目下列示C.既在“短期投资”项目下列示,又在“长期投资”项目下列示D.在流动资产类下单独设置“一年内到期的长期债券投资”项目加以反映8.企业利润表中的“主营业务税金及附加”不包括( )。

A.营业税B.消费税C.资源税D.增值税9.企业将净利润调节为经营活动现金流量时,下列各项中,属于调整减少现金流量的项目是( )。

A.存货的减少B.无形资产摊销C.公允价值变动收益D.经营性应付项目的增加10.下列各账户中,年末结转后可能有余额的是( )。

A.“营业外收入”B.“主营业务收入”C.“营业外支出”D.“利润分配——未分配利润”11.“利润分配——未分配利润”账户贷方余额反映( )。

A.企业历年积存的未弥补亏损B.企业积存的未分配利润C.企业本年的亏损D.企业本年的利润12.登记账簿的依据是( )。

A.原始凭证B.记账凭证C.会计凭证D.审核无误的会计凭证13.企业向购货单位预收货款时,应( )。

A.贷记“应付账款”B.借记“应付账款”C.借记“预收账款”D.贷记“预收账款”14.现金清查发现现金短款时,应贷记( )账户。

A.“其他应收款”B.“库存现金”C.“营业外支出”D.“待处理财产损溢”15.期间费用不包括下列( )项目。

A.财务费用B.销售费用C.制造费用D.管理费用16.某企业期初资产总额为200万元,本期资产共增加120万元,期末的所有者权益为270万元,则期末的负债总额为( )。

2005年高考湖北卷(文科数学)

2005年高考湖北卷(文科数学)

2005年普通高等学校招生全国统一考试文科数学(湖北卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合{,}P Q a b a P b Q +=+∈∈,若{0,2,5}P =,{1,2,6}Q =,则P Q +中元素的个数是A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件;③“a b >”是“22a b >”的充分条件;④“5a <”是“3a <”的必要条件.其中真命题的个数是A .1B .2C .3D .4 3.已知向量(2,2)a =-,(5,)b k =,若a b +不超过5,则k 的取值范围是 A .[4,6]- B .[6,4]- C .[6,2]- D .[2,6]- 4.函数|1|||ln --=x e y x 的图象大致是5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 A .60倍 B. C .120倍 D.5.双曲线221x y m n-=(0mn ≠)离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为A .163B .83C .316D .38A 1D6.在2x y =,2log y x =,2y x =,cos 2y x =,这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 A .0 B .1 C .2 D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若a b ⊥,b c ⊥,则a ∥c ; ②若a ∥b ,b c ⊥,则a c ⊥; ③若//a β,b β⊂,则a ∥b ; ④若a 与b 异面,且//a β,则b 与β相交; ⑤若a 与b 异面,则至多有一条直线与a 、b 都垂直. 其中真命题的个数是A .1B .2C .3D .4 9.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 A .168 B .96 C .72 D .1447.若sin cos tan ααα+=,02πα<<,则α∈A .)6,0(πB .)4,6(ππC .)3,4(ππD .)2,3(ππ11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是A .0B .1C .2D .3 11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 .15.函数sin cos 1y x x =-的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费 元.三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量2(,1)a x x =+,(1,)b x t =-,若函数()f x a b =⋅在区间(1,1)-上是增函数,求t 的取值范围. 18.(本小题满分12分)在ABC ∆中,已知tan B =1cos 3C =,AC =ABC ∆的面积. 19.(本小题满分12分)设数列}{n a 的前n 项和为22n S n =,}{n b 为等比数列,且11a b =,2211()b a a b -=. (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和n T . 20.(本小题满分12分)如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中4AB =,2BC =,13CC =,1BE =. (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面1AEC F 的距离.ABCDFEC 121.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为1p ,寿命为2年以上的概率为2p .从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当10.8p =,0.3p =时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点(1,3)N 是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分. 1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力. 解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力. 解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c . .3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列.设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF EF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由 ⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II)解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得).3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆2005年普通高等学校招生全国统一考试理科数学(湖北卷)第 11 页 共 11 页 2005年普通高等学校招生全国统一考试理科数学(湖北卷)第 11 页 共 11 页 解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得 .016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )。

2005年全国高考文科数学试题及答案(卷 Ⅲ)

2005年全国高考文科数学试题及答案(卷 Ⅲ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参阅公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率乃是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限乃是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数乃是( ) A .-14 B .14 C .-28 D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别乃是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13V D .12V 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43 B .53C .3D 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率乃是 ( )A .2 B .12C .2D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( ) A .3个 B .4个 C .6个 D .7个12.计算机中常用十六进制乃是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B=( )A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人. 14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= . 15.曲线32x x y -=在点(1,1)处的切线方程为 .16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 乃是AB 上的点,则点P 到AC 、BC的距离乘积的最大值乃是 三.解读回答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器乃是否需要照顾相互之间没有影响。

2005年全国统一高考数学试卷(文科)(全国卷ⅰ)

2005年全国统一高考数学试卷(文科)(全国卷ⅰ)

2005年全国统一高考数学试卷Ⅰ(文)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设直线l过点(﹣2,0),且与圆x2+y2=1相切,则l的斜率是()A.±1 B.C.D.2.设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B.C.D.4.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a= ()A.2 B.3 C.4 D.55.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.6.已知双曲线的一条准线为,则该双曲线的离心率为()A.B.C.D.7.当0<x<时,函数的最小值为()A.2 B.C.4 D.8.反函数是()A.B.C.D.9.设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.311.在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.点O是三角形ABC所在平面内的一点,满足•=•=•,则点O是△ABC 的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点二、填空题(共4小题,每小题5分,满分20分)13.若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(x﹣)4的展开式中的常数项为.15.从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有种.16.在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,满分70分)17.(10分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣2x的解集为(1,3).(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(Ⅱ)若f(x)的最大值为正数,求a的取值范围.20.(12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求有坑需要补种的概率.(精确到0.001)21.(12分)设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;(Ⅱ)求{nS n}的前n项和T n.22.(12分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.。

2005年高考试题——数学文(必修+选修Ⅰ)

2005年高考试题——数学文(必修+选修Ⅰ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是 球的体积公式P ,那么n 次独立重复试验中恰好发生k 334RVπ=次的概率k n k k n n P P C k P --=)1()( 其中R 表示球的半径一、选择题: 1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )A .)22,22(-B .)2,2(-C .)42,42(D .)81,81(-4.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33C .34D .235.已知双曲线)0(1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为( )A .23B .23C .26D .3326.当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为 ( )A .2B .32C .4D .347.设0>b ,二次函数122-++=a bx ax y 的图象下列之一:则a 的值为( )A .1B .-1C .251--D .251+-8.设10<<a ,函数)22(log )(2--=xxa a a x f ,则使x x f 的0)(<取值范围是( )A .)0,(-∞B .),0(+∞C .)3log,(a -∞D .),3(log+∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( )A .2B .23 C .223 D .210.在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A②2sin sin 0≤+<B A ③1cossin 22=+B A ④C B A 222sincoscos=+其中正确的是( )A .①③B .②④C .①④D .②③11.过三棱柱任意两个顶点的直线共15条,其中异面直线有( )A .18对B .24对C .30对D .36对 12.复数=--ii 2123( )A .iB .i -C .i -22D .i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚. 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若正整数m 满足)3010.02.(lg ________,102105121≈=<<-m mm 则14.9)12(xx -的展开式中,常数项为 .(用数字作答)15.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m= .16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形.②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D.以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数)(),0)(2sin()(x f y x f =<<-+=ϕπϕπ图象的一条对称轴是直线.8π=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 与函数)(x f y =的图象不相切.18.(本小题满分12分)已知四棱锥P —ABCD 的底面为直角梯形,AB//DC ,∠DAB=90°,PA ⊥底面 ABCD ,且PA=AD=DE=21AB=1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;(3)求面AMC 与面BMC 所成二面角的大小. 19.(本小题满分12分)设等比数列}{n a 的公比为q ,前n 项和S n >0(n=1,2,…)(1)求q 的取值范围; (2)设,2312++-=n n n a a b 记}{n b 的前n 项和为T n ,试比较S n 和T n 的大小.20.(本小题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(本小题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.22.(本小题满分12分) (1)设函数)10)(1(log )1(log)(22<<--+=x x x x x x f ,求)(x f 的最小值;(2)设正数np p p p 2321,,,, 满足12321=++++np p p p , 求证.loglogloglog 222323222121n p p p p p p p p n n -≥++++2005年普通高等学校招生全国统一考试 文科数学(必修+选修I )参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.C 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.155 14.70 15.100 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分.解:(Ⅰ))(8x f y x ==是函数π 的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)由知)32sin(π-=x y故函数上图像是在区间],0[)(πx f y =18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PBBE PBE.510arccos所成的角为与PB AC ∴(Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(,5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BNAN ABBNANANB故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.).32arccos(.32),cos(.54,530||,530||--==∴-=⋅==故所求的二面角为BN AN BN AN BN AN19.本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分.解:(Ⅰ)).3,1(02)(的解集为>+x x f 因而且.0),3)(1(2)(<--=+a x x a x x f.3)42(2)3)(1()(2a x a axx x x a x f ++-=---=①由方程.09)42(06)(2=++-=+a x a ax a x f 得 ②因为方程②有两个相等的根,所以094)]42([2=⋅-+-=∆a a a , 即 .511.01452-===--a a a a 或解得由于51.1,0-==<a a a 将舍去代入①得)(x f 的解析式.535651)(2---=x x x f(Ⅱ)由aa a aa x a a x a ax x f 14)21(3)21(2)(222++-+-=++-=及.14)(,02aa a x f a ++-<的最大值为可得由⎪⎩⎪⎨⎧<>++-,0,0142a a a a 解得 .03232<<+---<a a 或故当)(x f 的最大值为正数时,实数a 的取值范围是).0,32()32,(+----∞20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补种的概率为 .875.087811==-(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)81(87213=⨯⨯C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)87(, 所以有坑需要补种的概率为 .330.0)87(13=-解法二:3个坑中恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C 恰有2个坑需要补种的概率为 ,041.087)81(233=⨯⨯C3个坑都需要补种的概率为 .002.0)87()81(0333=⨯⨯C所以有坑需要补种的概率为 .330.0002.0041.0287.0=++21.本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分.解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=-即,)(220121*********a a a a a a +++=+++ 可得.)(22012112012111010a a a a a a q+++=+++⋅因为0>n a ,所以 ,121010=q解得21=q ,因而 .,2,1,2111 ===-n qa a nn n(Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故.2,211211)211(21nn nnn n n nS S -=-=--=则数列}{n nS 的前n 项和 ),22221()21(2nn n n T +++-+++=).2212221()21(212132++-+++-+++=n nn n n n T前两式相减,得122)212121()21(212+++++-+++=n nn n n T12211)211(214)1(++---+=n nnn n 即 .22212)1(1-+++=-nn n n n n T22.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分14分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+by ax ,化简得02)(22222222=-+-+ba c a cx a xb a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x ba c a x x +-=+=+由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得 ,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222a ba cb a =-=∴=,故离心率.36==ac e(II )证明:由(1)知223b a =,所以椭圆12222=+by ax 可化为.33222b yx =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c bc ac x x ===+.0329233)(34))((33832222212121212121222222221=+-=++-=--+=+=+-=cc c c c x x x x c x c x x x y y x x cba b a c a x x 又222222212133,33b y x b y x =+=+,代入①得.122=+μλ 故22μλ+为定值,定值为1.。

2005年全国各地高考数学试题及解答分类大全(统计、推理与证明)

2005年全国各地高考数学试题及解答分类大全(统计、推理与证明)

2005年全国各地高考数学试题及解答分类大全(统计、推理与证明)一、选择题:1.(2005湖北文、理)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样解:①②不是系统抽样,可能为分层抽样;③可能为系统抽样,也可能为分层抽样:④既非系统抽样也不是分层抽样,综上选(D)2.(2005江苏)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4,0.484(B )9.4,0.016(C )9.5,0.04(D )9.5,0.016答案:D[评述]:本题考查了统计数据中平均数、方差有关概念、公式及有关计算等。

[解析]:7个数据中去掉一个最高分和一个最低分后,余下的5个数为:9.4,9.4,9.6,9.4,9.5则平均数为:5.946.955.94.96.94.94.9≈=++++=x ,即5.9=x 。

方差为:016.0])5.95.9()5.94.9()5.94.9[(512222=-+⋅⋅⋅+-+-=s 即016.02=s ,故选D.3.(2005江西文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b,则a ,b 的值分别为()A.0,27,78B.0,27,83C.2.7,78D.2.7,83【思路点拨】本题涉及数理统计的若干知识.【正确解答】由图象可知,前4组的公比为3,最大频率40.130.10.27a =⨯⨯=,设后六组公差为d ,则560.010.030.090.27612d ⨯+++⨯+=,解得:0.05d =-,后四组公差为-0.05,所以,视力在4.6到5.0之间的学生数为(0.27+0.22+0.17+0.12)×100=78(人).选A.【解后反思】本题是一道数理统计图象题,关于统计一般可分为三步,第一步抽样,第二步根据抽样所得结果,画成图形,第三步根据图形,分析结论.本题是统计的第二步,在此类问题中,可画成两种图形,一个是频率分布直方图,另一个是频率分布条形图,两者有很大的不同,前者是以面积表示频数,频率分布条形图是以高度表示频数.4.(2005全国Ⅲ文、理)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F 10进制0123456789101112131415例如,用十六进制表示:E+D=1B ,则A ×B=()A .6EB .72C .5FD .B0【思路点拨】本题考查计数法则和进位规则.【正确解答】141327116111E D B +=+==⨯+=,∵A=10,B=11,1011110616146A B E ⨯=⨯==⨯+=.∴在16进制中A ×B=6E,选A【解后反思】这是一道新型题目,让学生体会各种进制之间的异形同质.不管哪一种进制都是十进制的一种拓展,类比一下十进制,我们可以轻易解决这一系列问题,当然我们如果对计算机的进制有一个了解,解决这个问题会变得非常简单,高考每年都有一到二道新型题目,解决胜这些问题,不仅仅需要数学,其他知识也是一个重要的补充,所以在平时请同学们要多多进行知识积累.二、填空题:1.(2005北京文)已知n 次多项式1011()n n n n n P x a x a xa x a --=++++ ,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),那么计算100()P x 的值共需要次运算.下面给出一种减少运算次数的算法:0011(),()()k k k P x a P x xP x a ++==+(k =0,1,2,…,n-1).利用该算法,计算30()P x 的值共需要6次运算,计算100()P x 的值共需要次运算.【答案】65,20【详解】由题意知道0k x 的值需要1k -次运算,即进行1k -次0x 的乘法运算可得到0k x 的结果对于32300010203()P x a x a x a x a =+++这里300a x =0000a x x x ⨯⨯⨯进行了3次运算,210100a x a x x =⨯⨯进行了2次运算,20a x 进行1次运算,最后320010203,,,a x a x a x a 之间的加法运算进行了3次这样30()P x 总共进行了3213+++9=次运算对于0()n P x 10010...n n n a x a x a -=+++总共进行了(1)12 (12)n n n n n ++-+-++=次乘法运算及n 次加法运算所总共进行了(1)(3)22n n n n n +++=次,所以100()P x =65由改进算法可知:0010()()n n n P x x P x a -=+,100201()()n n n P x x P x a ---=+...10001()()P x P x a =+,000()P x a =运算次数从后往前算和为:22...22n +++=次,所以100()P x =10【名师指津】本题目属于信息题,做此类题需要认真分析题目本身所给的信息.2.(2005北京理)已知n 次多项式1011()n n n n n P x a x a xa x a --=++++ ,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),那么计算0()n P x 的值共需要次运算.下面给出一种减少运算次数的算法:0011(),()()k k k P x a P x xP x a ++==+(k =0,1,2,…,n-1).利用该算法,计算30()P x 的值共需要6次运算,计算0()n P x 的值共需要次运算.【答案】1(3)22n n n + 【详解】由题意知道0k x 的值需要1k -次运算,即进行1k -次0x 的乘法运算可得到0k x 的结果对于32300010203()P x a x a x a x a =+++这里300a x =0000a x x x ⨯⨯⨯进行了3次运算,210100a x a x x =⨯⨯进行了2次运算,20a x 进行1次运算,最后320010203,,,a x a x a x a 之间的加法运算进行了3次这样30()P x 总共进行了3213+++9=次运算对于0()n P x 10010...n n n a x a x a -=+++总共进行了(1)12...12n n n n n ++-+-++=次乘法运算及n 次加法运算所总共进行了(1)(3)22n n n n n +++=次由改进算法可知:0010()()n n n P x x P x a -=+,100201()()n n n P x x P x a ---=+...10001()()P x P x a =+,000()P x a =运算次数从后往前算和为:22...22n +++=次【名师指津】本题目属于信息题,做此类题需要认真分析题目本身所给的信息.3.(2005广东)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____5________;当4>n 时,=)(n f )2)(1(21-+n n .(用n 表示)解:由图B 可得5)4(=f ,由2)3(=f ,5)4(=f ,9)5(=f ,14)6(=f ,可推得∵n 每增加1,则交点增加)1(-n 个,∴)1(432)(-++++=n n f 2)2)(12(--+=n n )2)(1(21-+=n n .4.(2005湖南文\理)一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了件产品.【思路点拨】本题是涉及数理统计中抽样方法.【正确解答】设乙生产线生产了x 件产品,由等差数列基本公式可知11680056003x =⨯=.[解法2]:由题意设从甲,乙,丙三条生产线抽取的产品分别为x-a,x,x+a 件.则(x-a)+x+(x+a)=16800,求得x=5600(件).【解后反思】本题考察高中数学知识的应用性,也是近年来的新题目,高考数学对此类题目有一定的趋向性,抽样是统计的前提,是影响其精确性的重要方面,高中数学涉及了三种抽样方法,(1)简单随机抽样,适用范围是很少的个体(2)系统抽样,适用范围是较多的个体(3)分层抽样,适用的范围是整体中有数种差异较大的个体.不同的抽样并不改变每个个体变抽取的概率.不同的抽样方法仅是保证抽取的合理和精确性.5.(2005辽宁)ω是正实数,设})](cos[)(|{是奇函数θωθω+==x x f S ,若对每个实数a ,ωS ∩)1,(+a a 的元素不超过2个,且有a 使ωS ∩)1,(+a a 含有2个元素,则ω的取值范围是___________.【答案】]2,(ππ图B【解答】∵)(x f 是奇函数,且R ∈x ,∴0)0(=f ,∴ωπωπθ2+=k ,∈k Z ,∵ωS ∩)1,(+a a 的元素不超过2个,∴12≥ωπ,∴πω2≤,∵且有a 使ωS ∩)1,(+a a 含有2个元素,∴1<ωπ,∴πω>,∴πωπ2≤<,【点拨】通过数轴得出ωS ∩)1,(+a a 元素个数与两点间距离的关系再求解.6.(2005全国Ⅲ文)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多人.【思路点拨】本题考查分层抽样方法的定义.【解答】按分层抽样方法抽取的学生比例与总的比例是相同的,设对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度的学生人数分别为,,x y z ,则30126::5:1:318x z y y x y z z =⎧-=⎧⎪⇒=⎨⎨=⎩⎪=⎩,因此全班人数为54,“喜欢”摄影的比全班人数的一半还多3人.解法2:设执“不喜欢”的学生为x 人,则执“一般”的学生为(x+12)人,由题意得1123x x =+,x=6,∴执“喜欢”的学生有30人,全班共有人数为12+6+6+30=54(人),∴全班学生中“喜欢”摄影的比全班人数的一半还多3人。

2005年普通高等学校招生全国统一考试数学试卷湖北卷文

2005年普通高等学校招生全国统一考试数学试卷湖北卷文

2005年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)第I 部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A.9B.8C.7D.62.对任意实数a ,b ,c ,给出下列命题:其中真命题的个数是( )①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件.A.1B.2C.3D.43.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( )A.[-4,6]B.[-6,4]C.[-6,2]D.[-2,6]4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A.60倍B.6030倍C.120倍D.12030倍6.双曲线)0(122≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A.163B.83C.316D.387.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A.0B.1C.2D.3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 ( )A.1B.2C.3D.49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( )A.168B.96C.72D.14410.若∈<<=+απαααα则),20(tancossin()A.)6,0(πB.)4,6(ππC.)3,4(ππD.)2,3(ππ11.在函数xxy83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是()A.3B.2C.1D.012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2005年湖北文科高考数学试卷

2005年湖北文科高考数学试卷

中国教育在线高考频道 绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )A .9B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A .60倍B .6030倍C .120倍D .12030倍中国教育在线高考频道 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7.在x y x y x y y x 2c o s ,,l o g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量b a x f t x b x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围. 18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.中国教育在线高考频道 19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.中国教育在线高考频道21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若中国教育在线高考频道 ,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且中国教育在线高考频道 AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠中国教育在线高考频道 .04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔ ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )。

2005年高考试题——数学文(必修+选修Ⅰ)

2005年高考试题——数学文(必修+选修Ⅰ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第I卷注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A、B互斥,那么球的表面积公式P(A+B)=P(A)+P(B) S?4?R2如果事件A、B相互独立,那么其中R表示球的半径P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是球的体积公式P,那么n次独立重复试验中恰好发生k V?43?R3次的概率Pn(k)?CnkPk(1?P)n?k 其中R表示球的半径一、选择题: 1.设I为全集,S1、S2、S3是I的三个非空子集且S1∪S2∪S3=I,则下面论断正确的是()A. ISI∩(S2∪S3)= C. ISI∩ IS2 ∩ IS3=B.S1?( I S2∩ IS3) D.S1?( I S2∪ IS3)()2.一个与球心距离为1的平面截球所得的圆面面积为?,则球的表面积为A.82?B.8?22C.42? D.4?3.已知直线l过点(-2,0),当直线l与圆x?y?2x有两个交点时,其斜率k的取值范围是()A.(?22,22) B.(?2,2)C.(24,24)D.(?11,) 884.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF//AB,EF=2,则该多面体的体积为()A.23B.33。

2005年全国各地高考数学试题及解答分类汇编大全(09解三角形)

2005年全国各地高考数学试题及解答分类汇编大全(09解三角形)

2005年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题:1、(2005春招北京文、理)在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( B )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形2. (2005春招上海)在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是 [答] ( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形.3. (2005江苏)△ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++ (C )6sin()33B π++ (D )6sin()36B π++ [评述]:本题考查了在三角形正弦定理的的运用,以及三角公式恒等变形、化简等知识的运用。

[解析]:在ABC ∆中,由正弦定理得:,233sin =B AC 化简得AC=,sin 32B 233)3(sin[=+-ππB AB ,化简得AB=)32sin(32B -π, 所以三角形的周长为:3+AC+AB=3+B sin 32+)32sin(32B -π=3+.3)6sin(6cos 3sin 33++=+πB B B 故选D.4.(2005江西文、理)在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ ( )A .6π B .4π C .3π D .2π 【思路点拨】运用图形,根据图形表示ABC ∆的面积,将实际问题转化成数学问题.【正确解答】1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 11sin cos 22θθ=-11sin 224θ=-当2θπ=即2πθ=时,面积最大.【解后反思】运用三角函数解决相应的实际问题,首先应根据题目的要求将面积的表达式写出来,然后在表达式中,根据自变量的取值范围,最终求出答案,所要注意的是,解决此类问题时不能仅凭函数的表达式,应考虑实际情况,例如,在函数的自变量中,可以取负数,而如果在实际题目中,自变量表示的是天数,那么这相自变量必须为正数,且为整数等等.二、填空题:1. (2005北京文)在△ABC 中,AC=3,∠A=45°,∠C=75°,则BC 的长为 . 【答案】2【详解】060120180)C A (180B =-=∠+∠-=∠,由正弦定理得sinBACsinA BC =, 所以223223sinBsinAAC BC =⨯=⋅=【名师指津】凡是关于三角形的边角关系的问题,一般要考虑是否能用正弦定理、余弦定理2、(2005上海文、理)在ABC ∆中,若︒=120A ,AB=5,BC=7,则AC=__________. 【思路点拨】本题主要考查解斜三角形的相关知识和运算能力.可画出草图,设法求出AC. 【正确解答】由余弦定理︒⨯⨯-+=120cos 2222AC BC AC BC AB 解得8AC =-(舍)或AC=3,因此ABC ∆的面积4315120sin 21S =︒⨯⨯⨯=AC AB 【解后反思】要注意正、余弦定理的灵活运用.本题可视为关于AC 的方程,求出AC 的目的,在于求ABC ∆的面积,若利用正弦定理求AC 就较繁了.最优解总是我们追求的目标.三、解答题:1.(2005湖北文)(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.1.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即故所求面积.3826sin 21+==∆B ac S ABC2.(2005湖北理)(本小题满分12分)在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD=5,求sinA 的值. 2.本小题主要考查正弦定理、余弦定理等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设E 为BC 的中点,连接DE ,则DE//AB ,且DE=,,36221x BE AB ==设 在△BDE 中利用余弦定理可得: BD 2=BE 2+ED 2-2BE ·EDcosBED ,,6636223852x x ⨯⨯++= ,328cos 2,2),(37,1222=⋅-+==-==B BC AB BC AB AC BC x x 从而故舍去解得.1470sin ,6303212sin 2,630sin ,3212====A AB AC 故又即 解法2:以B 为坐标原点,x 轴正向建立直角坐标系,且不妨设点A 位于第一象限.).(314,2.5)352()634(||).352,634(),0,(),354,34()sin 364,cos 364(,630sin 22舍去从而由条件得则设则由-===++=+=====x x x x BD x BC B B B ),354,32(-=故.1470cos 1sin ,141439809498091698098||||cos 2=-=∴=+++-==A A CA BA A 于是 解法3:过A 作AH ⊥BC 交BC 于H ,延长BD 到P 使BD=DP ,连接AP 、PC , 过P 作PN ⊥BC 交BC 的延长线于N ,则HB=ABcosB=,354,34=AH .1470sin ,6303212sin 2.3212,32,2,34,310)354()52(22222222=∴==+===-=∴===-=-=-=A A HC AH AC HC CN BN BC HB CN AH BP PN BP BN 故由正弦定理得而3.(2005全国Ⅲ理)(本小题满分12分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B (Ⅰ)求cotA+cotC 的值; (Ⅱ)设c a +=⋅求,23的值. 【思路点拨】本题考查:1.三角式的化简、求值;2.向量法的应用.解决问题1.应该注意先整理所求三角式,再利用公式、性质等进行化简,最后将已知条件(可能要在整理之后)代入化简后的三角式求值.解决问题2.则应该注意使用数形结合的思想方法并注意随时与问题的具体情境相结合.【正确解答】(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由b 2=a c 及正弦定理得 .s i n s i n s i n 2C A B =于是BC A CA A C A C CC AA CAC A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1cot cot +=+=+=+=+.774sin 1sin sin 2===B B B (Ⅱ)由.2,2,43cos ,23cos 232====⋅=⋅b ca B B ca 即可得由得 由余弦定理 b 2=a 2+c 2-2a c+cosB 得a 2+c 2=b 2+2a c ·cosB=5. 3,9452)(222=+=+=++=+c a ac c a c a【解后反思】当问题中出现三角形边、角之间的比例关系时,应首先考虑采用正弦定理,因为所有三角基本公式中只有它涉及边与角之间的比例关系.利用正弦定理求角时,注意有可能出现多解情况,要好好讨论,防止出现漏解或多解情况.4. (2005天津理)(本小题满分12分)在ABC ∆中,,,A B C ∠∠∠所对的边长分别是,,a b c .设,,a b c 满足条件222b c bc a +-=和12c b =+tan A B ∠和的值. 【思路点拨】本题考查余弦定理、正弦定理、两角差的正弦公式、同角三角函数的基本关系等基础知识,考查基本运算能力,把握住这些定理的结构,进行边角互化即可求得.【正确解答】解法一:由余弦定理212cos 222=-+=bc a c b A , 因此,︒=∠60A 在△ABC 中,∠C=180°-∠A -∠B=120°-∠B.由已知条件,应用正弦定理BB BC b c sin )120sin(sin sin 321-︒===+ ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B解得,2cot =B 从而.21tan =B解法二:由余弦定理212cos 222=-+=bc a c b A , 因此,︒=∠60A ,由222a bc c b =-+,得.41532133411)(1)(22=--+++=-+=b c b c b a所以.215=b a ① 由正弦定理5123152sin sin =⋅==A a b B . 由①式知,b a >故∠B<∠A ,因此∠B 为锐角,于是152sin 1cos 2=-=B B ,从而.21cos sin tan ==B B B 解法3:()22222221cos 222b c b c bc b c a A bc bc +-+-+-=== 所以:60B ∠=︒由:180120C A B B ∠=︒-∠-∠=︒-∠()sin 1201sin sin120cos cos120sin 12sin sin sin 2B cC B B b B B B ︒-︒-︒====+所以:1tan 2B =【解后反思】解斜三角形问题时,一是要观察差异(或角、或函数、或运算),寻找联系(借助于熟知的公式、方法和技巧)分析综合(由因导果或执果索因),实现转化.二是要尽可能统一,即统一到角(解法1)或统一到边(解法2)便于问题的解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005湖北卷试题及答案源头学子小屋本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分 考试时间120分钟第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( ) A .9 B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是( ) A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6] 4.函数|1|||ln --=x ey x 的图象大致是( )A B C D5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .387.在x y x y x y y x 2co s,,lo g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是( ) A .1 B .2 C .3 D .49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是( ) A .168 B .96 C .72 D .144 10.若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上13.函数x x x x f ---=4lg 32)(的定义域是 14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量b a x f t x b x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围18.(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n20.(本小题满分12分)如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1 (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离121.(本小题满分12分) 某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换 (Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字) 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由2005湖北卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t≥t t 的取值范围是故解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c . .3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得2222212cos ,546428,8100.2b ac ac B a a a a =+-=+-⨯⨯∴-+=即124460,090,30120.a a B C A ===<<∴<<所得361,sin sin 303,sin sin sinsin 2a b b b a A A B B B ==⋅>⋅==>由得 243,,4a a =<=而舍去故故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c ]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力 解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且 AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离.113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由1⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力解:因为该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1-p 1)2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1-p 2。

相关文档
最新文档