2019高考数学必考知识点总结归纳
2019高考数学必考知识点总结归纳(吐血推荐)
2019高考数学必考知识点总结归纳1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]0义域是_。
>->=+-如:函数的定义域是,,,则函数的定())()()f x a b b a F(x f x f x[]a a-(答:,)11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
高考数学必备知识点总结
2019年高考数学必备知识点总结1、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
4、函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
6、三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
2019年高考数学必考知识点总结归纳.
-3-
单调函数与函数的单
调性 函
数 的
性
质
与
函数的奇偶性
反
函
数
反函数及其图象
单调函数的定义 单调函数的特点 利用单调性求极值 利用单调性解方程 单调函数与二次方程结合 奇偶函数的定义 奇偶函数的性质 奇偶函数与周期函数的结合
反函数的定义 反函数的一些性质 反函数求值域或定义域 反函数解不等式
指数与 指数函 数
式
Z1Z 2 0 时,当且仅当 Z1 Z 2 ( 0) 时右等号成立; Z1 Z 2
n
n
( 0) 时左等号成立② | Z i |
| Zi | 当且仅当辅角相等时等号成立
i1
i1
琴生不等式
设 f (x) 在 区 间 (a,b) 内 下 凸 , x1, x2 , , xn 是 区 间 (a,b) 内 的 任 意 数 , 有
幂函数的定义 幂函数的图象 幂函数的性质 幂函数的奇偶性和单调性
-5-
不等式
不等式的性质 算术平均数与几何平均数
不
不等式的证明
等
式 不等式的拓展
不等式的应用
不等式的证明 解不等式 含有绝对值的不等式
不等式的概念
不等 式的 性质
不 等 式
不等式的基本性质 ① a b b a (对称性)② a b, b c a c (传递性) ③ a b a c b c ④ a b,c d a c b d ⑤ a b, c 0 ac bc; a b, c 0 ac bc ⑥ a b, c d 0 ac bd ⑦ a b 0 an bn 0; a b 0 n a n b 0 n N 比较法解不等式
③ | f (x ) | | g( x) |
2019高考数学必背公式与知识点终极总结(修改过的精华版)(word文档物超所值)
l
,C
,S=
=
.
3.三角函数定义式:角 终边上任一点(非原点)P (x, y) ,设| OP | r 则
3
sin
, cos
4.同角三角函数的基本关系:
, tan
1平方关系:
2商数关系:tan =
.
5.函数的诱导公式:口诀:
1sin 2k sin
ab c
abc
sin A sin B sin C sin A sin B sin C
13. 余弦定理:
式)
(以 A 角和其对边来表示)
.(变
14. 三角形面积公式: SABC
=
=
. (用边与角的正弦值来表示) 三角形面积导出公式:
SABC
( r 为 ABC 内切圆半径)=
6.四种命题:原命题:若 p ,则 q ;逆命题:若
,则
;否命题:若
,则
;逆否命题:若 ,则 ; 原命题与逆命题,否命题与逆否命题互 ;原命题与
否命题、逆命题与逆否命题互
;原命题与逆否命题、否命题与逆命题互为
。
互为逆否的命题
7.充要条件的判断: p q , p 是 q 的
条件; p q , q 是 p 的
=
(坐标公式)
ar
r b
(一般表示)
(坐标表示) .
rr a∥b
(一般表示)
(坐标表示).
夹角公式: cos 2.若 G 为 ABC 的重心,则
=
r =0;
(坐标公式).
且 G 点坐标为 (
,
)
3.三点共线的充要条件:P,A,B 三点共线
高考数学考点大全总结概括
高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高考数学必考知识点归纳:平面向量公式汇总
2019高考数学必考知识点归纳:平面向量公式汇总定比分点定比分点公式(向量P1P=λ向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。
(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线三角形重心判断式在△ABC中,若GA+GB+GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件a⊥b的充要条件是ab=0。
a⊥b的充要条件是xx'+yy'=0。
零向量0垂直于任何向量.设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
高考数学必考知识点:反三角函数公式归纳
2019高考数学必考知识点:反三角函数公式归纳反三角函数主要是三个:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx 其他公式:三角函数其他公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈[—π/2,π/2]时,有arcsin(sinx)=x当x∈[0,π],arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
x〉0,arctanx=π/2-arctan1/x,arccotx类似我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
2019年高考数学知识点总结
[全国通用]高中学高考知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。
) 8. 函的三要素是什么?如何比较两个函是否相同? (定义域、对应法则、值域) 9. 求函的定义域有哪些常见类型?10. 如何求复合函的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
高考数学的知识点大全总结
高考数学的知识点大全总结一、数学基础知识点1.数学符号与运算:加减乘除、等于号、大于小于号等基本符号运算规则。
2.集合:包括集合的概念、集合的表示方法、集合的运算等。
3.数与代数:整数、分数、小数、根号等数的性质及运算规则;代数式的基本概念与展开运算。
4.函数关系:函数的概念与性质,函数图像的绘制与分析,函数的运算与复合函数。
二、平面几何知识点1.线段与角:线段的性质,垂直角、平行线、相交线等角的特性。
2.三角形与四边形:三角形的分类与性质,四边形的性质及特殊四边形(矩形、平行四边形等)的性质。
3.圆与圆周角:圆的性质,圆周角的计算与弧长的关系。
4.相似与全等:相似三角形与全等三角形的判定与性质,相似形的面积比例。
三、立体几何知识点1.平面与直线:平面的性质、直线与平面的关系及直线间的位置关系。
2.立体图形:立体图形的种类、性质及计算立体图形的体积与表面积。
3.投影与截面:平面图形在不同位置的投影,立体图形的截面形状。
四、概率统计知识点1.样本与总体:样本的概念,总体的概念及样本与总体之间的关系。
2.概率:基本概率公式,事件的概率计算,概率与统计的应用。
3.统计分析:频数统计表、频数分布图的绘制和数据的分析与解读。
五、数学建模知识点1.模型的构建:问题抽象化,模型的建立与求解。
2.模型的评价:模型的优劣评价,结果分析与有效性验证。
六、解题技巧与方法1.代数运算技巧:因式分解、配方法、分式的化简等。
2.几何推理技巧:利用画图、构造辅助线等几何图形推理方法。
3.数据分析技巧:利用图表和统计学方法分析问题。
4.解题策略:快速解题技巧、试错法等解题策略的使用。
总结:以上是高考数学的知识点大全总结,包括数学基础知识、平面几何、立体几何、概率统计、数学建模等各个方面。
掌握这些知识点,对于高考数学的备考和应试都会起到很大的帮助。
在学习中,要注重理解概念,掌握相关的运算规则和定理,并灵活运用解题技巧和方法。
持续的练习和复习是提高数学成绩的关键。
高考数学复习重要知识点:反三角函数与简单的三角方程
2019高考数学复习重要学问点:反三角函数与简洁的三角方程反三角函数是一种基本初等函数。
它并不能狭义的理解为三角函数的反函数,是个多值函数。
下面是2019高考数学复习重要学问点:反三角函数与简洁的三角方程,希望对考生有帮助。
它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
三角函数的反函数不是单值函数,因为它并不满意一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
欧拉提出反三角函数的概念,并且首先运用了“arc+函数名”的形式表示反三角函数,而不是。
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2反正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1] ,值域[-π/2,π/2]。
反余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。
记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1] ,值域[0,π]。
反正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。
记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
反余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。
记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
小编为大家供应的2019高考数学复习重要学问点:反三角函数与简洁的三角方程大家细致阅读了吗?最终祝大家可以考上志向的高校。
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
2019年高考数学高考必备知识点汇
高中数学学问点回忆第一章-集合〔一〕、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n-2个. [注]①⇔逆命题.②一个命题为真,那么它的逆否命题肯定为真. 原命题⇔逆否命题.2、集合运算:交、并、补.{|,}{|}{,}AB x x A x B AB x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C〔三〕简易逻辑构成复合命题的形式:p 或q(记作“p ∨q 〞 );p 且q(记作“p ∧q 〞 );非p(记作“┑q 〞 ) 。
1、“或〞、 “且〞、 “非〞的真假推断 4、四种命题的形式及互相关系:原命题:假设P 那么q ; 逆命题:假设q 那么p ;否命题:假设┑P 那么┑q ;逆否命题:假设┑q 那么┑p 。
①、原命题为真,它的逆命题不肯定为真。
②、原命题为真,它的否命题不肯定为真。
③、原命题为真,它的逆否命题肯定为真。
6、假如p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。
假设p ⇒q 且q ⇒p,那么称p 是q 的充要条件,记为p ⇔q.第二章-函数一、函数的性质〔1〕定义域: 〔2〕值域:〔3〕奇偶性:〔在整个定义域内考虑〕 ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=-②)(x f -)()(x f x f 与-或)()(x f x f --与的关系。
〔4〕函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的随意两个自变量的值x 1,x 2, ⑴假设当x 1<x 2时,都有f(x 1)<f(x 2),那么说f(x)在这个区间上是增函数; ⑵假设当x 1<x 2时,都有f(x 1)>f(x 2),那么说f(x) 在这个区间上是减函数.二、指数函数及对数函数指数函数)10(≠>=a a a y x 且的图象和性质对数函数y=log a x 〔a>0且a 1〕的图象和性质: ⑴对数、指数运算:log ()log log log log log log log a a a a a a n a a M N M N M M NNM n M⋅=+=-=()()r s r sr s rs r r ra a a a a ab a b +===⑵xa y =〔1,0≠a a 〕及x y a log =〔1,0≠a a 〕互为反函数.第三章 数列1. ⑴等差、等比数列:〔2〕数列{n a }的前n 项和n S 及通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n第四章-三角函数一.三角函数1、角度及弧度的互换关系:360°=2π ;180°=π; 1rad =π180°≈°=57°18ˊ;1°=180π≈0.01745〔rad 〕 留意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 2、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形3、三角函数: r y =αsin ; rx=αcos ; x y =αtan ;4、三角函数在各象限的符号:〔一全二正弦,三切四余弦〕正切、余切余弦、正割正弦、余割5、同角三角函数的根本关系式:αααtan cos sin = 1cos sin22=+αα6、诱导公式:xx k x x k xx k xx k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x xx x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ7、两角和及差公式 =±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cosβαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-8、二倍角公式是: sin2α=ααcos sin 2⋅ cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-。
高中数学考点归纳
2019高中数学考点归纳:无论是文科数学还是理科数学,都是难倒高考生的一门学科。
如何学好高考数学,在高考中不拖后腿?进入精品高中频道学习2019高中数学考点归纳,我们还为您提供复习技巧及资料,助您考好数学。
第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2019年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
2019高考数学知识点综合
【必修一】一、 会合与函数观点并集:由会合 A 和会合 B 的元素归并在一同构成的会合,假如碰到重复的只取一次。
记作:A ∪B 交集:由会合 A 和会合 B 的公共元素所构成的会合,假如碰到重复的只取一次记作:A ∩B 补集:就是作差。
1、会合 a 1 , a 2 ,..., a n 的子集个数共有 2n 个;真子集有 2n – 1 个;非空子集有 2n –1 个;非空的真子有 2n – 2 个 .会合的中元素的三个特征:1. 元素确实定性;2. 元素的互异性;3. 元素的无序性非负整数集(即自然数集)记作: N正整数集 N*或N+整数集 Z 有理数集 Q 实数集 R2、求 yf ( x) 的反函数 :解出 x f1( y) , x, y 交换,写出 yf 1 ( x) 的定义域;函数图象对于y=x 对称。
3、函数定义域: ①分母不为 0;②开偶次方被开方数 0 ;③指数的真数属于 R 、对数的真数0 .4、函数的单一性: 假如对于定义域 I 内的某个区间 D 内的随意两个自变量 x 1,x 2 ,当 x 1 <x 2 时,都有 f(x 1)<( )f(x 2) ,那么就说 f(x) 在区间 D 上是增(减)函数,函数的单一性是在定义域内的某个区间上的性质,是函数的局部性质。
5、奇函数: 是 f (- x ) = - f (x ) ,函数图象对于原点对称(若x 0 在其定义域内,则 f (0)0 );偶函数: 是 f (- x ) = f (x ) ,函数图象对于y 轴对称。
6、指数幂的含义及其运算性质:( 1)函数 ya x (a 0且 a 1) 叫做指数函数。
( 2)指数函数 y a x ( a 0, a 1) 当 0 a 1 为减函数,当a 1 为增函数;① a r a sa r s ;② (a r )s a rs ;③ ( ab)r a rb r (a 0, b 0, r , s Q ) 。
2019上海高考数学知识点总结内容精华版
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要(1)理解集合、子集、补集、交集、并集的概念;了解空集和全解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.01. 集合与简易逻辑知识要点一、知识结构 :本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用 .2.集合的表示法:列举法、描述法、图形表示法 . 集合元素的特征:确定性、互异性、无序性 .集合的性质:①任何一个集合是它本身的子集,记为A A;②空集是任何集合的子集,记为A ;③空集是任何非空集合的真子集;如果A B ,同时B A ,那么 A = B. 如果 A B,B C,那么 A C.[注]:①Z= {整数}(√) Z ={全体整数 } (×)②已知集合 S 中 A的补集是一个有限集,则集合 A 也是有限集 .(×)(例:S=N; A= N 则 C s A= {0} )③空集的补集是全集 .④若集合 A=集合 B ,则 C B A=,C A B = C S ( C A B)=D (注:C A B = ).0-1 律: I A U A A,U I A A,U U A U3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集 ②{ (x ,y )|xy<0,x ∈R ,y ∈R 二、四象限的点集 ③{ (x ,y )|xy>0,x ∈R ,y ∈R } 一、三象限的点集 [注]:①对方程组解的集合应是点集4. ①n 个元素的子集有 2n 个. ②n 个元素的真子集有 2n -1 个. ③ n 个元素的非空真子 集有 2n -2 个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真 . 否命题 逆命题 . ②一个命题为真,则它的逆否命题一定为真 . 原命题 逆否命题 . 例:①若 a b 5,则 a 2或b 3 应是真命题 .解:逆否: a = 2 且 b = 3 ,则 a+b = 5,成立,所以此命题为真 .② x 1且 y 2, x y 3.解:逆否: x + y =3 x = 1 或 y = 2.x 1且y 2 x y 3,故 x y 3是 x 1且y 2 的既不是充分,又不是必要条件 ⑵小范围推出大范围;大范围推不出小范围 . 3. 例: 若x 5, x 5或 x 2 .4. 集合 运算: 交、 并、补.交: AI B {x | x A, 且 x B} 并: AU B {x |x A 或 x B}补: C U A{x U, 且 x A}5.主要性质和运算律 (1) 包含关系:A A, A, A U ,C U A U,A B,BCA C;AIB A,AI B B;AU B A,AUBB.2) 等价关系: AB AI B AAU B BC U AUB U3) 集合的运算律:交换律: A B B A; A B B A.结合律 :(AB)C A (B C);(A B) C A (B C)分配律 :. A (BC) (A B)(A C); A(B C) (A B)(A C)例:xy32x 3y 1解的集合 {(2 ,1)}.②点集与数集的交集是 例: A ={( x ,y)| y =x+1} B ={ y|y =x 2+1} 则 A ∩B = )等幂律: A A A,A A A.则不等式 a 0x na 1xn 1na 2xa n 0( 0)(a 0 0) 的解可以根据各区间的符号求补律: A ∩ C U A=φ A ∪ C U A=U C U U=φ C U φ=U反演律: C U (A ∩ B)= (C U A) ∪ ( C U B) C U (A ∪B)= (C U A)∩( C U B)6. 有限集的元素个数定义:有限集 A 的元素的个数叫做集合 A 的基数,记为 card( A) 规定 card( φ) =0.基本公式:(1) card ( AU B) card (A) card ( B) card (AI B) (2) card(AUBUC) card ( A) card (B) card (C)card (AI B) card (B I C) card (C I A) card ( A I BI C)(3) card ( U A)= card(U)- card(A) ( 二 ) 含绝对值不等式、一元二次不等式的解法及延伸1. 整式不等式的解法 根轴法 (零点分段法)① 将不等式化为 a 0(x-x 1)(x-x 2) ⋯(x-x m )>0(<0) 形式,并将各因式 x 的系数化“ +”;( 为 了统一方便 ) ② 求根,并在数轴上表示出来; ③由右上方穿线,经过数轴上表示各根的点(为什么?);④ 若不等式( x 的系数化“ +”后)是“ >0”, 则找“线”在 x 轴上方的区间;若不等 式是“ <0”,则找“线”在 x 轴下方的区间 .++x1x2x3 xm-3-xm-2xm-1 -xmx自右向左正负相间)确定 .特例① 一元一次不等式 ax>b 解的讨论;ax 2 bx c 0 (a 0)的解集xx x 1或 x x 2b xx2aRax 2 bx c 0 (a 0)的解集xx 1 x x 21)标准化:移项通分化为 f ( x ) >0(或 f (x )<0); f (x ) ≥0(或 f (x ) ≤0)的形式,g(x)g(x)g(x)g(x)( 2)转化为整式不等式(组)f(x) 0 f(x)g(x) f (x)0; 0f(x)g(x) 0g(x)g(x)g(x) 03. 含绝对值不等式的解法( 1)公式法: ax b c , 与 ax b c (c 0) 型的不等式的解法( 2)定义法:用“零点分区间法”分类讨论 .( 3)几何法:根据绝对值的几何意义用数形结合思想方法解题 . 4. 一元二次方程根的分布一元二次方程 ax 2+bx+c=0(a ≠ 0)( 1)根的“零分布”:根据判别式和韦达定理分析列式解之 .(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之 三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学重点难点知识结构
盘点2019年高考数学重点难点知识结构因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。
2019年高考数学重点难点内容包括:函数、不等式、三角、数列、解析几何、向量等内容。
现分块阐述如下:1.函数函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。
题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。
选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。
小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。
高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。
高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。
由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
2019高考数学九大核心考点与知识点总结
2019高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。
九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。
2019年上海高中高考数学知识点总结(完整版)
高中高考数学知识点总结(大全)一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=NMNMaaalogloglog-=MnManaloglog=abbmma logloglog=ablglg=naabb nloglog=ablog1=注:性质01log=a1log=aaNa N a=log常用对数NN10loglg=,15lg2lg=+自然对数NNelogln=,1ln=e3.指数与对数函数y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称(互为反函数)4.幂函数12132,,,-====xyxyxyxyαxy=在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”)()(hxfyxfy+=→=α>101<<αα<0伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅=θcos ⋅⋅=2121y y x x +注:①,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x + =+=+2)(夹角:=θcos ||||b a 注:①0∥ ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③⋅=⋅=⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i r rk i i=+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +)2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考数学必考知识点总结归纳1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]0义域是_。
>->=+-如:函数的定义域是,,,则函数的定())()()f x a b b a F(x f x f x[]a a-(答:,)11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0值是( ) A. 0B. 1C. 2D. 3由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f (x )具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔ 注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17. 你熟悉周期函数的定义吗?函数,T是一个周期。
)如:18. 你掌握常用的图象变换了吗?与的图象关于轴对称-()()f x f x y-与的图象关于轴对称()()f x f x xf x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1 f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00 上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 注意如下“翻折”变换:19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+-应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()由图象记性质! (注意底数的限定!)()()“对勾函数”60y x k xk =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?l o g l o g l o g l o g l o g a a a a n a M N M N M nM=-=,121. 如何解抽象函数问题? (赋值法、结构变换法)()()()()()∈=+2x R f x f xy f x f y f x(),满足,证明是偶函数。
22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
)如求下列函数的最值:23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24. 熟记三角函数的定义,单位圆中三角函数线的定义又如:求函数的定义域和值域。
y x =--⎛⎝ ⎫⎭⎪122cos π (∵)122120--⎛⎝ ⎫⎭⎪=-≥cos sin πx x∴,如图:sin x ≤2225. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈s i n 的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈ []()y x k k k Z =+∈c o s 的增区间为,22πππ []()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝ ⎫⎭⎪=∈20 y x k k k Z =-+⎛⎝ ⎫⎭⎪∈t a n 的增区间为,ππππ22()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。
或ωϕωϕy A x =+cos ()振幅,周期12||||A T =πω ()若,则为对称轴。
f x A x x 00=±=()()若,则,为对称点,反之也对。
f x x 0000=()五点作图:令依次为,,,,,求出与,依点202322ωϕππππx x y +(x ,y )作图象。
()根据图象求解析式。
(求、、值)3A ωϕ解条件组求、值ωϕ()∆正切型函数,y A x T =+=tan ||ωϕπω 27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式:()点(,),平移至(,),则1P x y a h k P x y x x h y y k→=−→−−−−−=+=+⎧⎨⎩()''''' ()曲线,沿向量,平移后的方程为,200f x y a h k f x h y k ()()()==--=→如:函数的图象经过怎样的变换才能得到的y x y x =-⎛⎝ ⎫⎭⎪-=2241sin sin π图象?30. 熟练掌握同角三角函数关系和诱导公式了吗?“·”化为的三角函数——“奇变,偶不变,符号看象限”,k παα2±“奇”、“偶”指k 取奇、偶数。
()如:cos tan sin 947621πππ+-⎛⎝ ⎫⎭⎪+=又如:函数,则的值为y y =++sin tan cos cot ααααA. 正值或负值B. 负值C. 非负值D. 正值31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:应用以上公式对三角函数式化简。
(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。
) 具体方法:()()角的变换:如, (1222)βαβααβαβαβ=+-+=-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪(2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。
()()如:已知,,求的值。
sin cos cos tan tan ααααββα121232-=-=--(由已知得:,∴sin cos sin cos sin tan αααααα221122===()()[]()()∴··)t a n t a n t a n t a n t a nt a nβαβααβααβαα-=--=--+-=-+=2123121231218 32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。
)正弦定理:a A b B c C R a R Ab R Bc R Csin sin sin sin sin sin ===⇔===⎧⎨⎪⎩⎪2222()求角;1C()(()由已知式得:112112-++-=cos cos A B C()由正弦定理及得:212222a b c =+33. 用反三角函数表示角时要注意角的范围。
[]反正弦:,,,arcsin x x ∈-⎡⎣⎢⎤⎦⎥∈-ππ2211[][]反余弦:,,,arccosx x ∈∈-011π ()反正切:,,arctan x x R ∈-⎛⎝ ⎫⎭⎪∈ππ22 34. 不等式的性质有哪些?答案:C35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()值?(一正、二定、三相等) 注意如下结论:当且仅当时等号成立。