高中数学人教A版选修(4-4)2.4 同步练习 摆线(人教A版).doc

合集下载

高中数学第二讲参数方程2.4渐开线与摆线练习新人教A版选修4_4

高中数学第二讲参数方程2.4渐开线与摆线练习新人教A版选修4_4

高中数学第二讲参数方程2.4渐开线与摆线练习新人教A版选修4_4四渐开线与摆线课后篇巩固探究A组1.下列说法正确的是()①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,所以常使用参数方程研究圆的渐开线问题;③圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有()A.②③B.②C.③D.①③2.下列各点中,在圆的摆线(φ为参数)上的是()A.(π,0)B.(π,1)C.(2π,2)D.(2π,0).3.当φ=2π时,圆的渐开线(φ为参数)上对应的点是()A.(6,0)B.(6,6π)C.(6,-12π)D.(-π,12π)φ=2π时,将其代入圆的渐开线的参数方程,得即所求的坐标为(6,-12π).4.当φ=时,圆的摆线(φ为参数)上对应的点的坐标是.π+4,4)5.如果半径为3的圆的摆线上某点对应的参数φ=,那么该点的坐标为.r=3,所以圆的摆线的参数方程为(φ为参数).把φ=代入得x=π-,y=3-.故该点的坐标为.6.已知一个圆的摆线方程是(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.4,所以面积是16π,该圆对应的渐开线的参数方程是(φ为参数).7.已知圆C的参数方程是(α为参数),直线l的普通方程是x-y-6=0.(1)如果把圆心平移到原点O,请问平移后圆和直线有什么位置关系?(2)写出平移后的圆的渐开线的参数方程.圆C平移后的圆心为O(0,0),它到直线x-y-6=0的距离为d==6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得平移后圆的渐开线的参数方程是(φ为参数).点A,B,并求出A,B两点间的距离.φ=代入得所以A.将φ=π代入得所以B(-1,π).故A,B两点间的距离为|AB|=.9.已知圆的半径为r,圆沿x轴正向滚动,开始时圆与x轴相切于原点O,圆上点M从起始处(点O处)沿顺时针已偏转φ角.试求点M的轨迹的参数方程.x M=r·φ-r·cos=r(φ-sin φ),y M=r+r·sin=r(1-cos φ).故点M的轨迹的参数方程为(φ为参数).B组1.我们知道图象关于直线y=x对称的两个函数互为反函数,则圆的摆线(φ为参数)关于直线y=x对称的曲线的参数方程为()A.(φ为参数)B.(φ为参数)C.(φ为参数)D.(φ为参数)y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y 的互换.所以要写出摆线关于直线y=x对称的曲线方程,只需把其中的x与y互换.2.已知一个圆的参数方程为(θ为参数),则圆的摆线的参数方程中与φ=对应的点A与点B之间的距离为()A.-1B.C. D.,圆的半径为3,则它的摆线的参数方程为(φ为参数),把φ=代入参数方程中可得即A,所以|AB|=.线”,其中,…的圆心依次按B,C,D,A循环,则曲线段AEFGH的长是()A.3πB.4πC.5πD.6π,是半径为1的圆周长,长度为是半径为2的圆周长,长度为π;是半径为3的圆周长,长度为是半径为4的圆周长,长度为2π.所以曲线段AEFGH的长是5π.4.已知渐开线(φ为参数)的基圆的圆心在原点,若把基圆的横坐标伸长为原来的2倍(纵坐标不变),则得到的曲线的焦点坐标为.r=7,其方程为x2+y2=49,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线方程为+y2=49,整理可得=1,这是一个焦点在x轴上的椭圆.c==7.故焦点坐标为(7,0)和(-7,0).,0)和(-7,0)摆线的参数方程以及对应圆的渐开线的参数方程.y=0,可得r(1-cos φ)=0,由于r>0,即得cos φ=1,所以φ=2kπ(k∈Z).将其代入x=r(φ-sin φ),得x=r(2kπ-sin 2kπ)(k∈Z).又因为x=2,所以r(2kπ-sin 2kπ)=2,即得r=(k∈Z).又由实际可知r>0,所以r=(k∈N*).易知,当k=1时,r取最大值.故所求圆的摆线的参数方程为(φ为参数);所求圆的渐开线的参数方程为(φ为参数).6.设圆的半径为4,圆沿x轴正向滚动,开始时圆与x轴相切于原点O,记圆上动点为M,它随圆的滚动而改变位置,写出圆滚动一周时点M 的轨迹方程,画出相应曲线,求此曲线上纵坐标y的最大值.M的轨迹是摆线,其参数方程为(φ为参数,且0≤φ≤2π).其曲线是摆线的第一拱(0≤φ≤2π),如图所示.易知,当x=4π时,y有最大值8,故该曲线上纵坐标y的最大值为8.。

高中数学 第二讲 参数方程 2_4 渐开线与摆线练习 新人教A版选修4-4

高中数学 第二讲 参数方程 2_4 渐开线与摆线练习 新人教A版选修4-4

四渐开线与摆线课后篇巩固探究A组1.下列说法正确的是()①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,所以常使用参数方程研究圆的渐开线问题;③圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有()A.②③B.②C.③D.①③2.下列各点中,在圆的摆线(φ为参数)上的是()A.(π,0)B.(π,1)C.(2π,2)D.(2π,0).3.当φ=2π时,圆的渐开线(φ为参数)上对应的点是()A.(6,0)B.(6,6π)C.(6,-12π)D.(-π,12π)φ=2π时,将其代入圆的渐开线的参数方程,得即所求的坐标为(6,-12π).4.当φ=时,圆的摆线(φ为参数)上对应的点的坐标是.π+4,4)5.如果半径为3的圆的摆线上某点对应的参数φ=,那么该点的坐标为.r=3,所以圆的摆线的参数方程为(φ为参数).把φ=代入得x=π-,y=3-.故该点的坐标为.6.已知一个圆的摆线方程是(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.4,所以面积是16π,该圆对应的渐开线的参数方程是(φ为参数).7.已知圆C的参数方程是(α为参数),直线l的普通方程是x-y-6=0.(1)如果把圆心平移到原点O,请问平移后圆和直线有什么位置关系?(2)写出平移后的圆的渐开线的参数方程.圆C平移后的圆心为O(0,0),它到直线x-y-6=0的距离为d==6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得平移后圆的渐开线的参数方程是(φ为参数).8.导学号73574057当φ=,π时,求出渐开线(φ为参数)上的对应点A,B,并求出A,B两点间的距离.φ=代入得所以A.将φ=π代入得所以B(-1,π).故A,B两点间的距离为|AB|=.9.已知圆的半径为r,圆沿x轴正向滚动,开始时圆与x轴相切于原点O,圆上点M从起始处(点O处)沿顺时针已偏转φ角.试求点M的轨迹的参数方程.x M=r·φ-r·cos=r(φ-sin φ),y M=r+r·sin=r(1-cos φ).故点M的轨迹的参数方程为(φ为参数).B组1.我们知道图象关于直线y=x对称的两个函数互为反函数,则圆的摆线(φ为参数)关于直线y=x对称的曲线的参数方程为()A.(φ为参数)B.(φ为参数)C.(φ为参数)D.(φ为参数)y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y的互换.所以要写出摆线关于直线y=x对称的曲线方程,只需把其中的x与y互换.2.已知一个圆的参数方程为(θ为参数),则圆的摆线的参数方程中与φ=对应的点A与点B之间的距离为()A.-1B.C. D.,圆的半径为3,则它的摆线的参数方程为(φ为参数),把φ=代入参数方程中可得即A,所以|AB|=.3.导学号73574058如图,ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中,…的圆心依次按B,C,D,A循环,则曲线段AEFGH的长是()A.3πB.4πC.5πD.6π,是半径为1的圆周长,长度为是半径为2的圆周长,长度为π;是半径为3的圆周长,长度为是半径为4的圆周长,长度为2π.所以曲线段AEFGH的长是5π.4.已知渐开线(φ为参数)的基圆的圆心在原点,若把基圆的横坐标伸长为原来的2倍(纵坐标不变),则得到的曲线的焦点坐标为.r=7,其方程为x2+y2=49,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线方程为+y2=49,整理可得=1,这是一个焦点在x轴上的椭圆.c==7.故焦点坐标为(7,0)和(-7,0).,0)和(-7,0)5.导学号73574059已知一个圆的摆线经过定点(2,0),请写出该圆半径最大时对应的摆线的参数方程以及对应圆的渐开线的参数方程.y=0,可得r(1-cos φ)=0,由于r>0,即得cos φ=1,所以φ=2kπ(k∈Z).将其代入x=r(φ-sin φ),得x=r(2kπ-sin 2kπ)(k∈Z).又因为x=2,所以r(2kπ-sin 2kπ)=2,即得r=(k∈Z).又由实际可知r>0,所以r=(k∈N*).易知,当k=1时,r取最大值.故所求圆的摆线的参数方程为(φ为参数);所求圆的渐开线的参数方程为(φ为参数).6.设圆的半径为4,圆沿x轴正向滚动,开始时圆与x轴相切于原点O,记圆上动点为M,它随圆的滚动而改变位置,写出圆滚动一周时点M的轨迹方程,画出相应曲线,求此曲线上纵坐标y的最大值.M的轨迹是摆线,其参数方程为(φ为参数,且0≤φ≤2π).其曲线是摆线的第一拱(0≤φ≤2π),如图所示.易知,当x=4π时,y有最大值8,故该曲线上纵坐标y的最大值为8.。

2.4 渐开线与摆线 课件(人教A选修4-4)

2.4 渐开线与摆线 课件(人教A选修4-4)

3.圆的渐开线和摆线的参数方程
x=rcos φ+φsin φ (1)圆的渐开线方程: y=rsin φ-φcos φ
(φ 为参数) .

(2)摆线的参数方程: x=rφ-sin φ
y=r1-cos
φ
.(φ 为参数)
返回
返回
[例1]
求半径为4的圆的渐开线的参数方程. 关键根据渐开线的生成过程,归结到向
返回
1.渐开线的产生过程 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端 系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展 开,那么铅笔画出的曲线就是圆的 渐开线 ,相应的定圆
叫做 基圆 .
2.摆线的概念及产生过程 圆的摆线就是一个圆沿着一条定直线无滑动地滚动时 圆周上一个 定点 的轨迹,圆的摆线又叫 旋轮线 . 返回
的长相等,它们的长都等于 2α,从而 B 点坐标为(2α,2), 向量 OB =(2α,2), 向量 MB =(2sin α,2cos α),
返回
BM =(-2sin α,-2cos α), 因此 OM = OB + BM
=(2α-2sin α,2-2cos α) =(2(α-sin α),2(1-cos α)). 动点 M 的坐标为(x,y),向量 OM =(x,y)
π 解:xM=r· φ-r· φ-2 cos
=r(φ-sin φ), π yM=r+r· sin(φ- ) 2 =r(1-cos φ). 即点 M 的轨迹方程为 x=rφ-sin φ, y=r1-cos φ.
返回
点击下图进入
返回
返回
[例2]
求半径为2的圆的摆线的参数方程.(如图所示,
开始时定点M在原点O处,取圆滚动时转过的角度α,(以弧

人教A版高中数学选修4-4课件 2.4摆线课件1

人教A版高中数学选修4-4课件 2.4摆线课件1

O
M A
5、渐开线的参数方程
y
以基圆圆心O为原点,直线OA为x轴,建立平面
直角坐标系。
M
设基圆的半径为r,绳子外端M的坐标为(x,y)。
显然,点M由角 唯一确定。
B
取为参数,则点B的坐标为(rcos,rsin),从而
BM (x r cos, y r sin ),| BM | r.
O
A
x
由于向量e1 (cos,sin )是与OB同方向的单位向量,
因而向量e2 (sin, cos )是与向量BM同方向的单位向量。
பைடு நூலகம்
所以BM (r)e2,即
BM (x r cos, y r sin) r(sin, cos)
解得
x
y
r(cos r (sin
sin ) cos )
(是参数)。
这就是圆的渐开线的参数方程。
6、渐开线的参数方程
x OD OA DA OA MC r r sin,
y DM AC AB CB r r cos.
3、摆线的参数方程
M
B
yO A
B
M C
OD
A
Ex
摆线的参数方程为:xy
r( sin), r(1 cos).
(为参数)
思考:
在摆线的参数方程中,参数
的取值范围是什么?
一个拱的宽度与高度各是什么?
直齿
斜齿
齿轮齿条
内齿轮
交错轴齿轮传动机构
斜 齿
蜗杆蜗轮
曲齿
人字齿
相交轴齿轮传动机构(圆锥齿轮传动机构)
直齿
斜齿
曲线齿
准双曲面齿轮
小结: 1、圆的渐开线,渐开线的参数方程 2、平摆线、摆线的参数方程

高中数学人教A版选修4-4第二讲 四 渐开线与摆线 课件

高中数学人教A版选修4-4第二讲 四 渐开线与摆线 课件

由参数方程知点M的轨迹方程为xy==aa1φ--csoins
φ, φ.
9.已知一个圆的摆线方程是
x=4φ-4sin φ, y=4-4cos φ
(φ为参数),
求该圆的面积和对应的圆的渐开线的参数方程.
解:首先根据摆线的参数方程可知圆的半径为4,所以面
积是16π,该圆对应的渐开线参数方程是
3.摆线
x=2t-sin t, y=21-cos t
(0≤t≤2π)与直线y=2的交点的直角
坐标是________.
答案:(π-2,2);(3π+2,2)
4.圆的半径为r,沿x轴正向滚动,圆与x轴相切于原点O.圆 上点M起始处沿顺时针已偏转φ角.试求点M的轨迹方 程.
解:xM=r·φ-r·cosφ-π2=r(φ-sin φ), yM=r+r·sin(φ-π2)=r(1-cos φ).
理解教材新知 四
第 二 讲
渐 开 线 与
把握热点考向

线 应用创新演练
考点一 考点二

渐开线与摆线
1.渐开线的产生过程 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端
系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展 开,那么铅笔画出的曲线就是圆的__渐__开__线___,相应的定圆 叫做__基__圆__.__
又OM =(x,y),
因此有xy==44scions
θ+θsin θ-θcos
θ, θ.
这就是所求圆的渐开线的参数方程.
圆的渐开线的参数方程中,字母r表示基圆的半径, 字母φ是指绳子外端运动时绳子上的定点M相对于圆心 的张角;另外,渐开线的参数方程不宜化为普通方程.
1.已知圆的渐开线的参数方程
答案:C
二、填空题

2019-2020学年高中数学人教A版选修4同步作业与测评:2.4 渐开线和平摆线

2019-2020学年高中数学人教A版选修4同步作业与测评:2.4 渐开线和平摆线

导疑1 渐开线方程中,字母r 和参数φ的几何意义是什么?导思1 字母r 是指基圆的半径,参数φ是指绳子外端运动时,绳子t 的定点M 相对于圆心的张角.导疑2 摆线的参数方程中,字母r 和参数φ的几何意义是什么?导思2 字母r 是指定圆的半径,参数φ是指圆上定点相对于一定点运动所张开的角度大小.导果 1.渐开线的产生过程把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,那么铅笔画出的曲线就是圆的渐开线,□01 相应的定圆叫做基圆.□02 2.摆线的概念及产生过程圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨□03 迹,圆的摆线又叫旋轮线.□04 3.圆的渐开线和摆线的参数方程(1)圆的渐开线方程:Error!(φ为参数).□05(2)摆线的参数方程:Error!(φ为参数).□061.判一判(正确的打“√”,错误的打“×”)(1)圆的渐开线的参数方程不能转化为普通方程.( )(2)圆的渐开线的参数方程可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题.( )(3)在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程.( )(4)圆的渐开线和x轴一定有交点而且是唯一的交点.( )答案 (1)× 圆的渐开线的参数方程可以转化为普通方程.(2)√(3)√(4)× 圆的渐开线和坐标轴交点要看坐标系的选取.2.做一做(1)已知圆的渐开线的参数方程Error!(φ为参数),则此渐开线对应基圆的面积是( )A.1 B.πC.2 D.2π答案 B解析 由参数方程知基圆的半径为1,所以其面积为π.(2)圆的渐开线方程为Error!(φ为参数),当φ=π时,渐开线上的对应点的坐标为( )A.(-2,2π)B.(-2,π)C.(4,2π)D.(-4,2π)答案 A解析 将φ=π代入Error!可得Error!即Error!选A.(3)半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( )A.πB.2πC.12πD.14π答案 C解析 圆的摆线的参数方程为Error!(φ为参数),由题意得0=3(1-cosφ),cosφ=1.sinφ=0,φ=2kπ,k∈Z,则x=3·2kπ=6kπ,k∈Z.当k∈Z时,横坐标可能为12π,故选C.(4)我们知道关于直线y=x对称的两个函数互为反函数,则圆的摆线Error!(φ为参数)关于直线y=x对称的曲线的参数方程为________.答案 Error!(φ为参数)解析 关于直线y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y的互换,所以要写出摆线方程关于y=x对称的曲线方程,只需把其中的x,y互换.1探究 圆的渐开线的参数方程例1 如图所示,有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径是340 mm,以基圆圆心O为原点建立直角坐标系,求齿廓线AB所在的渐开线的参数方程.解 由圆的渐开线的参数方程可知,渐开线的参数方程与基圆的半径有关,若基圆的半径确定了,把半径r的值代入,即得圆的渐开线的参数方程.由已知,得2r=340,即r=170,代入圆的渐开线的参数方程,得Error!(φ为参数). 解决此类问题的关键是根据渐开线的形成过程,将问题归结到用向量知识和三角的有关知识建立等式关系上.用向量方法建立运动轨迹曲线的参数方程的过程和步骤:(1)建立合适的坐标系,设轨迹曲线上的动点为M(x,y);(2)取定运动中产生的某一角度为参数;(3)用三角、几何知识写出相关向量的坐标表达式;(4)用向量运算得到O 的坐标表达式,由此得到轨迹曲线的参数方程.M → 【跟踪训练1】 已知圆的直径为2,其渐开线的标准参数方程对应的曲线上的两点A ,B 对应的参数分别是和,求A ,B 两点的距离.π3π2解 根据条件可知圆的半径是1,所以对应的渐开线参数方程是Error!(φ为参数),分别把φ=和φ=代入,可得A ,B 两点的坐标分别为π3π2A ,B .(3+3π6,33-π6)(π2,1)那么,根据两点之间的距离公式可得A ,B 两点的距离为|AB |= (3+3π6-π2)2+(33-π6-1)2= .16(13-63)π2-6π-363+72即A ,B 两点之间的距离为.16(13-63)π2-6π-363+72探究 圆的摆线的参数方程2 例2 已知一个圆的摆线方程是Error!(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.解 根据摆线的参数方程可知圆的半径为4,所以其面积是16π,该圆对应的渐开线参数方程是Error!(φ为参数).(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.(2)根据圆的摆线的定义和建立参数方程的过程,可知其中的字母r 是指定圆的半径,参数φ是指圆上定点相对于某一定点运动所张开的角度大小.【跟踪训练2】 圆的半径为r ,沿x 轴正向滚动,圆与x 轴相切于原点O .圆上点M 起始处沿顺时针已偏转φ角.试求点M的轨迹方程.解 x M =r ·φ-r ·cos=r (φ-sin φ),(φ-π2)y M =r +r ·sin =r (1-cos φ).(φ-π2)即点M 的轨迹方程为Error!1.圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.2.由圆的摆线的参数方程的形式可知,只要确定了摆线生成圆的半径,就能确定摆线的参数方程.1.已知圆的渐开线Error!(φ为参数)上有一个点的坐标为(3,0),则渐开线对应的基圆的面积为( )A .πB .3πC .6πD .9π答案 D解析 把已知点(3,0)代入参数方程得Error!由②得φ=tan φ,所以φ=0,代入①得,3=r ·(cos0+0),所以r =3,所以基圆的面积为9π.2.圆的渐开线Error!(φ为参数)上与φ=对应点的直角坐标为( )π4A . B .(1+π4,1-π4)(1-π4,1+π4)C .D .(-1-π4,1-π4)(1+π4,-1-π4)答案 A解析 将φ=代入圆的渐开线方程,π4得Error!所以x =1+,y =1-.π4π43.摆线Error!(t 为参数,0≤t <2π)与直线y =2的交点的直角坐标是( )A .(π-2,2),(3π+2,2)B .(π-3,2),(3π+3,2)C .(π,2),(-π,2)D .(2π-2,2),(2π+2,2)答案 A解析 由2=2(1-cos t )得cos t =0.∵t ∈[0,2π),∴t 1=,t 2=.π23π2代入参数方程得到对应的交点的坐标为(π-2,2),(3π+2,2).4.已知圆的渐开线的参数方程是Error!(φ为参数),则此渐开线对应的基圆的直径是________,当参数φ=时对应的曲线上的点的坐标为________.π4答案 2 (22+2π8,22-2π8)解析 圆的渐开线的参数方程由圆的半径唯一确定,从方程不难看出基圆的半径为1,故直径为2.求当φ=时对应的坐标只需把φ=代入曲线的参数方程,得π4π4x =+,y =-,222π8222π8由此可得对应的坐标为.(22+2π8,22-2π8)一、选择题1.关于渐开线和摆线的叙述,正确的是 ( )A .只有圆才有渐开线B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C .正方形也可以有渐开线D .对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同答案 C解析 本题主要考查渐开线和摆线的基本概念.不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线,渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同.对于同一个圆不论在什么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同.2.圆Error!(φ为参数)的渐开线方程是( )A .Error!(φ为参数)B .Error!(φ为参数)C .Error!(φ为参数)D .Error!(φ为参数)答案 C解析 由圆的参数方程知圆的半径为10,故其渐开线方程为Error!(φ为参数),选C .3.半径为1的圆的渐开线的参数方程为( )A .Error!(θ为参数)B .Error!(θ为参数)C .Error!(θ为参数)D .Error!(θ为参数)答案 C解析 由圆的渐开线的参数方程得Error!(θ为参数).4.已知圆的渐开线的参数方程为Error!(φ为参数),点M 是此渐开线上一点,则点M 与原点的距离的最小值是( )A .B .3C .6D .932答案 B解析 由圆的渐开线的定义,知渐开线开始时的点(3,0)与原点的距离最小,故最小距离为3.5.已知摆线的参数方程为Error!(φ为参数),当参数φ=π时,对应于摆线上的点的坐标是( )A .(2π,4)B .(4π,4)C .(4π,8)D .(4,4)答案 C解析 把φ=π代入参数方程,得Error!故所求点的坐标为(4π,8).6.已知圆的摆线的参数方程为Error!(φ为参数),则它的一个拱的宽度和高度分别是( )A .4π,2B .2π,4C .2π,2D .4π,4答案 D解析 由圆的摆线的参数方程可知,基圆的半径为2,而摆线的拱宽为2πr ,拱高为2r ,故可知此摆线的一个拱的宽度和高度分别为4π和4.选D .二、填空题7.渐开线Error!(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________.答案 (6,0)和(-6,0)33解析 根据圆的渐开线方程可知基圆的半径r =6,其方程为x 2+y 2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为2+y 2=36,整理可得+=1,这是一个焦点在x 轴上的椭圆.c =(12x )x 2144y 236==6,故焦点坐标为(6,0)和(-6,0).a 2-b 2144-363338.已知圆的渐开线的参数方程是Error!(t 为参数),则该渐开线的基圆的半径为________,参数t =对应的点的直角坐标是________.2π3答案 6 (-3+2π,3+2π)33解析 由参数方程,得基圆的半径r =6.把t =代入参数方程,得Error!即2π3参数t =对应的点的直角坐标是(-3+2π,3+2π).2π3339.当φ分别为和π时,渐开线Error!(φ为参数)上对应的点为A ,B ,则π2A ,B 间的距离为________.答案 54π2-π+2解析 将φ=代入Error!得π2Error!∴A .(π2,1)将φ=π代入Error!得Error!∴B (-1,π).故A ,B 间的距离为|AB |==.(1-π)2+(π2+1)254π2-π+2三、解答题10.半径为r的圆沿直轨道滚动,M在起始处和原点重合,当M转过π和53π时,求点M的坐标.72解 由摆线方程可知,φ=时,x M=r,y M=r;5π310π+33612φ=时,x M=r(7π+2),y M=r.7π212∴点M的坐标分别是,r(7π+2),r.(10π+336r,12r)1211.已知一个圆的平摆线方程是Error!(φ为参数),求该圆的周长,并写出平摆线上最高点的坐标.解 由平摆线方程知,圆的半径为2,则圆的周长为4π.当φ=π时,y有最大值4,平摆线具有周期性,周期为2π.∴平摆线上最高点的坐标为(π+2kπ,4)(k∈Z).12.已知圆C的参数方程是Error!(α为参数),直线l的普通方程是x-y-6=0.2(1)如果把圆心平移到原点O,请问平移后圆和直线有什么关系?(2)写出平移后圆的摆线方程;(3)求摆线和x轴的交点.解 (1)圆C平移后圆心为O(0,0),它到直线x-y-6=0的距离为d=2=6,恰好等于圆的半径,所以直线和圆是相切的.622(2)由于圆的半径是6,所以可得摆线方程是Error!(φ为参数).(3)令y=0,得6-6cosφ=0⇒cosφ=1,所以φ=2kπ(k∈Z).代入x=6φ-6sinφ,得x=12kπ(k∈Z),即圆的摆线和x轴的交点为(12kπ,0)(k∈Z).。

人教新课标A版选修4-4数学2.4渐开线与摆线同步检测D卷

人教新课标A版选修4-4数学2.4渐开线与摆线同步检测D卷

人教新课标A版选修4-4数学2.4渐开线与摆线同步检测D卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)已知圆的摆线的参数方程是(为参数),则当时对应两点间的距离是()A . 2B . 4C .D .2. (2分)已知一个圆的参数方程为 (为参数)那么圆的摆线方程中参数取对应的点A与点之间的距离为()A .B .C .D .3. (2分) (为参数)表示的是()A . 半径为5的圆的渐开线的参数方程B . 半径为5的圆的摆线的参数方程C . 直径为5的圆的渐开线的参数方程D . 直径为5的圆的摆线的参数方程4. (2分)对于参数方程和下列结论正确的是()A . 是倾斜角为30°的两平行直线B . 是倾斜角为150°的两重合直线C . 是两条垂直相交于点(1,2)的直线D . 是两条不垂直相交于点(1,2)的直线5. (2分)关于渐开线和摆线的叙述,正确的是()A . 只有圆才有渐开线B . 渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C . 正方形也可以有渐开线D . 对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同6. (2分)已知一个圆的摆线过点(1,0),则摆线的参数方程为()A .B .C .D .7. (2分)当φ=2π时,圆的渐开线上的点是()A . (6,0)B . (6,6π)C . (6,-12π)D . (-π,12π)二、填空题 (共10题;共14分)8. (2分)已知圆的渐开线的参数方程是(为参数)则此渐开线对应的基圆的直径是________,当参数时对应的曲线上的点的坐标为________9. (2分)已知圆的渐开线方程为 (为参数),则该基圆半径为________、当圆心角时,曲线上点A的直角坐标为________10. (1分)我们知道关于直线对称的两个函数互为反函数,则圆的摆线(为参数)关于直线对称的曲线的参数方程________11. (1分)已知一个圆的参数方程为(为参数),那么圆的摆线方程中与参数对应的点A与点之间的距离为________12. (1分)圆的渐开线参数方程为:(为参数)则基圆的面积为________13. (2分)已知圆的渐开线的参数方程为(为参数),则此渐开线对应基圆的面积为________,当时对应的曲线上的点的坐标为________14. (1分)渐开线 (为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________15. (1分)圆的渐开线上与对应的点的直角坐标为________.16. (2分)设圆的半径是r,则其摆线的一个拱的宽度与高度分别是________、________.17. (1分)半径为4的圆的渐开线的参数方程是________三、解答题 (共8题;共55分)18. (5分)如图ABCD边长为1的正方形,曲线AEFGHL 叫做“正方形的渐开线”,其中AE,EF,FG,GHL 的圆心依次按B,C,D,A 循环,它们依次相连接,求曲线AEFGH的长。

人教A版高中数学选修4-4课件 2.4摆线课件

人教A版高中数学选修4-4课件 2.4摆线课件
第二讲参数方程 四渐开线与摆线
2.摆线
ቤተ መጻሕፍቲ ባይዱ
人民教育出版社 高中 |选修4-4
人民教育出版社 高中 |选修4-4
摆线的概念
圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上 一个定点 的轨迹,圆的摆线又叫 旋轮线 .
摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)
人民教育出版社 高中 |选修4-4
所以xy==221α--csoins
α, α.
这就是所求摆线的参数方程.
人民教育出版社 高中 |选修4-4
总结:
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动, 圆周上一个定点的轨迹.
(2)在圆的摆线中,圆周上定点的位置也可以由圆心角φ唯 一确定.
人民教育出版社 高中 |选修4-4
[例2] 设圆的半径为8,沿x轴正向滚动,开始时 圆与x轴相切于原点O,记圆上动点为M,它随圆的滚 动而改变位置,写出圆滚动一周时M点的轨迹方程, 画出相应曲线,求此曲线上点的纵坐标y的最大值,说 明该曲线的对称轴.
人民教育出版社 高中 |选修4-4
[精讲详析] 本题考查摆线的参数方程的求 法及应用.解答本题需要先分析题意,搞清M 点的轨迹的形状,然后借助图象求得最值.
人民教育出版社 高中 |选修4-4
轨迹曲线的参数方程为
x=8t-sin t y=81-cos t
(0≤t≤2π)
即 t=π 时,即 x=8π 时,y 有最大值 16.
向量OB =(2α,2), 向量 MB=(2sin α,2cos α), BM =(-2sin α,-2cos α),
因此OM =OB+BM
人民教育出版社 高中 |选修4-4

最新整理高中数学人教A版选修4-4课后训练2.4 渐开线与摆线 Word版含解析.doc

最新整理高中数学人教A版选修4-4课后训练2.4 渐开线与摆线 Word版含解析.doc

四 渐开线与摆线练习1已知一个圆的参数方程为3cos ,3sin x y θθ=⎧⎨=⎩ (θ为参数),那么圆的摆线方程中与参数φ=2π对应的点A 与点B (32π,2)之间的距离为( ). A.2π-1 B.2 C.10 D.312π- 2如图,ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE ,,,EF FG GH …的圆心依次按B ,C ,D ,A 循环,它们依次相连接,则曲线AEFGH 的长是( ).A .3πB .4πC .5πD .6π3我们知道关于直线y =x 对称的两个函数互为反函数,则圆的摆线(sin ),(1cos )x r y r ϕϕϕ=-⎧⎨=-⎩(φ为参数)关于直线y =x 对称的曲线的参数方程为________.4已知一个圆的摆线方程是44sin ,44cos x y ϕϕϕ=-⎧⎨=-⎩(φ为参数),则该圆的面积为________,对应圆的渐开线方程为________.5给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程.6有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22 mm ,求齿廓线所在的渐开线的参数方程.7已知圆C 的参数方程是16cos ,26sin x y αα=+⎧⎨=-+⎩(α为参数)和直线l 对应的普通方程是x -y -62=0.(1)如果把圆心平移到原点O ,请问平移后圆和直线有什么位置关系?(2)写出平移后圆的渐开线方程.8已知一个参数方程是2cos ,2sin ,x t y t αα=+⎧⎨=+⎩如果把t 当成参数,它表示的图形是直线l (设斜率存在),如果把α当成参数(t >0),它表示半径为t 的圆.(1)请写出直线和圆的普通方程;(2)如果把圆心平移到(0,t ),求出圆对应的摆线的参数方程.9如图,若点Q 在半径AP 上(或在半径AP 的延长线上),当车轮滚动时,点Q 的轨迹称为变幅平摆线,取|AQ |=2r 或|AQ |=32r ,请推出Q 的轨迹的参数方程.参考答案1. 答案:C 根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为3(sin ),3(1cos )x y ϕϕϕ=-⎧⎨=-⎩ (φ为参数),把φ=2π代入参数方程中可得3(1),23,x y π⎧=-⎪⎨⎪=⎩ 即A 33,32π⎛⎫- ⎪⎝⎭, ∴|AB |=22333(32)1022ππ⎛⎫--+-= ⎪⎝⎭. 2. 答案:C 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为2π,继续旋转可得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为32π;GH 是半径为4的14圆周长,长度为2π.所以曲线AEFGH 的长是5π. 3.答案:(1cos ),(sin )x r y r ϕϕϕ=-⎧⎨=-⎩(φ为参数) 4. 答案:16π 4cos 4sin ,4sin 4cos x y ϕϕϕϕϕϕ=+⎧⎨=-⎩ (φ为参数) 5. 答案:解:以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系.又圆的直径为6,所以半径为3,所以圆的渐开线的参数方程是3cos 3sin ,3sin 3cos x y ϕϕϕϕϕϕ=+⎧⎨=-⎩(φ为参数).以圆周上的某一定点为原点,以定直线所在的直线为x 轴,建立直角坐标系,∴摆线的参数方程为33sin ,33cos x y ϕϕϕ=-⎧⎨=-⎩ (φ为参数). 6. 答案:分析:直接利用圆的渐开线参数方程的形式代入即可.解:因为基圆的直径为22 mm ,所以基圆的半径为11 mm ,因此齿廓线所在的渐开线的参数方程为11(cos sin ),11(sin cos )x y ϕϕϕϕϕϕ=+⎧⎨=-⎩(φ为参数). 7. 答案:解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得渐开线方程是6cos 6sin ,6sin 6cos x y ϕϕϕϕϕϕ=+⎧⎨=-⎩(φ为参数). 8. 答案:解:(1)如果把t 看成参数,可得直线的普通方程为:y -2=tan α(x -2),即y =x tan α-2tan α+2,如果把α看成参数且t >0时,它表示半径为t 的圆,其普通方程为(x -2)2+(y -2)2=t 2.(2)由于圆的圆心在(0,t ),圆的半径为t ,所以对应的摆线的参数方程为(sin ),(1cos )x t y t ϕϕϕ=-⎧⎨=-⎩ (φ为参数).9. 答案:解:设Q (x ,y ),P (x 0,y 0),若A (rθ,r ),则00(sin ),(1cos ).x r y r θθθ=-⎧⎨=-⎩ 当|AQ |=2r 时,有002,2,x x r y y r θ=-⎧⎨=-⎩代入00(sin ),(1cos ).x r y r θθθ=-⎧⎨=-⎩ ∴点Q 的轨迹的参数方程为1(),21(1cos )2x r sin y r θθθ⎧=-⎪⎪⎨⎪=-⎪⎩ (θ为参数).当AQ =32r 时, 有002,32,3r x x r y y θ+⎧=⎪⎪⎨+⎪=⎪⎩代入00(sin ),(1cos ).x r y r θθθ=-⎧⎨=-⎩∴点Q 的轨迹方程为3(sin )2,3(1cos )2x r y r θθθ⎧=-⎪⎪⎨⎪=-⎪⎩ (θ为参数).。

高二数学人教A版选修4-4课件:2.4 渐开线与摆线

高二数学人教A版选修4-4课件:2.4 渐开线与摆线

S 随堂练习 UITANG LIANXI
1
2
3
3.圆的渐开线和摆线的参数方程
(1)圆的渐开线的参数方程:
x
= r(������������������φ + φ������������������φ), y = r(������������������φ-φ������������������φ) (φ
x y
= =
���1���1������((φ1--������������������������������������φφ)),(φ
为参数);
所求圆的渐开线的参数方程为
x
=
1 ������
y=
(������������������φ + φ������������������φ),
1 ������
x y
= =
221k1k������������((φ1--������������������������������������φφ)),(φ
为参数,k∈N*).
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
四 渐开线与摆线
-1-
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
课程目标 1.借助教具或计算机软件,观察圆在直 线上滚动时圆上定点的轨迹(平摆线)、 直线在圆上滚动时直线上定点的轨迹 (渐开线).知道平摆线和渐开线的生成 过程,以及它们的参数方程. 2.通过阅读材料,知道外摆线、内摆线 的生成过程;学会摆线在实际应用中的 实例.

2016-2017学年高中数学人教A版选修4-4课件:2.4 渐开线与摆线

2016-2017学年高中数学人教A版选修4-4课件:2.4 渐开线与摆线
【答案】 C
第二十页,编辑于星期五:十六点 四十七分。
2.圆的渐开线
x= y=
2cos φ+φsin φ, 2sin φ-φcos φ
(φ为参数)上与φ=
π 4
对应点的直角
坐标为( )
A.1+π4,1-π4
B.1-π4,1+π4
C.-1-π4,1-π4 【答案】 A
D.1+π4,-1-π4
第十九页,编辑于星期五:十六点 四十七分。
【解析】 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开 线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不 论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只 是方程的形式及图形在坐标系中的位置可能不同.故选C.
第六页,编辑于星期五:十六点 四十七分。
[小组合作型]
圆的渐开线的参数方程
已知圆的直径为2,其渐开线的参数方程对应的曲线上两点A,B 对应的参数分别是π3和π2,求A,B两点的距离.
【导学号:91060027】 【思路探究】 先写出圆的渐开线的参数方程,再把A,B对应的参数代入 参数方程可得对应的A,B两点的坐标,然后使用两点之间的距离公式可得A,B 之间的距离.






四 渐开线与摆线

阶 段 二
业 分 层 测

第一页,编辑于星期五:十六点 四十七分。
1.借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹(平摆 线)、直线在圆上滚动时直线上定点的轨迹(渐开线),了解平摆线和渐开线的生 成过程,并能推导出它们的参数方程.(重点)
2.通过阅读材料,了解其他摆线(变幅平摆线、变幅渐开线、外摆线、内 摆线、环摆线)的生成过程;了解摆线在实际应用中的实例.(难点)

人教版高中数学选修4-4《2.4渐开线和摆线》

人教版高中数学选修4-4《2.4渐开线和摆线》
y
与BM方向相同的单位向量是 e (cos( ), sin( )) 2 2 (sin , cos )
M
所以 BM (r )e (r )(sin , cos ) (r sin ,r cos )
B

O
A
x
y
M
B

O
A
所以 OM OB BM
如图, 设开始时绳子外端 (笔尖)位于点 A, 当外端展 开到点 M时,因为绳子对圆心角 (单位是弧度 )的一 ⌒, 展开后成为切线 BM , 段弧AB M ⌒的长, 所以切线 BM长就是 AB 这是动点 (笔尖)满足的几 何条件 .我们把笔尖画出的 B 曲线叫做圆的 渐开线, 相 A O 基 圆. 应的定圆叫做渐开线的
2.解: C 的普通方程为
x 2 y 2 1 , ( y 0)
曲线 C 是个半圆.
由图可知 b 的范围是
[1, 2 ]
3.解法
2 xt t 1: y t 1 t
① ②
3 ①-②得 x y t 3 变形得 t x y ,
代入①得曲线 C 的普通方程为
关键: ①BM与圆相切
②BM的长等于弧AB的长
三、圆的渐开线的参数 方程
以基圆的圆心 O为原点 , 直线OA为x轴, 建立 平面直角坐标系 .设基圆的半径为 r , 绳子外 端M的坐标为 ( x, y).显然, 点M由角惟一确定 .
取为参数 , 则点B的坐标为 (r cos , r sin ), 从而 BM ( x r cos , y r sin ), BM r
1. 解: (相关点法)设 M ( , ) 是 C 上任 意一点,M 是由 C 上的点 N (1,1 ) 绕

高中数学人教A版选修4-4 2-4 圆的渐开线与摆线 测试学生版 精品

高中数学人教A版选修4-4 2-4 圆的渐开线与摆线 测试学生版 精品

2.4 渐开线与摆线(检测学生版)时间:50分钟 总分:80分班级: 姓名:一、选择题(共6小题,每题5分,共30分)1、已知圆的渐开线的参数方程是⎩⎨⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数),则此渐开线对应的基圆的周长是( )A .πB .2πC .3πD .4π2.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是惟一的交点.其中正确的说法有( ) A .①③ B .②④ C .②③D .①③④3.当φ=2π时,圆的渐开线⎩⎨⎧x =6(cos φ+φsin φ)y =6(sin φ-φcos φ)上的点是( )A .(6,0)B .(6,6π)C .(6,-12π)D .(-π,12π)4.已知一个圆的参数方程为⎩⎨⎧x =3cos θ,y =3sin θ(θ为参数),那么圆的摆线方程中与参数φ=π2对应的点A 与点B ⎝ ⎛⎭⎪⎫3π2,2之间的距离为( )A.π2-1 B. 2 C.10D.3π2-15.已知一个圆的摆线过点(1,0),则摆线的参数方程为( )A.⎩⎪⎨⎪⎧ x =12k π(φ-sin φ)y =12k π(1-cos φ) B.⎩⎪⎨⎪⎧ x =1k π(φ-sin φ)y =1k π(1-cos φ)C.⎩⎪⎨⎪⎧x =12k π(φ-sin φ)y =12k π(1+cos φ)D.⎩⎪⎨⎪⎧x =1k π(φ-sin φ)y =1k π(1+cos φ)6、如图,四边形ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE 、EF 、FG 、GH …的圆心依次按B 、C 、D 、A 循环,它们依次相连接,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π二、填空题(共4小题,每题5分,共20分)7.已知圆的方程为x 2+y 2=4,点P 为其渐开线上一点,对应的参数φ=π2,则点P 的坐标为________.8.已知平摆线的方程为⎩⎨⎧x =α-sin α,y =1-cos α(α为参数),则该平摆线的拱高是________,周期是________.9.渐开线⎩⎨⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的焦点坐标为________. 10、我们知道关于直线y =x 对称的两个函数互为反函数,则圆的摆线⎩⎨⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数)关于直线y =x 对称的曲线的参数方程为________. 三、解答题(共3小题,每题10分,共30分)11、已知圆C 的参数方程是⎩⎨⎧x =1+6cos α,y =-2+6sin α(α为参数)和直线l 对应的普通方程是x -y -62=0.(1)如果把圆心平移到原点O ,请问平移后圆和直线有什么位置关系? (2)写出平移后圆的渐开线方程.12.有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22 mm ,求齿廓线所在的渐开线的参数方程.13、当φ=π2,π时,求出渐开线⎩⎨⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数)上的对应点A ,B ,并求出A ,B 间的距离.。

数学人教A版选修4-4达标训练第二讲四渐开线与摆线含解析

数学人教A版选修4-4达标训练第二讲四渐开线与摆线含解析

更上一层楼基础·巩固1关于渐开线和摆线的叙述,正确的是()A。

只有圆才有渐开线B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形C。

正方形也可以有渐开线D.对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同思路解析:首先要明确不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同。

答案:C2给出下列说法①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有( )A 。

①③ B。

②④ C。

②③D.①③④思路解析:对于一个圆,只要半径确定,渐开线和摆线的形状就是确定的,但是随着选择坐标系的不同,其在坐标系中的位置也会不同,相应的参数方程也会有所区别,至于渐开线和坐标轴的交点要看选取的坐标系的位置.答案:C3在圆的摆线上有点(π,0),那么在满足条件的摆线的参数方程中,使圆的半径最大的摆线上,参数φ=4π对应点的坐标为_________。

思路解析:首先根据摆线的参数方程⎩⎨⎧-=-=)cos 1(),sin (ϕϕϕr y r x (φ为参数),把点(π,0)代入可得⇒⎩⎨⎧-=-=)cos 1(0)sin (ϕϕϕπr r cosφ=1,则sinφ=0,φ=2kπ(k∈Z ), 所以r=k k 212=ππ(k∈Z ).又r >0,所以k∈N *,当k=1时,r 最大为21。

新人教A版选修4-4《渐开线与摆线》习题及答案

新人教A版选修4-4《渐开线与摆线》习题及答案

2.4 渐开线与摆线►预习梳理1.以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,可得圆的渐开线的参数方程为:________________________________________________________________________(其中r 为基圆的半径).2.在研究平摆线的参数方程中,取定直线为x 轴,定点M 滚动时落在直线上的一个位置为原点,建立直角坐标系,设圆的半径为r ,可得摆线的参数方程为:______________________________________________________. ►预习思考半径为8的圆的渐开线参数方程为⎩⎪⎨⎪⎧x =8cos φ+8φsin φ,y =8sin φ-8φcos φ(φ为参数),摆线参数方程为______________.,预习梳理1.⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ为参数) 2.⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数)预习思考⎩⎪⎨⎪⎧x =8φ-8sin φ,y =8-8cos φ(φ为参数)一层练习1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C .正方形也可以有渐开线D .对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 1.C2.半径为1的圆的渐开线的参数方程为( )A.⎩⎪⎨⎪⎧x =θ-sin θ,y =1-cos θ(θ为参数)B.⎩⎪⎨⎪⎧x =1-sin θ,y =θ-cos θ(θ为参数)C.⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数)D.⎩⎪⎨⎪⎧x =cos θ-θsin θ,y =sin θ+θcos θ2.C3.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是唯一的交点.其中正确的说法有( )A .①③B .②④C .②③D .①③④ 3.C4.基圆半径为2的渐开线的参数方程是__________.⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数) 二层练习5.如下图所示,ABCD 是边长为1的正方形,曲线AEFGH …叫作“正方形的渐开线”,其中AE ,EF ,FG ,GH ,…的圆心依次按B ,C ,D ,A 循环,它们依次相连接,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π 5.C6.已知摆线的生成圆的直径为80 mm ,则摆线的参数方程为____________________________________,其一拱的宽为________,拱高为________.6.⎩⎪⎨⎪⎧x =40(φ-sin φ),y =40(1-cos φ)(φ为参数) 80π mm80 mm7.已知参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),则该圆的渐开线参数方程为__________________________,摆线参数方程为____________________________.7.⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数) ⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数) 8.渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________________.8.(63,0)和(-63,0)9.当φ=π2,π时,求出渐开线⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数)上的对应点A ,B ,并求出A ,B 间的距离.9.解析:将φ=π2代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ.得x =cos π2+π2sin π2=1,y =sin π2-π2cos π2=1.∴A ⎝ ⎛⎭⎪⎫π2,1.将φ=π代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得x =cos π+πsin π=-1,y =sin π-πcos π=π.∴B (-1,π). 故A ,B 间的距离为|AB |=(1-π)2+⎝ ⎛⎭⎪⎫π2+12=45π2-π+2. 三层练习10.已知圆的直径为2,其渐开线的参数方程对应的曲线上两点A ,B 对应的参数分别为π3和π2,求点A 、B 的直角坐标. 10.解析:根据题设条件可知圆的半径为1,所以对应的渐开线的参数方程为⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数). 将φ=π3代入得x =cos π3+π3sin π3=12+36π, y =sin π3-π3cos π3=32-π6. ∴A 点的坐标为⎝⎛⎭⎪⎫3+3π6,33-π6.当φ=π2时,同理可求得B 点的坐标为⎝ ⎛⎭⎪⎫π2,1.11.求摆线⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数且0≤φ≤2π)与直线y =2的交点的直角坐标.11.解析:当y =2时,有2(1-cos φ)=2,∴cos φ=0.又0≤φ≤2π, ∴φ=π2或φ=3π2.当φ=π2时,x =π-2;当φ=3π2时,x =3π+2.∴摆线与直线y =2的交点为(π-2,2),(3π+2,2).12.设圆的半径为4,沿x 轴正向滚动,开始时圆与x 轴相切于原点O ,记圆上动点为M ,它随圆的滚动而改变位置,写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上纵坐标y 的最大值.12.解析:依题意可知,轨迹是摆线,其参数方程为⎩⎪⎨⎪⎧x =4(φ-sin φ),y =4(1-cos φ)(φ为参数).且0≤φ≤2π.其曲线是摆线的第一拱(0≤φ≤2π),如下图所示:易知,当x =4π时,y 有最大值8.13.已知一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.13.分析:首先根据所给出的摆线方程判断出圆的半径为4,易得圆的面积,再代入渐开线的参数方程的标准形式,即可得圆的渐开线的参数方程.解析:首先根据摆线的参数方程可知圆的半径为4,所以面积是16π,该圆对应的渐开线参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).14.已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程以及对应的圆的渐开线的参数方程.14.分析:根据圆的摆线的参数方程⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),只需把点(2,0)代入参数方程求出r 的表达式,根据表达式求出r 的最大值,再确定对应的摆线和渐开线的参数方程即可.解析:令y =0,可得r (1-cos φ)=0,由于r >0,即得cos φ=1,所以φ=2k π(k ∈Z).代入x =r (φ-sin φ),得x =r (2k π-sin 2k π).又因为x =2,所以r (2k π-sin 2k π)=2,即得r =1k π. 又由实际可知r >0,所以r =1k π(k ∈N *).易知,当k =1时,r 取最大值为1π. 代入即可得圆的摆线的参数方程为 ⎩⎪⎨⎪⎧x =1π(φ-sin φ),y =1π(1-cos φ)(φ为参数); 圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =1π(cos φ+φsin φ),y =1π(sin φ-φcos φ)(φ为参数).1.渐开线的实质是直线在圆上滚动时直线上定点的轨迹.圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.2.渐开线上任一点M 的坐标由圆心角φ(以弧度为单位)唯一确定,而在圆的摆线中,圆周上定点M 的位置也可以由圆心角φ唯一确定.3.圆的渐开线和摆线的参数方程均不宜化为普通方程,既繁琐又没有实际意义. 4.有关已知摆线过定点求摆线及渐开线的参数方程等问题,可进行如下思路解题:代入摆线的参数方程⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),可求出φ,进一步求的r ,这样就可以写出该圆的摆线和渐开线的参数方程.【习题2.4】1.解析:因为基圆的直径是225 mm ,所以基圆的半径是112.5 mm ,齿廓线AB 所在的渐开线的参数方程为⎩⎪⎨⎪⎧x =112.5(cos φ+φsin φ),y =112.5(sin φ-φcos φ)(φ是参数).2.解析:将φ=π2,3π2分别代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得到A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫π2,1,⎝ ⎛⎭⎪⎫-3π2,-1,由两点间的距离公式得|AB |=⎝ ⎛⎭⎪⎫π2+3π22+(1+1)2=2π2+1.3.解析:设轮子的圆心为B ,以BM 的延长线与直线轨道垂直时的一个垂足O 为原点,直线轨道为x 轴,建立如图所示的直角坐标系.设圆滚动使点M 绕圆心B 转过φ角后点M 的坐标为(x ,y ),则x =OD =OA -DA =OA -MC =aφ-b sin φ,y =DM =AC =AB -CB =a -b cosφ,所以点M 的轨迹方程为⎩⎪⎨⎪⎧x =aφ-b sin φ,y =a -b cos φ(φ是参数).4.解析:建立如下图所示的直角坐标系,设点M 的坐标为(x ,y ),此时∠BOA =φ.因为OB =4CB ,所以∠BCM =4φ,∠MCD =π2-3φ.由于x =OF =OE +EF =3r cos φ+r sin ⎝ ⎛⎭⎪⎫π2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《摆线》同步练习
赵县实验中学 赵连霞
1.半径为3
的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( )
A .π
B .2π
C .12π
D .14π
2.已知一个圆的参数方程为⎩⎪⎨⎪⎧ x =3cos φ,y =3sin φ(φ为参数),那么圆的摆线方程中参数
取π2对应的点A 与点B ⎝ ⎛⎭
⎪⎫3π2,2之间的距离为( ) A.π2-1 B. 2 C.10 D.3π2
-1
3.摆线⎩⎪⎨⎪⎧ x =t -sin t ,y =-cos t (t 是参数,0≤t ≤2π)与直线y =2的交点的直角坐
标是________.
4.已知一个圆的摆线过点(1,0),则摆线的参数方程为______________ .
5.我们知道关于直线y =x 对称的两个函数互为反函数,则圆的摆线
⎩⎪⎨⎪⎧ x =r φ-sin φ,y =r -cos
φ(φ为参数)关于直线y =x 对称的曲线的参数方程为________.
6.有一个半径是2a 的轮子沿着直线轨道滚动,在轮辐上有一点M ,与轮子中心的距离是a ,求点M 的轨迹方程.
7.已知一个圆的摆线方程是⎩⎪⎨⎪⎧ x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应
的圆的渐开线的参数方程.
8.已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程以及对应的圆的渐开线的参数方程.。

相关文档
最新文档