事业单位考试:行测——数量关系题规律总结
行测数量关系总结
行测数量关系总结引言在行政能力测验(行测)中,数量关系是一个非常重要的考点。
掌握数量关系的基本概念和解题方法,对于顺利完成行测至关重要。
本文将对数量关系的相关知识进行总结,并提供一些解题技巧和例题,帮助考生更好地备考行测。
基本概念1. 数字与数字关系在数量关系中,数字与数字之间常常存在一定的关系,如等差数列、等比数列等等。
了解这些数列的性质对于解题非常有帮助。
同时还需熟悉常见的数字规律,如数字之和、数字之差等等。
2. 图形与数字关系图形与数字之间的关系也是数量关系考察的一大重点。
常见的图形与数字关系有正方形、长方形、平行四边形、圆等等。
通过研究图形的边长、面积、周长等特征,可以得到有关数字的信息。
3. 符号与数字关系在数量关系中,符号与数字之间的关系也是需要考虑的。
例如,加减乘除符号与数字的关系,大小关系符号与数字的关系等。
正确理解并运用这些关系,对于解题至关重要。
解题技巧1. 善于列式计算对于涉及多个变量的数量关系题目,可以通过列式计算的方法来解决。
将问题中提到的所有变量罗列出来,并找出它们之间的关系,建立数学模型。
通过列式计算,可以更清晰地理解问题,并得到解题的思路。
2. 灵活运用代入法代入法是解决数量关系题目的一种常见方法。
当问题中给出了一些具体数值时,可以尝试将这些数值代入问题中,验证是否符合题意。
通过代入法,可以快速进行解答,并排除一些错误答案。
3. 注意单位的转换在数量关系中,有时会涉及到不同的单位之间的转换。
例如,将米转换为千米、将时速转换为米每秒等等。
在解题过程中,需要注意单位的转换,保持一致性,避免出现计算错误。
示例题目下面是一些典型的数量关系题目,供考生练习。
例题1:甲、乙、丙三人合作来完成一项工作,甲单独完成所需时间为6天,乙单独完成所需时间为8天,丙单独完成所需时间为12天。
如果三人一起合作完成该项工作,他们需要多少天?解答:甲、乙、丙三人一起合作的效率为:1/6 + 1/8 + 1/12 = 11/24。
行测数量关系蒙题口诀
行测数量关系蒙题口诀在说到行测的数量关系时,大家总是觉得复杂得像是过山车,心里七上八下。
不过啊,其实这些东西也没那么难,只要找到点窍门,就能轻松应对。
今天我们就来聊聊那些蒙题的小口诀,保准让你轻松上阵,迎战各种难题。
大家应该知道,数量关系最怕的就是生疏,特别是那些数学概念,一不小心就容易被绕晕。
就像我小时候做作业,总是把题目看错,哎呀,那感觉真是无奈啊。
所以,先来一个简单的口诀:“相同量同加,异量同减。
”这是什么意思呢?就是如果你们要加的是同一种东西,比如苹果和苹果,那就没问题了,直接加就行;可是要是碰到不同的,比如苹果和橘子,那就得小心翼翼了,可能要进行一些减法运算。
明白这个道理,做题的时候心里就有底了。
再说说比率关系,大家知道的,比例问题经常出现在题目中。
有些朋友看到这个就觉得头痛,脑海中瞬间一片空白。
咱们可以用“比就比,按比例”这个口诀来帮自己理清思路。
比率是个很简单的概念,只要搞清楚A和B的关系,知道了其中一个的量,另一个的量自然就水到渠成了。
想象一下,你和朋友分享一块蛋糕,切的时候只要你们两个一口一个,最终的份额就会很自然地出来了,简单吧!然后,大家都知道“和”字在数量关系中很重要。
特别是求和的时候,容易搞混。
这时咱们就来一个“求和同看,求差分开”的小窍门。
求和的时候,最好把所有相关的量都放在一起,像个大家庭一样,相亲相爱,和气生财;可如果求差,特别是有异量的时候,就要分开来看,像在进行一场辩论,谁的理由更充分,谁就赢了。
记住这些,小心谨慎,自然能够从容应对。
我们再来聊聊速度的问题,速度与时间的关系就像赛跑一样,谁快谁慢,一目了然。
这里可以用“快慢结合,时间分清”来帮助大家。
想象一下,如果你在马路上看到两辆车,一辆飞快,一辆慢悠悠,别忘了时间的因素哦。
我们可以把这看成是一场比赛,谁的时间短,谁就能到达终点,明白了吗?对了,大家常常遇到的就是容积问题。
说到这个,许多人就像碰到“无底洞”一样,怎么也搞不清楚。
事业单位考试:行测——数量关系题规律总结
【导语】在数学题中,我们经常会总结出一些规律。
它们可以帮助大家在考试中跟快速的解题,下面总结了十三个规律,希望帮助大家更好地解答行测中的数量提。
一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ( )A 19/3B 8C 39D 32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39 D . 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )A.163B.134C.785D.896六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
《行测》数量关系八句口诀-多多整理
《行测》数量关系八句口诀一、关于国家公务员考试数量关系题的八句口诀一个目标:保3争4两种思维:单数字发散,多数字联系三步流程:看特征,做差,递推四种方式:分数线,约分与通分,反约分,根号五大题型:多级,多重,分数,幂次,递推六种趋势:差,商,和,方,积,倍七种数列:常数,等差,等比,质数,周期,对称,简单递推八大特征:倍数关系,长数列,两个括号,少数分数,幂次数,带分数与小数,多位数,-n、0型二、详解国家公务员考试数量关系题的八句口诀1、一个目标数字推理的目标:保3争4。
也就是说,针对5道数字推理题,保证做对3个,争取做对4道,放弃1道。
如果某些地方公务员考试的数字推理题是10道,则可相应把目标调整为保8争6。
有目的的放弃,将时间投入到其他模块相对容易的题目中,可以保证整体效益的最大化。
2、两种思维众所周知,行政职业能力测验核心问题就是速度。
在保证四则运算速度(尤其是三位数以内的加减法)的基础上,如果具备快速的两种思维能力(单数字发散和多数字联系),那么面对那些幂次数列和递推数列时,就很容易迅速的找到突破口,轻松解题。
例1:126因子发散:其因子有2、3、6、7、9,相邻数发散:126周围的特殊数(平方数、立方数)有125=53、128=27、121=112例2:1,4,9共性联系:都是正整数、一位数、平方数递推联系:1×5+4=9、45×+1=9、(1-4)×(-3)=9、…3、三步流程解数字推理题时,面对一陌生的数列,一般是先确定数列类型,也就是找出这个数列中数字的规律,再根据规律计算出未知项。
而最难的也就是第一步:确定数列类型。
一旦数列类型确定,后续的计算过程基本没有难度。
数字推理解题流程图如下:理解并熟练掌握这个流程图以后,可以解决90%的数字推理题,完成我们的目标“保3争4”没有任何问题。
为了更好的理解这个解题的流程图,将以上三步详细分解如下:4、四种方式分数数列的特征基本上非常明显:数列中大部分都是分数。
数量关系
十分钟理清公考行测之数量关系方法公式一、五大方法1.代入法:代入法时行测第一大法,优先考虑。
2.赋值法:对于有些问题,若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。
题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。
3.倍数比例法:若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
4.奇偶特性法:两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数5.方程法:很多数学运算题目都可以采用列方程进行求解。
方程法注意事项:未知数要便于列方程;未知数可以用字母表示,也可以用“份数”,还可以用汉字进行替代。
二、六大题型1.工程问题:工作量=工作效率×工作时间工程问题一般采用赋值法解题。
赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。
2.行程问题:路程=速度×时间行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。
常考的题型包括相遇问题和追及问题。
相遇问题:路程和=速度和×时间追及问题:路程差=速度差×时间3.溶液问题:浓度=溶质÷溶液公务员考试行测数量关系16大核心公式汇总数学运算核心公式汇总1、弃9验算法利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。
行测中的数量关系题技巧
行测中的数量关系题技巧数量关系题是行测中经常出现的一种题型,需要考生根据给定的条件进行计算和比较,从而得出正确答案。
在解答数量关系题时,掌握一些技巧和方法可以帮助我们更快更准确地解答题目。
下面将介绍几种常见的数量关系题技巧。
1. 列表法列表法是一种简单而有效的解题方法。
当题目给出多个条件或者多个选项时,我们可以使用列表法将所有可能的情况列出来,然后逐一排除不符合条件的情况,最终找到符合题意的正确答案。
例如,某题给出了两个条件:条件一是A比B多20个;条件二是A比C多10个。
我们可以使用列表法列出可能的情况:A: 20 30 40 50 60B: 0 10 20 30 40C: -10 0 10 20 30通过逐一排查,我们可以得出A、B、C的取值分别为40、20、30,满足条件。
2. 图表法图表法是另一种常用的解题方法,适用于一些需要绘制图表进行比较的数量关系题。
首先,我们可以根据给定的条件,绘制出相应的图表。
然后,通过观察图表中的规律,得出正确答案。
例如,某题给出了两个条件:条件一是A比B多40个;条件二是B比C多20个。
我们可以绘制如下图表:A B C40 0 -20通过观察图表,我们可以得出A、B、C的取值分别为40、0、-20,满足条件。
3. 代入法代入法是一种灵活的解题方法,适用于一些需要逐个尝试的数量关系题。
我们可以根据给定的条件,假设一些数值代入计算,然后根据计算结果来判断答案的准确性。
例如,某题给出了一个条件:A比B多30个,并且A、B都是正整数。
我们可以使用代入法逐个尝试不同的数值来计算。
假设A=40,B=10,那么A比B多30个,符合条件;但是A不是一个正整数,所以不符合题意。
假设A=50,B=20,那么A比B多30个,符合条件,且A、B都是正整数,所以符合题意。
通过代入法,我们可以得出A、B的取值分别为50、20,满足条件。
4. 推理法推理法是一种更加抽象、逻辑性较强的解题方法,适用于一些需要进行逻辑推理的数量关系题。
事业单位考试行测数量关系解题技巧:
【例3】32,27,23,20,18,() 。
A.14 B.15 C.16 D.17
【解答】 本题正确答案为D。这是一个典型的二级等差数列。该数列的前一项减去后一项得一个新的等差数列:5、4、3、2。观察此新数列,其公差为-1,故空缺处应为18+(-1)=17。
【例2】 147,151,157,165,() 。
A.167 B.171 C.175 D.177
【解答】 本题正确答案为C。这是一个二级等差数列。该数列的后项减去前项得到一个新的等差数列:4,6,8,()。观察此新数列,可#43;10=175,故选C。
(四)三级等差数列及其变式
三级等差数列及其变式是指该数列的后项减去前项得一新的二级等差数列及其变式。
【例5】1,10,31,70,133,()。
A.136 B.186 C.226 D.256
【解答】 本题正确答案为C。该数列为三级等差数列。10-1=9,31-10=21,70-31=39,133-70=63;21-9=12,39-21=18,63-39=24。观察新数列:12,18,24,可知其为公差为6的等差数列,故空缺处应为24+6+63+133=226,所以选C项。
事业单位考试行测数量关系解题技巧:
等差数列
(一)等差数列
等差数列的特点是数列各项依次递增或递减,各项数字之间的变化幅度不大。
等差数列是数字推理题中最基本的规律,是解决数字推理题的“第一思维”。所谓“第一思维”是指在进行任何数字推理题的解答时,都要首先想到等差数列,即从数字与数字之间的差的关系上进行判断和推理。
(三)二级等差数列的变式
数列的后一项减前一项所得的差组成的新数列是一个呈某种规律变化的数列,这个数列可能是自然数列、平方数列、立方数列,或者与加、减“1”的形式有关。
行测数量关系题型和解题技巧
行测数量关系题型和解题技巧
行测数量关系题型是公务员考试中常见的一种题型,主要考察
考生的逻辑推理能力和数量关系的理解能力。
这类题目通常涉及数字、图形、比例、概率等方面的知识,以下是一些解题技巧:
1. 熟悉题型,数量关系题型包括等式推导、逻辑推理、数字组
合等,考生需要熟悉各种类型的题目,了解每种题型的解题思路和
方法。
2. 建立数学模型,在解题过程中,可以将问题抽象成数学模型,利用代数式或者方程式来表示未知数之间的关系,这有助于清晰地
理解问题并找到解题思路。
3. 注意条件限制,题目中通常会有一些条件限制,考生需要仔
细分析这些条件,找出对解题有用的信息,避免在解题过程中受到
干扰。
4. 多角度思考,在解题过程中,可以从不同的角度出发,尝试
多种方法和思路,有时候会有意想不到的收获。
5. 反复推理,对于复杂的数量关系题目,可以反复推理,逐步深入分析,找到问题的关键点,从而解决问题。
6. 练习积累,数量关系题型需要大量的练习积累,通过做大量的题目来熟悉题目的解题思路和方法,提高解题的效率和准确性。
总的来说,行测数量关系题型的解题技巧包括熟悉题型、建立数学模型、注意条件限制、多角度思考、反复推理和练习积累。
希望以上解题技巧对你有所帮助。
行测数量关系知识点汇总
行测数量关系知识点汇总一、数字推理。
1. 基础数列。
- 等差数列:相邻两项的差值相等,例如:1,3,5,7,9,…,公差为2。
- 等比数列:相邻两项的比值相等,例如:2,4,8,16,32,…,公比为2。
- 质数数列:由质数组成的数列,如2,3,5,7,11,13,…- 合数数列:由合数组成的数列,如4,6,8,9,10,12,…- 周期数列:数列中的数字按照一定的周期重复出现,例如:1,2,1,2,1,2,…- 简单递推数列。
- 递推和数列:如1,2,3,5,8,13,…,从第三项起,每一项等于前两项之和。
- 递推差数列:如5,3,2,1,1,0,…,从第三项起,每一项等于前两项之差。
- 递推积数列:如1,2,2,4,8,32,…,从第三项起,每一项等于前两项之积。
- 递推商数列:如100,50,2,25,1/12.5,…,从第三项起,每一项等于前两项之商。
2. 多级数列。
- 做差多级数列。
- 对于数列不具有明显规律时,可先尝试做差。
例如数列:5,7,10,14,19,…,相邻两项做差得到2,3,4,5,…,是一个公差为1的等差数列。
- 做商多级数列。
- 当数列各项之间有明显的倍数关系时,可尝试做商。
如数列:2,4,12,48,240,…,相邻两项做商得到2,3,4,5,…,是一个公差为1的等差数列。
- 做和多级数列。
- 有些数列做和后会呈现出规律。
例如数列:1,2,3,4,7,11,…,相邻两项做和得到3,5,7,11,18,…,得到的新数列可能是质数数列或者其他有规律的数列。
- 做积多级数列。
- 数列中相邻项之间有乘积关系时适用。
比如数列:1,2,2,4,8,32,…,相邻两项做积得到2,4,8,32,256,…,做积后得到的数列可能有自身规律。
3. 幂次数列。
- 基础幂次数列。
- 要牢记常见的幂次数:1^2 = 1,2^2=4,3^2 = 9,4^2=16,5^2 = 25,6^2=36,7^2 = 49,8^2=64,9^2 = 81,10^2 = 100;1^3=1,2^3 = 8,3^3=27,4^3 = 64,5^3=125,6^3 = 216,7^3=343,8^3 = 512,9^3 = 729,10^3=1000等。
行测数量关系知识点整理
行测数量关系知识点整理1.能被2,3,4,5,6,整除的数字特点。
2.同余问题口诀:“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。
①同余问题。
一个数除以4余1,除以5余1,除以6余1,这个数字是?(4,5,6的最小公倍数60n+1)②差同减差。
一个数除以4余1,除以5余2,除以6余3,这个数是?因为4-1=5-2=6-3=3,所以取-3, 表示为60n-3。
③和同加和。
“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。
最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。
3.奇偶特性。
奇±奇=偶奇±偶=奇偶±偶=偶奇×偶=偶奇×奇=奇偶×偶=偶;例:同时扔出A、B两个骰子,两个骰子出现的数字的奇为偶数的情形有多少种?解析:偶×偶C3.1*C3.1 + 奇×偶C3.1*C3.1+偶×奇C3.1*C3.1=27;4.一个数如果被拆分成多个自然数的和,那么这些自然数中3越多,这些自然数的积越大。
例如21拆分成3×3×3×3×3×3×3,比其他的如11×10要大。
5.尾数法。
①自然数的多次幂的尾数都是以4为周期。
3的2007次方的尾数和3的2007÷4次方的尾数相同。
②5和5以后的的自然数的阶乘的尾数都是0。
如2003!的尾数为0;③等差数列的最后一项的尾数。
1+2+3+……+N=2005003,则N是();A.2002 B.2001C.2008D.2009解析:根据等差公式展开N(N+1)=......6,所以N为尾数为2的数,所以选择A。
④在木箱中取球,每次拿7个白球、3个黄球,操作M次后剩余24个,原木箱中有乒乓球多少个?A.246 B.258 C.264 D.272解析:考察尾数。
公务员行测数量关系十大知识要点
数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。
如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。
行测数量关系蒙题技巧
行测数量关系蒙题技巧
行测中的数量关系题一般是要求根据给定的条件,确定各个数量之间的关系。
以下是几种常见的蒙题技巧:
1. 分类计数法:将条件中的元素进行分类,根据分类计数确定各个数量之间的关系。
例如,某题给定了甲、乙、丙三个人的年龄,要求确定年龄的大小关系。
可以将年龄分为三个区间,计算每个区间的人数,从而确定年龄的大小顺序。
2. 数字之和法:根据题干给出的数字之和的关系来推断各个数字之间的关系。
例如,某题给定了两个数的和为80,要求确
定两个数的大小关系。
可以设其中一个数为x,另一个数为
80-x,根据x的大小关系确定两个数的大小关系。
3. 比例法:根据给定的比例关系,确定各个数量之间的关系。
例如,某题给定了甲、乙两人的工作效率的比例,要求确定两人完成一件工作所需的时间的比例。
可以根据工作效率的比例关系,确定完成一件工作所需的时间的比例。
4. 反证法:通过假设不成立来推断出所求的关系。
例如,某题给定了某种商品三种不同重量和价格的包装形式,要求比较它们的单位价格。
可以先假设单位价格最低的包装形式不是最轻的,然后通过计算得出矛盾,进而推断出所求的关系。
5. 消元法:通过逐步消除已知条件中的变量,确定所求的关系。
例如,某题给定了甲、乙两人的年龄之和和年龄之差,要求确定两人的年龄。
可以设甲的年龄为x,乙的年龄为y,然后根
据年龄之和和年龄之差的关系,列方程进行消元,最终得出所求的关系。
以上是行测数量关系蒙题的一些常用技巧,希望对你有帮助。
实际解题时,还需灵活运用不同的方法,根据题目的具体情况选择合适的蒙题技巧。
(完整版)行测数量关系知识点汇总
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
公务员行政职业能力测试之数量关系数学公式汇总
公务员行政职业能力测试之数量关系数学公式汇总代入与排除法一、倍数特性法(1)2、4、8整除及余数判定基本法则:1.一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除;2.一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除;3.一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除;4.一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数;5.一个数被4(或25)除得的余数,就是其末两位数被4(或25)除得的余数;6.一个数被8(或125)除得的余数,就是其末三位数被8(或125)除得的余数。
(2)3、9整除及余数判定基本法则:1.一个数能被3整除,当且仅当其各位数字和能被3整除;2.一个数能被3整除,当且仅当其各位数字和能被3整除;3.一个数被3除得的余数,就是其各位数字和被3除得的余数;4.一个数被9除得的余数,就是其各位数字和被9除得的余数。
(3)7整除判定基本法则:1.一个数是7的倍数,当且仅当其末一位的两倍,与剩下的数之差为7的倍数;2.一个数是7的倍数,当且仅当其末三位数,与剩下的数之差为7的倍数。
(4)11整除判定基本法则:1.一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数;2.一个数是11的倍数,当且仅当其末三位,与剩下的数之差为11的倍数。
(5)13整除判定基本法则:一个数是13的倍数,当且仅当其末三位,与剩下的数之差为13的倍数。
二、比例倍数若a:b=m:n,则说明a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
三、十字交叉法“十字交叉法”实际上是一种简化方程的形式,凡是符合下图左边方程形式的,都可以用右边的“十字交叉”的形式来简化:Aa+Bb=(A+B)A/B=r-b/a-r→A:ar-br→A/B=r-b/a-rB:ba-r四、极端思维法当试题中出现了“至多”、“至少”、“最多”、“最少”、“最大”、“最小”、“最快”、“最慢”、“最高”、“最低”等字样时,我们通常需要考虑“极端思维法”,即分析题意,构造出满足题意要求的最极端的情形。
行政能力测试数量关系规律总结
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)解决牛吃草问题常用到四个基本公式牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随 吃的天数不断地变化。
公考行测——数量关系——知识点整理
公考行测——数量关系——知识点整理1. 数量关系题型介绍
- 数量关系题是公务员考试行测中的一种常见题型。
- 主要考查数量大小、比例关系、代数运算等方面的能力。
2. 数量大小比较
- 直接数量比较
- 利用已知条件推理数量大小关系
3. 比例与占比
- 比例概念及计算
- 百分比、千分比等占比问题
- 利率计算
4. 代数运算
- 四则运算
- 方程式求解
- 函数运算
5. 数列规律
- 等差数列
- 等比数列
- 找规律推理
6. 几何计算
- 平面图形面积、周长计算
- 立体图形表面积、体积计算
7. 逻辑推理
- 利用已知条件进行逻辑推理
- 排除无关选项
- 验证选项正确性
8. 题型技巧
- 注意题干中的限制条件
- 关注数据单位及换算
- 利用选项互斥性进行排除
- 审题细致,避免粗心错误
以上是公考行测数量关系部分的主要知识点整理,建议多加练习,熟练掌握解题思路和方法。
2024必备行测数量关系技巧全总结
2024必备行测数量关系技巧全总结数量关系是公务员考试中的常见题型之一,需要考生对数字、比例、图表等进行分析和计算。
以下是2024年必备行测数量关系技巧的详细总结。
一、基础技巧:1.记忆数字:在数量关系题中,需熟悉常用的数字、比例关系、容量单位等,减少计算过程中的出错概率。
2.快速计算:掌握常见的计算技巧,如快速乘除法、平方根的近似值等,以提高解题速度。
3.数据转换:根据题目给出的条件,将不同的数据形式互相转换,以便进行比较和计算。
4.精确度估算:在计算过程中,对数据的精确度有一定的估计,以便预估计算结果的大小。
二、问题解决技巧:1.比较大小:对于给定的数量关系,通过比较大小来确定答案。
可将各个选项转换成相同的单位,进行大小的比较。
2.算术平均数:在一组数据中,若知道其中一个数据的平均值和总数,可通过计算得出其他数据的和,并据此计算其他数据。
3.比例关系:根据给定的比例,计算未知数量的值。
可通过相似三角形的性质来计算角度和边长的比值。
4.百分比:将百分数转换成小数,并通过乘法或除法计算出具体数值。
5.单位换算:根据不同的单位进行换算,例如时间、长度、面积、体积等。
三、逻辑推理技巧:1.逆向思维:根据问题的答案,倒推出可能的条件和前提。
通过排除已知条件和选项之间的矛盾关系,来确定正确选项。
2.解方程:用未知数代表问题中的数据,将问题转换成方程组,再通过求解方程组得出结果。
3.统计分析:对给定的数据进行统计和分析,找到问题中的规律和特点,以便解决问题。
4.图表分析:根据图表中的信息,通过计算和比较来解决问题。
注意理解图表中的数据和单位,不要误解题意。
四、实际应用技巧:1.代入法:将给定的数值代入到问题中进行计算,以便得到正确的结果。
2.对称关系:利用对称图形和对称线的关系,计算未知数据的值。
3.最大最小值:通过求解问题中的最大值和最小值,来确定答案的范围。
4.统一单位:将不同单位的数据换算成相同单位,以便进行比较和计算。
行测数量关系快速解题技巧
行测数量关系快速解题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的部分。
但实际上,只要掌握了一些有效的解题技巧,就能在考试中快速准确地解答数量关系题目,从而提高整体成绩。
接下来,我将为大家分享一些行测数量关系的快速解题技巧。
一、整除特性整除特性是解决数量关系问题的常用技巧之一。
当题目中出现“整除”“倍数”“平均分”等字眼时,往往可以考虑运用整除特性来解题。
例如,如果题目中说“某班级学生人数能被 5 整除”,那么我们就可以知道这个班级学生人数的尾数可能是 0 或 5。
再比如,“甲的钱数是乙的 3 倍”,那么甲的钱数一定能被 3 整除。
通过对题中数据整除特性的分析,可以快速排除一些不符合条件的选项,缩小解题范围。
二、特值法特值法是将题目中的某些未知量设为特殊值,从而简化计算的方法。
比如在工程问题中,如果题目中只给出了工作时间,而没有给出工作总量和工作效率,我们就可以将工作总量设为时间的最小公倍数,从而求出工作效率。
又如在利润问题中,如果题目中只给出了利润率,而没有给出成本和售价,我们可以假设成本为 100,这样就能方便地计算出售价和利润。
特值法能够使复杂的问题变得简单直观,提高解题速度。
三、比例法比例法是根据题目中给出的比例关系,通过设未知数或直接计算来求解的方法。
例如,“甲、乙的速度比为 3∶4,相同时间内甲、乙所走的路程比也为 3∶4”。
当我们知道其中一个人的路程或速度时,就可以根据比例关系求出另一个人的路程或速度。
在浓度问题、行程问题等中,比例法都能发挥很大的作用。
四、尾数法当计算量较大时,我们可以通过观察选项的尾数来快速得出答案。
例如,在加法或减法运算中,只计算个位数字就能排除一些选项。
在乘法运算中,我们可以先计算个位数字相乘的结果,从而判断答案的尾数。
五、方程法方程法是解决数量关系问题的基本方法之一。
当题目中的等量关系比较明显时,可以通过设未知数、列方程来求解。
在设未知数时,要注意选择合适的未知数,尽量使方程简单易解。
行测数量关系技巧:数字推理常考考点总结
行测数量关系技巧:数字推理常考考点总结1500字数量关系是行测考试中的一大常考考点,主要内容包括数字推理和数量关系推理。
在数字推理部分,常考的题型包括数字组合、数字运算、数字排列等。
下面是关于数字推理的一些常考考点总结:一、数字组合:1. 数字组合:给定一组数字,按照一定规律组合后求出结果。
常见的规律有数字之和、数字之差、数字之积等。
2. 数字替换:给定一组数字,将其中某几个数字替换为其他数字,求替换后的结果。
常见的规律有数字之和、数字之差、数字之积等。
二、数字运算:1. 加减乘除:根据给定的加减乘除法则,求解表达式的结果。
2. 数字计算:根据给定的数字以及计算规则,计算最终结果。
常见的规则有数字之和、数字之差、数字之积等。
三、数字排列:1. 数字排序:根据给定的排列规则,求出待排序数字的顺序。
常见的规则有从小到大排列、从大到小排列等。
2. 数字替换:将给定数字按照一定规则进行排列后,将某几个数字替换为其他数字,求替换后的结果。
在数量关系推理部分,常考的题型包括数量比较、数量关系、数量推理等。
下面是关于数量关系推理的一些常考考点总结:一、数量比较:1. 大小比较:根据给定的数值大小进行比较,求出最大值或最小值。
常见的比较方法有大小排列、数值相加、数值相减等。
2. 数量关系:根据给定的数值关系进行推理,求出符合要求的数值。
常见的关系有倍数关系、百分比关系、比例关系等。
二、数量关系:1. 数量变化:根据给定的数量变化规律,推断出下一个数值。
常见的变化规律有线性关系、指数关系、循环关系等。
2. 数量比例:根据给定的数量比例,求出未知的数量。
常见的比例关系有百分比、比例尺、三角函数等。
三、数量推理:1. 数列推理:根据给定的数列规律,推断出下一个数列。
常见的规律有等差数列、等比数列、斐波那契数列等。
2. 数字推理:根据给定的数字规则,推断出满足规则的数字。
常见的规则有数字之和、数字之差、数字之积等。
以上是关于数量关系推理的一些常考考点总结,希望对大家的行测备考有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
官方微信:【zjsydwks】
事业单位考试:行测——数量关系题规律总结
【导语】在数学题中,我们经常会总结出一些规律。
它们可以帮助大家在考试中跟快速的解题,下面总结了十三个规律,希望帮助大家更好地解答行测中的数量提。
一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )
A.1/92
B.1/124
C.1/262
D.1/343
二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ( )
A 19/3
B 8
C 39
D 32
三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )
A. 33
B. 37
C. 39 D . 41
四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )
A.4
B.3
C.2
D.1
五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )
A.163
B.134
C.785
D.896
六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )
A. 165
B. 193
C. 217
D. 239
官方微信:【zjsydwks】
七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )
A.10
B.16
C.18
D.20
八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、( )
A.180
B.210
C.220
D.240
九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
【例】3、7、16、107、 ( )
A.1707
B.1704
C.1086
D.1072
十、当数列选项中有两个整数、两个小数时,答案往往是小数,且一般是通过乘除来实现的。
当然如果出现了两个正数、两个负数诸如此类的标准配置时,答案也是负数。
【例】2、13、40、61、( )
A.46.75
B.82
C. 88.25
D.121
十一、数字推理如果没有任何线索的话,记得要选择相对其他比较特殊的选项,譬如:正负关系、整分关系等等。
【例】2、7、14、21、294、( )
A.28
B.35
C.273
D.315
十二、小数数列是整数与小数部分各自呈现规律,日期数列是年、月、日各自呈现规律,且注意临界点(月份的28、29、30或31天)。
【例】1.01、1.02、2.03、3.05、5.08、( )
A. 8.13
B. 8.013
C. 7.12
D. 7.012
十三、对于图形数列,三角形、正方形、圆形等其本质都是一样的,其运算法则:加、减、乘、除、倍数和乘方。
三角形数列的规律主要是:中间=(左角+右角-上角)×N、中间=(左角-右角)×上角;圆圈推理和正方形推理的运算顺序是:先观察对角线成规律,然后再观察上下半部和左右半部成规律;九宫格则是每行或每列成规律。
总之,行测中的数量关系题要多做多练,在以上规律的基础上,多总结出属于自己的解题规律,这样才能在紧张的答题时间内,让自己得到高分。
官方微信:【zjsydwks】。