第三章《图形的平移与旋转》专题复习(含答案)

合集下载

北师大版八年级数学下册 第三章 图形的平移与旋转 单元复习题 (含答案)

北师大版八年级数学下册 第三章 图形的平移与旋转 单元复习题 (含答案)

北师版八年级数学下册图形的平移与旋转单元复习题(含答案)一、选择题1.(2019·河南期末)观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是(C)A B C D2.(2019·南阳唐河县期末)如图,△ABC经过平移得到△DEF,其中点A的对应点是点D,则下列结论不一定正确的是(D)A.BC∥EF B.AD=BE C.BE∥CF D.AC=EF 3.(2019·驻马店平舆县期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是(A)A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格4.(2019·郑州新密市期中)下列四幅图片,是中心对称图形的是(B)A B C D5.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是(A)A.O1 B.O2 C.O3 D.O46.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是(C) A.30°B.60°C.72°D.90°7.(2019·驻马店确山县期末)把点A(3,-4)先向上平移4个单位长度,再向左平移3个单位长度得到点B,则点B的坐标为(D)A.(0,-8) B.(6,-8) C.(-6,0)D.(0,0)8.(2019·邓州市期末)如图,∠1=68°,直线a平移后得到直线b,则∠2-∠3=(D)A.78°B.132°C.118°D.112°9.(2019·南阳社旗县一模)剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形,又是轴对称图形的是(C)A B C D二、填空题10.(2018·张家界)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为15°.11.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个相同的格点正方形,并涂上阴影,使这两个格点正方形无重叠部分,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.12如图,在△ABO中,AB⊥OB,OB=3,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A113.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.14.(2018·株洲)如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为(0,22),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(22,22),则线段OA在平移过程中扫过部分的图形面积为4.15.(2019·新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为三、解答题16.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°.若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)解:如图.连接AD.在Rt△ABC中,AB=5,BC=4,∴AC=AB2-BC2=3.由旋转的性质,得CD=AC=3,∠ACD=90°.∴AD=AC2+CD2=3 2.17.(2019·宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(-2,-1).(2)如图所示,△A2B2C1即为所求.18.(2019·邓州市期末)取一副三角板按图1拼接,其中∠ACD=30°,∠ACB=45°.(1)如图2,三角板ACD固定,将三角板ABC绕点A按顺时针方向旋转一定的角度得到△ABC′,当∠CAC′=15°时,请你判断AB与CD的位置关系,并说明理由;(2)如图3,三角板ACD固定,将三角板ABC绕点A按逆时针方向旋转一定的角度(0°<α<180°)得到△ABC′,猜想当∠CAC′为多少度时,能使CD∥BC′?并说明理由.解:(1)AB∥CD.理由如下:∵∠BAC=∠BAC′-∠CAC′=45°-15°=30°,∴∠BAC=∠C=30°.∴AB∥CD.(2)当∠CAC′=75°时,能使CD∥BC′.理由如下:延长BA交CD于点E.∵∠BAC′=45°,∴∠BAC=75°+45°=120°.又∵∠BAC=∠AEC+∠ACD,∴∠AEC=120°-30°=90°.又∵∠B=90°,∴∠B+∠AEC=90°+90°=180°.∴CD∥BC′.。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)

北师大版初中数学八年级下册第三单元《图形的平移与旋转》(较易)(含答案解析)考试范围:第三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,把图 ①中的⊙A经过平移得到⊙O(如图 ②),如果图 ①中⊙A上一点P的坐标为(m,n),那么平移后在图 ②中的对应点P′的坐标为.( )A. (m+2,n+1)B. (m−2,n−1)C. (m−2,n+1)D. (m+2,n−1)2. 如图,将周长为20的△ABC沿BC方向平移3个单位长度得到△DEF,则四边形ABFD的周长为.( )A. 22B. 24C. 26D. 283. 如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为( )A. 1.6B. 1.8C. 2D. 2.64. 如图,△ABC顺时针旋转角度α变成△A1B1C1,α的值是.( )A. 30∘B. 45∘C. 60∘D. 90∘5. 如图,这个图案是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是.( )A. 它是轴对称图形,但不是中心对称图形B. 它是中心对称图形,但不是轴对称图形C. 它既是轴对称图形,又是中心对称图形D. 它既不是轴对称图形,又不是中心对称图形6. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.7. 在俄罗斯方块游戏中,已拼好的图案如图所示,现又出现了一个小方格体正向下运动,为了使所有图案消失,你必须进行的操作是.( )A. 顺时针旋转90∘,向右平移B. 逆时针旋转90∘,向右平移C. 顺时针旋转90∘,向下平移D. 逆时针旋转90∘,向下平移8. 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是( )A. B. C. D.9. 如图,△ABC经过如下平移能得到△DEF的是.( )A. 把△ABC向左平移4个单位长度,再向下平移2个单位长度B. 把△ABC向右平移4个单位长度,再向下平移2个单位长度C. 把△ABC向右平移4个单位长度,再向上平移2个单位长度D. 把△ABC向左平移4个单位长度,再向上平移2个单位长度10. 将某图形各顶点的横坐标保持不变,纵坐标减2,可将该图形.( )A. 向左平移2个单位长度B. 向右平移2个单位长度C. 向上平移2个单位长度D. 向下平移2个单位长度11. 如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED 等于( )A. α2B. 23α C. α D. 180°−α12. 如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是( )A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 点P(−2,1)向右平移2个单位长度后到达点P1,则点P1关于x轴的对称点的坐标为.14. 如图,在△ABC中,∠BAC=105°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠AB′C′的度数为________.15. 如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别为16. 如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为______.三、解答题(本大题共9小题,共72.0分。

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

第三章图形的平移与旋转一、选择题1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2..下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在平移和旋转图形的过程中,对应角相等,对应线段相等且平行3.如图,将边长为4的等边△沿边BC向右平移2个单位得到△,则四边形的周长为()A.12B.16C.20D.244.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是()A.1B.2C.3D.45.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第5题图第7题图第8题图6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是() A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若△A′DC=90°,则△A的度数为()A.45° B.55° C.65° D.75°8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.点M B.点N C.点P D.点Q9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,△C=90°,△ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1611.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)△→△是旋转;(2)△→△是平移;(3)△→△是平移;(4)△→△是旋转.A.1个B.2个C.3个D.4个12.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE△BCB.△ADE=△BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题1.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.2.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若△A=40°,△B′=110°,则△BCA′的度数是________.第2题图第3题图3.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若△CAB=50°,△ABC=100°,则△CBE的度数为________.4.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.第4题图第5题图5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.6.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第6题图第8题图7.在等腰三角形ABC中,△C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.8.如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题1.如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.2.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.3.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.4.如图,在Rt△ABC中,△ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF△CD,求证:△BDC=90°.5.如图,Rt△ABC中,△ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图△所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图△所示.(1)在图△中,求证:AC=BD,且AC△BD;(2)当BD与CD在同一直线上(如图△)时,若AC=7,求CD的长.答案一、选择题ABBCA DBBAA CB二、填空题1.(-1,1)2.80°3.30°4.725.136.-57.25cm8.30三、解答题1.解:如图,△DEF即为所求.(8分)2.证明:△△ABO与△CDO关于O点中心对称,△OB=OD,OA=OC.△AF=CE,△OF =OE.(3分)在△DOF和△BOE中,OD=OB,△DOF=△BOE,OF=OE,△△DOF△△BOE(SAS),(6分)△FD=BE.(8分)3.解:(1)如图所示,△AB ′C ′即为所求.(3分) (2)如图所示,△A ′B ″C ″即为所求.(6分)(3)△AB =42+32=5,(8分)△线段AB 在变换到AB ′的过程中扫过区域的面积为半径为5的圆的面积的14,即14×π×52=254π.(10分)4.(1)解:补全图形,如图所示.(4分)(2)证明:由旋转的性质得△DCF =90°,DC =FC ,△△DCE +△ECF =90°.(5分)△△ACB=90°,△△DCE +△BCD =90°,△△ECF =△BCD .△EF △DC ,△△EFC +△DCF =180°,△△EFC =90°.(6分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,△BCD =△ECF ,BC =EC ,△△BDC △△EFC (SAS),△△BDC =△EFC =90°.(8分) 5.解:(1)△将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,△AD =BE =CF =3.△AB =5,△DB =AB -AD =2.(3分)(2)过点C 作CG △AB 于点G .在△ACB 中,△△ACB =90°,AC =3,AB =5,△由勾股定理得BC =AB 2-AC 2=4.(6分)由三角形的面积公式得12AC ·BC =12CG ·AB ,△3×4=5×CG ,解得CG =125.(8分)△梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.(10分)6.解:(1)如图所示.(5分)(2)如图所示.(10分)7.(1)证明:如图,延长BD 交OA 于点G ,交AC 于点E .(1分)△△AOB 和△COD 是等腰直角三角形,△OA =OB ,OC =OD ,△AOB =△COD =90°,△△AOC +△AOD =△DOB +△DOA ,△△AOC =△DOB .(3分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,△AOC =△BOD ,OC =OD ,△△AOC △△BOD ,△AC =BD ,△CAO =△DBO .(5分)又△△DBO +△OGB =90°,△OGB =△AGE ,△△CAO +△AGE =90°,△△AEG =90°,△AC △BD .(2)解:由(1)可知AC =BD ,AC △BD .△BD ,CD 在同一直线上,△△ABC 是直角三角形.由勾股定理得BC =AB 2-AC 2=252-72=24.(10分),△CD =BC -BD =BC -AC =17.。

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

第三章 图形的平移与旋转 回顾与思考(有答案)

第三章 图形的平移与旋转 回顾与思考(有答案)

第三章图形的平移与旋转回顾与思考导学案班级:_____________姓名:_____________一、学习目标::1.平移的基本涵义及其性质.2.旋转的基本涵义及其性质.3.运用轴对称、平移和旋转的组合进行图案设计.二、自主探究:阅读课本第三章(一):对照课本的章节目录,画出全章的知识框架图.(二)重点知识回顾1、平移的定义:在平面内,将__________沿__________移动___________,这样的_________称为平移,平移不改变图形的____和______,只改变图形的________。

2、平移的性质:①____________________________;②_________________________;③____________________________。

3、平移作图的条件:__________________; _____________。

4、旋转的定义:在平面内,将__________绕_________沿__________转__________这样的_________称为旋转,旋转不改变图形的____和______,只改变图形的________。

5、旋转的性质:①___________________________;②__________________________;③___________________________________。

6、旋转作图的条件:__________________; _____________;_______________。

7、中心对称的概念:把一个图形绕着中心旋转_____后能与另一个图形重合则这____个图形关于这个点成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点8、中心对称图形的定义:把一个图形绕着______旋转____度后能与自身重合的图形称为中心对称图形,这个中心点叫做___________。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (15)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (15)

一、选择题1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化.在这个过程中,因变量是( )A.明明B.电话费C.时间D.爷爷2.下列图象中,y是x的函数的是( )A.B.C.D.3.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度4.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升6.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/h B.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h7.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少8.如图,等边三角形ABC中,AB=4,有一动点P从点A出发,以每秒一个单位长度的速度沿着折线A−B−C运动至点C,若点P的运动时间记作t秒,△APC的面积记作S,则S与t的函数关系应满足如下图象中的( )A.B.C.D.9.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明,两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列图象能大致反映y与x之间关系的是( )A.B.C.D.10.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时后与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是( )A.2个B.3个C.4个D.5个二、填空题11.小明从家出发到公园,在公园锻炼一段时间后按原路返回;小明从家出发的同时,小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的图象,则下列结论中正确的是.(写序号即可)①小明从家出发去公园时的速度为150米/分,小明爸爸从公园返回家中的速度为30米/分;分钟后与爸爸第一次相遇;②小明出发253③小明与爸爸第二次相遇时,离家的距离是900米;④小明按原路返回时的速度为60米/分.12.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了10.5分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.13.王师傅从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用时间与路程的关系如图所示;下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致.请根据图象所提供的信息,解答下列问题:(1)王师傅从家门口到单位需要分钟;(2)王师傅从单位到家门口需要分钟.14.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.15.将关系式3x+4y=12改写成y=f(x)的形式:.16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松,途中,她在便利店挑选一瓶矿泉水.耽误了一段时间后继续骑行,愉快地到了公园,图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.小丽从家到便利店的平均速度为100米/分钟17.某校组织学生到距学校6km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下:当里程数在3km以下(含3km)时,收费8元,超过3km,每增加1km加收1.80元,则当x≥3时,车费y(元)与出租车行驶里程数x(km)之间的关系式为.三、解答题18.某水果批发市场的香蕉的价格如表所示,若小明购买x千克(x大于40)香蕉付了y元,请写出y关于x的函数解析式.购买香蕉的量不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元19.一根弹簧原长12cm,它的挂重不超过16kg,并且每挂重1kg就伸长12cm.(1) 写出挂重后弹簧长度y(cm)关于挂重x(kg)的函数关系式;(2) 求出自变量x的取值范围.20.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距503km.设甲、乙两车与B地之间的距离为y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1) A,B两地之间的距离为km;(2) 当x为何值时,甲、乙两车相距5km?21.如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1) 填空:a=km,AB两地的距离为km;(2) 求线段PM,MN所表示的y与x之间的函数表达式;(3) 求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?22.某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度ℎ(米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是.(2) 无人机在75米高的上空停留的时间是分钟.(3) 在上升或下降过程中,无人机的速度为米/分.(4) 图中a表示的数是,b表示的数是.(5) 图中点A表示.23.如图,A,B,C为⊙O上的定点,连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90∘,交⊙O于点D,连接BD,若AB=6cm,AC=2cm,记A,M两点间的距离为x cm,B,D两点间的距离为y cm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:(1) 通过取点,画图,测量,得到了x与y的几组值,如下表:x/cm00.250.47123456y/cm 1.430.660 1.31 2.59 2.76 1.660(2) 在平面直角坐标系中xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为cm.24.探究函数y=∣2x−2∣+x+12的图象和性质,洋洋同学根据学习函数的经验,对函数y=∣2x−2∣+x+12的图象和性质进行探究,下面是洋洋的探究过程,请补充完成:(1) 化简函数解析式:当x≥1时,y=.当x<1时,y=.(2) 根据(1)的结果,请在所给坐标系中画出函数y=∣2x−2∣+x+12的图象:(直尺画图,不用列表)(3) 观察函数图象,请写出该函数的一条性质:.25.如图1,在等腰直角△ABC中,∠A=90∘,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0∘<α<360∘),如图2.(1) 请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2) 请你在图3中,画出当α=45∘时的图形,连接CE和BE,求出此时△CBE的面积;(3) 若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.答案一、选择题1. 【答案】B【知识点】常量、变量2. 【答案】B【解析】A,C,D选项中对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义;只有B选项对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义.【知识点】函数的概念3. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,=4米/秒,故B正确;则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,∴可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,∴两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,∴甲的速度都大于乙的速度,故D正确.由于该题选择错误的,故选C.【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【知识点】用函数图象表示实际问题中的函数关系5. 【答案】D【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】由图象知:=60(km/h),故此选项正确;A.甲车的平均速度为30010−5B.乙车的平均速度为3009−6=100(km/h),故此选项正确;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故此选项正确;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】A【解析】等边三角形ABC中,AB=4,则△ABC的高ℎ=2√3,当点P在AB上运动时,S=12×AP×ℎ=12×x×2√3=√3x,图象为一次函数,x=4时,S=4√3;当点P在BC上运动时,同理可得:S=12×(8−x)×2√3,同样为一次函数.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】D【解析】由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选D.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】B【解析】分析图象可知:(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;(5)根据图形可得出两车是匀速行驶,相遇前摩托车的速度比汽车的速度快,错误.故正确的有3个.【知识点】用函数图象表示实际问题中的函数关系二、填空题11. 【答案】①②④【解析】v小明1=150010=150米/分,v 爸=150050=30米/分,故①正确.(150+30)⋅t=1500,t1=253,故②正确.第二次相遇t=30,离家距离30×(50−30)=600(米),故③错误.v小明2=60040−30=60米/分,故④正确.【知识点】用函数图象表示实际问题中的函数关系12. 【答案】270【解析】由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0∼10.5分钟时,小明自己走,爸爸还没有出发,∴小明的速度v1=630÷10.5=60米/分钟,从10.5∼21分钟时,爸爸开始从家出发,并在时间t=21分钟时追上小明,∴此时小明的路程为:60×21=1260米,∴爸爸的速度为v2=1260÷(21−10.5)=120米/分钟,设爸爸返回时的速度为v,根据题意得,4v+60×6=920,∴v=140米/分钟,∴等爸爸送完作业返回家时所用时间为21×60÷140=9分钟,∴等爸爸到家小明总用时:21+9+2=32,∴此时小明与学校相距的距离为:2280−32×60=360米.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】7;13.4【知识点】用函数图象表示实际问题中的函数关系14. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系x15. 【答案】y=3−34【知识点】解析式法16. 【答案】A【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=1.8x+2.6(x≥3)【解析】由题意得,所付车费为:y=1.8(x−3)+8=1.8x+2.6(x≥3).故:y=1.8x+2.6(x≥3).【知识点】解析式法三、解答题18. 【答案】y=4x.【知识点】解析式法19. 【答案】x,(1) y=12+12(2) 0≤x≤16.【知识点】实际问题中的自变量的取值范围、解析式法20. 【答案】(1) 20(2) 乙车的速度为:20÷16=120(km/h),甲车的速度为:503÷16=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)−120x=5,解得x=0.75;相遇后:120x−(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.【解析】(1) A,B两地之间的距离为20km.【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 240;390(2) 由图象可得,A与C之间的距离为150km,汽车的速度1502.5=60km/h,PM所表示的函数关系式为:y1=150−60x,MN所表示的函数关系式为:y2=60x−150.(3) 由y1=60得150−60x=60,解得:x=1.5,由y2=60得60x−150=60,解得:x=3.5,由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米.【解析】(1) 由题意和图象可得,a=1502.5×4=240km,A,B两地相距:150+240=390km.【知识点】行程问题、用函数图象表示实际问题中的函数关系22. 【答案】(1) t;ℎ(2) 5(3) 25(4) 2;15(5) 在第6分钟时,无人机的飞行高度为50米【解析】(1) 横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或ℎ).(2) 无人机在75米高的上空停留的时间是12−7=5分钟.(3) 在上升或下降过程中,无人机的速度75−507−6=25米/分.(4) 图中 a 表示的数是 5025=2, b 表示的数是 12+7525=15.【知识点】自变量与函数值、用函数图象表示实际问题中的函数关系23. 【答案】(1) 2.41(2) 如图所示. (3) 1.38 或 4.62 【知识点】列表法、图像法24. 【答案】(1) y =32x −12;y =−12x +32 (2)(3) 由图象可知,当 x >1 时,y 随 x 的增大而增大 【解析】 (1) 化简函数 y =∣2x−2∣+x+12,当 x ≥1 时,y =2x−2+x+12=32x −12.当 x <1 时,y =−(2x−2)+x+12=−2x+2+x+12=−12x +32.【知识点】根据函数图像确定函数性质、解析式法、图像法25. 【答案】(1) CE =BD ;理由:连接 CE 和 BD ,如图 2 所示,由题意可知,△ABC 和 △ADE 都是等腰直角三角形, ∵∠EAD =∠CAB =90∘, ∴∠EAC =∠DAB , 又 ∵AE =AD ,AC =AB , ∴△AEC ≌△ADB (SAS ), ∴CE =BD .(2) 当 α=45∘ 时,连接 CE 和 BE ,如图所示,延长 AD 交 BC 于 F , ∵α=45∘,△ABC 和 △ADE 都是等腰直角三角形, ∴∠BAF =∠CAF =∠EAC =45∘, ∴AF =BF =CF ,∠EAB =135∘, ∴∠EAB +∠ABC =135∘+45∘=180∘,∴AE∥BC,∵BC=√32+32=3√2,∴AF=12BC=3√22,∴S△CBE=12BC⋅AF=12×3√2×3√22=92.(3) 1【解析】(3) 如图4,当点M不在AC上时,取AC中点G,连接GM,∵M是CDʹ的中点,∴GM=12ADʹ=12AD=12,当点M在AC上时,由M是CDʹ的中点可得GM=12,∴在△ADE绕点A逆时针方向旋转的过程中,点M在以G为圆心,12长为半径的圆上,∴当点M与点E重合时AM取最小值,此时AM=AE=1.【知识点】三角形的中位线、直角三角形斜边的中线、等腰直角三角形、旋转及其性质、边角边。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.等边三角形C.正五边形D.角'''关于原点O成中心对称的是()4.在平面直角坐标系xOy中,ABC与A B CA.B.C.D .5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .57.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 8.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 9.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行10.将ABC ∆沿BC 方向平移3个单位得DEF ∆,若ABC ∆的周长等于20,则四边形ABFD 的周长为( )A .28B .26C .24D .2011.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 412.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .60二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.如图,在平面直角坐标系中,第1次将边长为1的正方形OABC 绕点O 逆时针旋转45°后,得到正方形OA 1B 1C 1;第2次将正方形OA 1B 1C 1绕点O 逆时针旋转45°后,得到正方形OA 2B 2C 2;.....按此规律,绕点O 旋转得到正方形OA 2020B 2020C 2020,则点B 2020的坐标为______.17.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.20.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm三、解答题21.如图,点E 是等边△ABC 内一点,3EA =,2EC =,1EB .求BEC ∠的度数.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.ABC 在平面直角坐标系中的位置如图所示.(1)请作出ABC 关于y 轴对称的111A B C △,并写出111,,A B C 三点的坐标:1A _______,1B ________,1C _________;(2)将ABC 向右平移6个单位长度,作出作出平移后的222A B C △;(3)观察111A B C △与222A B C △,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长;②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.25.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不合题意;B、不是中心对称图形,但是轴对称图形,故本选项不合题意;C、是中心对称图形,又是轴对称图形,故本选项合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A、此图形既是中心对称图形,也是轴对称图形故此选项正确;B、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A.【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=,∴()2,23A '-.故选:D .【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质. 8.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.9.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B错误;由对顶角的性质知A正确;由平移的性质知C正确;由垂直的性质知D正确.故选B.【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.10.B解析:B【分析】先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=20,通过等线段代换计算四边形ABFD的周长.【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于20,∴AB+BC+AC=20,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=20+3+3=26.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.11.A解析:A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.12.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出P的坐标.点2021【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,÷=,∵202163365∴点P的坐标与点P5的坐标相同,即为(-2,0),2021故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.(-1-1)【分析】根据图形可知:点B在以O为圆心以OB为半径的圆上运动由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OABC相当于将线段OB绕点O逆时针旋转45°可得对应点B的坐标解析:(-1,-1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形O A1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=1,∴B(1,1);连接OB,由勾股定理得:OB= 2,由旋转得:OB= OB1= OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O=∠B1O B2=…=45°,逆时针旋转45°,依次得到∠AOB=∠BO B1∴B(0,2),B2(-1,1),B3(-2,0),B4(-1,-1),…,发现是8次一循1环,所以2020÷8=252 (4)∴点B的坐标为(-1,1).2020故答案为(-1,-1).【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。

2021年度北师大版八年级数学下册《第3章图形的平移与旋转》期中复习常考题型优生辅导训练(附答案)

2021年度北师大版八年级数学下册《第3章图形的平移与旋转》期中复习常考题型优生辅导训练(附答案)

2020-2021年度北师大版八年级数学下册《第3章图形的平移与旋转》期中复习常考题型优生辅导训练(附答案)1.如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为()A.3B.4C.5D.62.如图,在△ABC中,AB=3,BC=5.2,∠B=60°,将△ABC绕点A逆时针旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.0.8B.2C.2.2D.2.83.等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,那么这个新的图形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,又不是中心对称图形4.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.80°C.84°D.86°5.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AB=1,∠B=60°,则CD的长为()A.0.5B.1.5C.D.16.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24B.40C.42D.488.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是()A.3B.5C.6D.89.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元10.如图,△ABC是等边三角形,点P在△ABC内,P A=2,将P AB绕点A逆时针旋转得到△QAC,则PQ的长等于()A.2B.C.D.111.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是.12.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.13.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是.14.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM 的最大值是.15.如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=°.16.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为秒.17.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为.18.如图,点P是等边三角形ABC内一点,且P A=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数.19.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为.20.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,以点B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=4;③∠AOB=150°;④S四边形AOBO′=6+4.其中正确的结论是.21.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.22.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1)、B(﹣3,3)、C(﹣4,1)(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)画出△ABC绕点A按顺时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标.23.已知,P为等边三角形内一点,且BP=3,PC=4,将BP绕点B顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求P A的长度.24.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.25.在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.26.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC 的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.参考答案1.解:由平移的性质可知,BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴BE=CF=3,∴平移的距离为3,故选:A.2.解:∵将△ABC绕点A逆时针旋转得到△ADE,∴AB=AD=3,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB=3,∴CD=BC﹣BD=5.2﹣3=2.2,故选:C.3.解:等边三角形绕它的一个顶点旋转90°后与原来的等边三角形组成一个新的图形,沿着一条直线对折后两部分完全重合,故是轴对称图形;找不到一点把图形绕该点旋转180度,旋转后的图形能和原图形完全重合,故不是中心对称图形.故选:A.4.解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.5.解:∵∠BAC=90°,∠B=60°,∴BC=2AB=2,∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC 边上,∴AD=AB,而∠B=60°,∴△ABD为等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选:D.6.解:∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=30°.故选:A.7.解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=×(6+10)×6=48.故选:D.8.解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,∵,∴△AOP≌△CDO,∴AP=CO=6,故选:C.9.解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选:C.10.解:∵△ABC是等边三角形,∴AC=AB,∠CAB=60°,∵将△P AB绕点A逆时针旋转得到△QAC∴△CQA≌△BP A,∴AQ=AP,∠CAQ=∠BAP,∴∠CAB=∠CAP+∠BAP=∠CAP+∠CAQ=60°,即∠P AQ=60°,∴△APQ是等边三角形,∴QP=P A=2,故选:A.11.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,故m+n=5.故答案为:5.12.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.13.解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=2,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=CD=1,∴DQ==,∴DQ的最小值是,故答案为.14.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.15.解:∵AB=AC,∠B=70°,∴∠ACB=∠B=70°,∴∠A=180°﹣70°﹣70°=40°,∵△ABC绕点C顺时针旋转得到△EDC,∴∠CDE=∠B=70°,BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°﹣70°﹣70°=40°,∴∠1=180°﹣40°﹣40°=100°,故答案为:100.16.解:当S=2时,重叠部分长方形的宽=2÷2=1cm,重叠部分在大正方形的左边时,t=1÷1=1秒,重叠部分在大正方形的右边时,t=(5+2﹣1)÷1=6秒,综上所述,小正方形平移的时间为1或6秒.故答案为:1或6.17.解:把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=6,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC﹣∠PEC=90°,∵∠APD=30°,∴∠DPC=150°﹣30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD==2,即BD的长为2,故答案为:2.18.解:连接PQ,由题意可知△ABP≌△CBQ 则QB=PB=4,P A=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°19.解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°﹣50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为160°.20.解:如图,连接OO′;∵△ABC为等边三角形,∴∠ABC=60°,AB=CB;由题意得:∠OBO′=60°,OB=O′B,∴△OBO′为等边三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴选项②正确;在△ABO′与△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,△BO′A可以由△BOC绕点B逆时针方向旋转60°得到,∴选项①正确;在△AOO′中,∵32+42=52,∴△AOO′为直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴选项③正确;∵+=,∴选项④正确.综上所述,正确选项为①②③④.故答案为:①②③④.21.解:(1)∵将△BCD绕点C顺时针旋转得到△ACE ∴△BCD≌△ACE∴AC=BC,又∵∠ABC=45°,∴∠ABC=∠BAC=45°∴∠ACB=90°故旋转角的度数为90°(2)AE⊥BD.理由如下:在Rt△BCM中,∠BCM=90°∴∠MBC+∠BMC=90°∵△BCD≌△ACE∴∠DBC=∠EAC即∠MBC=∠NAM又∵∠BMC=∠AMN∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD(3)如图,连接DE,由旋转图形的性质可知CD=CE,BD=AE,旋转角∠DCE=90°∴∠EDC=∠CED=45°∵CD=3,∴CE=3在Rt△DCE中,∠DCE=90°∴DE===3∵∠ADC=45°∴∠ADE=∠ADC+∠EDC=90°在Rt△ADE中,∠ADE=90°∴EA===∴BD=22.解:(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).23.解:(1)△BPP’是等边三角形.理由:∵BP绕点B顺时针旋转60°至BP′,∴BP=BP′,∠PBP=60°;∴△BPP′是等边三角形.(2)∵△BPP′是等边三角形,∴∠BPP′=60°,PP'=BP=3,∠P′PC=∠BPC﹣∠BPP=150﹣60°=90°;在Rt△P'′PC中,由勾股定理得P′C==5,∴P A=P′C=5.24.(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°,∵△ABC为等边三角形∴∠BAC=60°∴∠DAE=60°∴△ADE为等边三角形,∴AD=DE,(2)∠ADC=90°,∠AEC=120°,∠DAE=60°∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,(3)∵△ADE为等边三角形∴∠ADE=60°∴∠CDE=∠ADC﹣∠ADE=30°又∵∠DCE=90°∴DE=2CE=2BD=2,∴AD=DE=2在Rt△DCE中,.25.解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.26.解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;(2)如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由ON平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).。

北师大版初二数学下册第3章《图形的平移与旋转》单元测试题 (含答案)

北师大版初二数学下册第3章《图形的平移与旋转》单元测试题  (含答案)

北师大版八年级数学下册第3章《图形的平移与旋转》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列现象中是平移的是()A.将一张纸沿它的中线折叠B.电梯的上下移动C.飞碟的快速转动D.翻开书中的每一页纸张2.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格3.观察下列四个图形,中心对称图形是()A.B.C.D.4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.5.在正三角形、平行四边形、矩形、菱形和圆这五个图形中,既是轴对称图形又是中心对称图形有()A.4个B.3个C.2个D.1个6.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)7.时间经过25分钟,钟表的分针旋转了()A.150°B.120°C.25°D.12.5°8.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°9.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′10.如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转130°得到△AB′C′,连接BB′,若AC′∥BB',则∠CAB′的度数为()A.75°B.85°C.95°D.105°二.填空题(共5小题,满分15分,每小题3分)11.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印(填“能”或“不能”)通过旋转与右手手印完全重合在一起.12.在下列图案中可以用平移得到的是(填代号).13.如图,将△ABC沿BC方向平移2cm得到△DEF.如果四边形ABFD的周长是20cm,则△ABC周长是cm.14.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围是.15.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a﹣b的值为.三.解答题(共8小题,满分55分)16.如图,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.17.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.18.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C1;(2)画△ABC关于点O的中心对称图形△A2B2C2.19.如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6cm,则BE=cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.21.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a﹣b)与点Q(2a﹣9,2b﹣9)也是通过上述变换得到的对应点,求a,b的值.22.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.23.如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC 与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、将一张纸沿它的中线折叠,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、飞蝶的快速转动,不符合平移定义,故本选项错误;D、翻开书中的每一页纸张,不符合平移的定义,故本选项错误.故选:B.2.解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.3.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.4.解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选:A.5.解:正三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;矩形是轴对称图形,是中心对称图形;菱形是轴对称图形,也是中心对称图形;圆是轴对称图形,也是中心对称图形;既是轴对称图形又是中心对称图形有3个,故选:B.6.解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.7.解:如图所示:因为分针每分钟转6°,所以25分钟旋转了6°×25=150度.故选:A.8.解:延长直线,如图:,∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣68°=112°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=112°,故选:D.9.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.10.解:∵将△ABC绕点A按逆时针方向旋转l30°得到△AB′C′,∴∠BAB′=∠CAC′=130°,AB=AB′,∴∠AB′B=(180°﹣130°)=25°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=25°,∴∠CAB′=∠CAC′﹣∠C′AB′=130°﹣25°=105°.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:不能,因为无论怎么旋转,两个图形都不能重合,故答案为:不能.12.解:①、②、⑥通过旋转得到;③、④、⑤通过平移得到.故答案为:③④⑤13.解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=△ABC的周长+2+2=20故△ABC的周长=16cm.故答案为:16.14.解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M在第三象限,∴,解得:0.5<m<1.故答案为:0.5<m<1.15.解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(3,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,b=1+1=2,∴a﹣b=1﹣2=﹣1.故答案为:﹣1.三.解答题(共8小题)16.解:17.解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.18.解:(1)如图,到△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.19.解:(1)∵将△ABC沿直线AB向右平移得到△BDE,∴△ABC≌△BDE,∴BE=AC=6cm,故答案为:6;(2)由(1)知△ABC≌△BDE,∴∠DBE=∠CAB=50°、∠BDE=∠ABC=100°,∴∠CBE=180°﹣∠ABC﹣∠DBE=30°.20.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.21.解:(1)点A的坐标为(2,3),点D的坐标为(﹣2,﹣3),点B的坐标为(1,2),点E的坐标为(﹣1,﹣2),点C的坐标为(3,1),点F的坐标为(﹣3,﹣1),对应点的横、纵坐标分别互为相反数;(2)由(1)得,,解得,,答:a=2,b=1.22.(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠F AG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠F AG+∠F=50°+28°=78°.23.解:(1)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC=30°,∴∠BAC'=100°,且AB=AC',∴∠ABC'=40°,∵∠CAB'=∠CAC'﹣∠B'AC'=40°,且AC=AB'∴∠ACB'=70°故答案为40,70(2)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=α,∠B'AC'=∠BAC=30°,∴∠BAC'=30°+α,∠CAB'=α﹣30°,且AB=AC=AB'=AC',∴∠ABC'=,∠ACB'=∵∠AEF=∠ABE+∠BAC∴∠AEF=∴∠AEF=∠ACB',∴BC'∥B'C。

第三章 图形的平移与旋转(期末复习)

第三章 图形的平移与旋转(期末复习)

6.小明把自己的左手手印和右手手印按 小明把自己的左手手印和右手手印按 在同一张白纸上, 在同一张白纸上,左手手印 (填 能或不能) 能或不能)通过平移与右手手印完全 重合。 重合。
7.将四边形 将四边形ABCD平移后,边AB移到 平移后, 将四边形 平移后 移到 线段EF,请作出平移后的四边形。 线段 ,请作出平移后的四边形。
3.已知点 先向上平移 已知点A先向上平移 到点B, 已知点 先向上平移1cm到点 ,再向 到点 到点C,现要将点C直接平 右平移 2 cm到点 ,现要将点 直接4.将等边三角形绕其顶点至少旋转 将等边三角形绕其顶点至少旋转___ 将等边三角形绕其顶点至少旋转 所得图形便可与原图形组成一个菱形。 度,所得图形便可与原图形组成一个菱形。 所得图形便可与原图形组成一个菱形 5.将一个直角三角形绕其斜边的中点旋转 将一个直角三角形绕其斜边的中点旋转 180度后,所得图形便可与原图形组成一 度后, 度后 个 形。
3.确定一个图形旋转后的位置所须条件 确定一个图形旋转后的位置所须条件 (1)图形原来的位置 ) (2)旋转中心 ) (3)旋转角 ) 4.图形之间的变换关系 图形之间的变换关系 (1)并非所有图形都能通过一次平移 ) 或旋转得到。 或旋转得到。 (2)分析复杂图形形成过程时,要抓 )分析复杂图形形成过程时, 住基本图形,抓住每一种变换的特征, 住基本图形,抓住每一种变换的特征, 体现简单性寓于复杂性之中。 体现简单性寓于复杂性之中。
E A B D F C
1.旋转定义: 旋转定义: 旋转定义 在平面内 将一个图形绕一个定点 沿 在平面内, 将一个图形绕一个定点, 某个方向转动一个角度, 这样的图形运动称为旋转. 某个方向转动一个角度 这样的图形运动称为旋转 2.旋转的性质 旋转的性质: 旋转的性质 (1)旋转不改变图形的形状和大小(只改变图形 旋转不改变图形的形状和大小( 旋转不改变图形的形状和大小 的位置和定向) 的位置和定向) (2)经过旋转, 经过旋转, 经过旋转 图形上的每一点都绕旋转中心, ①图形上的每一点都绕旋转中心,沿相同方向转 动了相同的角度; 动了相同的角度; ②任意一对对应点与旋转中心的连线所成的角都 是旋转角,旋转角彼此相等; 是旋转角,旋转角彼此相等; 对应点到旋转中心的距离相等。 ③对应点到旋转中心的距离相等。

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。

5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。

10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《图形的平移与旋转》专题专练专题一 图形的平移概念 重点知识回顾1.平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形变换称为平移.注意:(1)平移过程中,对应线段可能在一条直线上. (2)平移过程中,对应点所连的线段也可能在一条直线上. 2.平移的两个基本要素:“平移的方向”和“平移的距离”.图形的平移是由它的移动方向和移动距离决定的.当图形平移的方向没有指明时,就需要认真观察图形的形状和位置的变化特征,根据平移的性质先确定平移的方向,再确定对应点、对应线段和对应角.3.图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出平移性质的依据.典型例题剖析例1 生活中有很多平移的例子,下列物体的运动是平移的是( ) A.水中小鱼的游动 B.天空中划过的流星的运动 C.出膛的子弹沿水平直线的运动 D.小华在跳高时的运动分析:正确判断物体是否为平移运动关键是理解和掌握平移的概念和特征.看物体是否在同一个平面内运动,是否沿某个方向平行移动一定的距离,而“水中小鱼的游动”、“天空中划过的流星的运动”、“小华在跳高时的运动”显然不符合平移的概念,只有“出膛的子弹沿水平直线的运动”才是平移运动.点悟:识别平移现象的关键是抓住平移的特征:物体必须在平面内运动,在曲面上运动物体一定不是平移,平移是直线的运动,平移只与物体的位置有关,与速度无关,平移只关注物体的位置变化.例2 (2008年福建省泉州市)在图1的方格纸中,ABC △向右平移 格后得到111A B C △.分析:因为△A 1B 1C 1是△ABC 平移后得到的图形,所以点A 1与点A 、B 1与B 、C 1与C 分别是对应点,故只需随便数一数一对对应点之间的格数,即为平移图1的距离.正确答案为4.点悟:知道平移前后的图形,找出平移的距离(一般都在网格中),只要找出一对对应点后,数一数它们之间的格数即可.专项练习一:1.下列现象中不属于平移的是()A.大楼电梯在上下运动B.彩票大盘的转动C.滑雪运动员在平坦的雪地上滑行D.火车在平直的铁轨上行驶专题二图形的旋转概念知识要点回顾1.旋转的概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.注意:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到.(2)旋转的角度一般小于360°.2.旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)典型例题剖析例1下列几种运动,只属于旋转运动的有()①发电的风车的转动;②在笔直的铁轨上运行的列车;③传送带上的灌装啤酒;④随风飘散的雪花.A.1种B.2种C.3种D.4种分析:根据旋转的概念和特征,可以看出只有“发电的风车的转动”是旋转运动,“在笔直的铁轨上运行的列车”和“传送带上的灌装啤酒”是平移运动,“随风飘散的雪花”的运动比较复杂,不只是旋转运动.故选A.点悟:旋转是在一个平面内,将一个图形绕一个定点沿某个方向转动一定的角度的运动.图形上的每一个点都按相同的方式转动相同的角度,旋转只改变图形的位置,不改变图形的大小和形状.例2(2008年江苏省盐城市)已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是()分析:旋转180°后得到图2与图1是一样的,而图1中只有方块5经旋转180°后与原来是一样的,而其它牌经旋转180°后与原来是不同的.故选 A.点悟:这是一道简单的图案旋转问题,求解时只要能准确地运用旋转的有关概念即可求解.旋转应注意旋转的方向和旋转的角度专项练习二:1.将图3绕点O 按逆时针方向旋转90°得到的图案是( )2. 3张扑克牌如图4(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图4(2)所示,则她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张 专题三 图形平移、旋转性质的应用 知识要点回顾 1.平移的基本性质有平移的基本概念知,结果平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此,平移具有下列性质:(1)平移后的图形与原图形的对应线段平行且相等,对于角相等. (2)平移后的图形与原图形的对应点所连的线段平行且相等. 2.旋转的基本性质(1)图形旋转后,任意一对对应点与旋转中心的连线所成的角都等于旋转角. (2)一个图形沿某一点旋转一个角度后,图形中的每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的大小与形状都没有发生变化.典型例题剖析A B C D图3 图1图2A B C D图4例1 (2008年广州市数学中考试题)将线段AB 平移1cm ,得到线段A /B /,则点A 到点A /的距离是 .分析:由于点A /是由线段AB 平移1cm 后点A 的对应点,根据平移的性质可知点A 到点A /的距离为1cm.点悟:本题考查平移的知识,在平移时要注意平移的方向及平移的距离,还应注意平移的特征.即对应点的距离等于线段平移的距离.例2 (2008年江苏省扬州市)如图1中的△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ABP /重合,如果AP=3,那么线段PP /的长等于________.分析:△ABP 绕点A 逆时针旋转后与△ABP /重合,即△ABP ≌△ABP /,所以AP /=AP=3,又因为△ABC 是等腰直角三角形,所以∠PAP /=900,利用勾股定理可得PP /=32.故应填32.点悟:旋转不改变图形的形状和大小,旋转前后的两个图形是全等形.例3 (2008湖北省荆门市)将两块全等的含30°角的三角尺如图2(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD 沿直线l 向左平移到图2(2)的位置,使E 点落在AB 上,则CC ′=______; (2)将△ECD 绕点C 逆时针旋转到图2(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的度数=______;(3)将△ECD 沿直线AC 翻折到图2(4)的位置,ED ′与AB 相交于点F ,求证AF =FD ′.解析:.(1) 3-3; (2)30°;(3)证明:在△AEF 和△D /BF 中,∵AE=AC-EC, D /B=D /C-BC , 又AC=D /C ,EC=BC ,∴AE=D /B .(2)图2A CBE4 D EA CB EDl(3) l D ’F A C BED(4)A CB EDl E ’ C ’ 图1D(1)又 ∠AEF=∠D’ BF=180°-60°=120°,∠A=∠CD /E=30°, ∴△AEF ≌△D /BF .∴AF=FD /.点评:本题以同学们熟悉的三角尺为背景,综合考查了平移、旋转、轴对称三种图形变换,解题时,要注意它们各自的区别.专项练习三:1.(2008年大连市)如图3,P 是正△ABC 内的一点,若将△P AB 绕点A 逆时针旋转到 △P ′AC ,则∠P AP ′的度数为________.2.(2008年河南省)如图4,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按顺时针转动一个角度到A 1BC 1的位置,使得点A 、B 、C 1在同一条直线上,那么这个角度等于( )A.120°B.90°C. 60°D. 30° 3.如图5所示,有一块花园为ABCD 中,有甬道(阴影部分),则其余部分的面积为( )m 2A.24B.26C.28D.304.如图6,已知△ABC 的面积为36,将△ABC 沿BC 平移到△A /B /C /,使B /和C 重合,连接AC /交A /C 于D ,则△C /DC 的面积为( )A.6B.9C.12D.18专题四 网格中进行轴对称、平移、旋转作图 知识要点回顾 1.平移作图的基本方法(1)找出已知图形上的关键点.如线段的端点、三角形的顶点等.(2)过关键点作与已知平移方向的线段,使这些线段的长度都等于平移的距离. (3)按原图的连接方式连接各对应点,得到新的图形,这个图形就是原图形平移后的图形.P′P CBA图 7图3图4ABCD图56m 8mAA 'C )(B 'C BD图6注意:①在进行平移作图时,首先要知道平移的距离和方向,其次要找出图形的关键点;②确定一个图形的平移前后的位置所需要的条件:图形原来的位置、平移的方向、平移的距离.2.旋转作图的基本方法(1)确定旋转中心,找出已知图形的关键点.(2)作出关键点的对应点.作关键点的对应点的方法是:将各关键点与旋转中心连接;以旋转中心为顶点,以上述连线为一边,向旋转方向作角,使所作的角都等于旋转角;在所作角的另一边截取长度分别等于各关键点与旋转中心所连线段的长度.即得到各关键点的对应点;按原图的连接方连接各对应点即得到旋转后的图形.由于网格具有其特殊的属性,因而利用网格进行变换作图问题已越来越受到中考命题专家的青睐.典型例题剖析例1 (2008年重庆市)作图题:(不要求写作法)如图1,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上) (1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A 1B 1C 1D 1; (2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.分析:抓住四边形的四个关键点(顶点),分别作出它们的对应点,再顺次连接即可.如图6所示.点悟:平移时要搞清平移的方向和平移的距离.轴对称首先要找到对称轴,然后分别作已知点的对称点,连线即可得到所求图形.例2 (2008年甘肃省庆阳市)在如图3的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).(1) 画出ABC △绕点O 顺时针旋转90o后的111A B C △;D 2D 1C 2C 1B 2B 1A 2A 1图4图3AB C D llDCBA图1 图2(2)求点A 旋转到1A 所经过的路线长.分析:要画出画出ABC △绕点O 顺时针旋转90o后的111A B C △,根据旋转的性质,连接OA ,过O 作OA /⊥OA ,且使OA /=OA ,则得A 点的对应点A 1点.同理可作出点B 、C 的对应点B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1即得.(1)如图4所示.(2) ∵ 点A 旋转到1A 所经过的路线长为以OA 为半径圆的周长的14, ∴ 点A 旋转到1A 所经过的路线长为14×2r π=12π×2223+=132π. 点悟:确定一个图形旋转后的位置需要的条件有:旋转中心、旋转方向和旋转角.当这些条件都具备后,图形变换后的位置才可唯一确定.专项练习四1.(2008年吉林省长春市)如上图5,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.(1)作ABC △关于点P 的对称图形A B C '''△。

相关文档
最新文档