2019年黑龙江省绥化市中考数学

合集下载

黑龙江省绥化市2019年中考数学试卷

黑龙江省绥化市2019年中考数学试卷

2019年黑龙江省绥化市中考数学试卷一、单项选择题(本题共10个小题,每小题3分,共30分)1.我们的祖国地域辽阔,其中领水面积约为37000km2.把370000这个数用科学记数法表示为()A. 37×104B. 3.7×105C. 0.37×106D. 3.7×106【答案】B2.下列图形中,属于中心对称图形的是()A. B.C. D.【答案】C3.下列计算正确的是()A. =±3B. (-1)0=0C.D. =2【答案】 D4.若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A. 球体B. 圆锥C. 圆柱D. 正方体【答案】A5.下列因式分解正确的是()A. x2-x=x(x+1)B. a2-3a-4=(a+4)(a-1)C. a2+2ab-b2=(a-b)2D. x2-y2=(x+y)(x-y)【答案】 D6.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A. B. C. D.【答案】 D7.下列命题是假命题的是()A. 三角形两边的和大于第三边B. 正六边形的每个中心角都等于60°C. 半径为R的圆内接正方形的边长等于RD. 只有正方形的外角和等于360°【答案】A8.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A. 5种B. 4种C. 3种D. 2种【答案】C9.不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B10.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4 -2时,P点最多有9个③当P点有8个时,x=2-2④当△PEF是等边三角形时,P点有4个A. ①③B. ①④C. ②④D. ②③【答案】B二、填空题(本题共11个小题,每小题3分,共33分)11.某年一月份,哈尔滨市的平均气温约为-20℃,绥化市的平均气温约为-23℃,则两地的温差为________ ℃. 【答案】312.若分式有意义,则x的取值范围是________。

2019年黑龙江省绥化市中考数学试卷(带解析)

2019年黑龙江省绥化市中考数学试卷(带解析)

2019年黑龙江省绥化市中考数学试卷一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B 铅笔将你的选项所对应的大写字母涂黑1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km 2.把370000这个数用科学记数法表示为( ) A .37×104B .3.7×105C .0.37×106D .3.7×1062.(3分)下列图形中,属于中心对称图形的是( )A .B .C .D .3.(3分)下列计算正确的是( ) A .√9=±3B .(﹣1)0=0C .√2+√3=√5D .√83=24.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( ) A .球体B .圆锥C .圆柱D .正方体5.(3分)下列因式分解正确的是( ) A .x 2﹣x =x (x +1) B .a 2﹣3a ﹣4=(a +4)(a ﹣1) C .a 2+2ab ﹣b 2=(a ﹣b )2D .x 2﹣y 2=(x +y )(x ﹣y )6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .167.(3分)下列命题是假命题的是( ) A .三角形两边的和大于第三边 B .正六边形的每个中心角都等于60°C .半径为R 的圆内接正方形的边长等于√2RD .只有正方形的外角和等于360°8.(3分)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种9.(3分)不等式组{x −1≥0x +8>4x +2的解集在数轴上表示正确的是( )A .B .C .D .10.(3分)如图,在正方形ABCD 中,E 、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB =4,EF =2,设AE =x .当△PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( ) ①当x =0(即E 、A 两点重合)时,P 点有6个 ②当0<x <4√2−2时,P 点最多有9个 ③当P 点有8个时,x =2√2−2④当△PEF 是等边三角形时,P 点有4个A .①③B .①④C .②④D .②③二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为 ℃. 12.(3分)若分式√3x−4有意义,则x 的取值范围是 . 13.(3分)计算:(﹣m 3)2÷m 4= .14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是 .15.(3分)当a=2018时,代数式(aa+1−1a+1)÷a−1(a+1)2的值是.16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.17.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.18.(3分)一次函数y1=﹣x+6与反比例函数y2=8x(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.19.(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.20.(3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC 上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x (h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D 重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=12,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣m(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m 之间的函数解析式.2019年黑龙江省绥化市中考数学试卷参考答案与试题解析一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000用科学记数法表示应为3.7×105,故选:B.2.(3分)下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误,故选:C.3.(3分)下列计算正确的是()3=2 A.√9=±3B.(﹣1)0=0C.√2+√3=√5D.√8【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:A、√9=3,故此选项错误;B 、(﹣1)0=1,故此选项错误;C 、√2+√3无法计算,故此选项错误;D 、√83=2,正确. 故选:D .4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( ) A .球体B .圆锥C .圆柱D .正方体【分析】利用三视图都是圆,则可得出几何体的形状. 【解答】解:主视图、俯视图和左视图都是圆的几何体是球体. 故选:A .5.(3分)下列因式分解正确的是( ) A .x 2﹣x =x (x +1) B .a 2﹣3a ﹣4=(a +4)(a ﹣1) C .a 2+2ab ﹣b 2=(a ﹣b )2D .x 2﹣y 2=(x +y )(x ﹣y )【分析】A 、原式提取公因式x 得到结果,即可做出判断; B 、原式利用十字相乘法分解得到结果,即可做出判断; C 、等式左边表示完全平方式,不能利用完全平方公式分解; D 、原式利用平方差公式分解得到结果,即可做出判断. 【解答】解:A 、原式=x (x ﹣1),错误; B 、原式=(a ﹣4)(a +1),错误; C 、a 2+2ab ﹣b 2,不能分解因式,错误; D 、原式=(x +y )(x ﹣y ),正确. 故选:D .6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .16【分析】直接利用概率公式求解.【解答】解:从袋子中随机取出1个球是红球的概率=22+4=13. 故选:A .7.(3分)下列命题是假命题的是( ) A .三角形两边的和大于第三边B .正六边形的每个中心角都等于60°C .半径为R 的圆内接正方形的边长等于√2RD .只有正方形的外角和等于360°【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解答】解:A 、三角形两边的和大于第三边,正确,是真命题; B 、正六边形的每个中心角都等于60°,正确,是真命题; C 、半径为R 的圆内接正方形的边长等于√2R ,正确,是真命题; D 、所有多边形的外角和均为360°,故错误,是假命题, 故选:D .8.(3分)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种【分析】设小明购买了A 种玩具x 件,则购买的B 种玩具为10−x 2件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A 种玩具x 件,则购买的B 种玩具为10−x 2件,根据题意得,{ x ≥110−x2≥110−x 2>x , 解得,1≤x <313,∵x 为整数, ∴x =1或2或3, ∴有3种购买方案. 故选:C .9.(3分)不等式组{x −1≥0x +8>4x +2的解集在数轴上表示正确的是( )A .B .C .D .【分析】首先解每个不等式,然后把每个不等式用数轴表示即可. 【解答】解:{x −1≥0①x +8>4x +2②,解①得x ≥1, 解②得x <2, 利用数轴表示为:.故选:B .10.(3分)如图,在正方形ABCD 中,E 、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB =4,EF =2,设AE =x .当△PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( ) ①当x =0(即E 、A 两点重合)时,P 点有6个 ②当0<x <4√2−2时,P 点最多有9个 ③当P 点有8个时,x =2√2−2④当△PEF 是等边三角形时,P 点有4个A .①③B .①④C .②④D .②③【分析】利用图象法对各个说法进行分析判断,即可解决问题. 【解答】解:①如图1,当x =0(即E 、A 两点重合)时,P 点有6个; 故①正确;②当0<x <4√2−2时,P 点最多有8个. 故②错误.③当P点有8个时,如图2所示:当0<x<√3−1或√3−1<x<4√2−4或2<x<4√2−√3−1或4√2−√3−1<x<4√2−2时,P点有8个;故③错误;④如图3,当△PMN是等边三角形时,P点有4个;故④正确;当△PEF是等腰三角形时,关于P点个数的说法中,不正确的是②③,一定正确的是①④;故选:B.二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为3℃.【分析】用哈尔滨市的平均气温减去绥化市的平均气温,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.12.(3分)若分式√3x−4有意义,则x的取值范围是x≠4.【分析】分式有意义,分母不等于零.【解答】解:依题意得:x﹣4≠0.解得x≠4.故答案是:x≠4.13.(3分)计算:(﹣m3)2÷m4=m2.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:(﹣m3)2÷m4=:m6÷m4=m2.故答案为:m2.14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是8.【分析】先计算出平均数,再根据方差公式计算即可.【解答】解:∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,∴方差=15[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8;故答案为:8.15.(3分)当a =2018时,代数式(aa+1−1a+1)÷a−1(a+1)2的值是2019 .【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【解答】解:(aa+1−1a+1)÷a−1(a+1)2=a−1a+1⋅(a+1)2a−1=a +1,当a =2018时,原式=2018+1=2019, 故答案为:2019.16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 12 .【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可. 【解答】解:设圆锥的母线长为l , 根据题意得:120π⋅l 180=2π×4,解得:l =12, 故答案为:12.17.(3分)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A = 36 度.【分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可. 【解答】解:设∠A =x ∵AD =BD ,∴∠ABD =∠A =x ,∠BDC =2x ∵BD =BC∴∠C =∠BDC =2x ,∠DBC =x∵在BDC 中x +2x +2x =180° ∴x =36° ∴∠A =36°. 故填36.18.(3分)一次函数y 1=﹣x +6与反比例函数y 2=8x(x >0)的图象如图所示,当y 1>y 2时,自变量x 的取值范围是 2<x <4 .【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当2<x <4时,y 1>y 2. 故答案为2<x <4.19.(3分)甲、乙两辆汽车同时从A 地出发,开往相距200km 的B 地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B 地,则甲车的速度为 80 km /h . 【分析】设甲车的速度为xkm /h ,则乙车的速度为54xkm /h ,根据时间=路程÷速度结合乙车比甲车早30分钟到达B 地,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【解答】解:设甲车的速度为xkm /h ,则乙车的速度为54xkm /h ,依题意,得:200x−20054x =3060,解得:x =80,经检验,x =80是原方程的解,且符合题意. 故答案为:80.20.(3分)半径为5的⊙O 是锐角三角形ABC 的外接圆,AB =AC ,连接OB 、OC ,延长CO 交弦AB 于点D .若△OBD 是直角三角形,则弦BC 的长为 5√3或5√2 . 【分析】如图1,当∠ODB =90°时,推出△ABC 是等边三角形,解直角三角形得到BC =AB =5√3,如图2,当∠DOB =90°,推出△BOC 是等腰直角三角形,于是得到BC =√2OB=5√2.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=√32OB=5√32,∴BC=AB=5√3,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=√2OB=5√2,综上所述:若△OBD是直角三角形,则弦BC的长为5√3或5√2,故答案为:5√3或5√2.21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P 2019的坐标是 (20192,√32) .【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可. 【解答】解:由题意知,A 1(12,√32)A 2(1,0) A 3(32,√32) A 4(2,0) A 5(52,−√32)A 6(3,0) A 7(72,√32) …由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:√32,0,√32,0,−√32这样循环, ∴A 2019(20192,√32), 故答案为:(20192,√32). 三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC 三个顶点的坐标分别为A (﹣2,﹣4),B (0,﹣4),C (1,﹣1)(1)请在网格中,画出线段BC 关于原点对称的线段B 1C 1;(2)请在网格中,过点C 画一条直线CD ,将△ABC 分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=1.【分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan∠BCP=1【解答】解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是40人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?【分析】(1)由C方式的人数及其所占百分比可得总人数;(2)根据各方式的人数之和等于总人数可得D人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数是8÷20%=40(人),故答案为:40;(2)D活动方式的人数为40﹣(6+12+8+4)=10(人),补全图形如下:(3)估计本校2360名学生中“假期活动方式”是“读书看报”的有2360×640=354(人).24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)【分析】(1)利用尺规作∠BAC的角平分线交AC于点P,点P即为所求.(2)作AD⊥BC于D.解直角三角形求出AD,再利用等腰直角三角形的性质即可解决问题.【解答】解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=12AB=20(海里),∵∠ACD=45°,∴AC=√2AD=20√2(海里).答:小岛A与港口C之间的距离为20√2海里.25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.【分析】(1)分k=0及k≠0两种情况考虑:当k=0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k=0符合题意;当k≠0时,由根的判别式△≥0可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x1+x2=3k,x1x2=1k,结合x1+x2+x1x2=4可得出关于k的分式方程,解之经检验后即可得出结论.【解答】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=1 3,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤9 4.综上所述,k的取值范围为k≤9 4.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=3k,x1x2=1k.∵x1+x2+x1x2=4,∴3k +1k=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)【分析】(1)根据圆周角定理,垂径定理,平行线的性质证得OC ⊥CF ,即可证得结论; (2)①利用勾股定理求得半径,进而求得OE ,根据三角形中位线定理即可求得; ②由平行线分线段成比例定理得到BE FC=OE OC=OBOF,求得CF =103,OF =256,即可求得AF =OF +OA =203,然后根据勾股定理求得AC ,即可求得三角形ACF 的周长. 【解答】(1)证明:∵AC 平分∠BAD , ∴∠BAC =∠DAC , ∴C 是弧BD 的中点 ∴OC ⊥BD . ∴BE =DE ,∵∠AFC =∠ACD ,∠ACD =∠ABD , ∴∠AFC =∠ABD , ∴BD ∥CF , ∴OC ⊥CF , ∵OC 是半径, ∴CF 是圆O 切线; (2)解:①设OC =R . ∵DE =2CE =2, ∴BE =DE =2,CE =1. ∴OE =R ﹣1,在Rt △OBE 中(R ﹣1)2+22=R 2. 解得 R =52. ∴OE =52−1=32,由(1)得,OA =OB ,BE =DE , ∴AD =2OE =3;②连接BC . ∵BD ∥CF , ∴BE FC=OE OC=OB OF ,∵BE =2,OE =32,R =52∴CF =103,OF =256, ∴AF =OF +OA =203,在Rt △BCE 中,CE =l ,BE =2, ∴BC =√CE 2+BE 2=√5. ∵AB 是直径,∴△ACB 为直角三角形. ∴AC =√AB 2−BC 2=2√5.∴△ACF 周长=AC +FC +AF =10+2√5.27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x (h )之间的函数图象为折线OA ﹣AB ﹣BC ,如图所示.(1)这批零件一共有 270 个,甲机器每小时加工 20 个零件,乙机器排除故障后每小时加工 40 个零件;(2)当3≤x ≤6时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【分析】(1)根据图象解答即可;(2)设当3≤x ≤6时,y 与x 之间的函数关系是为y =kx +b ,运用待定系数法求解即可; (3)设甲价格x 小时时,甲乙加工的零件个数相等,分两种情况列方程解答:①当0≤x ≤1时,20x =30;②当3≤x ≤6时,20x =30+40(x ﹣3). 【解答】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个); 故答案为:270;20;40;(2)设当3≤x ≤6时,y 与x 之间的函数关系是为y =kx +b , 把B (3,90),C (6,270)代入解析式,得 {3k +b =906k +b =270,解得{k =60b =−90, ∴y =60x ﹣90(3≤x ≤6);(3)设甲价格x 小时时,甲乙加工的零件个数相等, ①20x =30,解得x =15; ②50﹣20=30,20x =30+40(x ﹣3),解得x =4.5,答:甲加工1.5h 或4.5h 时,甲与乙加工的零件个数相等.28.(9分)如图①,在正方形ABCD 中,AB =6,M 为对角线BD 上任意一点(不与B 、D 重合),连接CM ,过点M 作MN ⊥CM ,交线段AB 于点N (1)求证:MN =MC ;(2)若DM :DB =2:5,求证:AN =4BN ;(3)如图②,连接NC 交BD 于点G .若BG :MG =3:5,求NG •CG 的值.【分析】(1)作ME∥AB、MF∥BC,证四边形BEMF是正方形得ME=MF,再证∠CME =∠FMN,从而得△MFN≌△MEC,据此可得证;(2)由FM∥AD,EM∥CD知AFAB =CEBC=DMBD=25,据此得AF=2.4,CE=2.4,由△MFN≌△MEC知FN=EC=2.4,AN=4.8,BN=6﹣4.8=1.2,从而得出答案;(3)把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,先证△MCG≌△HCG得MG=HG,由BG:MG=3:5可设BG=3a,则MG=GH=5a,继而知BH=4a,MD=4a,由DM+MG+BG=12a=6√2得a=√22,知BG=3√22,MG=5√22,证△MGC∽△NGB得GCGB =MGNG,从而得出答案.【解答】解:(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴AFAB =CEBC=DMBD=25,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH,∠DCM=∠BCH=45°,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6√2,∴DM+MG+BG=12a=6√2,∴a=√22,∴BG=3√22,MG=5√22,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴GCGB =MGNG,∴CG•NG=BG•MG=15 2.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=12,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣m(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m 之间的函数解析式.【分析】(1)将点A(﹣2,0)代入解析式,对称轴为x=−b2a=12,联立即可求a与b的值;(2)设点Q 横坐标x 1,点P 的横坐标x 2,则有x 1<x 2,联立y =﹣mx +5,y =−12x 2+12x +3根据韦达定理可得x 1+x 2=2m +1,x 1x 2=4,由面积之间的关系:S △CPQ =S △CHP ﹣S △CHQ ,可求m 的值;(3)当n =﹣3m 时,PQ 解析式为y =﹣mx +3m ,联立有:﹣mx +3m =−12x 2+12x +3,解得x =3或x =2m ﹣2;由条件可得P (3,0),Q (2m ﹣2,﹣2m 2+5m ),K (0,5﹣2m ),所以有HK =|5m ﹣5|=5|m ﹣1|;①当0<m <1时,HK =5﹣5m ,S △PQK =S △PHK +S △QHK =12×HK (x P ﹣x Q )=12×(5﹣5m )(5﹣2m )=5m 2−352m +252,②当1<m <52时,HK =5m ﹣5,S △PQK =﹣5m 2+352m −252,③当2m ﹣2>3时,如图③,有m >52,S △PQK =12×KQ |y P |=32(2m 2﹣5m )=3m 2−152m , 【解答】解:(1)将点A (﹣2,0)代入解析式,得4a ﹣2b +3=0, ∵x =−b2a =12, ∴a =−12,b =12; ∴y =−12x 2+12x +3;(2)设点Q 横坐标x 1,点P 的横坐标x 2,则有x 1<x 2, 把n =﹣5代入y =﹣mx ﹣n , ∴y =﹣mx +5,联立y =﹣mx +5,y =−12x 2+12x +3得: ﹣mx +5=−12x 2+12x +3, ∴x 2﹣(2m +1)x +4=0, ∴x 1+x 2=2m +1,x 1x 2=4, ∵△CPQ 的面积为3; ∴S △CPQ =S △CHP ﹣S △CHQ , 即12HC (x 2﹣x 1)=3,∴x 2﹣x 1=3,∴(x 1+x 2)2−4x 1x 2=9, ∴(2m +1)2=25, ∴m =2或m =﹣3, ∵m >0, ∴m =2;(3)当n =﹣3m 时,PQ 解析式为y =﹣mx +3m , ∴H (0,3m ),∵y =﹣mx +3m 与y =−12x 2+12x +3相交于点P 与Q , ∴﹣mx +3m =−12x 2+12x +3, ∴x =3或x =2m ﹣2,当2m ﹣2<3时,有0<m <52, ∵点P 在点Q 的右边,∴P (3,0),Q (2m ﹣2,﹣2m 2+5m ), ∴AQ 的直线解析式为y =5−2m2x +5﹣2m , ∴K (0,5﹣2m ), ∴HK =|5m ﹣5|=5|m ﹣1|,①当0<m <1时,如图①,HK =5﹣5m , ∴S △PQK =S △PHK +S △QHK =12×HK (x P ﹣x Q )=12×(5﹣5m )(5﹣2m )=5m 2−352m +252, ②当1<m <52时,如图②,HK =5m ﹣5, ∴S △PQK =﹣5m 2+352m −252,③当2m ﹣2>3时,如图③,有m >52,∴P (2m ﹣2,﹣2m 2+5m ),Q (3,0),K (0,0), ∴S △PQK =12×KQ |y P |=32(2m 2﹣5m )=3m 2−152m ,综上所述,S ={5m 2−352m +252(0<m <1)−5m 2+352m −252(1<m <52)3m 2−152m(m >52);。

2019年黑龙江省绥化市中考数学试卷和答案

2019年黑龙江省绥化市中考数学试卷和答案

2019年黑龙江省绥化市中考数学试卷一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×106 2.(3分)下列图形中,属于中心对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.=±3B.(﹣1)0=0C.+=D.=2 4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体5.(3分)下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.7.(3分)下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于RD.只有正方形的外角和等于360°8.(3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE =x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.12.(3分)若分式有意义,则x的取值范围是.13.(3分)计算:(﹣m3)2÷m4=.14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是.15.(3分)当a=2018时,代数式(﹣)÷的值是.16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.17.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD,则∠A=度.18.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.19.(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B 地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.20.(3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C 的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD 上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x 轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.2019年黑龙江省绥化市中考数学试卷答案与解析一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000用科学记数法表示应为3.7×105,故选:B.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误,故选:C.3.【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:A、=3,故此选项错误;B、(﹣1)0=1,故此选项错误;C、+无法计算,故此选项错误;D、=2,正确.故选:D.4.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球体.故选:A.5.【分析】A、原式提取公因式x得到结果,即可做出判断;B、原式利用十字相乘法分解得到结果,即可做出判断;C、等式左边表示完全平方式,不能利用完全平方公式分解;D、原式利用平方差公式分解得到结果,即可做出判断.【解答】解:A、原式=x(x﹣1),错误;B、原式=(a﹣4)(a+1),错误;C、a2+2ab﹣b2,不能分解因式,错误;D、原式=(x+y)(x﹣y),正确.故选:D.6.【分析】直接利用概率公式求解.【解答】解:从袋子中随机取出1个球是红球的概率==.故选:A.7.【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解答】解:A、三角形两边的和大于第三边,正确,是真命题;B、正六边形的每个中心角都等于60°,正确,是真命题;C、半径为R的圆内接正方形的边长等于R,正确,是真命题;D、所有多边形的外角和均为360°,故错误,是假命题,故选:D.8.【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.9.【分析】首先解每个不等式,然后把每个不等式用数轴表示即可.【解答】解:,解①得x≥1,解②得x<2,利用数轴表示为:.故选:B.10.【分析】利用图象法对各个说法进行分析判断,即可解决问题.【解答】解:①如图1,当x=0(即E、A两点重合)时,P点有6个;故①正确;②当0<x<4﹣2时,P点最多有8个.故②错误.③当P点有8个时,如图2所示:当0<x<﹣1或﹣1<x<4﹣4或2<x<4﹣﹣1或4﹣﹣1<x<4﹣2时,P点有8个;故③错误;④如图3,当△PEF是等边三角形时,P点有4个;故④正确;当△PEF是等腰三角形时,关于P点个数的说法中,不正确的是②③,一定正确的是①④;故选:B.二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.【分析】用哈尔滨市的平均气温减去绥化市的平均气温,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.12.【分析】分式有意义,分母不等于零.【解答】解:依题意得:x﹣4≠0.解得x≠4.故答案是:x≠4.13.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:(﹣m3)2÷m4=:m6÷m4=m2.故答案为:m2.14.【分析】先计算出平均数,再根据方差公式计算即可.【解答】解:∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,∴方差=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8;故答案为:8.15.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(﹣)÷==a+1,当a=2018时,原式=2018+1=2019,故答案为:2019.16.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.17.【分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可.【解答】解:设∠A=x∵AD=BD,∴∠ABD=∠A=x,∠BDC=2x∵BD=BC∴∠C=∠BDC=2x,∠DBC=x∵在BDC中x+2x+2x=180°∴x=36°∴∠A=36°.故填36.18.【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当2<x<4时,y1>y2.故答案为2<x<4.19.【分析】设甲车的速度为xkm/h,则乙车的速度为xkm/h,根据时间=路程÷速度结合乙车比甲车早30分钟到达B地,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲车的速度为xkm/h,则乙车的速度为xkm/h,依题意,得:﹣=,解得:x=80,经检验,x=80是原方程的解,且符合题意.故答案为:80.20.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.21.【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【解答】解:由题意知,A1(,)A2(1,0)A3(,)A4(2,0)A5(,﹣)A6(3,0)A7(,)…由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,﹣这样循环,∴A2019(,),故答案为:(,).三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.【分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan ∠BCP=1【解答】解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.23.【分析】(1)由C方式的人数及其所占百分比可得总人数;(2)根据各方式的人数之和等于总人数可得D人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数是8÷20%=40(人),故答案为:40;(2)D活动方式的人数为40﹣(6+12+8+4)=10(人),补全图形如下:(3)估计本校2360名学生中“假期活动方式”是“读书看报”的有2360×=354(人).24.【分析】(1)利用尺规作∠BAC的角平分线交AC于点P,点P 即为所求.(2)作AD⊥BC于D.解直角三角形求出AD,再利用等腰直角三角形的性质即可解决问题.【解答】解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=AB=20(海里),∵∠ACD=45°,∴AC=AD=20(海里).答:小岛A与港口C之间的距离为20海里.25.【分析】(1)分k=0及k≠0两种情况考虑:当k=0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k =0符合题意;当k≠0时,由根的判别式△≥0可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x1+x2=,x1x2=,结合x1+x2+x1x2=4可得出关于k的分式方程,解之经检验后即可得出结论.【解答】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.∵x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.26.【分析】(1)根据圆周角定理,垂径定理,平行线的性质证得OC ⊥CF,即可证得结论;(2)①利用勾股定理求得半径,进而求得OE,根据三角形中位线定理即可求得;②由平行线分线段成比例定理得到,求得CF=,OF =,即可求得AF=OF+OA=,然后根据勾股定理求得AC,即可求得三角形ACF的周长.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∴C是弧BD的中点∴OC⊥BD.∴BE=DE,∵∠AFC=∠ACD,∠ACD=∠ABD,∴∠AFC=∠ABD,∴BD∥CF,∴OC⊥CF,∵OC是半径,∴CF是圆O切线;(2)解:①设OC=R.∵DE=2CE=2,∴BE=DE=2,CE=1.∴OE=R﹣1,在Rt△OBE中(R﹣1)2+22=R2.解得R=.∴OE=﹣1=,由(1)得,OA=OB,BE=DE,∴AD=2OE=3;②连接BC.∵BD∥CF,∴,∵BE=2,OE=,R=∴CF=,OF=,∴AF=OF+OA=,在Rt△BCE中,CE=l,BE=2,∴BC==.∵AB是直径,∴△ACB为直角三角形.∴AC==2.∴△ACF周长=AC+FC+AF=10+2.27.【分析】(1)根据图象解答即可;(2)设当3≤x≤6时,y与x之间的函数关系为y=kx+b,运用待定系数法求解即可;(3)设甲加工x小时时,甲乙加工的零件个数相等,分两种情况列方程解答:①当0≤x≤1时,20x=30;②当3≤x≤6时,20x =30+40(x﹣3).【解答】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣50)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系式为y=kx+b,把B(3,90),C(6,270)代入解析式,得,解得,∴y=60x﹣90(3≤x≤6);(3)设甲加工x小时时,甲乙加工的零件个数相等,①20x=30,解得x=1.5;②50﹣20=30,20x=30+40(x﹣3),解得x=4.5,答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.28.【分析】(1)作ME∥AB、MF∥BC,证四边形BEMF是正方形得ME=MF,再证∠CME=∠FMN,从而得△MFN≌△MEC,据此可得证;(2)由FM∥AD,EM∥CD知===,据此得AF=2.4,CE=2.4,由△MFN≌△MEC知FN=EC=2.4,AN=4.8,BN=6﹣4.8=1.2,从而得出答案;(3)把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,先证△MCG≌△HCG得MG=HG,由BG:MG=3:5可设BG =3a,则MG=GH=5a,继而知BH=4a,MD=4a,由DM+MG+BG=12a=6得a=,知BG=,MG=,证△MGC∽△NGB得=,从而得出答案.【解答】解:(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴=,∴CG•NG=BG•MG=.29.【分析】(1)将点A(﹣2,0)代入解析式,对称轴为x=﹣=,联立即可求a与b的值;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,联立y=﹣mx+5,y=﹣x2+x+3根据韦达定理可得x1+x2=2m+1,x1x2=4,由面积之间的关系:S△CPQ=S△CHP﹣S△CHQ,可求m的值;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,联立有:﹣mx+3m =﹣x2+x+3,解得x=3或x=2m﹣2;由条件可得P(3,0),Q(2m﹣2,﹣2m2+5m),K(0,5﹣2m),所以有HK=|5m﹣5|=5|m﹣1|;①当0<m<1时,HK=5﹣5m,S△PQK=S△PHK+S△QHK=HK (x P﹣x Q)=(5﹣5m)(5﹣2m)=5m2﹣m+,②当1<m<时,HK=5m﹣5,S△PQK=﹣5m2+m﹣,③当2m﹣2>3时,如图③,有m>,S△PQK=×KQ|y P|=(2m2﹣5m)=3m2﹣m,【解答】解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=﹣=,∴a=﹣,b=;∴y=﹣x2+x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y=﹣mx+5,y=﹣x2+x+3得:﹣mx+5=﹣x2+x+3,∴x2﹣(2m+1)x+4=0,∴x1+x2=2m+1,x1x2=4,∵△CPQ的面积为3;∴S△CPQ=S△CHP﹣S△CHQ.即HC(x2﹣x1)=3,∴x2﹣x1=3,∴﹣4x1x2=9,∴(2m+1)2=25,∴m=2或m=﹣3,∵m>0,∴m=2;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,∴H(0,3m),∵y=﹣mx+3m与y=﹣x2+x+3相交于点P与Q,∴﹣mx+3m=﹣x2+x+3,∴x=3或x=2m﹣2,当2m﹣2<3时,有0<m<,∵点P在点Q的右边,∴P(3,0),Q(2m﹣2,﹣2m2+5m),∴AQ的直线解析式为y=x+5﹣2m,∴K(0,5﹣2m),∴HK=|5m﹣5|=5|m﹣1|,①当0<m<1时,如图①,HK=5﹣5m,∴S△PQK=S△PHK+S△QHK=HK(x P﹣x Q)=(5﹣5m)(5﹣2m)=5m2﹣m+,②当1<m<时,如图②,HK=5m﹣5,∴S△PQK=﹣5m2+m﹣,③当2m﹣2>3时,如图③,有m>,∴P(2m﹣2,﹣2m2+5m),Q(3,0),K(0,0),∴S△PQK=×KQ|y P|=(2m2﹣5m)=3m2﹣m,综上所述,S=;第31页(共31页)。

2019年黑龙江省绥化市中考数学试卷附分析答案

2019年黑龙江省绥化市中考数学试卷附分析答案

A.①③
B.①④
C.②④
D.②③
二、填空题(本题共 11 个小题,每小题 3 分,共 33 分)请在答题卡上把你的答案写在相
对应的题号后的指定区域内
11.(3 分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,
则两地的温差为
℃.
12.(3 分)若分式 有意义,则 x 的取值范围是
第 9页(共 28页)
A.5 种
B.4 种
C.3 种
D.2 种
【解答】解:设小明购买了 A 种玩具 x 件,则购买的 B 种玩具为 件,根据题意得,
, <
解得,3 <x≤8,
∵x 为整数, 也为整数,
∴x=4 或 6 或 8, ∴有 3 种购买方案. 故选:C.
9.(3 分)不等式组

的解集在数轴上表示正确的是( )

17.(3 分)如图,在△ABC 中,AB=AC,点 D 在 AC 上,且 BD=BC=AD,则∠A=
度.
18.(3 分)一次函数 y1=﹣x+6 与反比例函数 y2 (x>0)的图象如图所示,当 y1>y2 时,
自变量 x 的取值范围是

19.(3 分)甲、乙两辆汽车同时从 A 地出发,开往相距 200km 的 B 地,甲、乙两车的速度
的学生人数占调查总人数的 20%.
请根据图中的信息解答下列问题:
(1)本次调查的总人数是
人;
(2)补全条形统计图;
(3)根据调查结果,估计本校 2360 名学生中“假期活动方式”是“读书看报”的有多
少人?
第 4页(共 28页)
24.(6 分)按要求解答下列各题: (1)如图①,求作一点 P,使点 P 到∠ABC 的两边的距离相等,且在△ABC 的边 AC 上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明); (2)如图②,B、C 表示两个港口,港口 C 在港口 B 的正东方向上.海上有一小岛 A 在 港口 B 的北偏东 60°方向上,且在港口 C 的北偏西 45°方向上.测得 AB=40 海里,求 小岛 A 与港口 C 之间的距离.(结果可保留根号)

2019年黑龙江省绥化市中考数学试题及答案(Word版)

2019年黑龙江省绥化市中考数学试题及答案(Word版)

2019年黑龙江省绥化市中考数学试卷一、填空题(共11小题,每小题3分,满分33分)1.按如图所示的程序计算.若输入x 的值为3,则输出的值为_______2.函数13y x =-中自变量x 的取值范围是_____________ 3.如图,A 、B 、C 三点在同一条直线上,∠A=∠C=90°,AB=CD ,请添加一个..适当的条件 ______________使得△EAB ≌△BCD .4.在九张质地都相同的卡片上分别写有数字-4、-3、-2、-1,0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是 ___________. 5.计算:21111x x -=--____________. 6.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 ______________7.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为 _____________.8.如图所示,以O 为端点画六条射线后OA 、OB 、OC 、OD 、OE\OF 后,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1、2、3、4、5、6、7、8…后,那么所描的第2019个点在射线 ___________________上.9.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有 ___________种租车方案. 10.若关于x 的方程4122ax x x =+--无解,则a 的值是 ____________11.直角三角形两直角边长是3cm 和4cm ,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是______________ cm 2.(结果保留π) 二、选择题(共9小题,每小题3分,满分27分) 12.下列计算正确的是( )A.3332a a a =B. 2242a a a +=C. 842a a a ÷=D. 236(2)8a a -=-13.下列几何图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .矩形 C .平行四边形 D .等腰梯形14.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 的中点,EF 交AC 于点H ,则AHHC的值为( )A.1B. 12C. 13D.1415.对于反比例函数3y x=,下列说法正确的是( ) A. 图象经过点(1,-3) B. 图象在第二、四象限C. x >0时,y 随x 的增大而增大D. x <0时,y 随x 增大而减小16.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20 30 35 50 100学生数(人) 5 10 5 15 10在这次活动中,该班同学捐款金额的众数和中位数分别是()A. 30,35B. 50,35C. 50,50D. 15,5017.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A. B. C. D.18.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.719.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1B.2C.3D.420.如图,在Rt△ABC中,∠C=90°,AC= 3,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1B. 3C.33+D.123+三、解答题(共8小题,满分60分)21.(本小题满分5分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.22.(本小题满分6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为____________(2)在表中:m= ___________;n=__________(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优名.分数段频数频率60≤x<7030 0.170≤x<8090 n80≤x<90m 0.490≤x<10060 0.2如图,已知抛物线1(2)()y x x aa=-+(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.2019年4月20日8时02分四川省雅安市芦山县发生7.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了________________小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定?26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF、BC、CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.27.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?28.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程214480-+=的x x两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.。

【2019年中考真题系列】黑龙江省绥化市2019年中考数学真题试卷含答案(解析版)

【2019年中考真题系列】黑龙江省绥化市2019年中考数学真题试卷含答案(解析版)

黑龙江省绥化市2019年中考数学试卷(解析版)一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×106答案:B考点:科学记数法。

解析:把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法。

所以,370000=3.7×105,选B。

2.下列图形中,属于中心对称图形的是()答案:C考点:中心对称图形。

解析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形。

四个选项中,只有C符合,A、B、D都是轴对称图形。

3.下列计算正确的是()A.9=±3 B.(﹣1)0=0 C.2+3=5D.38=2答案:D考点:整式的运算。

解析:对于A,9是9的算术平方根,9=3,所以,A错误;对于B,任何非零数的0次方等于1,故B错误;对于C,左边两个不是同类二次根式,不能合并,错误,对于D,8的3次方根为2,故正确。

4.若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体答案:A考点:三视图。

解析:只有球体的主视图、俯视图、左视图都是半径相等的圆。

5.下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)答案:D考点:因式分解解析:对于A,提公因式后,不应该变号,所以错误,正确的是:x2﹣x=x(x-1);对于B,十字相乘法符号错误,正确的分解:a2﹣3a﹣4=(a-4)(a+1);对于C,b2项的系数为负,不能用完全平方公式,故错误;对于D,用平方差公式,正确。

2019年黑龙江省绥化市中考数学试卷

2019年黑龙江省绥化市中考数学试卷

此题主要考查了立方根、零指数幂的性质,正确化简各数是解题关键.
第 1 页,共 18 页
4. 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( )
A. 球体
B. 圆锥
C. 圆柱
D. 正方体
【答案】A
【解析】解:主视图、俯视图和左视图都是圆的几何体是球体.
故选:A.
利用三视图都是圆,则可得出几何体的形状.
8. 小明去商店购买 A、B 两种玩具,共用了 10 元钱,A 种玩具每件 1 元,B 种玩具每
件 2 元.若每种玩具至少买一件,且 A 种玩具的数量多于 B 种玩具的数量.则小明
的购买方案有( )
A. 5 种
B. 4 种
C. 3 种
D. 2 种
【答案】C
【解析】解:设小明购买了
A
种玩具
x
件,则购买的
B
种玩具为10−������件,根据题意得,
2
������ ≥ 1
10−������
{2

Hale Waihona Puke 1,10−������ >������
2
解得,1≤x<313,
∵x 为整数, ∴x=1 或 2 或 3, ∴有 3 种购买方案. 故选:C.
设小明购买了 A 种玩具 x 件,则购买的 B 种玩具为10−������件,根据题意列出不等式组进行
故选:A. 直接利用概率公式求解. 本题考查了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以所有可 能出现的结果数.
7. 下列命题是假命题的是( )
A. 三角形两边的和大于第三边 B. 正六边形的每个中心角都等于 60° C. 半径为 R 的圆内接正方形的边长等于√2R D. 只有正方形的外角和等于 360°

2019年黑龙江省绥化市中考数学试题及参考答案(word解析版)

2019年黑龙江省绥化市中考数学试题及参考答案(word解析版)

二〇一九年绥化市初中毕业学业考试数学试题(考试时间120分钟,总分120分)一、单项选择题(本题共10个小题,每小题3分,共30分)1.我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×1062.下列图形中,属于中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.=±3 B.(﹣1)0=0 C.+=D.=24.若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体5.下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)6.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.7.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于R D.只有正方形的外角和等于360°8.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种9.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2 ④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.12.若分式有意义,则x的取值范围是.13.计算:(﹣m3)2÷m4=.14.已知一组数据1,3,5,7,9,则这组数据的方差是.15.当a=2018时,代数式(﹣)÷的值是.16.用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.17.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.18.一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.19.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.20.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.21.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B 的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣m(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.参考答案一、单项选择题(本题共10个小题,每小题3分,共30分)1.我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:370000用科学记数法表示应为3.7×105,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列图形中,属于中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念求解.【解题过程】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误,故选:C.【总结归纳】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.3.下列计算正确的是()A.=±3 B.(﹣1)0=0 C.+=D.=2【知识考点】算术平方根;立方根;零指数幂.【思路分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解题过程】解:A、=3,故此选项错误;B、(﹣1)0=1,故此选项错误;C、+无法计算,故此选项错误;D、=2,正确.故选:D.【总结归纳】此题主要考查了立方根、零指数幂的性质,正确化简各数是解题关键.4.若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体【知识考点】简单几何体的三视图;由三视图判断几何体.【思路分析】利用三视图都是圆,则可得出几何体的形状.【解题过程】解:主视图、俯视图和左视图都是圆的几何体是球体.故选:A.【总结归纳】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.5.下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)【知识考点】提公因式法与公式法的综合运用;因式分解﹣十字相乘法等.【思路分析】A、原式提取公因式x得到结果,即可做出判断;B、原式利用十字相乘法分解得到结果,即可做出判断;C、等式左边表示完全平方式,不能利用完全平方公式分解;D、原式利用平方差公式分解得到结果,即可做出判断.【解题过程】解:A、原式=x(x﹣1),错误;B、原式=(a﹣4)(a+1),错误;C、a2+2ab﹣b2,不能分解因式,错误;D、原式=(x+y)(x﹣y),正确.故选:D.【总结归纳】此题考查了提公因式法、十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】直接利用概率公式求解.【解题过程】解:从袋子中随机取出1个球是红球的概率==.故选:A.【总结归纳】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.7.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于R D.只有正方形的外角和等于360°【知识考点】命题与定理.【思路分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解题过程】解:A、三角形两边的和大于第三边,正确,是真命题;B、正六边形的每个中心角都等于60°,正确,是真命题;C、半径为R的圆内接正方形的边长等于R,正确,是真命题;D、所有多边形的外角和均为360°,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和等知识,难度不大.8.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【知识考点】一元一次不等式组的应用.【思路分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解题过程】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,1≤x<3,∵x为整数,∴x=1或2或3,∴有3种购买方案.故选:C.【总结归纳】本题主要考查了一元一次不等式组的应用题,正确表示出购买B种玩具的数量和正确列出不等式组是解决本题的关键所在.9.不等式组的解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】首先解每个不等式,然后把每个不等式用数轴表示即可.【解题过程】解:,解①得x≥1,解②得x<2,利用数轴表示为:.故选:B.【总结归纳】此题主要考查了解不等式组,以及在数轴上表示解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.10.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2 ④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③【知识考点】等腰三角形的性质;等边三角形的判定与性质;正方形的性质.【思路分析】利用图象法对各个说法进行分析判断,即可解决问题.【解题过程】解:①如图1,当x=0(即E、A两点重合)时,P点有6个;故①正确;②当0<x<4﹣2时,P点最多有8个.故②错误.③当P点有8个时,如图2所示:当0<x<﹣1或﹣1<x<4﹣4或2<x<4﹣﹣1或4﹣﹣1<x<4﹣2时,P点有8个;故③错误;④如图3,当△PMN是等边三角形时,P点有4个;故④正确;当△PEF是等腰三角形时,关于P点个数的说法中,不正确的是②③,一定正确的是①④;故选:B.【总结归纳】本题考查正方形的性质、等腰三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,有一定难度.二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.【知识考点】有理数的减法.【思路分析】用哈尔滨市的平均气温减去绥化市的平均气温,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解题过程】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.【总结归纳】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.12.若分式有意义,则x的取值范围是.【知识考点】分式有意义的条件.【思路分析】分式有意义,分母不等于零.【解题过程】解:依题意得:x﹣4≠0.解得x≠4.故答案是:x≠4.【总结归纳】考查了分式有意义的条件.分式有意义的条件是分母不等于零.13.计算:(﹣m3)2÷m4=.【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解题过程】解:(﹣m3)2÷m4=:m6÷m4=m2.故答案为:m2.【总结归纳】此题主要考查了积的乘方运算以及整式的除法运算,正确掌握相关运算法则是解题关键.14.已知一组数据1,3,5,7,9,则这组数据的方差是.【知识考点】方差.【思路分析】先计算出平均数,再根据方差公式计算即可.【解题过程】解:∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,∴方差=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8;故答案为:8.【总结归纳】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.当a=2018时,代数式(﹣)÷的值是.【知识考点】分式的化简求值.【思路分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解题过程】解:(﹣)÷==a+1,当a=2018时,原式=2018+1=2019,故答案为:2019.【总结归纳】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.【知识考点】圆锥的计算.【思路分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解题过程】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【总结归纳】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.17.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.【知识考点】等腰三角形的性质.【思路分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可.【解题过程】解:设∠A=x∵AD=BD,∴∠ABD=∠A=x,∠BDC=2x∵BD=BC∴∠C=∠BDC=2x,∠DBC=x∵在BDC中x+2x+2x=180°∴x=36°∴∠A=36°.故填36.【总结归纳】本题考查了等腰三角形的性质及三角形内角和定理;根据三角形的边的关系,转化为角之间的关系,从而利用方程求解是正确解答本题的关键.18.一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.【知识考点】反比例函数与一次函数的交点问题.【思路分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解题过程】解:当2<x<4时,y1>y2.故答案为2<x<4.【总结归纳】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.19.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.【知识考点】分式方程的应用.【思路分析】设甲车的速度为xkm/h,则乙车的速度为xkm/h,根据时间=路程÷速度结合乙车比甲车早30分钟到达B地,即可得出关于x的分式方程,解之经检验后即可得出结论.【解题过程】解:设甲车的速度为xkm/h,则乙车的速度为xkm/h,依题意,得:﹣=,解得:x=80,经检验,x=80是原方程的解,且符合题意.故答案为:80.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.【知识考点】等腰三角形的性质;勾股定理;三角形的外接圆与外心.【思路分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解题过程】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【总结归纳】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.21.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.【知识考点】规律型:点的坐标.【思路分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【解题过程】解:由题意知,A1(,)A2(1,0)A3(,)A4(2,0)A5(,﹣)A6(3,0)A7(,)…由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,﹣这样循环,∴A2019(,),故答案为:(,).【总结归纳】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.【知识考点】作图﹣旋转变换;解直角三角形.【思路分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan∠BCP=1【解题过程】解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.【总结归纳】本题考查关于原点对称的点的坐标关系,三角形中线的性质,三角函数值等有关知识点.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?【知识考点】用样本估计总体;条形统计图.【思路分析】(1)由C方式的人数及其所占百分比可得总人数;(2)根据各方式的人数之和等于总人数可得D人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)本次调查的总人数是8÷20%=40(人),故答案为:40;(2)D活动方式的人数为40﹣(6+12+8+4)=10(人),补全图形如下:(3)估计本校2360名学生中“假期活动方式”是“读书看报”的有2360×=354(人).【总结归纳】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)【知识考点】角平分线的性质;作图—应用与设计作图;解直角三角形的应用﹣方向角问题.【思路分析】(1)利用尺规作∠BAC的角平分线交AC于点P,点P即为所求.(2)作AD⊥BC于D.解直角三角形求出AD,再利用等腰直角三角形的性质即可解决问题.【解题过程】解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=AB=20(海里),∵∠ACD=45°,∴AC=AD=20(海里).答:小岛A与港口C之间的距离为20海里.【总结归纳】本题考查则有﹣应用与设计,角平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.【知识考点】一元二次方程的定义;根的判别式;根与系数的关系.【思路分析】(1)分k=0及k≠0两种情况考虑:当k=0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k=0符合题意;当k≠0时,由根的判别式△≥0可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x1+x2=,x1x2=,结合x1+x2+x1x2=4可得出关于k的分式方程,解之经检验后即可得出结论.【解题过程】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.∵x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.【总结归纳】本题考查了根的判别式、根与系数的关系、一元二次方程的定义、解一元一次方程以及解分式方程,解题的关键是:(1)分k=0及k≠0两种情况,找出k的取值范围;(2)利用根与系数的关系结合x1+x2+x1x2=4,找出关于k的分式方程.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)【知识考点】勾股定理;圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)根据圆周角定理,垂径定理,平行线的性质证得OC⊥CF,即可证得结论;(2)①利用勾股定理求得半径,进而求得OE,根据三角形中位线定理即可求得;②由平行线分线段成比例定理得到,求得CF=,OF=,即可求得AF=OF+OA=,然后根据勾股定理求得AC,即可求得三角形ACF的周长.【解题过程】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∴C是弧BD的中点∴OC⊥BD.∴BE=DE,∵∠AFC=∠ACD,∠ACD=∠ABD,∴∠AFC=∠ABD,∴BD∥CF,∴OC⊥CF,∵OC是半径,∴CF是圆O切线;(2)解:①设OC=R.∵DE=2CE=2,∴BE=DE=2,CE=1.∴OE=R﹣1,在Rt△OBE中(R﹣1)2+22=R2.解得R=.∴OE=﹣1=,由(1)得,OA=OB,BE=DE,∴AD=2OE=3;②连接BC.∵BD∥CF,∴,∵BE=2,OE=,R=∴CF=,OF=,∴AF=OF+OA=,在Rt△BCE中,CE=l,BE=2,∴BC==.∵AB是直径,∴△ACB为直角三角形.∴AC==2.∴△ACF周长=AC+FC+AF=10+2.【总结归纳】本题考查了切线的判定和性质,圆周角定理,垂径定理,勾股定理的应用,平行线分线段成比例定理,三角形中位线定理等,熟练掌握性质定理是解题的关键.27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【知识考点】一次函数的应用.【思路分析】(1)根据图象解答即可;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,运用待定系数法求解即可;(3)设甲价格x小时时,甲乙加工的零件个数相等,分两种情况列方程解答:①当0≤x≤1时,20x=30;②当3≤x≤6时,20x=30+40(x﹣3).【解题过程】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,。

2019年黑龙江省绥化市中考数学试卷和答案

2019年黑龙江省绥化市中考数学试卷和答案

2019年黑龙江省绥化市中考数学试卷一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×106【答案】B.2.(3分)下列图形中,属于中心对称图形的是()A.B.C.D.【答案】C.3.(3分)下列计算正确的是()A.=±3B.(﹣1)0=0C.+=D.=2【答案】D.4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体【答案】A.5.(3分)下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)【答案】D.6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.【答案】A.7.(3分)下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于RD.只有正方形的外角和等于360°【答案】D.8.(3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C.9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【答案】B.10.(3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P 点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③【答案】B.二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为3℃.12.(3分)若分式有意义,则x的取值范围是x≠4.13.(3分)计算:(﹣m3)2÷m4=m2.14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是8.15.(3分)当a=2018时,代数式(﹣)÷的值是2019.16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为12.17.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36度.18.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是2<x<4.19.(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为80km/h.20.(3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是(,).三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=1.【答案】解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是40人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?【答案】解:(1)本次调查的总人数是8÷20%=40(人),故答案为:40;(2)D活动方式的人数为40﹣(6+12+8+4)=10(人),补全图形如下:(3)估计本校2360名学生中“假期活动方式”是“读书看报”的有2360×=354(人).24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC 上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)【答案】解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=AB=20(海里),∵∠ACD=45°,∴AC=AD=20(海里).答:小岛A与港口C之间的距离为20海里.25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.【答案】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.∵x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)【答案】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∴C是弧BD的中点∴OC⊥BD.∴BE=DE,∵∠AFC=∠ACD,∠ACD=∠ABD,∴∠AFC=∠ABD,∴BD∥CF,∴OC⊥CF,∵OC是半径,∴CF是圆O切线;(2)解:①设OC=R.∵DE=2CE=2,∴BE=DE=2,CE=1.∴OE=R﹣1,在Rt△OBE中(R﹣1)2+22=R2.解得R=.∴OE=﹣1=,由(1)得,OA=OB,BE=DE,∴AD=2OE=3;②连接BC.∵BD∥CF,∴,∵BE=2,OE=,R=∴CF=,OF=,∴AF=OF+OA=,在Rt△BCE中,CE=l,BE=2,∴BC==.∵AB是直径,∴△ACB为直角三角形.∴AC==2.∴△ACF周长=AC+FC+AF=10+2.27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x (h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有270个,甲机器每小时加工20个零件,乙机器排除故障后每小时加工40个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【答案】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,把B(3,90),C(6,270)代入解析式,得,解得,∴y=60x﹣90(3≤x≤6);(3)设甲价格x小时时,甲乙加工的零件个数相等,①20x=30,解得x=15;②50﹣20=30,20x=30+40(x﹣3),解得x=4.5,答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D 重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.【答案】解:(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH,∠DCM=∠BCH=45°,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴=,∴CG•NG=BG•MG=.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣m(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m 之间的函数解析式.【答案】解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=﹣=,∴a=﹣,b=;∴y=﹣x2+x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y=﹣mx+5,y=﹣x2+x+3得:﹣mx+5=﹣x2+x+3,∴x2﹣(2m+1)x+4=0,∴x1+x2=2m+1,x1x2=4,∵△CPQ的面积为3;∴S△CPQ=S△CHP﹣S△CHQ,即HC(x2﹣x1)=3,∴x2﹣x1=3,∴﹣4x1x2=9,∴(2m+1)2=25,∴m=2或m=﹣3,∵m>0,∴m=2;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,∴H(0,3m),∵y=﹣mx+3m与y=﹣x2+x+3相交于点P与Q,∴﹣mx+3m=﹣x2+x+3,∴x=3或x=2m﹣2,当2m﹣2<3时,有0<m<,∵点P在点Q的右边,∴P(3,0),Q(2m﹣2,﹣2m2+5m),∴AQ的直线解析式为y=x+5﹣2m,∴K(0,5﹣2m),∴HK=|5m﹣5|=5|m﹣1|,①当0<m<1时,如图①,HK=5﹣5m,∴S△PQK=S△PHK+S△QHK=HK(x P﹣x Q)=(5﹣5m)(5﹣2m)=5m2﹣m+,②当1<m<时,如图②,HK=5m﹣5,∴S△PQK=﹣5m2+m﹣,③当2m﹣2>3时,如图③,有m>,∴P(2m﹣2,﹣2m2+5m),Q(3,0),K(0,0),∴S△PQK=×KQ|y P|=(2m2﹣5m)=3m2﹣m,综上所述,S=;。

2019年黑龙江绥化中考数学试题(解析版)

2019年黑龙江绥化中考数学试题(解析版)

编辑:科目:教师:时间:{来源}2019年黑龙江绥化中考数学试卷{适用范围:3.九年级}{标题}二〇一九年绥化市初中毕业学业考试数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、单项选择题:本大题共10个小题,每小题3分,共30分.{题目}1.(2019年黑龙江绥化T1)我们的祖国地域辽阔,某中领水面积约为370 000km 2.把370 000这个数用科学记数法表示为( ) A.37×104 B.3.7×105 C.0.37×106 D.3.7×106 {答案}B{解析}本题考查了科学记数法表示数的知识.科学记数法a ×10n 中,a 的整数位数只有1位.当原数的绝对值≥10时,确定n 的方法是:①把已知数的小数点向左移动的位数即为n 值;②n 等于原数的整数位数减1.当原数的绝对值<1时,确定n 的方法是:①把已知数的小数点向右移动几位数,n 就为负几;②n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的那个0)的相反数.对于含有计数单位并需转换单位的科学记数法,利用1亿=1×108,1万=1×104,1千=1×103来表示,可使问题简化.本题中370 000=3.7×105. {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {类别:易错题} {难度:1-最简单}{题目}2.(2019年黑龙江绥化T2)下列图形中,属于中心对称图形的是( )A B C D{答案}C{解析}本题考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.选项A 、B 、D 旋转180°后与本身不重合,故不是中心对称图形;选项D ,旋转180°后与本身重合,是中心对称图形;故选C . {分值}3{章节:[1-23-2-2]中心对称图形} {考点:中心对称图形} {类别:常考题} {难度:2-简单}{题目}3.(2019年黑龙江绥化T 3)下列计算正确的是( ) A 93=± B .(-1)0=0 C 235= D 382= {答案}D{解析}99的算术平方93=;任何一个不等于0的零次幂等于1,所以(-1)0=123二次根式,因此不能运算;一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,因为23=8382=正确,故选D .{分值}3{章节:[1-6-2]立方根}{考点:算术平方根的平方}{考点:零次幂}{考点:二次根式的加减法}{考点:立方根}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}4.(2019年黑龙江绥化T4)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体{答案}A{解析}本题考查了由视图识别几何体.因为球的主视图、左视图、俯视图都是圆,故该几何体应为球体,故选A.{分值}3{章节:[1-29-2]三视图}{考点:由三视图判断几何体}{类别:常考题}{难度:1-最简单}{题目}5.(2019年黑龙江绥化T5)下列因式分解正确的是()A.x2-x=x(x+1) B.a2-3a-4=(a+4) (a-1) C.a2-2ab-b2=(a+b) 2D.x2-y2=(x+y) (x-y) {答案}D{解析}本题考查了因式分解.把一个多项式分解因式时一般先提公因式,然后再考虑套用公式,分解因式一定要彻底.选项A分解后应是x(x+1),选项B分解后应是(a-4) (a+1),选项C中应为(a-b) 2,选项D是平方差公式,x2-y2=(x+y) (x-y),故D正确.{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-平方差公式}{考点:因式分解-完全平方公式}{考点:因式分解-十字相乘式}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}6.(2019年黑龙江绥化T6)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.13B.14C.15D.16{答案}A{解析}本题考查了概率的求法.求随机事件发生的概率,常用的方法有直接列举法、列表法与画树状图法.从袋子中随机取出1个球是红球的概率是:P(红球)21 63 .{分值}3{章节:[1-25-1-2]概率}{考点:一步事件的概率}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}7.(2019年黑龙江绥化T7)下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R D.只有正方形的外角和等于360°{答案}D{解析}本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、正多边形的中心角、半径、多边形的外角和等知识.三角形的任意两边之和都大于第三边,故A正确,是真命题;正六边形的每个中心角都等于3606︒=60°,故B是真命题;半径为R的圆内接正,故C是真命题;任何多边形的外角和等于360°,故选项D错误,是假命题.{分值}3{章节:[1-5-4] 命题、定理、证明}{考点:三角形三边关系}{考点:正多边形和圆}{考点:多边形的外角和}{类别:常考题}{难度:2-简单}{题目}8.(2019年黑龙江绥化T8)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量,则小明的购买方案有()A.5种B.4种C.3种D.2种{答案}C{解析}此题主要考查了二元一次方程的应用,解题的关键是弄清楚题意,找到题中的等量关系,列出方程解答问题.设买A种文具为x件,B种文具为y件,依题意得:x+2y=10,则102xy-=.∵x、y为正整数,∴当x=1时,y=4.5(舍去);当x=2时,y=4;当x=3时,y=3.5(舍去);当x=4时,y=3;当x=5时,y=2.5(舍去);当x=6时,y=2;当x=7时,y=1.5(舍去);当x=8时,y=1;当x=9时,y=0.5(舍去);当x=10时,y=0(舍去);综上所述,共有4种购买方案.故选B.{分值}3{章节:[1-8-3]实际问题与一元一次方程组}{考点:二元一次方程组的应用}{考点:二元一次方程的解}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年黑龙江绥化T9)不等式组10842xx x-≥⎧⎨+>+⎩的解集在数轴上表示正确的是(){答案}B{解析}本题考查了不等式组的解法及在数轴上表示其解集.10842xx x-≥⎧⎨+>+⎩①②,解①得x≥1;解②得x<2,故不等式组的解集为1≤x<2,在数轴上表示应包含1,但不包含2,故表示正确的是选项B.{分值}3{章节:[1-9-3]一元一次不等式组}{考点:解一元一次不等式组}{考点:在数轴上表示不等式的解集}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}10.(2019年黑龙江绥化T10)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x,当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是:①当x=0(即E、A两点重合)时,P点有6个;②当0<x<42-2时,P点最多有9个;③当P点有8个时,x=22-2;④当△PEF是等边三角形时,P点有4个.其中结论正确的是()A.①③B.①④C.②④D.②③{答案}B{解析}本题考查正方形的性质、等腰三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.①如图1,当x=0(即E、A两点重合)时,P点有6个,故①正确;③当P点有8个时,当0<x<3-1或3-1<x<42-4或2<x<42-3-1或42-3-1<x<42-2时,P点有8个.故③错误④如图,当△PEF是等边三角形时,P点有4个;故④正确;②当0<x<2-2时,P点最多有8个.故②错误.故选B.{分值}3{章节:[1-13-2-1]等腰三角形}{考点:等边三角形的判定与性质}{考点:正方形的性质}{考点:等腰三角形的判定与性质}{类别:易错题}{难度:4-较高难度}{题型:2-填空题}二、填空题(本题共11个小题,每小题3分,共33分) {题目}11.(2019年黑龙江绥化T11)某年一月份,哈尔滨市的平均气温均为-20℃,绥化市的平均气温约为-23℃,则两地的温差为 ℃. {答案} 3{解析}本本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.-20-(-23)=-20+23=3(℃). {分值}3{章节:[1-1-3-2]有理数的减法} {考点:两个有理数的减法} {类别:常考题} {难度:1-最简单}{题目}12.(2019年黑龙江绥化T12)则x 的取值范围是 . {答案}x ≠4{解析}本题考查分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.当分母x -4≠0,即x ≠4时,分式4x -有意义. {分值}3{章节:[1-15-1]分式} {考点:分式的意义} {类别:常考题} {难度:2-简单} {题目}13.(2019年黑龙江绥化T13)计算:(-m 3)2÷m 4= . {答案} m 2{解析}本题考查了幂的乘方和同底数幂的除法.(-m 3)2÷m 4=m 6÷m 4= m 2. {分值}3{章节:[1-14-1]整式的乘法} {考点:幂的乘方}{考点:同底数幂的除法}{类别:常考题} {难度:1-最简单} {题目}14.(2019年黑龙江绥化T14)当已知一组数据1,3,5,7,9,则这组数据的方差是 . {答案}8{解析}本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.1、3、5、7、9的平均数是(13579)55++++÷=,∴方差222221[(15)(35)(55)(75)(95)]85=-+-+-+-+-=. {分值}3{章节:[1-20-2-1]方差} {考点:方差} {类别:常考题} {难度:2-简单}{题目}15.(2019年黑龙江绥化T15)当a =2018时,代数式211()11(1)a a a a a --÷+++的值是 . {答案}2019{解析}本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.211()11(1)a a a a a --÷+++21(1)11a a a a -+=+-1a =+,当2018a =时,原式201812019=+=.{分值}3{章节:[1-15-1]分式} {考点:分式的混合运算} {类别:常考题} {难度:2-简单} {题目}16.(2019年黑龙江绥化T16)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 . {答案}12{解析}本题考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.设圆锥的母线长为l ,根据题意得:12024180lππ=⨯,解得:12l =. {分值}3{章节:[1-24-4]弧长和扇形面积} {考点:弧长的计算} {考点:圆锥侧面展开图} {类别:常考题} {难度:2-简单}{题目}17.(2019年黑龙江绥化T17)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A = 度 .{答案}36°{解析}本题考查了等腰三角形的性质及三角形内角和定理;根据三角形的边的关系,转化为角之间的关系,从而利用方程求解是正确解答本题的关键.设A x ∠=,AD BD =,ABD A x ∴∠=∠=,2BDC x ∠=,BD BC =,2C BDC x ∴∠=∠=,DBC x ∠=,在BDC中22180x x x ++=︒,36x ∴=︒,36A ∴∠=︒. {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {考点:等腰三角形的性质} {类别:常考题} {难度:2-简单}{题目}18.(2019年黑龙江绥化T18)一次函数y 1= -x +6与反比例函数28(0)y x x=>的图象如图所示.当12y y >时,自变量x 的取值范围是 .{答案}24x <<{解析}本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.当12y y >时,反映在图象上是1y 的图象在2y 的图象上方对应的范围,此时24x <<.{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {类别:常考题} {难度:2-简单}{题目}19.(2019年黑龙江绥化T19)甲、乙两辆汽车同时从A 地出发,开往相距200km 的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为/km h.{答案}80{解析}本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.设甲车的速度为/xkm h,则乙车的速度为5/4xkm h,依题意,得:200200305604x x-=,解得:80x=,经检验,80x=是原方程的解,且符合题意.{分值}3{章节:[1-15-3]分式方程}{考点:分式方程的应用(行程问题)}{类别:常考题}{难度:2-简单}{题目}20.(2019年黑龙江绥化T20)半径为5的O是锐角三角形ABC的外接圆,AB AC=,连接OB、OC,延长CO交弦AB于点D.若OBD∆是直角三角形,则弦BC的长为.{答案}53或52{解析}本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.如图1,当90ODB∠=︒时,即CD AB⊥,AD BD∴=,AC BC∴=,AB AC=,ABC∴∆是等边三角形,30DBO∴∠=︒,5OB=,353 BD OB∴==,53BC AB∴==,如图2,当90DOB∠=︒,90BOC∴∠=︒,BOC∴∆是等腰直角三角形,252BC OB∴==,综上所述:若OBD∆是直角三角形,则弦BC的长为53或52.{分值}3{章节:[1-24-1-2]垂直于弦的直径}{考点:垂径定理}{考点:三角形的外接圆与外心}{考点:等边三角形的判定与性质}{考点:等腰直角三角形}{类别:易错题}{难度:3-中等难度}{题目}21.(2019年黑龙江绥化T21)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5……”的路线运动.设第n秒运动到点P n (n为正整数),则点P2019的坐标是.{答案}(20192,32){解析}本题是有关点的坐标的规律题.等边三角形的边长为1,则高线为32,观察图象可知点P每6秒走一个循环,第n个循环的端点坐标为(3n,0),∵2019÷6=336……3,∴P2019的坐标应为(201923.{分值}3{章节:[1-7-2]平面直角坐标系}{考点:点的坐标}{类别:常考题}{难度:3-中等难度}{题型:4-解答题}三、解答题:(本大题共8小题,合计57分.){题目}22.(2019年烟台T22)(本题满分6分)如图,已知△ABC三个顶点的坐标分别为A(-2,-4),B(0,4),C(1,-1).(1)请在网格中,画出线段BC关于原点对称的线段B1C1.(2)请在网格中,过点C画一直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若有另一点P(-3,-3),连接PC,tan∠BCP=________.{解析}本题考查了以网格图为背景利用数学知识画图、计算的问题.(1)根据中心对称知识画图或利用关于原点对称的点的坐标的特点画图;(2)利用三角形的中线把三角形分成相等的两部分画图;(3)链接BP,利用勾股定理的逆定理可知△BCP是等腰直角三角形,从而可知tan∠BCP 的值。

2019年黑龙江省绥化市中考数学试题(含答案)

2019年黑龙江省绥化市中考数学试题(含答案)

2019年黑龙江省绥化市中考数学试卷一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×1062.下列图形中,属于中心对称图形的是()3.下列计算正确的是()A9±3 B.(﹣1)0=0 C235D38 24.若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体5.下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)6.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.13B.14C.15D.167.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R2RD.只有正方形的外角和等于360°8.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种9.不等式组的解集在数轴上表示正确的是( )10.如图,在正方形ABCD 中,E 、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB =4,EF =2,设AE =x .当△PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当x =0(即E 、A 两点重合)时,P 点有6个②当0<x <42﹣2时,P 点最多有9个③当P 点有8个时,x =22﹣2④当△PEF 是等边三角形时,P 点有4个A .①③B .①④C .②④D .②③二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为 ℃.123x 的取值范围是 . 13.计算:(﹣m 3)2÷m 4= .14.已知一组数据1,3,5,7,9,则这组数据的方差是 .15.当a =2018时,代数式(1a a +﹣11a +)÷21(1)a a -+的值是 . 16.用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.17.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.18.一次函数y1=﹣x+6与反比例函数y2=8x(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.19.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.20.半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.21.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B 的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C 之间的距离.(结果可保留根号)25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣m(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.。

2019年黑龙江省绥化市中考数学试卷(含解析)完美打印版

2019年黑龙江省绥化市中考数学试卷(含解析)完美打印版

2019年黑龙江省绥化市中考数学试卷一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×1062.(3分)下列图形中,属于中心对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.=±3B.(﹣1)0=0C.+=D.=24.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体5.(3分)下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.7.(3分)下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于R D.只有正方形的外角和等于360°8.(3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.10.(3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.12.(3分)若分式有意义,则x的取值范围是.13.(3分)计算:(﹣m3)2÷m4=.14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是.15.(3分)当a=2018时,代数式(﹣)÷的值是.16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.17.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.18.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.19.(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.20.(3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于点C,且点A 坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.2019年黑龙江省绥化市中考数学试卷参考答案与试题解析一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()A.37×104B.3.7×105C.0.37×106D.3.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:370000用科学记数法表示应为3.7×105,故选:B.2.(3分)下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误,故选:C.3.(3分)下列计算正确的是()A.=±3B.(﹣1)0=0C.+=D.=2【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:A、=3,故此选项错误;B、(﹣1)0=1,故此选项错误;C、+无法计算,故此选项错误;D、=2,正确.故选:D.4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球体.故选:A.5.(3分)下列因式分解正确的是()A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)【分析】A、原式提取公因式x得到结果,即可做出判断;B、原式利用十字相乘法分解得到结果,即可做出判断;C、等式左边表示完全平方式,不能利用完全平方公式分解;D、原式利用平方差公式分解得到结果,即可做出判断.【解答】解:A、原式=x(x﹣1),错误;B、原式=(a﹣4)(a+1),错误;C、a2+2ab﹣b2,不能分解因式,错误;D、原式=(x+y)(x﹣y),正确.故选:D.6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.【分析】直接利用概率公式求解.【解答】解:从袋子中随机取出1个球是红球的概率==.故选:A.7.(3分)下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于RD.只有正方形的外角和等于360°【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解答】解:A、三角形两边的和大于第三边,正确,是真命题;B、正六边形的每个中心角都等于60°,正确,是真命题;C、半径为R的圆内接正方形的边长等于R,正确,是真命题;D、所有多边形的外角和均为360°,故错误,是假命题,故选:D.8.(3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.9.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解每个不等式,然后把每个不等式用数轴表示即可.【解答】解:,解①得x≥1,解②得x<2,利用数轴表示为:.故选:B.10.(3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③【分析】利用图象法对各个说法进行分析判断,即可解决问题.【解答】解:①如图1,当x=0(即E、A两点重合)时,P点有6个;故①正确;②当0<x<4﹣2时,P点最多有8个.故②错误.③当P点有8个时,如图2所示:当0<x<﹣1或﹣1<x<4﹣4或2<x<4﹣﹣1或4﹣﹣1<x<4﹣2时,P点有8个;故③错误;④如图3,当△PMN是等边三角形时,P点有4个;故④正确;当△PEF是等腰三角形时,关于P点个数的说法中,不正确的是②③,一定正确的是①④;故选:B.二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为3℃.【分析】用哈尔滨市的平均气温减去绥化市的平均气温,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.12.(3分)若分式有意义,则x的取值范围是x≠4.【分析】分式有意义,分母不等于零.【解答】解:依题意得:x﹣4≠0.解得x≠4.故答案是:x≠4.13.(3分)计算:(﹣m3)2÷m4=m2.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:(﹣m3)2÷m4=:m6÷m4=m2.故答案为:m2.14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是8.【分析】先计算出平均数,再根据方差公式计算即可.【解答】解:∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,∴方差=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8;故答案为:8.15.(3分)当a=2018时,代数式(﹣)÷的值是2019.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(﹣)÷==a+1,当a=2018时,原式=2018+1=2019,故答案为:2019.16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为12.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.17.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36度.【分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可.【解答】解:设∠A=x∵AD=BD,∴∠ABD=∠A=x,∠BDC=2x∵BD=BC∴∠C=∠BDC=2x,∠DBC=x∵在BDC中x+2x+2x=180°∴x=36°∴∠A=36°.故填36.18.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是2<x<4.【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当2<x<4时,y1>y2.故答案为2<x<4.19.(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为80km/h.【分析】设甲车的速度为xkm/h,则乙车的速度为xkm/h,根据时间=路程÷速度结合乙车比甲车早30分钟到达B地,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲车的速度为xkm/h,则乙车的速度为xkm/h,依题意,得:﹣=,解得:x=80,经检验,x=80是原方程的解,且符合题意.故答案为:80.20.(3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为5或5.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是(,).【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【解答】解:由题意知,A1(,)A2(1,0)A3(,)A4(2,0)A5(,﹣)A6(3,0)A7(,)…由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,﹣这样循环,∴A2019(,),故答案为:(,).三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=1.【分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan∠BCP=1【解答】解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的20%.请根据图中的信息解答下列问题:(1)本次调查的总人数是40人;(2)补全条形统计图;(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?【分析】(1)由C方式的人数及其所占百分比可得总人数;(2)根据各方式的人数之和等于总人数可得D人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数是8÷20%=40(人),故答案为:40;(2)D活动方式的人数为40﹣(6+12+8+4)=10(人),补全图形如下:(3)估计本校2360名学生中“假期活动方式”是“读书看报”的有2360×=354(人).24.(6分)按要求解答下列各题:(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏(结东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.果可保留根号)【分析】(1)利用尺规作∠BAC的角平分线交AC于点P,点P即为所求.(2)作AD⊥BC于D.解直角三角形求出AD,再利用等腰直角三角形的性质即可解决问题.【解答】解:(1)如图,点P即为所求.(2)作AD⊥BC于D.在Rt△ABD中,∵AB=40海里,∠ABD=30°,∴AD=AB=20(海里),∵∠ACD=45°,∴AC=AD=20(海里).答:小岛A与港口C之间的距离为20海里.25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.【分析】(1)分k=0及k≠0两种情况考虑:当k=0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k=0符合题意;当k≠0时,由根的判别式△≥0可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x1+x2=,x1x2=,结合x1+x2+x1x2=4可得出关于k的分式方程,解之经检验后即可得出结论.【解答】解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;当k≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.综上所述,k的取值范围为k≤.(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.∵x1+x2+x1x2=4,∴+=4,解得:k=1,经检验,k=1是分式方程的解,且符合题意.∴k的值为1.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.(1)求证:直线CF是⊙O的切线;(2)若DE=2CE=2.①求AD的长;②求△ACF的周长.(结果可保留根号)【分析】(1)根据圆周角定理,垂径定理,平行线的性质证得OC⊥CF,即可证得结论;(2)①利用勾股定理求得半径,进而求得OE,根据三角形中位线定理即可求得;②由平行线分线段成比例定理得到,求得CF=,OF=,即可求得AF=OF+OA=,然后根据勾股定理求得AC,即可求得三角形ACF的周长.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∴C是弧BD的中点∴OC⊥BD.∴BE=DE,∵∠AFC=∠ACD,∠ACD=∠ABD,∴∠AFC=∠ABD,∴BD∥CF,∴OC⊥CF,∵OC是半径,∴CF是圆O切线;(2)解:①设OC=R.∵DE=2CE=2,∴BE=DE=2,CE=1.∴OE=R﹣1,在Rt△OBE中(R﹣1)2+22=R2.解得R=.∴OE=﹣1=,由(1)得,OA=OB,BE=DE,∴AD=2OE=3;②连接BC.∵BD∥CF,∴,∵BE=2,OE=,R=∴CF=,OF=,∴AF=OF+OA=,在Rt△BCE中,CE=l,BE=2,∴BC==.∵AB是直径,∴△ACB为直角三角形.∴AC==2.∴△ACF周长=AC+FC+AF=10+2.27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有270个,甲机器每小时加工20个零件,乙机器排除故障后每小时加工40个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【分析】(1)根据图象解答即可;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,运用待定系数法求解即可;(3)设甲价格x小时时,甲乙加工的零件个数相等,分两种情况列方程解答:①当0≤x≤1时,20x =30;②当3≤x≤6时,20x=30+40(x﹣3).【解答】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90﹣50)÷(3﹣1)=20(个),乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,把B(3,90),C(6,270)代入解析式,得,解得,∴y=60x﹣90(3≤x≤6);(3)设甲价格x小时时,甲乙加工的零件个数相等,①20x=30,解得x=1.5;②50﹣20=30,20x=30+40(x﹣3),解得x=4.5,答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.【分析】(1)作ME∥AB、MF∥BC,证四边形BEMF是正方形得ME=MF,再证∠CME=∠FMN,从而得△MFN≌△MEC,据此可得证;(2)由FM∥AD,EM∥CD知===,据此得AF=2.4,CE=2.4,由△MFN≌△MEC知FN=EC=2.4,AN=4.8,BN=6﹣4.8=1.2,从而得出答案;(3)把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,先证△MCG≌△HCG得MG=HG,由BG:MG=3:5可设BG=3a,则MG=GH=5a,继而知BH=4a,MD=4a,由DM+MG+BG=12a=6得a=,知BG=,MG=,证△MGC∽△NGB得=,从而得出答案.【解答】解:(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴=,∴CG•NG=BG•MG=.29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于点C,且点A 坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.【分析】(1)将点A(﹣2,0)代入解析式,对称轴为x=﹣=,联立即可求a与b的值;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,联立y=﹣mx+5,y=﹣x2+x+3根据韦达定理可得x1+x2=2m+1,x1x2=4,由面积之间的关系:S△CPQ=S△CHP﹣S△CHQ,可求m的值;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,联立有:﹣mx+3m=﹣x2+x+3,解得x=3或x=2m﹣2;由条件可得P(3,0),Q(2m﹣2,﹣2m2+5m),K(0,5﹣2m),所以有HK=|5m﹣5|=5|m ﹣1|;①当0<m<1时,HK=5﹣5m,S△PQK=S△PHK+S△QHK=HK(x P﹣x Q)=(5﹣5m)(5﹣2m)=5m2﹣m+,②当1<m<时,HK=5m﹣5,S△PQK=﹣5m2+m﹣,③当2m﹣2>3时,如图③,有m>,S△PQK=×KQ|y P|=(2m2﹣5m)=3m2﹣m,【解答】解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=﹣=,∴a=﹣,b=;∴y=﹣x2+x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y=﹣mx+5,y=﹣x2+x+3得:﹣mx+5=﹣x2+x+3,∴x2﹣(2m+1)x+4=0,∴x1+x2=2m+1,x1x2=4,∵△CPQ的面积为3;∴S△CPQ=S△CHP﹣S△CHQ,即HC(x2﹣x1)=3,∴x2﹣x1=3,∴﹣4x1x2=9,∴(2m+1)2=25,∴m=2或m=﹣3,∵m>0,∴m=2;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,∴H(0,3m),∵y=﹣mx+3m与y=﹣x2+x+3相交于点P与Q,∴﹣mx+3m=﹣x2+x+3,∴x=3或x=2m﹣2,当2m﹣2<3时,有0<m<,∵点P在点Q的右边,∴P(3,0),Q(2m﹣2,﹣2m2+5m),∴AQ的直线解析式为y=x+5﹣2m,∴K(0,5﹣2m),∴HK=|5m﹣5|=5|m﹣1|,①当0<m<1时,如图①,HK=5﹣5m,∴S△PQK=S△PHK+S△QHK=HK(x P﹣x Q)=(5﹣5m)(5﹣2m)=5m2﹣m+,②当1<m<时,如图②,HK=5m﹣5,∴S△PQK=﹣5m2+m﹣,③当2m﹣2>3时,如图③,有m>,∴P(2m﹣2,﹣2m2+5m),Q(3,0),K(0,0),∴S△PQK=×KQ|y P|=(2m2﹣5m)=3m2﹣m,综上所述,S=;。

2019年黑龙江省绥化中考数学试卷-答案

2019年黑龙江省绥化中考数学试卷-答案

黑龙江省绥化市2019年中考数学试卷数学答案解析 一、单项选择题1.【答案】B【解析】把一个数表示成a 与10的n 次幂相乘的形式(110a ≤<,n 为整数),这种记数法叫做科学记数法.所以,5370000 3.710=⨯,选B .【考点】科学记数法 2.【答案】C【解析】在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.四个选项中,只有C 符合,A 、B 、D 都是轴对称图形.【考点】中心对称图形3.【答案】D【解析】对于A 是93=,所以,A 错误;对于B ,任何非零数的0次方等于1,故B 错误;对于C ,左边两个不是同类二次根式,不能合并,错误,对于D ,8的3次方根为2,故正确.【考点】整式的运算4.【答案】A【解析】只有球体的主视图、俯视图、左视图都是半径相等的圆.【考点】三视图5.【答案】D【解析】对于A ,提公因式后,不应该变号,所以错误,正确的是:21x x x x -=-();对于B ,十字相乘法符号错误,正确的分解:23441a a a a --=-()(+);对于C ,2b 项的系数为负,不能用完全平方公式,故错误;对于D ,用平方差公式,正确.【考点】因式分解6.【答案】A【解析】因为共有6个球,红球有2个,所以,取出红球的概率为:21P 63==.【考点】概率7.【答案】D【解析】三角形两边的和大于第三边,A 正确;正六边形6条边对应6个中心角,每个中心角都等于360606︒=︒,B 正确;半径为R 的圆内接正方形中,对角线长为圆的直径,即为2R ,设边长等于x ,则:222(2)x x R +=,解得边长为:x =,C 正确;任何凸n (3n ≥)边形的外角和都为360︒,所以,D 为假命题.【考点】命题真假判断,三角形的性质,正多边形的性质8.【答案】C【解析】设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 满足条件:11x y x y ≥,≥,>,当2x =时,4y =,不符合;当4x =时,3y =,符合;当6x =时,2y =,符合;当8x =时,1y =,符合;共3种购买方案.【考点】二元一次方程,不等式9.【答案】B【解析】由10x -≥,得:1x ≥,由842x x +>+,得:2x <,所以,不等式组的解集为:12x ≤<,B 符合.【考点】二元一次不等式组10.【答案】B【解析】①当0x =(即E 、A 两点重合)时,如下图,分别以A 、F 为圆心,2为半径画圆,各2个P 点,以AF 为直径作圆,有2个P 点,共6个,所以,①正确.②当02x -<<时,P 点最多有8个,故②错误.③当P 点有8个时,如图2所示:当01x -<14x --<<或21x <<或12x -<<时, P 点有8个;故③错误;④如图3,当PMN △是等边三角形时,P 点有4个;故④正确;当PEF △是等腰三角形时,关于P 点个数的说法中,不正确的是②③,不一定正确的是①④; 故选:B .【考点】正方形的性质,等腰三角形的判定,等边三角形的判定二、填空题11.【答案】3【解析】202320233---=+-=().【考点】实数的运算12.【答案】4x ≠【解析】分子是常数,分母不能为0,所以,4x ≠.【考点】分式的意义13.【答案】2m【解析】原式64642m m m m -=÷==.【考点】整式的运算14.【答案】8【解析】数据的平均数为:5,方差为:21(1640416)85s =++++=. 【考点】数据的方差15.【答案】2019 【解析】原式21(1)111a a a a a -+=⨯=++-,当2018a =时,原式2019=. 【考点】分式的运算16.【答案】12 【解析】依题意,有:12024180l ππ⨯⨯=,解得:12l =. 【考点】圆锥的侧面展开图17.【答案】36【解析】设A ∠为x 度,因为BD AD =,所以,ABD A ∠=∠,因为BD BC =,所以,2C BDC x ∠=∠=,因为AB AC =,所以,2ABC C x ∠=∠=,所以,2DBC x x x ∠=-=,在三角形DBC 中, 22180x x x =︒++,解得:36x =︒.【考点】等边对等角,三角形内角和定理18.【答案】24x <<【解析】由图可知,当24x <<时,有12y y >在2x <,4x >时,都有12y y <时,所以,24x <<.【考点】一次函数与反比函数的图象,由图象解不等式19.【答案】80【解析】设甲车的速度为 km/h x ,则乙车的速度为5 km/h 4x ,依题意,得:200200305604x x -=, 解得:80x =,经检验,80x =是原方程的解,且符合题意.【考点】分式方程20.【答案】或【解析】解:如图1,当90ODB ∠=︒时,即CD AB ⊥,AD BD ∴=,AC BC ∴=,AB AC = ,ABC ∴△是等边三角形,30DBO ∴∠=︒,5OB = ,BD ∴==BC AB ∴==,如图2,当90DOB ∠=︒,90BOC ∴∠=︒,BOC ∴△是等腰直角三角形,BC ∴==,综上所述,若OBD △是直角三角形,则弦BC 的长为,故答案为:或.【考点】等边三角形,三角函数21.【答案】20192⎛ ⎝⎭【解析】解:由题意知,112A ⎛ ⎝⎭2(1,0)A332A ⎛ ⎝⎭4(2,0)A55,2A ⎛ ⎝⎭6(3,0)A772A ⎛ ⎝⎭……由上可知,每个点的横坐标为序号的一半,纵坐标每6这样循环,201920192A ⎛∴ ⎝⎭故答案为:20192⎛ ⎝⎭.【考点】找规律三、解答题22.【答案】(1)(2)(14)D --,(3)1【解析】(1)作出线段11B C ,标字母1B 和1C ;(2)画出直线CD ,写出(14)D --,(3)1【考点】平面直角坐标系,中心对称,三角函数23.【答案】(1)40(2)(3)354【解析】(1)40(2)补全条形图.(3)解:6236035440⨯=(人) 答:根据调查结果,本校假期活动方式是“读书看报”的人数约有354人.【考点】统计图,样本估计总体24.【答案】(1)(2)【解析】(1)如下图:作出ABC ∠的平分线,标出点P .(2)解:过点A 作AD BC ⊥于点D .由题意得30,45ABD ACD ∠∠=︒=︒.在Rt ADB △中,40AB = ,sin3020AD AB ∴=⋅︒=.在Rt ADC △中,sin AD ACD AC∠= ,sin 45AD AC ∴==︒(海里).答:小岛A 与港口C 之间的距离是海里.【考点】角平分线的作法,三角函数25.【答案】(1)94k ≤ (2)1【解析】(1)当0k =时,方程是一元一次方程,有实数根符合题意, 当0k ≠时,方程是一元二次方程,由题意得24940b ac k ∆=-=-≥, 解得:94k ≤.综上,k 的取值范围是94k ≤.(2)1x 和2x 是方程2310kx x -+=的两根,121231,x x x x k k ∴+==.12124x x x x ++= ,314k k ∴+=.解得1k =,经检验:1k =是分式方程的解,且914<.答:k 的值为1.【考点】一元二次方程根的判别式,韦达定理26.【答案】(1)证明: AC 平分BAD ∠,BAC DAC ∴∠=∠.∴C 是弧BD 的中点.OC BD ∴⊥.BE DE ∴=.,AFC ACD ACD ABD ∠=∠∠=∠ ,AFC ABD ∴∠=∠.BD CF ∴∥.OC CF ∴⊥.OC 是半径,∴CF 是圆O 切线.(2)解:①设OC R =.22DE CE == ,2,1BE DE CE ∴===.1OE R ∴=-.在Rt OBE △中,222(1)2R R -+=, 解得52R =. 53122OE ∴=-=. 由(1)得,OA OB BE DE ==,23AD OE ∴==.②连接BC .BD CF ∥,BE OE OB FC OC OF∴==. 352,,22BE OE R === , 1025,36CF OF ∴==. 203AF OF OA ∴=+=. 在Rt BCE △中,1,2CE BE ==,BC ∴==.AB 是直径,ACB ∴△为直角三角形.AC ∴=ACF ∴△周长10AC FC AF =++=+.【考点】圆的切线的判定,三角形相似的性质,勾股定理27.【答案】(1)2702040(2)设当36x ≤≤时,y 与x 之间的函数解析式为y kx b =+,把(3,90),(6,270)B C 代入解析式,得3906270k b k b +=⎧⎨+=⎩ 解得6090k b =⎧⎨=-⎩6090(36)y x x ∴=-≤≤(3)解:设甲加工x 小时时,甲与乙加工的零件个数相等.①2030x =1.5x =②502030-=203040(3)x x =+-4.5x =答:甲加工1.5 h 或4.5 h 时,甲与乙加工的零件个数相等.【考点】待定系数法,二元一次方程组,一次函数的图象28.【答案】(1)证明:如图,过M 分别作ME AB ∥交BC 于点E ,MF BC ∥交AB 于点F ,则四边形BEMF 是平行四边形.四边形ABCD 是正方形,90,45ABC ABD CBD BME ∴∠=︒∠=∠=∠=︒.ME BE ∴=.∴平行四边形MEBF 是正方形.ME MF ∴=.CM MN ⊥ ,90CMN ∴∠=︒.90FME ∠=︒ ,CME FMN ∴∠=∠.MFN MEC ∴△≌△.MN MC ∴=.(2)证明:由(1)得:,FM AD EM CD ∥∥,25AF CE DM AB BC BD ∴===. 2.4, 2.4AF CE ∴==.MFN MEC △≌△,2.4FN EC ∴==.4.8,6 4.8 1.2AN BN ∴==-=.4AN BN ∴=.(3)解:把DMC △绕点C 逆时针旋转90︒得到BHC △,连接GH .,90DMC BHC BCD ∠=︒ △≌△,,,,45MC HC DM BH CDM CBH DCM BCH ∴==∠=∠∠=∠=︒.90,90MBH MCH ∴∠=︒∠=︒.,MC MN MC MN =⊥ ,MNC ∴△是等腰直角三角形.45MNC ∴∠=︒.45NCH ∴∠=︒.MCG HCG ∴△≌△.MG HG ∴=.:3:5BG MG = ,∴设3BG a =,则5MG GH a ==.在Rt BGH △中,4BH a ==,则4MD a =.正方形ABCD 的边长为6,BD ∴=.12DM MG BG a ∴++==.a ∴=.BG MG ∴==,45MGC NGB MNG GBC ∠=∠∠=∠=︒ ,MGC NGB ∴△∽△.GC MG GB NG∴=. 152CG NG BG MG ∴==.【考点】正方形的判定,三角形全等的判定,三角形相似的性质29.【答案】(1) 抛物线对称轴是122b x a =-=又经过点A (2,0)-, 由题意得1224230.b a a b ⎧-=⎪⎨⎪-+=⎩ 解得11,22a b =-=. ∴抛物线的解析式为211322y x x =-++. (2)设点Q 横坐标为1x ,点P 横坐标为2x ,则有12x x <.把5n =-代入y mx n =--得5y mx =-+.5y mx =-+ 与211322y x x =-++交于点P 和点Q , 2115322mx x x ∴-+=-++. 整理得2(21)40x m x -++=.121221,4x x m x x ∴+=+=.CPQ △的面积为3,CPQ CHP CHQ S S S ∴=-△△△ 即()21132HC x x -=. 213x x ∴-=.()2121249x x x x ∴+-=2(21)25m +=. 122,3m m ∴==-.0m > ,2m ∴=.(3)当3n m =-时,:3PQ y mx m =-+,(0,3)H m ∴.3y mx m =-+ 与211322y x x =-++交于点P 和点Q , 2113322mx m x x ∴-+=-++, 2(21)6(1)0x m x m -++-=,(3)(22)0x x m --+=,123,22x x m ∴==-.当223m -<时,有502m <<. 点P 在点Q 的右边,()2(3,0),22,25P Q m m m ∴--+.52:522m AQ y x m -∴=+-.(0,52)K m ∴-.|55|5|1|HK m m ∴=-=-.①当01m <<时,如图①,55HK m =-,PQK PHK QHK S S S ∴=+△△△()12P Q HK x x =-1(55)(52)2m m =--23525522m m =-+.②当52m 1<<时,如图②,55HK m =-,23525522PQK S m m ∴=-+-△.当223m ->时,如图③,有52m >.()222,25,(3,0),(0,0)P m m m Q K ∴--+.12P RQK S KQ y ∴= △()23252m m =-21532m m =-.综上,22235255(01)2235255512221553.22m m m S m m m m m m ⎧-+<<⎪⎪⎪⎛⎫=-+-<<⎨ ⎪⎝⎭⎪⎪⎛⎫->⎪ ⎪⎝⎭⎩,,【考点】待定系数法求二次函数的解析式,二次函数的图象及其性质,分类讨论,一元二次方程。

最新黑龙江省绥化市年中考数学试题(word版,含答案)

最新黑龙江省绥化市年中考数学试题(word版,含答案)

黑龙江省绥化市2019年中考数学试题(word 版,含答案)一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B 铅笔将你地选项所对应地大写字母涂黑1.如图,直线,AB CD 被直线EF 所截,155∠=o ,下列条件中能判定//AB CD 地是()A .235∠=oB .245∠=oC .255∠=oD .2125∠=o2.某企业地年收入约为700000元,数据“700000”用科学记数法可表示为()A .60.710⨯B .5710⨯C .4710⨯D .47010⨯3.下列运算正确地是()A .2325a a a +=B .333a b ab +=C .2222a bc a bc a bc -=D .523a a a -=4.正方形地正投影不可能...是() A .线段B .矩形C .正方形D .梯形5.不等式组1313x x -≤⎧⎨+>⎩地解集是() A .4x ≤B .24x <≤C .24x ≤≤D .2x >6.如图,A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到地,若A B C '''∆地面积与ABC ∆地面积比是4:9,则:OB OB '为()A .2:3B .3:2C .4:5D .4:97.从一副洗匀地普通扑克牌中随机抽取一张,则抽出红桃地概率是()A .154B .1354C .113D .14 8.在同一平面直角坐标系中,直线41y x =+与直线y x b =-+地交点不可能...在() A .第一象限B .第二象限C .第三象限D .第四象限9.某楼梯地侧面如图所示,已测得BC 地长约为3.5米,BCA ∠约为29o ,则该楼梯地高度AB 可表示为()A .3.5sin 29o 米B .3.5cos 29o 米C .3.5tan 29o 米D . 3.5cos 29o 米 10.如图,在ABCD Y 中,,AC BD 相交于点O ,点E 是OA 地中点,连接BE 并延长交AD 于点F ,已知4AEF S ∆=,则下列结论:①12AF FD =,②36BCE S ∆=,③12ABE S ∆=,④AFE ∆∽ACD ∆,其中正确地是()A .①②③④B .①④C .②③④D .①②③二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你地答案写在相对应地题号后地指定区域内11.15-地绝对值是 . 12.函数2y x =-中,自变量x 地取值范围是 .13.一个多边形地内角和等于900o ,则这个多边形是 边形.14.因式分解:29x -= .15.计算:2()2a b a a b a b a b+=+++g . 16.一个扇形地半径为3cm ,弧长为2cm π,则此扇形地面积为 2cm .(用含π地式子表示)17.在一次射击训练中,某位选手五次射击地环数分别为5,8,7,6,9.则这位选手五次射击环数地方差为 .18.半径为2地圆内接正三角形,正四边形,正六边形地边心距之比为 .19.已知反比例函数6y x=,当3x >时,y 地取值范围是 . 20.在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆地顶角地度数为 . 21.如图,顺次连接腰长为2地等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得地小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形地面积为 .三、解答题(本题共8小题,共57分)请在答题卡上把你地答案写在相对应地题号后地指定区域内22.如图,,,A B C 为某公园地三个景点,景点A 和景点B 之间有一条笔直地小路,现要在小路上建一个凉亭P ,使景点B 、景点C 到凉亭P 地距离之和等于景点B 到景点A 地距离.请用直尺和圆规在所给地图中作出点P .(不写作法和证明,只保留作图痕迹)23.某校为了解学生每天参加户外活动地情况,随机抽查了100名学生每天参加户外活动地时间情况,并将抽查结果绘制成如图所示地扇形统计图.请你根据图中提供地信息解答下列问题:(1)请直接写出图中a 地值,并求出本次抽查中学生每天参加户外活动时间地中位数;(2)求本次抽查中学生每天参加户外活动地平均时间.24.已知关于x 地一元二次方程22(21)40x m x m +++-=.(1)当m 为何值时,方程有两个不相等地实数根?(2)若边长为5地菱形地两条对角线地长分别为方程两根地2倍,求m 地值.25.甲、乙两个工程队计划修建一条长15千米地乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数地1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天地修路费用为0.5万元,乙工程队每天地修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.如图,梯形ABCD中,//∠地平分线交AE于点O,AD BC,AE BC⊥于E,ADC以点O为圆心,OA为半径地圆经过点B,交BC于另一点F.e相切;(1)求证:CD与O(2)若24,5==,求tan ABCBF OE∠地值.27.一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶.两车之间地路程y(千米)与轿车行驶时间t(小时)地函数图象如图所示.请结合图象提供地信息解答下列问题:(1)请直接写出甲城和乙城之间地路程,并求出轿车和卡车地速度;(2)求轿车在乙城停留地时间,并直接写出点D 地坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城地路程s (千米)与轿车行驶时间t (小时)之间地函数关系式.(不要求写出自变量地取值范围)28.如图,在矩形ABCD 中,E 为AB 边上一点,EC 平分DEB ∠,F 为CE 地中点,连接,AF BF ,过点E 作//EH BC 分别交,AF CD 于G ,H 两点.(1)求证:DE DC =;(2)求证:AF BF ⊥;(3)当28AF GF =g 时,请直接写出CE 地长.29.在平面直角坐标系中,直线314y x =-+交y 轴于点B ,交x 轴于点A ,抛物线212y x bx c =-++经过点B ,与直线314y x =-+交于点(4,2)C -.(1)求抛物线地解析式;(2)如图,横坐标为m 地点M 在直线BC 上方地抛物线上,过点M 作//ME y 轴交直线BC 于点E ,以ME 为直径地圆交直线BC 于另一点D .当点E 在x 轴上时,求DEM V 地周长;(3)将AOB ∆绕坐标平面内地某一点按顺时针方向旋转90o ,得到111AO B ∆,点,,A O B 地对应点分别是111,,A O B .若111AO B ∆地两个顶点恰好落在抛物线上,请直接写出点1A 地坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年黑龙江省绥化市中考数学试卷
一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑
1.(3分)我们的祖国地域辽阔,其中领水面积约为370000km2.把370000这个数用科学记数法表示为()
A.37×104B.3.7×105C.0.37×106D.3.7×106
2.(3分)下列图形中,属于中心对称图形的是()
A.B.
C.D.
3.(3分)下列计算正确的是()
A.=±3B.(﹣1)0=0C.+=D.=2
4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体
5.(3分)下列因式分解正确的是()
A.x2﹣x=x(x+1)B.a2﹣3a﹣4=(a+4)(a﹣1)
C.a2+2ab﹣b2=(a﹣b)2D.x2﹣y2=(x+y)(x﹣y)
6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()
A.B.C.D.
7.(3分)下列命题是假命题的是()
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于60°
C.半径为R的圆内接正方形的边长等于R
D.只有正方形的外角和等于360°
8.(3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()
A.5种B.4种C.3种D.2种
9.(3分)不等式组的解集在数轴上表示正确的是()A.B.
C.D.
10.(3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P 点个数的说法中,一定正确的是()
①当x=0(即E、A两点重合)时,P点有6个
②当0<x<4﹣2时,P点最多有9个
③当P点有8个时,x=2﹣2
④当△PEF是等边三角形时,P点有4个
A.①③B.①④C.②④D.②③
二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内
11.(3分)某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.
12.(3分)若分式有意义,则x的取值范围是.
13.(3分)计算:(﹣m3)2÷m4=.
14.(3分)已知一组数据1,3,5,7,9,则这组数据的方差是.
15.(3分)当a=2018时,代数式(﹣)÷的值是.
16.(3分)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.
17.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.
18.(3分)一次函数y1=﹣x+6与反比例函数y2=(x>0)的图象如图所示,当y1>y2时,自变量x的取值范围是.
19.(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.20.(3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.
21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.
三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内
22.(6分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)
(1)请在网格中,画出线段BC关于原点对称的线段B1C1;
(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;
(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.
23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:A.读书看报;B.健身活动;C.做家务;D.外出游玩;E.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”
的学生人数占调查总人数的20%.
请根据图中的信息解答下列问题:
(1)本次调查的总人数是人;
(2)补全条形统计图;
(3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人?
24.(6分)按要求解答下列各题:
(1)如图①,求作一点P,使点P到∠ABC的两边的距离相等,且在△ABC的边AC 上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);
(2)如图②,B、C表示两个港口,港口C在港口B的正东方向上.海上有一小岛A在港口B的北偏东60°方向上,且在港口C的北偏西45°方向上.测得AB=40海里,求小岛A与港口C之间的距离.(结果可保留根号)
25.(6分)已知关于x的方程kx2﹣3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.26.(7分)如图,AB为⊙O的直径,AC平分∠BAD,交弦BD于点G,连接半径OC交BD于点E,过点C的一条直线交AB的延长线于点F,∠AFC=∠ACD.
(1)求证:直线CF是⊙O的切线;
(2)若DE=2CE=2.
①求AD的长;
②求△ACF的周长.(结果可保留根号)
27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x (h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.
(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;
(2)当3≤x≤6时,求y与x之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
28.(9分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D 重合),连接CM,过点M作MN⊥CM,交线段AB于点N
(1)求证:MN=MC;
(2)若DM:DB=2:5,求证:AN=4BN;
(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.
29.(10分)已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于
点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣m(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.
(1)求该抛物线的解析式;
(2)若n=﹣5,且△CPQ的面积为3,求m的值;
(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m 之间的函数解析式.。

相关文档
最新文档