单纯形法表的解题步骤1
程序求解 单纯形法
程序求解单纯形法
单纯形法是一种求解线性规划问题的常用方法。
它通过一系列的迭代步骤,从一个初始的基本可行解开始,逐步改进解,直到找到最优解或证明问题无最优解。
以下是使用单纯形法求解线性规划问题的一般步骤:
1. 构建初始基本可行解:选择一个初始的基本可行解,通常可以通过引入松弛变量或人工变量来构建。
2. 计算目标函数值:计算当前基本可行解下的目标函数值。
3. 检查最优性:如果当前基本可行解满足最优性条件(目标函数值最小或最大),则停止迭代,当前解即为最优解。
4. 寻找改进方向:如果当前基本可行解不满足最优性条件,则需要找到一个改进的方向。
这可以通过计算每个非基变量(即未被选入基本可行解的变量)的检验数来完成。
5. 选择进入变量:根据检验数,选择一个具有正检验数的非基变量作为进入变量。
6. 确定离开变量:为了保持基本可行解的可行性,需要选择一个离开变量。
通常选择一个具有最小比值的基变量作为离开变量。
7. 更新基本可行解:通过替换离开变量和进入变量,构建一个新的基本可行解。
8. 重复步骤 2 至步骤 7,直到找到最优解或证明问题无最优解。
需要注意的是,单纯形法的具体实现可能因问题的规模和结构而有所不同。
在实际应用中,可以使用编程语言或优化软件来实现单纯形法。
希望以上内容对你有所帮助。
如果你有具体的线性规划问题需要求解,我可以根据具体问题提供更详细的帮助。
第四节 单纯形法的计算步骤
上表中由于所有σ 上表中由于所有 j>0 ,表明已求得最优解 x1=4, x2=2, x3=0, x4=0, x5=0, x6=4, , , , , , , Z=14。 。 当确定x 为换入变量计算θ值时 值时, ◆当确定 6为换入变量计算 值时,有两个相 同的最小值: 同的最小值:2/0.5=4,8/2=4。任选其中一 , 。 个作为换出变量时, 个作为换出变量时,则下面表中另一基变 量的值将等于0,这种现象称为退化 退化。 量的值将等于 ,这种现象称为退化。含有 一个或多个基变量为0的基可行解称为 的基可行解称为退化 一个或多个基变量为 的基可行解称为退化 的基可行解。 的基可行解。
18
迭代
xB
次数
cB
x1
x2
x3
x4
x5 bi
θi
50
x1
100
0
0
0
50 0 100
1 0 0
0
0 0 1
0
1 -2 0
- 50
0 1 0
0
-1 1 1
- 50
50 50 250 -27500
2
x4 x2
σj
2010年8月
管理工程学院
18
《运筹学》 运筹学》
19
所有的检验数 σ j ≤ 0, 此基本可行解: 此基本可行解:
2010年8月
管理工程学院
5
《运筹学》 运筹学》
6
c1 … cl b b1´
⋮
c j→ cB c1
⋮
… cm … xm …0 …⋮ 0 …1 …
⋮
…cj …xj …a1j´ …⋮ a2j´ …⋮ amj´
… ck … cn … xk …xn …0 …⋮ 1 …0
单纯形法表的解题步骤
单纯形法表的解题步骤单纯形法表结构如下:j c →对应变量的价值系数i θB Cb Xb1x 2x 3x " j x基变量的价值系数基变量 资源列θ规则求的值j σ检验数①一般形式若线性规划问题标准形式如下:123451231425max 23000284164120,1,2,5j z x x x x x x x x x x x x x j =++++++=⎧⎪+=⎪⎨+=⎪⎪≥=⎩"取松弛变量345,,x x x 为基变量,它对应的单位矩阵为基。
这样就得到初始可行基解:()()00,0,8,16,12TX =。
将有关数字填入表中,得到初始单纯形表,如表1-1所示:表 1-1 ()()00,0,8,16,12TX =j c →2 3 0 0 0i θB C b X b1x 2x 3x 4x 5x0 3x 8 1 2 1 0 0 4 04x16 4 0 0 1 0 -5x12 0 [4] 0 0 1 3j σ2 3 0 0 0若检验数均未达到小于等于0,则对上表进行调整。
选择上表中检验数最大的列,该列对应的非变量为入基变量;再应用θ规则该列对应的各基变量对应的θ值,选出其中最小的一行,该行对应的基变量为出基变量。
修改单纯形表,对各行进行初等变换,确保基变量组成的矩阵为单为矩阵。
修改后的单纯形表如表1-2所示:表 1-2 ()()10,3,2,16,0TX =检验数12,0σσ>,则进行继续调整,调整后的单纯形法表如表1-3所示:表 1-3 ()()22,3,0,8,0TX =表1-3中, 50σ>,则继续进行调整,调整结果如表1-4所示:表 1-4 ()()34,2,0,0,4TX =检验数0j σ≤,这表示目标函数值已不可能再增大,于是得到最优解:()()3*4,2,0,0,4TX X ==*14z =②带人工变量现有线性规划问题:12312312313123min 321142321,,0z x x x x x x x x x x x x x x =−++−+≤⎧⎪−++≥⎪⎨−+=⎪⎪≥⎩ 将上述线性规划问题用大M 法求解,在约束条件中加入松弛变量4x ,剩余变量5x ,人工变量6x ,7x 得到:1234567123412356137min 300211423210,1,2,,7j z x x x x x Mx Mx x x x x x x x x x x x x x j =−++++++−++=⎧⎪−++−+=⎪⎨−++=⎪⎪≥=⎩"其中,M 是一个任意大的正数。
运筹学单纯形法的计算步骤
b2
0… 0
a2,m+1
…
a2n
2
…
…
…
…
cm xm
bm
0… 1
am,m+1
…
amn
m
-z -z 值 0 … 0
m+1
…
n
XB 列——基变量, CB 列——基变量的价值系数(目标函数系数) cj 行——价值系数,b 列——方程组右侧常数 列——确定换入变量时的比率计算值
下面一行——检验数, 中间主要部分——约束方程系数
(4).根据max(j > 0) =k,拟定xk为换入变量,按 规则计算 =min{bi/aik\aik>0}
可拟定第l行旳基变量为换出变量。转入下一步。
(5).以 alk 为主元素进行迭代(即用高斯消去法或称为旋转变 换),把 xk 所对应的列向量变换为(0,0,…,1,…,0)T,将
XB 列中的第 l 个基变量换为 xk,得到新的单纯形表,返回(2)。
b
x1
x2
x3
x4
x5
2 x1 2 0 x4 8 3 x2 3
1
0
1
0 -1/2 -
0 0 -4 1 (2 ) 4
0 1 0 0 1/4 12
-z
-13
0
0 -2
0 1/4
X(2)=(2,3,0,8,0)T, z2 =13
cj
2 30 0 0
CB XB
b
x1
x2
x3
x4
x5
2 x1 4 0 x5 4 3 x2 2
量,给出第一阶段的数学模型为:
min = x6+x7
x1-2x2+x3+x4
单纯形法的表格解法
n
bi aij xj. i 1, 2,L , m
j m1
把以上的表达式带入目标函数,就有
m
n
z c1x1 c2 x2 L cn xn ci xi c j x j
i 1
j m 1
其中:
n
n
z0
c j z j x j z0 j x j
j m 1
j m 1
0 0 1 1 0 0 0 1 0 那么显然所求得的基本解一定是基本可行解,这个单位矩阵或由单位矩阵各列向 量组成的基一定是可行基。实际上这个基本可行解中的各个变量或等于某个bj或等 于零。
.
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0
B2 0 1 0
0 0 1
m
z0 cibi , j c j z j ;
a1 j
i1 m
z j ciaij c1a1 j c2a2 j L
i 1
cmamj
c1, c2 ,L
, cm
a2
j
M
amj
c1, c2 ,L , cm p j .
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
1. 最优性检验的依据——检验数σj 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可 以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基 变量,这样目标函数中只含有非基变量了,或者说目标函数中基变量的系 数都为零了。此时目标函数中所有变量的系数即为各变量的检验数,把变 量xi的检验数记为σi。显然所有基变量的检验数必为零。在本例题中目标 函数为50x1+100x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知 σ1=50,σ2=100,σ3=0,σ4=0,σ5=0。
运筹学单纯形法计算步骤
检验数>0
确定主行
确定主列 21
表3:基变换
(初等行变换,主列化为单位向量,主元为1)
2 1 000
0
15/2 0 0 1 5/4 -15/2
2 1
7/2 3/2
1 0
0 1
0 0
1/4 -1/4
-31/检/22 验数<=0
0 0 0 -1/4 -1/2
22
思考:
一般主列选择正检验数中最大者对应的 列,也可选择其它正检验数的列.以第2列
Page 34
单纯形法的解的情况
单纯形法求解线性规划问题,解的情况也 有四种:
唯一最优解:上面的情况,所有的检验数都小 于等于0,并且非基变量的检验数都小于零
无穷多解:所有的检验数都小于等于0,至少 有一个非基变量的检验数为0
无界解:如果某imp>0,而且对应列中所有的 系数都小于等于0,这时,变量可以增长到无 穷大,线性规划问题有无界解
230 0 0
最小的值对应 的行为主行
0
8
1 21 0 0 4
0
16 4 0 0 1 0 —
0
12 0 4 0 0 1 3
23
正检验数中最大者对 应的列为主位向量 换出 换入
表2:基变换
(初等行变换,主列化为单位向量,主元为1)
2
0
2
1
0
16 4
3
3
0
2
正检验数中最大者对 应的列为主列
单纯形表结构
2
主元
1 C0 0 0
— 24/6 5/1
检验数
10
用单纯形表求解例1
第一章 线性规划与单纯形法
11
《单纯形法计算步骤》课件
单纯形法是一种常用的线性规划求解方法。
算法简介
单纯形法通过逐步迭代的方式逐步化问题的解。 它能够解决满足线性可行性和有解性条件的线性规划问题。
计算步骤
1
步骤一
对原问题进行初等变换化简,转化为标准
步骤二
形式。
构造初始可行基解系统。
3
步骤三
判断当前基解系统是否为最优解,若是则
当问题有多个最优解时,需 比较确定最终的最优解。
结论
强有力的求解方法
单纯形法是一种强有力的线性 规划求解方法。
相对简单易实现
它的计算步骤相对简单,容易 实现和应用。
计算复杂度
随问题规模增大,计算复杂度 也会增加,需考虑其他高效的 求解方法。
步骤四
4
输出。
找到目标函数最优化的进入变量。
5
步骤五
找到最优组合约束的离开变量。
步骤六
6
对基向量进行初等变换,更新基变量和非
基变量。
7
步骤七
重复步骤三到步骤六,直到找到最优解或 问题无解。
注意事项
1 维护线性可行性
2 选择变量
3 多个最优解
在每一步计算中,需要保持 线性可行性和有解性条件。
选择进入变量和离开变量时, 需要经过计算和判断。
单纯形法的计算步骤
确定换入基的变量。选择 ,对应的变量xj作为换入变量,当有一个以上检验数大于0时,一般选择最大的一个检验数,即: ,其对应的xk作为换入变量。 确定换出变量。根据下式计算并选择θ ,选最小的θ对应基变量作为换出变量。
商务 图标元素
商务 图标元素
商务 图标元素
商务 图标元素
商务 图标元素
商务 图标元素
商务 图标元素
商务 图标元素
商务 图标元素
单纯形法的计算步骤
用换入变量xk替换基变量中的换出变量,得到一个新的基。对应新的基可以找出一个新的基可行解,并相应地可以画出一个新的单纯形表。 5 重复3 、4 步直到计算结束为止。
单纯形法的计算步骤
换入列
bi /ai2,ai2>0
40
10
换出行
将3化为1
5/3
1
18
0
1/3
0
1/3
10
1
-1/3
其中:M是一个很大的抽象的数,不需要给出具体的数值,可以理解为它能大于给定的任何一个确定数值;再用前面介绍的单纯形法求解该模型,计算结果见下表。
单纯形法的进一步讨论-人工变量法
→
→
→
单纯形法的进一步讨论-人工变量法
单纯性法小结:
PPT常用编辑图使用方法
1.取消组合
2.填充颜色
3.调整大小ຫໍສະໝຸດ 商务 图标元素30
30
0
5/3
0
-4/3
乘以1/3后得到
1
0
3/5
-1/5
18
0
1
-1/5
-2/5
单纯形法解题步骤
三、单纯形法的解题步骤第一步:作单纯形表.)(1)把原线性规划问题化为标准形式;)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;)(3)目标函数非基化;)(4)作初始单纯形表.第二步:最优解的判定.(1) 若所有检验数都是非正数,即,则此时线性规划问题已取得最优解.(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划问题无最优解.如果以上两条都不满足,则进行下一步.第三步:换基迭代.,并确定所在列的非基变量为进基变量.(1)找到最大正检验数,设为(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.主元是最大正检验数所在列,用常数项与进基变量所对应的列向量中正分量的比值最小者;替换出基变量,从而得到新的基变量.也就是主元所在(3)换基:用进基变量(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.例3 求.解(1)化标准型:令,引进松弛变量,其标准型为求(2)作单纯形表:在约束方程组系数矩阵中的系数构成单位矩阵,故取为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为标函数取得最优值.目性规划问题的最优解为:.原线目标函数的最优值为14,即.例4 用单纯形方法解线性规划问题.求.解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数, 经整理后,目标函数非基化了.作单纯形表,并进行换基迭代(见表6.9).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量进基.表 6.9目前最大检验数,其所在列没有正分量,所以该线性规划问题没有最优解.例5用单纯形方法解线性规划问题.求解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数,经整理得,目标函数已非基化.作单纯形表,并进行换基迭代(见表6.10).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量x2进基,先将主元化为1,然后再将主元所在列的其他元素化为零.表 6.10至此,检验数均为非正数,故得基础可行解.原问题的最优解为:.最优值为6,即.如果我们再迭代一次,将基变量出基,非基变量进基(见表6.11).表 6.11可得到另一个基础可行解,原问题的最优解为:,最优值仍为6,说明该线性规划问题有无穷多最优解,其最优解均为6.如何知道线性规划问题有无穷多最优解呢?这主要反映在单纯形表中.如果非基变量所对应的检验数为0,我们可对此列继续进行换基迭代,就可以得到另一个基础可行解.以此作下去,可得到许多基础可行解,即相对应的最优解有无穷多个.(4) 011 0。
单纯形法求解题技巧
单纯形法求解题技巧单纯形法是一种基于线性规划的求解方法,通过迭代的方式不断优化目标函数的值,从而找到最优解。
在使用单纯形法求解问题时,可以遵循以下一些技巧和步骤:1. 设置初始基可行解:初始基可行解是指满足所有约束条件的解,可以通过等式约束的方式获得。
初始基可行解对于单纯形法的收敛性和运算次数有重要影响。
2. 检查目标函数:在进行单纯形表的构造前,需要对目标函数进行检查。
对于最小化问题,目标函数的系数一般需要取负号。
3. 构造单纯形表:单纯形表是单纯形法的核心工具,通过将约束条件和目标函数表达成矩阵形式,构造单纯形表可方便进行单纯形法的迭代计算。
4. 选择合适的入基变量:入基变量是表中一列,表示在当前解时需要调整的变量。
选择一个最优的入基变量可以减少迭代次数。
可以通过最小比率法、最大系数法等方法选择入基变量。
5. 选择合适的出基变量:出基变量是表中一行,表示需要退出基变量的数值。
选择一个最优的出基变量可以使目标函数值增加最大。
可以通过最小比率法、Bland法则等方法选择出基变量。
6. 更新单纯形表:通过入基、出基变量的转换,更新单纯形表。
更新表的目的是获得一个新的基可行解,并计算相应的目标函数值。
7. 判断终止条件:在迭代运算中,需要判断是否满足终止条件。
终止条件可以是当目标函数无法继续改善时停止迭代,或者受到约束条件的限制达到最优解时停止。
8. 迭代求解:根据上述步骤进行迭代求解,直到满足终止条件。
9. 检查最优解:在得到最优解后,需要对最优解进行检查。
检查包括检查约束条件是否满足、检查是否有多个最优解等。
10. 整理结果:根据求解结果,整理并表示出最优解的含义。
通常需要将最优解转化为实际问题中的意义,并进行解释和解读。
在实际应用中,还有一些常用的技巧可以进一步提高单纯形法的求解效率:1. 初始基可行解的选择:初始基可行解的选择对于迭代次数和运算效率有重要影响。
可以使用人工算法确定一个初始基可行解,或者利用其他启发式算法辅助选择初始基可行解。
单纯形法求解原理过程
单纯形法求解原理过程第一篇:单纯形法求解原理过程单纯形法需要解决的问题:如何确定初始基本可行解;如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降;如何判断一个基本可行解是否为最优解。
min f(X)=-60x1-120x2 s.t.9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 xi≥0(i=1,2,3,4,5)(1)初始基本可行解的求法。
当用添加松弛变量的方法把不等式约束换成等式约束时,我们往往会发现这些松弛变量就可以作为初始基本可行解中的一部分基本变量。
例如:x1-x2+x3≤5 x1+2x2+x3≤10xi≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10xi≥0(i=1,2,3,4,5)令x1=x2=x3=0,则可立即得到一组基本可行解x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵⎡94100⎤⎥A=[P1,P2,P3,P4,P5]=⎢310010⎢⎥⎢⎣45001⎥⎦中可以看出其中有个标准基,即⎡100⎤⎥B=⎢010⎢⎥⎢⎣001⎥⎦与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x20 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 TX=[0,0,360,300,200]判别初始基本可行解是否是最优解。
此时可将上式代入到目标函数中,得: F(X)=-60x1-120x20对应的函数值为f(X)=0。
0由于上式中x1,x2系数为负,因而f(X)=0不是最小值。
因此所得的解不是最优解。
011(2)从初始基本可行解X迭代出另一个基本可行解X,并判断X 是否为最优解。
从一个基本可行解迭代出另一个基本可行解可分为两步进行:第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量;第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。
简述单纯形法步骤
简述单纯形法步骤单纯形法是一种用于求解线性规划问题的常用方法,它通过不断迭代来逐步逼近最优解。
下面将以简述单纯形法步骤为标题,详细介绍单纯形法的具体步骤。
1. 构建初始单纯形表单纯形法的第一步是构建初始单纯形表。
将线性规划问题的约束条件和目标函数转化为矩阵形式,并引入松弛变量,得到初始单纯形表。
初始单纯形表由约束系数矩阵、决策变量系数矩阵、右侧常数向量以及目标函数系数矩阵组成。
2. 检验是否达到最优解在初始单纯形表中,通过计算每个基变量的单位贡献值来检验是否达到最优解。
单位贡献值等于目标函数系数与对应基变量列的乘积之和减去目标函数系数。
如果所有单位贡献值均小于等于0,则达到最优解,算法结束。
否则,进入下一步。
3. 确定入基变量和出基变量在初始单纯形表中,选择单位贡献值最小且小于0的列所对应的非基变量作为入基变量。
然后,通过计算各行的比值,选择使得比值最小的行所对应的基变量作为出基变量。
4. 更新单纯形表在确定了入基变量和出基变量后,需要对单纯形表进行更新。
首先,将出基变量所在列归一化为1,然后通过高斯消元法将其他列元素消为0,得到新的单纯形表。
5. 转至步骤2经过更新后的单纯形表还不能达到最优解,需要再次进行检验。
重复步骤2至步骤4,直到所有单位贡献值均小于等于0,达到最优解为止。
6. 解读单纯形表当单纯形法得到最优解时,可以通过解读单纯形表来获得最优解的数值。
在单纯形表的最后一行,可以得到最优解的目标函数值。
而在单纯形表的非基变量列中,可以得到各个决策变量的取值。
单纯形法是一种高效的线性规划求解算法,通过不断迭代来逐步逼近最优解。
它的基本思想是通过选择合适的入基变量和出基变量,来更新单纯形表,使得目标函数值不断减小,最终达到最优解。
在实际应用中,单纯形法被广泛应用于生产计划、资源分配、运输问题等领域。
总结一下单纯形法的步骤:首先,构建初始单纯形表;然后,检验是否达到最优解;接着,确定入基变量和出基变量;然后,更新单纯形表;最后,转至步骤2,直到达到最优解。
运筹学1-4单纯型法的计算步骤
2 X1 1 3 X2 2
Z8
1 0 -1 4/3 -1/3 0 1 2 -1/3 1/3 0 0 -1 -5/3 -1/3
从最优表可知: 该LP的
最优解是X*=(1, 2, 0, 0, 0)T 相应的目标函数最优值是Zmax=8
表格单纯形法求解步骤
第一步:将LP化为标准型,并加以整理。
引入适当的松驰变量、剩余变量和人工变量 ,使约束条件化为等式,并且约束方程组的系数 阵中有一个单位阵。
(这一步计算机可自动完成)
确定初始可行基,写出初始基本可行解
第二步:最优性检验
计算检验数,检查: 所有检验数是否≤ 0?
是——结束,写出最优解和目标函数最优值; 还有正检验数——检查相应系数列≤ 0?
是——结束,该LP无“有限最优解”! 不属于上述两种情况,转入下一步—基变换。
确定是停止迭代还是转入基变换?
0 1 0
0
0
1
0
0
0
1 c1 c2
0 a1,m1 a1,m2 0 a2,m1 a2,m2
1 a a m,m1 m,m2 cm cm1 cm2
a1,n b1
a2,n
b2
am,n bm
cn 0
-Z,x1,…,xm所对应的系数 列向量构成一个基
用矩阵的初等行变换将该基变成单位阵,这时
c1, c2 , , cm 变成0,相应的增广矩
第四步:判断检验数、入基、出基变量。 …….
三、表格单纯形法:
1、 初始单纯形表的建立 (1)表格结构:
Cj 2 3 3 0 0
CB
XB
b xj
x1 x2 x3 x4 x5
j
0 X4
3
线性规划与单纯形法-计算步骤
max Z 3x1 5x2
x1
s.t.
3x1
x1 0
2x2 2 x 2 x2 0
4 12 18
第一次迭代 x2为入基, x4为出基 第二次迭代 x1为入基, x5为出基
X * (2, 6, 2, 0, 0) Z* 36
2.4 单纯形法计算步骤
3、确定进基变量(迭代的第一步)
确定进基变量对应于图解法的确定运动方向
x1
x3
8
3x1
2x2 4x2
x4
12
x5 36
3x1 5x2 0x3 0x4 0x5 Z
j
从目标函数-Z+3x1+5 x2 +0x3 +0x4+0x5 =0可知: 因为x2的系数大于x1的系数,即生产单位乙产品比甲产品利 润更高一些,故应优先多生产乙产品。即x2为进基
5 2
x4
0 x5
Z 30
④
x3
2 3
x4
1 3
x5
4 ①
x2
x1
1 2 x4
2 3 x4
1 3 x5
6 ② 4 ③
3x1 0x2
0 x3
5 2
x4
0 x5
Z 30 ④
④-3×③
x3
2 3
x4
1 3
x5
4 ①
x2
1 2
x4
6 ②
x1
2 3
x4
1 3
x5
4 ③
0
x1
STOP 包括三个步骤: 1、确定进基变量(进基) 2、确定出基变量(出基) 3、对新基可行解的求解(高斯消元)
三、单纯形法的解题步骤
,0121内年三、单纯形法的解题步骤第一步:作单纯形表.)(1)把原线性规划问题化为标准形式;)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;)(3)目标函数非基化;)(4)作初始单纯形表.第二步:最优解的判定.(1) 若所有检验数都是非正数,即,则此时线性规划问题已取得最优解.(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划问题无最优解.如果以上两条都不满足,则进行下一步.第三步:换基迭代.,并确定所在列的非基变量为进基变量.(1)找到最大正检验数,设为(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.主元是最大正检验数所在列,用常数项与进基变量所对应的列向量中正分量的比值最小者;替换出基变量,从而得到新的基变量.也就是主元所在(3)换基:用进基变量(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.例3 求.解(1)化标准型:令,引进松弛变量,其标准型为求(2)作单纯形表:在约束方程组系数矩阵中的系数构成单位矩阵,故取为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为目标函数取得最优值.原线性规划问题的最优解为:.目标函数的最优值为14,即.例4 用单纯形方法解线性规划问题.求.解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数,经整理后,目标函数非基化了.作单纯形表,并进行换基迭代(见表6.9).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量进基.表 6.9目前最大检验数,其所在列没有正分量,所以该线性规划问题没有最优解.例5用单纯形方法解线性规划问题. 求解 此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数,经整理得,目标函数已非基化.作单纯形表,并进行换基迭代(见表 6.10). ,由最小比值最大检验数 法知:为主元,对主元所在列施量出基,非基变量以行初等变换,基变化为1,然后x 2进基,先将主元 再将主元所在列的其他元素化为零.表 6.10x 1 x 2 x 3 x 4常数x 3 x 41 -1 1 0 -3 (1) 0 12 4 S2 3 0 0 0 x 3 x 2-2 0 1 1 -3 1 0 1 6 4 S11 0 0 -312至此,检验数均为非正数,故得基础可行解.原问题的最优解为:.最优值为6,即.如果我们再迭代一次,将基变量出基,非基变量进基(见表6.11).表 6.11(4)0 1 1 0可得到另一个基础可行解,原问题的最优解为:,最优值仍为6,说明该线性规划问题有无穷多最优解,其最优解均为6.如何知道线性规划问题有无穷多最优解呢?这主要反映在单纯形表中.如果非基变量所对应的检验数为0,我们可对此列继续进行换基迭代,就可以得到另一个基础可行解.以此作下去,可得到许多基础可行解,即相对应的最优解有无穷多个.。
1.4单纯形法的计算步骤
−z
x1
x2
L xm
xm+1
L xn L L a1n a2n M
0 1 0 L 0 a1,m+1 1 L 0 a2,m+1 0 0 M M M M 0 0 0 L 1 am,m+1 cm+1 1 c1 c2 L cm … -z+c1x1+c2x2+…+cmxm+cm+1xm+1+ +c
基变量 0
-z
3.确定主元素 3.确定主元素 确定 1.计算检验数, 1.计算检验数,由它 计算检验数 确定为换入变量
计算θ 2. 计算θ,由它确定为 换出变量
(2)以[4]为主元素进行旋转运算或迭代运算, [4]为主元素进行旋转运算或迭代运算, 为主元素进行旋转运算或迭代运算
c j→ CB 0 0 3 -z XB x3 x4 x2 b 2 16 3 -9 2 x1 1 4 0 2 3 x2 0 0 1 0 0 x3 1 0 0 0 0 x4 0 1 0 0 0 x5 -1/2 0 1/4 -3/4 θ 2 4 -
0 x4 0 1 0 0
0 x5 -1/2 2 1/4 1/4
0 X4 1/4 1/2 -1/8 -1/8 1 0 0
θ 4 12
c j→ CB 2 0 3 -z XB x1 x5 x2
0 x5 0 θ
表 1-5
-3/2
(4) 表1-6最后一行的所有检验数都已为负或零。 最后一行的所有检验数都已为负或零。 表示目标函数值已不可能再增大,于是得到最优解 表示目标函数值已不可能再增大,于是得到最优解
x1 x2
+ a1m+1xm+1 +L+ a1nxn = b1 + a2m+1xm+1 +L+ a2nxn = b2 O xm + amm+1xm+1 +L+ amnxn = bm
单纯形法(表格形式)
x4 24 x5 5
x1, x2 , x3 , x4 , x5 0
§5.2单纯形法的表格形式
迭代 次数 基
CB
x1 2
x2 1
x3 0
x4 0
x5 0
b
比值
x3 0
0 5 100
15
-
x4 0
6 2 010
24 24/6
0
x5 0
1 1 001
5
5
zj
?0 0 0 0 0
Z=0
第五章 单纯形法
5.1 单纯形法的基本思路和原理 5.2 单纯形法的表格形式
第1步:求初始基可行解,列出初始单纯形表。
§5.2单纯形法的表格形式
第1步:求初始基可行解,列出初始单纯形表。 例
max z 2x1 x2
5x2 15
6
x1 2x2 x1 x2
§5.2单纯形法的表格形式
迭代 次数 基
CB
x1 2
x2 1
x3 0
x4 0
x5 0
b
比值
x3 0
0 5 100
15
-
x4 0
6 2 010
24 24/6
0
x5 0
1 1 001
5
5
zj
0 0 000 Z=0
j= cj -zjห้องสมุดไป่ตู้2 1 0 0 0
z c3 b1 c4 b2 c5 b3 0 15 0 24 0 5 0
第五章 单纯形法
Singlex Method
第五章 单纯形法
5.1 单纯形法的基本思路和原理 5.2 单纯形法的表格形式