热力学与统计物理第二章知识总结
热力学与统计物理第二章知识总结
![热力学与统计物理第二章知识总结](https://img.taocdn.com/s3/m/f9fa75a7b307e87100f696bb.png)
§2.1内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。
焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分•焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,将(1)式代入上式得(2)o自由能的全微分由得(3)o吉布斯函数的全微分(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。
下面从这几个函数和它们的全微分方程来推出麦氏关系。
二、热力学(Maxwell)关系(麦克斯韦或麦氏)(1)U(S,V)利用全微分性质(5)用(1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2) H(S,P)同(2)式相比有由得(8)(3) F(T,V)同(3)式相比(9)(4) G(T,P)同(4)式相比有(10)(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。
它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。
例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。
§2.2麦氏关系的简单应用证明1. 求选T,V为独立变量,则内能U(T,V)的全微分为(1)熵函数S(T,V)的全微分为( 2)又有热力学基本方程(3)由(2)代入(3)式得(4)•(4)相比可得(5)(6)由定容热容量的定义得(7)2. 求选T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以T、P为自变量时熵S(T、P)的全微分表达式为(10)将(10)代入(9)得(11)(8)式和(11)式相比较得(12)(13)(14)3求由(7) (14)式得(15) 把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得∴代入(15)式得由麦氏关系得(16)即得证4、P,V,T三个变量之间存在偏导数关系而可证(17)§2.3气体的节流过程和绝热膨胀过程气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质一,气体的节流(焦耳---汤姆逊效应)1、定义:如图所示有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。
热力学与统计物理—第二章
![热力学与统计物理—第二章](https://img.taocdn.com/s3/m/0e0548c7aa00b52acfc7cace.png)
§2.2 麦氏关系的简单应用
一、以T, V为状态参量
U p T p V T T V U S CV T T V T V
能态方程
CV p dS dT dV T T V
dS dU pdV T
4 d(VT 3 ) 3 4 S VT 3 S 0 3
3.物态方程 :
1 1 p u (T ) T 4 3 3
1 c J u cu T 4 T 4 4 4
Ju T 4
斯特藩—玻耳兹曼定律
三 . 红外技术及应用
红外探测
dG
V m ( )T , p 0 ( )T ,H H p
磁致伸缩 压磁效应
G G G dT dp dH T p H
G G V , 0 m p T ,H H T , p
§2.4 热辐射的热力学理论
第二章 均匀物质的热力学性质
1. 麦克斯韦关系及应用
2. 热辐射的热力学理论
3. 磁介质热力学
§2.1 麦克斯韦关系
热力学基本微分方程:
dU T dS Yi dyi
i
四个全微分(简单系统):
dU TdS pdV
H U pV
dH TdS Vdp dF SdT pdV
p dU CV dT T p dV T V
二
、以T, p为状态 dp T T p Tpp T
V dH C p dT V T dp T p
3. 辐射能量密度u:
U= u (T)V
4. 辐射通量密度:
热力学统计物理总复习知识点
![热力学统计物理总复习知识点](https://img.taocdn.com/s3/m/e54cc09869dc5022aaea00db.png)
概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U 是一个态函数:A B U U W -=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:pp T H C ⎪⎭⎫ ⎝⎛∂∂=;定容热容比:V V T U C ⎪⎭⎫ ⎝⎛∂∂= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。
热力学-统计物理第二章 均匀物质的热力学性质
![热力学-统计物理第二章 均匀物质的热力学性质](https://img.taocdn.com/s3/m/c963b5a3ddccda38366baf01.png)
T H S
P
V H P
S
*
G G dG SdT VdPdG TPdTPTdP
S
G T
P
V
G P
T
* dF SdT PdVdF F TVdT V FTdV
S
F T
V
P F V
T
三、麦氏关系 全微分满足
dff dxf dy x y
(f ) (f ) y x x y
T
U S
V
P U V
s, t (3) s, t 1
(2)
u xy
u, x,
y y
(4)
u, v x, y
1 x,
y
即:
u,v x, y
x, y u,v 1
u, v
u,v u,v x,s
(5)
x,y
x,
s
x,y
u ,v x,s x,y x,s
(5)的 2 个推论:
u,v
∴
V H
p
1 T
V S
p
1 T
T p
S
故: Tp
H
V Cp
T p
S
B、所求偏导数中, S是不变量,可先用下题方法,再 用相关定义或麦氏关系等。
例5、求证 V KTCV
TS T
证明: V •T •S 1
TS SV VT
∴
V TS
S V TVST
CV T
p
C TVT pV
→确定基本热力学函数 →或特性函数 (态式、内能、熵)
→基本目标 把不可测的态函数或物理效应
或方法
与可测量联系,用可测量表达
→基础 1、四个微分式 2、麦氏关系
(完整版)热力学与统计学总结
![(完整版)热力学与统计学总结](https://img.taocdn.com/s3/m/cfdde3fd25c52cc58ad6be31.png)
热力学第二定律的实质:一切与热现象相联系的宏观过程都是不可逆的。
3.克劳修斯等式与不等式是什么?
(=:可逆过程<:不可逆过程)
4.熵的性质是什么?
态函数,热温比的积分只取决于初、末态,与具体的过程无关。
熵在两状态间的变化量可由连接这两状态的任意可逆过程的热温比的积分表示
公式:
若要用热温比的积分计算初末态均为平衡态的不可逆过程的熵变,可在初末态间构造一可逆过程进行计算。
卡诺热机的效率:
卡诺制冷剂的制冷系数:
第4章热力学第二定律熵
1.可逆过程是什么?可逆过程的条件是什么?
可逆过程与不可逆过程:一个系统由某一状态出发,经历一过程达到另一状态,如果存在一个逆过程,该逆过程能使系统和外界同时完全复原(即系统回到原来状态,同时消除了原过程对外界引起的一切影响),则原过程称为可逆过程;若用任何方法都不能使系统和外界同时完全复原,则原过程称为不可逆过程。
第1章温度物态方程
1.什么是热力学平衡态?不受外界影响是什么意思?
在不受外界条件影响的情况下,系统的宏观性质不随时间发生改变的状态成为热力学平衡态,简称平衡态
不受外界影响:外界对系统既不做功又不传热。
2.什么是热力学第零定律?
在不受外界影响的情况下,若a,b两物质分别与c达到热平衡,则a,b不进行热接触,也彼此处于热平衡状态,称之为热平衡定律,也称为热力学第零定律。
4.基本热力学函数
温度T;内能U;熵S
焓H;自由能F;吉布斯函数G
5.三个过程进行方向的判据
系统或过程
态函数
过程进行方向
平衡态
孤立(绝热)
S
S取最大值
等温等容
F
F取最小值
热力学与统计物理学第二章 热力学函数及关系
![热力学与统计物理学第二章 热力学函数及关系](https://img.taocdn.com/s3/m/5fbb4a8c4b73f242326c5f6f.png)
•两个重要的概念:热力学势,特性函数。
• 问题关键:可逆过程态的热一律和热二律(Q=TdS) 相结合的微分形式,找出二变量态函数全微分中的 偏导数之间的对应关系。
2
• 焓的性质:
• 焓的应用:用它定义定压热容量
在可逆等压过程中,统系吸热等于它的焓增,加即
dHp Qp CpdT
dH
H T
p
dT
H p
T
dp
比较以上两时,:有Cp
H T
p
5
二、自由能
定义为:F=U-TS,在常温环境中,利用它计算功 是非常方便的。
可逆过程dU:TdSA,那么 dUd(TS) dFTdSAd(TS) SdTA
(3)S p ; VT TV
(4) S pT
V . Tp
记住麦氏关系的小窍门:
(1) 等式两边对角线上的量的乘积、分子与脚标的乘积应具 有能量量纲;
(2) 若分子分母性质(广延量或强度量)相同,则等号两边 取正号,性质不同,取负号;
(3) 若分式的分母乘以脚标具有能量量纲,需倒置到分母, 则可用麦氏关系。
第二章 热力学函数及关系
动机和目的 一、焓、自由能和吉布斯函数 二、特性函数与麦克斯韦关系 三、热均匀物质热力学 四、热辐射的热力学
小结和习题课
1
• 动机:前一章用到了内能U和熵S,但还不够用来 分析一些等值过程,本章引入另外三个态函数:焓 H、自由能F、吉布斯函数G。它们分别于等压、等 温、等压等温过程。
S V
V S
比较以上两个等式,有
T U , p U
热统课件总结第二章
![热统课件总结第二章](https://img.taocdn.com/s3/m/696dae2eb4daa58da0114a55.png)
第二章 均匀物质的热力学性质2.1(2)已知在体积保持不变的情况下,一气体的压强正比于其热力学温度.试证明在温度保持不变时,该气体的熵随体积而增加。
解:由题意得: )()(V f T V k p +=。
因V 不变,T 、p 升高,故k (V )>0据麦氏关系(2.2.3)式得: T V S )(∂∂ =V Tp)(∂∂ =k (V ) (k (V )>0) ⎰+=⇒);()(T g dV V k S由于k (V )>0, 当V 升高时(或V 0→V ,V >V 0),于是⎰>0)(dV V k⇒T 不变时,S 随V 的升高而升高。
2.2(3)设一物质的物态方程具有以下形式T V f P )(=,试证明其内能与体积无关。
解: T V f P )(= ,(V T V U ∂∂),()T =T V T P)(∂∂ - p = )()(V Tf V Tf - =0 得证。
2.3(4)求证:(ⅰ) H P S )(∂∂ <0 (ⅱ) U VS)(∂∂ >0证: 由式(2.1.2)得: VdP TdS dH +=等H 过程:H H VdP TdS )()(-=⇒(P S ∂∂)H =-TV<0 (V >0; T >0) 由基本方程:PdV TdS dU -=dV TpdU T dS +=⇒1; ⇒(VS∂∂)U =T p >0.2.4(5)已知 T V U )(∂∂ =0 , 求证 T pU )(∂∂=0。
解: 由式(2.2.7)得:T V U )(∂∂=T V T p )(∂∂-p ; ⇒T V U )(∂∂=0 ; V T pT p )(∂∂= T V U )(∂∂ =),(),(T V T U ∂∂=),(),(T p T U ∂∂),(),(T V T p ∂∂=0=T p U )(∂∂T V p )(∂∂ ∵ T V p )(∂∂≠0 ; ⇒T pU )(∂∂=0。
《热力学与统计物理》第二章 均匀物质的热力学性质
![《热力学与统计物理》第二章 均匀物质的热力学性质](https://img.taocdn.com/s3/m/d7ebb51ff705cc175427091f.png)
§2.2 内能、焓、自由能、吉布斯函数的全微分
本节要求: ①掌握状态函数的全微分; ②记住热力学偏导数和麦克斯韦关系。
一.状态函数的全微分
dU TdS pdV 看成是U以S,V为变量的全微分 U (S,V )
1
,得:
T V
U
T U
V
U V
T
U V
T
U
T
V
利用方法1可求出 U
V T
,连同
CV
的定义便得到
T V
U
1 CV
T
p T
V
p
CV
U T
V
U V
T
T
p T
V
p
由此可见,已知 CV 和状态方程便可求得气体的焦耳系数。
方法4.链式关系法
条件:若所求偏导数包含S,且已在分子或分母上,但 不能用热容量的定义或麦氏关系消除时,可用此法。
说明:本章在定义新的态函数和导出普遍热力学关 系时,都以P、V、T 系统为例进行。
§2.1 自由能和吉布斯函数
本节要求:①理解自由能和吉布斯函数的概念; ②理解自由能判据和吉布斯判据
一.自由能
1.定义:
对于等温条件:
引入新的热力学函数: 自由能 F U TS
有: 2.最大功原理:系统自由能的减少是在等温过程中
热力学基本方程
dU TdS pdV dH TdS Vdp dF SdT pdV dG SdT Vdp
热力学偏导数
T
U S
V
p
U V
S
热力学统计物理2章第5-7节
![热力学统计物理2章第5-7节](https://img.taocdn.com/s3/m/81f3c01952d380eb62946da1.png)
实验指出: 只是T的函数 ,与表面积A无关 。 所以,物态方程简化为: (T ) 当表面积有dA的改变时,外界作功为: 表面系统的自由能的全微分为:dF SdT dA 由此得: 由
F S T F A
dW dA
与A无关,第二积分式得:
d S A dT
V M 由完整微分条件可得: ( )T , P 0 ( )T , H H P
这也是磁介质的麦氏关系。左端是温度、压强不 变时体积随磁场的变化率,它描述磁致伸缩效应; 右端则是温度、磁场不变时,介质的磁矩随压强的变 化率,它描述压磁效应。两者有上述关系。 三、磁化功另一表达 假设空间中存在不均匀磁场,如:永久磁铁磁场, 将样品从无穷远处移入磁场内,从 x 处x 轴移到 x a 处,介质将被磁化。
0
dH ( x ) 样品在x处时,所受磁场力: 0 M ( x ) dx
移动样品时,外界必须克服此力而作功:
H ( x) dH ( x ) W 0 M ( x ) dx 0 MdH 0 dx M (a ) 分部积分: W 0 M (a) H (a) 0 HdM a
因此,空腔辐射的能量密度和能量密度按频率的 分布只可能是温度的函数。
电磁理论中,辐射压强P 与辐射能量密度u之间的关系:
1 p u 3
将平衡辐射看作热力学系统,选T和V为状态参量 由于能量密度只是温度的函数,平衡辐射的总能量 可表为: U (T ,V ) u(T )V 利用热力学公式: ( U )T T ( p )V P
F A
当 A趋于零时,表面系统不存在,F=0,所以不含 积分常数。 是单位面积的自由能. 由第一积分式得:
由U=F+TS,得表面系统的内能为: d U A( T ) dT 如果测得 (T )关系,就可得表面系统的热力 学函数. 例题:课本第100页,2.14题 一弹簧f= -Ax,忽略热胀 求:弹簧的F、S、U 解:外力对弹簧作功:
热力学与统计物理学-第二章
![热力学与统计物理学-第二章](https://img.taocdn.com/s3/m/5868925843323968001c9202.png)
dG=-SdT+VdP
S V
P T
T P
Good Physicists Have Studied Under Very Fine Teachers
太阳照在小树上
(
S V
)T
(
p T
)V
(河流)由山峰流向山谷
照向和流向方向一致取正号,否则取负号。看对 方的分母,取自己的脚标。
T
p
T
V
( V
)S
( S
)V
;
( p )S ( S ) p
( S V
)T
(
p T
)V
;
( V T
)p
(
S p
)T
——麦克斯韦关系
Sun
太阳 peak
山峰
Tree
小树 Valley
山谷
§2-2 麦克斯韦关系的简单应用
麦克斯韦关系的应用有:
⑴用实验可测量的量(如状态方程,热容量
Summary
dU=TdS-PdV dH=TdS+VdP
P T S V V S
T V
P S
S P
G
T
P
F
H
V
S
U
dF=-SdT -PdV
S P
V T
T V
一.能态方程和定容热容量
U T p p V T T V
CV
T S T
V
第一式给出了温度不变时, 系统内能随体积的变化率与物态方程的关系,称 为能态方程;第二式是定容热容量。
热力学与统计物理第2章
![热力学与统计物理第2章](https://img.taocdn.com/s3/m/8f2fa25c3b3567ec102d8a60.png)
x
⎜⎛ ⎝
∂U ∂x
⎟⎞ ⎠y
∂(S,P) ⎜⎛∂S⎟⎞ ⎜⎛∂P⎟⎞ −⎜⎛∂S⎟⎞ ⎜⎛∂P⎟⎞
⎜⎛∂P⎟⎞2
CP
=T⎜⎛∂S⎟⎞ ⎝∂T⎠P
=T∂(S,P) ∂(T,P)
=T
∂(T,V) ∂(T,P) ∂(T,V)
=T⎝∂T⎠V⎝∂V⎠T ⎝∂V⎠T⎝∂T⎠V ⎜⎛∂P⎟⎞ ⎝∂V⎠T
=CV
−T⎝∂T⎠V ⎜⎛∂P⎟⎞ ⎝∂V⎠T
7、可测量的量和不可测量的量 可以直接测量的量:状态变量 (P,V,T……..) 各种热容
不可以直接测量的量:U,H,F,G…….. 和它们的某些偏微商
(二) 气体节流过程和焦耳-汤姆孙效应
ΔQ = 0 W = P1V1 − P2V2
U 2 + P2V2 = U1 + P1V1
这是一个不可逆过程
− ⎜⎛ ∂P ⎟⎞ = ∂2U ⎝ ∂S ⎠V ∂V∂S
⎜⎛ ∂T ⎟⎞ = −⎜⎛ ∂P ⎟⎞ ⎝ ∂V ⎠ S ⎝ ∂S ⎠V
H (S, P)
dH = ⎜⎛ ∂H ⎟⎞ dS + ⎜⎛ ∂H ⎟⎞ dP
⎝ ∂S ⎠ P
⎝ ∂P ⎠ S
dH = TdS + VdP
⎜⎛ ∂H ⎟⎞ = T ⎝ ∂S ⎠ P
⎟⎞ ⎠P
= T ⎜⎛ ∂S ⎝ ∂T
⎟⎞ ⎠P
⎜⎛ ∂H ⎟⎞ = T ⎜⎛ ∂S ⎟⎞ +V ⎝ ∂P ⎠T ⎝ ∂P ⎠T
(定义热容量的表达 式)
从麦氏 ⎜⎛ ∂S ⎟⎞ = −⎜⎛ ∂V ⎟⎞ 代入上式得:
⎝ ∂P ⎠T ⎝ ∂T ⎠ P
⎜⎛ ∂H ⎟⎞ = V − T ⎜⎛ ∂V ⎟⎞
热力学统计物理知识总结
![热力学统计物理知识总结](https://img.taocdn.com/s3/m/c8e1410e7cd184254b3535f3.png)
热力学讲稿(云南师范大学物理与电子信息学院)伍林李明导言1、热运动:人们把组成宏观物质的大量微观粒子的无规则运动称为热运动。
热力学和统计物理的任务:研究热运动的规律、与热运动有关的物性及宏观物质系统的演化。
热力学方法的特点:热力学是热运动的宏观理论。
通过对热现象的观测、实验和分析,总结出热现象的基本规律。
这些实验规律是无数经验的总结,适用于一切宏观系统。
热力学的结论和所依据的定律一样,具有普遍性和可靠性。
然而热力学也有明确的局限性,主要表现在,它不能揭示热力学基本规律及其结论的微观本质和不能解释涨落现象。
统计物理方法的特点:统计物理学是热运动的微观理论。
统计物理从物质的微观结构和粒子所遵从的力学规律出发,运用概率统计的方法来研究宏观系统的性质和规律,包括涨落现象。
统计物理的优点是它可以深入问题的本质,使我们对于热力学定律及其结论获得更深刻的认识。
但统计物理中对物质微观结构所提出的模型只是实际情况的近似,因而理论预言和试验观测不可能完全一致,必须不断修正。
热力学统计物理的应用温度在宇宙演化中的作用:简介大爆炸宇宙模型;3k宇宙微波背景辐射。
温度在生物演化中的作用:恐龙灭绝新说2、参考书(1)汪志诚,《热力学·统计物理》(第三版),高等教育出版社,2003(2)龚昌德,《热力学与统计物理学》,高等教育出版社,1982(3)朗道,栗弗席兹,《统计物理学》,人民教育出版社1979(4)王竹溪,《热力学教程》,《统计物理学导论》,人民教育出版社,1979(5)熊吟涛,《热力学》,《统计物理学》,人民教育出版社,1979(6)马本昆,《热力学与统计物理学》,高等教育出版社,1995(7)自编讲义作者介绍:汪志诚、钱伯初、郭敦仁为王竹溪的研究生(1956);西南联大才子:杨振宁、李政道、邓稼先、黄昆、朱光亚;中国近代物理奠基人:饶毓泰、叶企孙、周培源、王竹溪、吴大猷:中国物理学会五项物理奖:胡刚复、饶毓泰、叶企孙、吴有训、王淦昌。
热力学与统计物理第二章均匀物质的热力学性质
![热力学与统计物理第二章均匀物质的热力学性质](https://img.taocdn.com/s3/m/edb227e4aa00b52acfc7caa4.png)
(1)(3)两式比较,即有
H V ( )T T ( ) p V p T
H S CP T T P T P
定压膨胀系数: 1 ( V ) P
V T
焓态方程:
H ( )T TV V p
dH CP dT [T 1]Vdp (可测)
dG SdT VdP
dF SdT pdV
(1)由热力学的基本微分方程: dU=TdS-pdV 内能:U=U(S,V),全微分为
U U dU dS dV S V V S
U U 对比可得: S T , V P V S
五、求证:
CP CV T
P T V
2
P V T
证明:
( S , P) S CP T T T (T , P) P
( S , P) T (T , V )
(T , P) (T , V )
(3)麦氏关系记忆 • 规律:相邻3个变量为一组,按顺序(顺、逆时针都可 以)开始第一变量放在分子,中间变量作分母,末尾 量放在括号外作下标,构成一偏导数.则此偏导数等 于第4个变量按相反方向与相邻的另两个量构成的 偏导数(符号:广延量对广延量正号,否则负号).
§2.2 麦氏关系的简单应用
上节导出了麦氏关系:
u (u , y ) 性质: ( 1 ) ( ) y= x ( x, y ) (u, y ) u y u y u 证明: ( ) y ( )x ( )x ( ) y ( ) y ( x, y ) x y y x x (u, v) (v, u ) (u , v) (u , v) ( x, s ) (2) (3) ( x, y ) ( x, y ) ( x, y ) ( x, s ) ( x, y ) (u, v) 1 (4) ( x, y ) ( x, y ) (u , v)
热力学统计物理各章重点总结..
![热力学统计物理各章重点总结..](https://img.taocdn.com/s3/m/ce948c3fe45c3b3566ec8b75.png)
第一章概念1.系统:孤立系统、闭系、开系与其他物体既没有物质交换也没有能量交换的系统称为孤立系;与外界没有物质交换,但有能量交换的系统称为闭系;与外界既有物质交换,又有能量交换的系统称为开系;2.平衡态平衡态的特点:1.系统的各种宏观性质都不随时间变化; 2.热力学的平衡状态是一种动的平衡,常称为热动平衡; 3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落; 4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。
3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数。
当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这是态函数焓的重要特性克劳修斯引进态函数熵。
定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。
7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。
8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。
热力学与统计物理学第二讲
![热力学与统计物理学第二讲](https://img.taocdn.com/s3/m/e0e84065783e0912a2162ac6.png)
讨论: 因为V不变,T 又因为CV是正的 所以,等号右边总是负的 ——表明体积膨胀时,温度总是要降低。 (在液化气体的过程中,可利用这个 特性作为降温手段) P
H )P T,( )S V S P
再利用求偏导数的次序可以交换的性质,同理可求得: (3)F(T,V) 由
T V ( )S ( )P P S
dF SdT PdV
同理可求得:
F F S P ( )V S , ( )T P; ( )T ( )V T V V T
V )P ] dP 得: T T 1 V ( )H [T( )P V ]..........( 1 ) P CP T
为描述节流过程前后气体温度随压强的变化率,引进Joule—Thomson系数
(
T )H P
代入(1)式得: 1 [ T ( V )P V ] V ( T 1 )......( 2 )
S V ) ( ) T P V T
根据麦氏关系:(
1 V 1 P 又 ( ), ( ), K T P P V V T P T
——两容量之差与物 态方程的关系
得:C P CV TV
2
KT
四、气体的节流过程和绝热膨胀
1、节流过程 实验装置: Joule—Thomson (焦耳—汤姆孙)效应: 气体经节流(膨胀)过程 而发生温度变化的现象 初态 P1(高) T1 T2 P2(底)
第二讲
第二章 均匀物质的热力学性质
一、热力学函数全微分表达式 其偏导数可以给出系统状态的热力学参量。它的微分为全微分, 并能单值地确定系统状态的函数。 例如:内能、焓、熵、自由能等 1、内能的全微分表达式 热力学函数:
热力学与统计物理答案第二章
![热力学与统计物理答案第二章](https://img.taocdn.com/s3/m/ad01e7cbaa00b52acfc7cade.png)
第二章 均匀物质的热力学性质2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为(),p f V T = (1)式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有().T VS p p f V V T T ∂∂⎛⎫⎛⎫=== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0T S V ∂⎛⎫>⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:(),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.3 求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭ ()0.U S b V ∂⎛⎫> ⎪∂⎝⎭解:焓的全微分为.dH TdS Vdp =+ (1)令0dH =,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2) 内能的全微分为.dU TdS pdV =- (3)令0dU =,得0.U S p V T∂⎛⎫=> ⎪∂⎝⎭ (4)2.4 已知0T UV ∂⎛⎫= ⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭ 解:对复合函数(,)(,(,))U T P U T V T p = (1)求偏导数,有.T T TU U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2) 如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V == (1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 因为0,0p C T >>,所以p S V ∂⎛⎫⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负. 式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)P S S p V V p S p T p T p V p ∂∂⎛⎫= ⎪∂∂⎝⎭∂∂=∂∂P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为 .P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.T P p SPS V T p T T Sp C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH =,故有.T PpH PH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2) 最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得0.pSH T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1)().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 而由式(1)可得.Vp T df T T V dT ∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.8 证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭并由此导出0020222,.VV VV Vp p p p pp C C T dV T p C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭⎰⎰根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1) 以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T VT ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫=⎪∂⎝⎭ 这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V 是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰ 式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意压强下的定压热容量都可根据物态方程计算出来.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V=-- (2) 由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3)我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.2.10 证明理想气体的摩尔自由能可以表为,,00,002ln ln V m m V m m m m V m m m mC F C dT U T dT RT V TS TdTT C dT U TS RT V T=⎰+-⎰--=-⎰⎰+--解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,m m m F U TS =- (1)其中m U 和m S 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m m m m C S dT R V S T=++⎰(3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式,xdy xy ydx =-⎰⎰令,1,,V m x Ty C dT ==⎰可将式(4)右方头两项合并而将式(4)改写为,002ln .m V mm m m dTF T C dT RT V U TS T=--+-⎰⎰ (5)2.11 求范氏气体的特性函数m F ,并导出其他的热力学函数. 解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3) 由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题2.11式(4),理想气体的摩尔自由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为 ()(),,00,ln .V m m m V m m m m mC aF T V C dT T dT RT V b U TS TV =----+-⎰⎰(6) 式(6)的(),m m F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m mm m m C F S dT R V b S T T∂=-=+-+∂⎰ (7)摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰ (8)2.12 一弹簧在恒温下的恢复力X 与其伸长x 成正比,即X Ax =-,比例系数A 是温度的函数. 今忽略弹簧的热膨胀,试证明弹簧的自由能F ,熵S 和内能U 的表达式分别为()()()()()()2221,,0,2,,0,21,,0.2F T x F T Ax x dAS T x S T dT dA U T x U T A T x dT =+=-⎛⎫=+- ⎪⎝⎭ 解:在准静态过程中,对弹簧施加的外力与弹簧的恢复力大小相等,方向相反. 当弹簧的长度有dx 的改变时,外力所做的功为.dW Xdx =- (1)根据式(1.14.7),弹簧的热力学基本方程为.dU TdS Xdx =- (2)弹簧的自由能定义为,F U TS =-其全微分为.dF SdT Xdx =--将胡克定律X Ax =-代入,有,dF SdT Axdx =-+ (3)因此.TF Ax x ∂⎛⎫= ⎪∂⎝⎭ 在固定温度下将上式积分,得()()0,,0xF T x F T Axdx =+⎰()21,0,2F T Ax =+(4) 其中(),0F T 是温度为T ,伸长为零时弹簧的自由能.弹簧的熵为()21,0.2F dAS S T x T dT∂=-=-∂ (5) 弹簧的内能为()21,0.2dA U F TS U T A T x dT ⎛⎫=+=+- ⎪⎝⎭(6) 在力学中通常将弹簧的势能记为21,2U Ax =力学 没有考虑A 是温度的函数. 根据热力学,U 力学是在等温过程中外界所做的功,是自由能.2.13 X 射线衍射实验发现,橡皮带未被拉紧时具有无定形结构;当受张力而被拉伸时,具有晶形结构. 这一事实表明,橡皮带具有大的分子链.(a )试讨论橡皮带在等温过程中被拉伸时,它的熵是增加还是减少;(b )试证明它的膨胀系数1ST L L α∂⎛⎫= ⎪∂⎝⎭是负的.解:(a )熵是系统无序程度的量度.橡皮带经等温拉伸过程后由无定形结构转变为晶形结构,说明过程后其无序度减少,即熵减少了,所以有0.TS L ∂⎛⎫< ⎪∂⎝⎭ (1) (b )由橡皮带自由能的全微分dF SdT JdL =-+可得麦氏关系.T LS J L T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 综合式(1)和式(2),知0.LJ T ∂⎛⎫> ⎪∂⎝⎭ (3)由橡皮带的物态方程(),,0F J L T =知偏导数间存在链式关系1,L J TJ T L T L J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 即.J L TL J L T T J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (4) 在温度不变时橡皮带随张力而伸长说明0.TL J ∂⎛⎫> ⎪∂⎝⎭ (5) 综合式(3)-(5)知0,JL T ∂⎛⎫< ⎪∂⎝⎭ 所以橡皮带的膨胀系数是负的,即10.JL L T α∂⎛⎫=< ⎪∂⎝⎭ (6)2.14 假设太阳是黑体,根据下列数据求太阳表面的温度;单位时间内投射到地球大气层外单位面积上的太阳辐射能量为3211.3510J m s --⨯⋅⋅(该值称为太阳常量),太阳的半径为86.95510m ⨯,太阳与地球的平均距离为111.49510m ⨯.解:以s R 表示太阳的半径. 顶点在球心的立体角d Ω在太阳表面所张的面积为2s R d Ω. 假设太阳是黑体,根据斯特藩-玻耳兹曼定律(式(2.6.8)),单位时间内在立体角d Ω内辐射的太阳辐射能量为42.s T R d Ωσ (1)单位时间内,在以太阳为中心,太阳与地球的平均距离se R 为半径的球面上接受到的在立体角d Ω内辐射的太阳辐射能量为321.3510.se R d Ω⨯令两式相等,即得132421.3510.ses R T R σ⎛⎫⨯⨯= ⎪⎝⎭(3)将,s R σ和se R 的数值代入,得5760.T K ≈2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量.解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为()4214.3Q aT V V =- (3)2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为41,3p aT = (1) 因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量 (2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V 的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V -图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的T S -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =- (5) 循环过程的效率为()()2212211211111.T S S Q TQ T S S T η-=-=-=-- (6)2.17 如图所示,电介质的介电常量()DT Eε=与温度有关. 试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差.解:根据式(1.4.5),当介质的电位移有dD 的改变时,外界所做的功是đ,W VEdD = (1)式中E 是电场强度,V 是介质的体积. 本题不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换,p E V VD →-→ (2)下,简单系统的热力学关系同样适用于电介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有,E D D EE D C C VT T T ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 式中E C 是电场强度不变时介质的热容量,D C 是电位移不变时介质的热容量. 电路为闭路时,电容器两极的电位差恒定,因而介质中的电场恒定,所以D C 也就是电路为闭路时介质的热容量. 充电后再令电路断开,电容器两极有恒定的电荷,因而介质中的电位移恒定,所以D C 也就是充电后再令电路断开时介质的热容量.电介质的介电常量()DT Eε=与温度有关,所以,ED dE E T dT ∂⎛⎫= ⎪∂⎝⎭2,DE D d T dT εε∂⎛⎫=- ⎪∂⎝⎭ (5) 代入式(4),有2E D D d d C C VT EdT dTεεε⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭223.D d VT dT εε⎛⎫= ⎪⎝⎭(6)2.18 试证明磁介质H C 与M C 之差等于20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ= (1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→ (2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5) (5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.19 已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 如果磁介质遵从居里定律(),CVm H C T=是常量 (3) 易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.T CV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6) 吸收的热量为20.2CV H Q T S Tμ=∆=- (7)2.20 已知超导体的磁感强度0()0B H M μ=+=,求证: (a )M C 与M 无关,只是T 的函数,其中M C 是磁化强度M 保持不变时的热容量.(b )200.2M M U C dT U μ=-+⎰(c )0.MC S dT S T=+⎰解:先对超导体的基本电磁学性质作一粗浅的介绍.1911年昂尼斯(Onnes )发现水银的电阻在4.2K 左右突然降低为零,如图所示. 这种在低温下发生的零电阻现象称为超导电性. 具有超导电性质的材料称为超导体. 电阻突然消失的温度称为超导体的临界温度. 开始人们将超导体单纯地理解为具有无穷电导率的导体. 在导体中电流密度e J 与电场强度E 满足欧姆定律.eJ E σ=(1) 如果电导率σ→∞,导体内的电场强度将为零. 根据法拉第定律,有,BV E t∂⨯=-∂ (2) 因此对于具有无穷电导率的导体,恒有0.Bt∂=∂ (3) 下图(a )显示具有无穷电导率的导体的特性,如果先将样品降温到临界温度以下,使之转变为具有无穷电导率的导体,然后加上磁场,根据式(3)样品内的B 不发生变化,即仍有0B =但如果先加上磁场,然后再降温到临界温度以下,根据式(3)样品内的B 也不应发生变化,即0.B ≠这样一来,样品的状态就与其经历的历史有关,不是热力学平衡状态了. 但是应用热力学理论对超导体进行分析,其结果与实验是符合的. 这种情况促使人们进行进一步的实验研究.1933年迈斯纳(Meissner )将一圆柱形样品放置在垂置于其轴线的磁场中,降低到临界温度以下,使样品转变为超导体,发现磁通量完全被排斥于样品之外,即超导体中的B 恒为零:()00.B H M μ=+= (4)这一性质称为完全抗磁性. 上图(b )画出了具有完全抗磁性的样品在先冷却后加上磁场和先加上磁场后冷却的状态变化,显示具有完全抗磁性的超导体,其状态与历史无关.1953年弗·伦敦(F.London )和赫·伦敦(H.London )兄弟二人提出了一个唯象理论,从统一的观点概括了零电阻和迈斯纳效应,相当成功地预言了超导体的一些电磁学性质.他们认为,与一般导体遵从欧姆定律不同,由于零电阻效应,超导体中电场对电荷的作用将使超导电子加速. 根据牛顿定律,有,m qE =v (5)式中m 和q 分别是超导电子的质量和电荷,v 是其加速度. 以s n 表示超导电子的密度,超导电流密度s J 为.=s s n q v J (6)综合式(5)和式(6),有1,s t Λ∂=∂J E (7) 其中2.s mΛn q =(8) 将式(7)代入法拉第定律(2),有,s Λt t ∂∂⎡⎤∇⨯=-⎢⎥∂∂⎣⎦B J或[]()0.s Λt∂∇⨯+=∂J B (9) 式(9)意味着()s Λ∇⨯+J B 不随时间变化,如果在某一时刻,有(),s Λ∇⨯=-J B (10)则在任何时刻式(10)都将成立. 伦敦假设超导体满足式(10). 下面证明,在恒定电磁场的情形下,根据电磁学的基本规律和式(10)可以得到迈斯纳效应. 在恒定电磁场情形下,超导体内的电场强度显然等于零,否则s J 将无限增长,因此安培定律给出0.s μ∇⨯=B J (11)对上式取旋度,有0(),s Λμμ∇⨯∇⨯∇⨯=-B J B (12)其中最后一步用了式(10). 由于2()().∇⨯∇⨯=∇∇⋅-∇B B B而0∇⋅=B ,因此式(12)给出20μΛ∇=B B (13) 式(13)要求超导体中B 从表面随浓度很快地减少. 为简单起见,我们讨论一维情形. 式(13)的一维解是e≈B (14)式(14)表明超导体中B 随深度x 按指数衰减.如果2310cm s n ≈,可以得到6210cm .-≈⨯这样伦敦理论不仅说明了迈斯纳效应,而且预言磁屏蔽需要一个有限的厚度,磁场的穿透浓度是-610cm 的量级. 实验证实了这一预言. 综上所述,伦敦理论用式(7)和式(10)s ,()s tΛΛ∂=∂∇⨯=-J B J B(15)来概括零电阻和迈斯纳效应,以式(15)作为决定超导体电磁性质的基本方程. 迈斯纳效应的实质是,磁场中的超导体会在表面产生适当的超导电流分布,使超导体内部0.=B 由于零电阻,这超导电流是永久电流,不会衰减. 在外磁场改变时,表面超导电流才会相应地改变.伦敦理论是一个唯象理论. 1957年巴丁、库柏和徐瑞佛(Bardeen ,Cooper ,Schriffer )发展了超导的微观理论,阐明了低温超导的微观机制,并对超导体的宏观特性给予统计的解释.下面回到本题的求解. 由式(3)知,在超导体内部恒有,M H =- (16)这是超导体独特的磁物态方程. 通常的磁物态方程(,,)0f H M T =对超导体约化为式(16).根据式(16),有0,0.HMM T H T ∂⎛⎫= ⎪∂⎝⎭∂⎛⎫= ⎪∂⎝⎭ (17)(a ) 考虑单位体积的超导体. 式(2.7.2)给出准静态过程中的微功为0đ.W HdM μ= (18)与简单系统的微功đW pdV =-比较知在代换0,p H V M μ→→下,简单系统得到的热力学关系同样适用于超导体. 2.9题式(2)给出22.V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体相应的热力学关系为2020.M T MC H T ΜT μ⎛⎫∂∂⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (19) 最后一步用了式(17). 由式(19)可知,M C 与M 无关,只是T 的函数.(b )相应于简单系统的(2.2.7)式,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭超导体有000,T MU ΗT H M ΜT μμμ∂∂⎛⎫⎛⎫=-+=- ⎪ ⎪∂∂⎝⎭⎝⎭ (20) 其中第二步用了式(17).以,T M 为自变量,内能的全微分为0.M TM U U dU dT dMT M C dT MdM μ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 积分得超导体内能的积分表达式为200.2M M U C dT U μ=-+⎰ (21)第一项是不存在磁场时超导体的内能,第二项代表外磁场使超导体表面感生超导电流的能量. 第二项是负的,这是式(16)的结果,因此处在外磁场中超导体的内能低于无磁场时的内能. (c )相应于简单系统的(2.4.5)式0,V V C p S dT dV S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰ 超导体有00M MC ΗS dT dM S T T μ∂⎛⎫=-+ ⎪∂⎝⎭⎰0,MC dT S T=+⎰(22) 第二步用了式(17). 这意味着,处在外磁场中超导体表面的感生超导电流对熵(无序度)没有贡献.补充题1 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C 的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()212121p P T p p pp p S S dpP V dp T a bp dp∂⎛⎫∆= ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎝⎭=-+⎰⎰⎰()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1)由范氏方程2m mRT ap V b V =-- 易得,m V m p R T V b∂⎛⎫= ⎪∂-⎝⎭()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (2) 但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 所以m V m pm Tp T V T p V ∂⎛⎫ ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎛⎫∂⎝⎭ ⎪∂⎝⎭()()323,2m m mm RV V b RTV a V b -=-- (3)代入式(1),得(),,23.21p m V m m mR C C a V b RTV -=--(4)补充题3 承前1.6和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3)将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为002.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪⎪∂⎝⎭⎝⎭⎝⎭ (5) 代入式(4)可得00002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 0051,2bTL a T ⎛⎫=-- ⎪⎝⎭ (6)其中0001.dL L dTα=过程中外界所做的功为002220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1) 在可逆绝热过程中0dS =,故有.S LL T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将习题2.15式(5)求得的L J T ∂⎛⎫⎪∂⎝⎭代入,可得 2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1)其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H 代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦221(,0).2d M S T dTμχχ=+ (4) 单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5)。
热力学与统计物理知识点,考试必备
![热力学与统计物理知识点,考试必备](https://img.taocdn.com/s3/m/12310af35ebfc77da26925c52cc58bd630869345.png)
热力学与统计物理知识点,考试必备第一篇:热力学与统计物理知识点,考试必备体胀系数α=1⎛∂V⎫⎪V⎝∂T⎭p压强不变,温度升高1K所引起的物体体积的相对变化。
体积不变,温度升高1K所引起的物体压强的相对变化。
压强系数β1⎛∂P⎫=⎪⎝⎭V等温压缩系数:κT=-1⎛∂V⎫⎪V⎝∂P⎭T温度不变,增加单位压强所引起的物体体积的相对变化。
α=-βκT卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率最高。
证明:设有两个热机A和B。
它们的工作物质在各自的循环中,分别从高温热源吸取热量Q1和Q1’,在低温热源放出热量Q2和Q2’,对外做功W和W’。
它们的效率分别为ηa=W/Q1ηb= W’/Q1’假设A为可逆机,我们要证明ηa≥ηb。
证明:假设Q1=Q1’,假设定理不成立,即如果ηa<ηb,则由Q1=Q1’可知W’>W。
A既然是可逆机,而W’又比W大,就可以利用B所作的功的一部分(等于W)推动A反向运行A将接受外界的功,从低温热源吸取热量Q2,在高温热源放出热量Q1。
在两个热机的联合循环终了时,两个热机的工作物质恢复原状,高温热源也没有变化,但却对外界做功W’—W。
这功显然是由低温热源放出的热量转化而来的。
因为根据热力学第一定律有W=和W’=Q1’—Q2’ 而Q1=Q1’,两式相减得W’—W= Q2—Q2’ 这样,两个热机的联合循环终了时,所产生的唯一变化就是从单一热源(低温热源)吸取热量Q2—Q2’而将之完全变成了有用的功。
这与热力学第二定律的开氏表述相违背,因此不能有ηa<ηb而必须有ηa≥ηb。
证毕。
从卡诺定理可得:所有工作于两个一定温度之间的可逆热机,其效率相等。
热了力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变数学表达式UA—UB=W+Q意义:系统在终态B和初态A的内能之差UA—UB等于在过程中外界对系统所作的功与系统从外界吸收的热量之和。
热力学与统计物理第二章
![热力学与统计物理第二章](https://img.taocdn.com/s3/m/dda4a38dec3a87c24028c4b7.png)
J S , T V ,
J p , V T ,
J n T ,V
(2.31)
综上可见,类似地,还可以选其它独立变量如:定容、定熵、定粒 子数;定温、定压、定化学势;等等,进而可以定义新的特征函数。 (通常来说在热力学可以定义8个特征函数)。
1 p dU dV dn T T T
S
S
S
(2.3)
由热力学第一定律微分方程为: dU TdS pdV dn 可得
dS
(2.4)
又有
S S dS dU U V
S dV dn n
比较两式可得
1 S , U V ,n T p S , V U ,n T
S T n U ,V
(2.5)
熵判据 将上式代入(2.3式),并利用(2.2)式,则有
1 p 1 p U 1 1 2 V1 2 1 n1 S T T T T2 T1 1 T2 1 2
(2.2)
另一方面,平衡态附近一级变动相为
熵判据
S S1 S 2 1 U 1 1 V1 1 n1 U V1 n1 1
S 2 S S U 2 2 V2 2 n2 U V2 n2 2
dF SdT pdV dn
(2.18)
考虑到是全微分,独立变量为T,V,n。则有
F F F dF dT dV dn T V ,n V T ,n n T ,V
比较上两式可得
F S , T V , n F p , V T , n
热力学统计物理 第二章 均匀物质的热力学性质
![热力学统计物理 第二章 均匀物质的热力学性质](https://img.taocdn.com/s3/m/388038fe998fcc22bcd10db3.png)
H =T S P
H p =V S
G F G F =S V = S T = p =V T P T V p T 上式将S , p, T ,V 这四个变量用热力学函数 U , H , F , G
dU TdS pdV
dF SdT pdV
可把它理解为 F作为 T ,V 的函数的全微分式。
2
4、吉布斯函数
吉布斯函数的定义是 G U TS pV , 两边求微分 ,得
dG dU TdS SdT pdV Vdp
dU TdS pdV
dG SdT Vdp
T p
V S p S
4
(3) dF SdT pdV
F F dF = dT + dV T V V T
F T ,V
F =S T V
F = p V T
9
U S 等容热容: CV T T V T V
U p T p V T T V
温度不变时内能随体积的变化率与物态方程的关系 例1. 理想气体,
pV nRT
U p nR T p T p0 V V T T V a ( p 2 )( v b) RT 例2. 对于1mol范氏气体 v
第二章 均匀物质的热力学性质
§2.பைடு நூலகம் 内能、焓、自由能和吉布斯函数的全微分
一、四个热力学函数基本的全微分式
1、内能
反映的系统热力学量之间的关系,不论连接两个平衡 态的过程是否可逆,热力学基本方程都成立。
关于热力学统计物理各章总结归纳
![关于热力学统计物理各章总结归纳](https://img.taocdn.com/s3/m/df78f7ccc850ad02df804165.png)
第一章1、 与其他物体既没有物质交换也没有能量交换的系统称为孤立系;2、 与外界没有物质交换,但有能量交换的系统称为闭系;3、 与外界既有物质交换,又有能量交换的系统称为开系;4、 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。
5、 参量分类:几何参量、力学参量、化学参量、电磁参量6、 温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度7、 第零定律:如果物体A 和物体B 各自与处在同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律8、 t=9、 体胀系数α=1V ⁄(?V ?T ⁄)p 、压强系数β=1p ⁄(?p ?T ⁄)v 、等温压缩系数K t =−1V ⁄(?V ?p ⁄)T 、三者关系α=k T βp10、 理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
12、广义功dd=∑d d d ddd13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律. UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。
14、等容过程的热容量;等压过程的热容量;状态函数H;P2115、焦耳定律:气体的内能只是温度的函数,与体积无关。
P2316、理想气体准静态绝热过程的微分方程P2417、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程18、热功转化效率η=1−T2/T119、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程21、 如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程22、 卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高23、 卡诺定理推论:所有工作于两个一定温度之间的可逆热机,其效率相等24、 克劳修斯等式和不等式d d d d ⁄+d d d d ⁄≤d25、 热力学基本微分方程:dd =ddd −ddd26、 理想气体的熵P4027、 自由能:F=U-FS28、 吉布斯函数:G=F+pV=U-TS+pV29、 熵增加原理:经绝热过程后,系统的熵永不减少;孤立系的熵永不减少30、 等温等容条件下系统的自由能永不增加;等温等压条件下,系统的吉布斯函数永不增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。
焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,;将(1)式代入上式得(2)o自由能的全微分由得(3)o吉布斯函数的全微分(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§将要讲到的特性函数。
下面从这几个函数和它们的全微分方程来推出麦氏关系。
二、热力学(Maxwell)关系(麦克斯韦或麦氏)~(1)U(S,V)利用全微分性质(5)用(1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2)H(S,P)同(2)式相比有由得(8)(3)F(T,V)~同(3)式相比(9)(4)G(T,P)同(4)式相比有(10)(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦()关系,简称麦氏关系。
它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。
例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。
§麦氏关系的简单应用证明'1. 求选T,V为独立变量,则内能U(T,V)的全微分为(1)熵函数S(T,V)的全微分为( 2) 又有热力学基本方程(3)由(2)代入(3)式得(4)(4)相比可得(5)(6)由定容热容量的定义得】(7)2. 求选T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以T、P为自变量时熵S(T、P)的全微分表达式为(10)将(10)代入(9)得(11) (8)式和(11)式相比较得(12)(13).(14)3求由(7) (14)式得(15)把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得∴代入(15)式得…由麦氏关系得(16)即得证4、P,V,T三个变量之间存在偏导数关系而可证(17)§气体的节流过程和绝热膨胀过程气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质一,气体的节流(焦耳---汤姆逊效应)1、定义:如图所示~有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。
由于多孔塞对气流的巨大的阻力,气体的宏观流速极小,因而对应的动能可以略去。
我们把气体在绝热条件下,气体由稳定的高压经过多孔塞流到稳定的低压一侧的过程称为气体的节流过程。
2、特点:它是不可逆的,这是显然的,因为气体通过多孔塞时,要克服阻力作功,这种功转变成热。
初态与末态等焓,证明如下开始在多孔塞左边取一定量的气体,压强为,体积为,内能为.气体通过多孔塞后,其压强、体积、内能分别为,,,气体在节流过程前后,内能增加为,外界对这部分气体所作的功是,因为过程是绝热的,,根据热力学第一定律有移项后得根据焓的定义式得(1)焓是一个状态量,可见节流前后气体的焓不发生变化,但对于气体在过程中所经历的非平衡态焓是没有定义的。
这儿指的是初态和终态气体的焓相等。
J-Th效应@实验表明:气体经节流后,其温度可能升高,也可能降低,也可能不变,我们称在节流过程中温度随压强改变的现象为焦耳—汤姆逊效应。
这个效应用焦汤系数来表示,它的定义为(2)上式的右方表示在等焓过程中温度随压强的改变,应当注意的是在节流过程中气体的压强总是降低的(dp<0),因而1)当时,表明节流后气体的温度降低了,气体节流后变化了,称为正效应;2)时,即在节流后气体变热了,叫做负效应;3)时,气体经节流后温度不变,叫做零效应;一种气体节流后温度如何变化与状态方程及气体节流前后的状态有关。
3,与态式的关系取T,P为状态参量,状态函数焓可表为H=H(T,P)。
应用数学公式,其偏导数间应存在下述关系:及定量热容量得((3)又由体胀系数定义代入上式得(3)(4)给出了焦—汤系数与物态方程及热容量的关系将1mol理想气体物态方程代入(3)得∴说明理想气体在节流过程前后温度不变,理想气体没有焦—汤效应。
J—Th图(3)式右边的参量是可以由实验测量的,我们可以画出T—P曲线,如图是的J—Th图,;图中实验代表等焓线,可由实验直接测定,等函数的斜线,虚线处等函数的斜线,使的温度称为焦汤效应的转换温度,的曲线称为转换曲线,如图所示虚线即表示转换曲线。
虚线左边,节流过程降温(正效应),虚线右边,节流过程升温(负效应)。
所以可以利用节流的降温效应使气体降温而液化。
二、气体的绝热膨胀另一种使气体降温的有效方法是使气体作准静态的(可逆)绝热膨胀(等熵膨胀),因为绝热过程所以,所以准静态绝热过程系统的熵不变。
分析绝热膨胀过程中气体的温度随压强的变化关系,取T,P为状态参量,状态函数熵可表为S=S(T,P)。
其全微分方程由,和麦氏关系代入上式得(5)上式右方总是正的,所以,这表示气体在绝热膨胀中随着压强的减小,它的温度总是降低的,也就是气体绝热膨胀变冷了。
—§2,4基本热力学函数的确定我们通过热力学第一和第二定律,态函数的全微分特性及Maxwell关系,导出热力学函数的微积分方程表达式,并通过此函数给出内能和熵的直接测量参数的表达式,即可认为这个热力学函数可被测定了。
1、以T,V为状态参量,基本热力学函数的测定物态方程为(1)内能的全微分为(2)沿一条任意的积分路线求积分,可得(3)(3)式既内能的积分表达式。
以T,V为变量熵的全微分为…(4)求线积分得(5)此即熵的积分表达式由(3),(5)式可知,如果测得物质的和物质方程即可求得内能函数和熵函数.2、以T,P为状态参量,基本热力学函数的确定物态方程为(6)以T,P为独立参量时,先求H是很方便的(焓的全微分为(7)求线积分得(8)此即焓的积分表达式由即可求得内能熵的全微分为(9)上式求线积分,得(10)此即熵的积分表达式。
由式(8)(10)可知,只要测得物质的和物态方程,就可以求得物质的焓,内能和熵。
同样方法,利用态函数的全微分特性,热力学定律的微分表达式及Maxwell关系,可求得所有热力学函数的表达式。
通过这些表达式,利用直接测得的物理量和物态方程,可完全地确定热力学函数。
;3、举例,求Van(范)氏气体系统的内能U和熵S解:范氏气体的物态方程为得由麦氏关系得§特性函数一、特性函数@1、定义特性函数:适当选择独立变量(称为自然变量)之后,只要知道一个热力学函数,就可以通过求偏导数求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性(征)函数。
内能U作为S,V的函数,焓H作为S,P的函数,自由能F做为T,V的函数,吉布斯函数G 作为T,P的函数都是特性函数。
在应用上最重要的特性函数是自由能F和吉布斯函数G,相应的独立变量分别是T,V和T,P,下面分别说明之。
2、已知自由能F(T,V)以T,V为独立参量,(1)全微分方程:(2)可以求得系统的熵及压强为(3)求出的压强P是以T,V为参量的函数,实际上就是物态方程。
由自由能的定义式,得内能(4)#称为吉布斯—亥姆霍兹()第一方程。
3、已知吉布斯函数G(T,P)以T,P为独立参量(5)G的全微分方程为(6)可以求系统的熵和体积,(7)由吉布斯函数定义式得内能(8)又(9)(10)自由能和焓也可以由吉布斯函数G(T,P)求得,其中(10)称为吉布斯—亥姆霍兹第二方程。
二、求表面系统的热力学函数表面张力是在液体表面发生的现象,液体表面是液体与其它相的分界面实际上是很薄的一层,其中性质在与表面垂直的方向上有急剧的变化。
在理论处理上把这一薄层理想化,作为一个几何面而假设在分界面两方的两相都是均匀的,假设使液相的质量包括全部质量,因此表面作为一个单独相时不包括有液相的质量。
把表面当作一个相时,它有面积A,内能U,熵S,表面张力系数,已知在等温的条件下,使液体表面积增大dA,表面张力的功与自由能的减少有如下关系:实验表明:表面张力系数仅与温度有关,与表面积大小无关,积分上式并取积分常数为0,则(1)即表面张力系数等于单位面积的自由能。
写出表面系统的基本方程(自由能的全微分)(2)由此得(3)!其中S为表面系统的熵,由于只是温度的函数,所以上式中的就可写为。
所以(4)由自由能的定义式得(5)由(1)(4)(5)可以看出,只要知道了表面张力系数,就能得到表面系统所有的热力学量,在这个意义上,我们说代表了表面系统的特性。
§平衡辐射的热力学一、平衡辐射1、定义:在光学中已经讲过,温度高于0K的任何物体都以电磁波的形式向外辐射能量。
对于给定的物体而言,在单位时间内电磁辐射能量的多少以及辐射能量按波长的分布等,都取决于物体的温度,因此,这种辐射就称为热辐射。
物体作热辐射的同时还吸收外界物体的辐射能,如果物体对电磁波的辐射和吸收达到平衡则称为平衡辐射。
2、空腔辐射[假设有一个封闭的空腔,腔壁保持恒定的温度T,由于腔壁不断发射和吸收辐射能,经过一定的时间后,空腔内的电磁辐射场将与腔壁达到平衡,形成平衡,形成平衡辐射场或空腔辐射,具有共同的温度T。
应用热力学第二定律能够证明:腔内电磁辐射的能量(内能)密度和能量密度按频率的分布只取决于温度,与空腔的其它性质(材料、形状等)无关。
用反证法证明:证明:我们考察用不同材料制成的形状不同的两个空腔A和B,它们有共同的温度,如图所示:如果能量密度的分布与空腔的材料和形状有关,我们可以假设A的能量密度大于B,这时用细管把A,B连通起来,并在A,B与细管连接处插入一个滤光片,只允许圆频率为到范围内的电磁波(辐射)通过,能量将从A辐射到B而使A降温,B升温,这样就使温度相同的两个空腔A,B自发地出现了温度差。
于是就可以设计一个热机工作于A,B之间,对外作功,两相连的空腔相当于单一热源的热机,这就违背了热力学第二定律的开氏表述(不可能从单一热源吸热使之完全变成有用的功而不引起其它变化)。
所以假设不正确,即证得空腔辐射的能量按频率的分布只可能是温度的函数,而与腔壁的材料和形状无关,3、平衡辐射的热力学函数由经典电磁理论得知辐射压强P与辐射能量密度u的关系为:(1)将空腔辐射看作热力学系统,我们选温度T和体积V为状态参量。