数列万能解法
考研:求数列极限的十五种解法
求数列极限的十五种方法1.定义法;-N 定义:设{a .}为数列,a 为定数,若对任给的正数;,总存在正数 N ,使得当n . N 时,有a . -a | .;:「,则称数列{a .}收敛于a ;记作:l im a^a ,否则称{a .}为发散数列.例1 •求证: 1nim:a —1,其中a 0.证:当a =1时,结论显然成立.III当 a >1 时,记 a =a n_1,则 a >0 ,由 a =n+a $ K 1 +n a =1 + n(c^ _1),得_1 兰王,v‘ n彳 1 1 1任给E >0,则当n >口 =N 时,就有—1 ,即a 下一1 c 呂,即lim=1 .1综上, lim a n =1,其中 a >0 .例2 .求: 7nlim—.M^n!解: 变式: 7n_7 77 7 77 7 .7 7 771 .. n7--0 7丄丄n! 1 27 8 9 n —1 n 7! n 6! nn! 6! n2•利用柯西收敛准则由柯西收敛准则,数列 {x,}收敛.1丄当—时,令b 蔦,则b 1,由上易知:”呻1lim a nn丄-11 —1lim b 下n ::0,N 丄6!则当n . N 时, •••lim 7=0.f n!柯西收敛准则:数列{a n }收敛的充要条件是: 一;・0 , T 正整数N ,使得当n 、m • N 时,总有:|a n -a m I ■:"'成立.例3 •证明:数列x n 八§n当(n 才,2, 3,)为收敛数列. k 2±2证:X n -X m =sin(m 勺)-2m +当n • m • N 时,有有二丄「;6! n例4 .(有界变差数列收敛定理 )若数列{x }满足条件:(n =1, 2,),则称{人}为有界变差数列,试证:有界变差数列一定收敛.=0, y n 二 X n —X nJ —%1—X n 』"| X ? - X ’那么{y n }单调递增,由已知可知: {y n }有界,故{%}收敛, 从而0, -I 正整数N ,使得当n .m . N 时,有y n -y m :::;; 此即X n -X m _X n -X n 』"|X n 丄^/"| X m 1 - X m |八;由柯西收敛准则,数列{ X,}收敛.注:柯西收敛准则把 ;—N 定义中的a n 与a 的关系换成了 a n 与a m 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性.3 •运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5 •证明:数列 x n = J a +J a +''描 (n 个根式,a >0,n =1, 2, 11|)极限存在,并求l i ^X n • 证:由假设知X n = a • X n1 ;①用数学归纳法可证: X n 1 X, , ^ N :② 此即证{X,}是单调递增的.事实上,0 ::: Xn 1 • ..=a • Xn •;: J a • a • 1 :::、'( :a • 1)2二 a 1 ;由①②可知: {X n }单调递增有上界,从而 lim X^ =1存在,对①式两边取极限得:1二JFR ,解得: 1」1如和|/-1 4a(舍负);.・.limX 」1如.22F 24.利用迫敛性准则(即两边夹法)迫敛性:设数列{a n }、{b n }都以a 为极限,数列{C n }满足:存在正数 N ,当n • N 时,有:1*2 n "郭 n 2 +n 勺 n 2+2n 2+n +n)卫j <X ^n (n 1);从而lim 単』亠m 吵"2(n ②) 2(n 5 1) "一斗2 (n 2n) 2 r :2( n n 1)•••由迫敛性,得:朝人+冷…冷弓.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.证:令力 a^lC n 乞b ,则数列{C n }收敛,且l nim Cn =a .例6 .求:解:记:X n备?■生,则:....1 2 小“丘 n ; 21 n 2n 1亠 % - x ,| M5•利用定积分的定义计算极限黎曼积分定义:设为f(x)定义在[a, b ]上的一个函数,J 为一个确定的数,若对任给的正数g >0 ,总存在某一正数 5,使得对[a, b ]的任意分割T ,在其上任意选取的点集 {©},1X 」,x ],n只要—就有送f(©)织—J £ ■则称函数f(x)在[a, b ]上(黎曼)可积,数J 为f(x)在[a, b ]i J_.兀 .2兀 sin — sin —— lim------ + ---- - +"f 1n 1< 22n2n2n .sin — sinsin sin — sinsin si n — sin sin-n nn ____ n . ___ 亠 亠 n ... n nnnn注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时, 可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积 分定义可能比较困难,这上的定积分,记作 bJ f (x)dx •=exp "li 琴瓦 ^In(1 +丄)卜exp(』ln(1 +x)dx )=exp(2ln2 —1例8.求: 解:因为:又:.兀亠• 2兀亠亠.n 兀sin — sin sin -n n nn +1 n 1 =lim — ■- y :n 1 二二 二 2 二 n 二 -—(sin — sin — ■ ■■-sin —) •兀丄• 2兀丄亠• nn sin sin sin 一 •- lim n nJnY :n -1■nsin同理:sin — si n — s in 」由迫敛性,得:例7.求:1112 n n+評+廿1+討2兀时需要综合运用迫敛性准则等方法进行讨论.6•利用(海涅)归结原则求数列极限(x )=A=对任何人必(n 宀),有 ”叮(Xn )=A •2=[im(1 •啤)]im(1 ^^1)^ ^lim(1 n^)^^lim(1 」)x =e ; lim(1 -1 -4)n=e • i : n n注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7•利用施托尔茨(Stolz )定理求数列极限stolz 定理1: (__)型:若{y n }是严格递增的正无穷大数列,它与数列 {X n }一起满足:□0"m :x 二辭1,则有卩叹辭1,其中l为有限数,或;,或一stolz 定理2: (0)型:若{yn }是严格递减的趋向于零的数列, n —「::时,Xn —;0且lim X 1 Xn=],则有lim Xn=l ,其中I 为有限数,或•::,或-. n「y n1. -y n7%例11 .求:乍 2P 加:小n p愠 np+ (P^N) •解:令X n =1p ,2p 爲…圧-P , y n =n p1, n • N ,则由定理1,得:lim 1P 2P1 nP Rim (n P11)P P1,lim心 「 rn p1":( n1)p_ n p n]p1) n p_(P ⑴卩P 1注:本题亦可由 方法五(即定积分定义)求得,也较为简便,此处略.例9•求:lim n-<-.: 1e n-1 1 解:lim■n-s : 1-1 1例10 •计算: 解:一方面, 另一方面, 1= lim 学n T_on( lim 1 n 扛 (1 - n由归结原则: 1、n “ 1、n 2):::(1 ) > n(nr ');1 1(1 ——1)n (取 X n=(1 2丄_2_ 丁 )心丄—(1—)5-; nn2n n—1 ,n = 2, 3,…), 归结原则:lim f X十2n2由迫敛性,得:n'TnC :S n,求:Hm S n •n8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级 数求和的知识使问题得到解决.1 2n例13 .求:lim( 21) , (a >1). n: - a aa n1od解:令x =—,则|x | .;:1,考虑级数:V nx nan 1x而S(x)二x f (x)2;因此,原式(1—X)9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此 数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.例14.设焉0,X :^^ ^(n r O, 1, 2,),证明:数列{X :}收敛,并求极限2 +X :证:由x 0・0 ,可得: x:0(:巾 1 2, ),令 f(x ^22 x C),(x 0),例12 •设 解:令y =n 2,则{y n }单调递增数列,于是由定理2得:nE ln C ;lim S n = lim k~ 2—— j nY :2n 1n7 ln C n k1 -7 ln C := lim - n二 k 纟 k 土 2 2" (n 1) —nn” ln^^ k_on —k +1=lim n:■: 2n -1n +(n - 1)ln(n y ln kk -1=lim — n二2n 1(n 七)ln( n +1) — n In n -ln(n +1) = lim n:2n 1 .z n 1 nln( ) 1= lim :-n注:Stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用Stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则.lim an = lim =1,•••此级数是收敛的.令Q QS(x) nx n士二八'nx n1,再令n —f (x) =7 nx n」,x:: x::o f(t)dt ■ 0nt n1dt ■ x nn ±n 1f (x)二(产)二1 -x1 (1 -==S(a 」)=a(1-a 于2(1 亠x )=x :1,x : 0, (n =0,1,2,),oo考虑级数:.J |X : 1 -人; n 倉则 0 . f '(x)2(2 x)2由于X n 牛一X f (X n ) f (X nJf '(©(X n -X n£1X n —人iXn—人 1人一X n 1J?2所以, 级数"_人收敛,从而n£Q0壬(X n 牛-X n )收敛.n_0_令Sn=E (x kk_0_%牛一X k ) = X n 牛一人,叮臂^存在,二 n ^X n 丰 M^+U^S nJ (存在);对式子:X 」= 2(1+X),两边同时取极限:| =2(1知),2 *2 +I\ =^J 2或 I =―J2 (舍负);二 lim 人=J2 .n与、 1 1 i例15 .证明:lim (1In n )存在.(此极限值称为 Euler 常数)ii i i证:设 a n =i +— +—…+— —In n ,贝U a * —a*丄=—[in n —ln (n —i )];2 3 n n对函数y =1 n n 在[n -i, n ]上应用拉格朗日中值定理,可得:Inn —ln(n —1) - (0:::小1),10 •利用幕级数求极限例 16•设 sin x =sinx, sin x 二sin(sin n ±x) (n =2, 3, ■■- ),若 sinx 0 ,求:— i解:对于固定的x ,当n —•:时,单调趋于无穷,由stolz 公式,有:sin n x2nn ,1-1 lim nsin n x =lim lim — n 二 nn :”: 1n 1 [2 2 2sin n x sin n 1 x sin n x所以 a n —a “ 丄=一1 .n(n -1+0) In -1)2 'OC A因为J 收敛,由比较判别法知: n三(n -1)2心a n -a ni 也收敛,n士1 1所以l j m® 存在,即lim^Vi*1iln n)存在. n利用基本初等函数的麦克劳林展开式, 常常易求岀一些特殊形式的数列极限... 1= lim ——y : 1 ___ 1 sin 2(sin x) s in 2sin . x .2 2丄1 t sin t= lim lim 2 2 lim -“士一* t0 t -int(0 t^(t2-1t4 o(t4))sin t t 3t 4 -- t 6 o (t 6) 1 -- t 2 o (t 2) = lim 3 lim 33 .3t o (t )3 o (i )ii •利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛•下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 、 a a 例仃•求:limn 2(arctan arctan ) , (a =0).n二 n n 1解:设f (x ) =arctanx ,在[—a, a]上应用拉格朗日中值定理, n +1 n得:吩…(洽)="吟话),启,故当2知,J 。
数列通项解法大全
数列通项总结一、累加法(逐差相减法)1、d a a n n +=+1(d 为常数),等差数列2、)(1n f a a n n +=+,变形为)(1n f a a n n =-+,前提)1()1(-++n f f 可求⎪⎪⎭⎪⎪⎬⎫=--=--=----)1()2()1(12211f a a n f a a n f a a n n n n 这1-n 个等式累加得:)1()2()1(1-+++=-n f f f a a n 例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
例2:已知数列1}{1=a a n 中,且k k k a a )1(122-+=-,k k k a a 3212+=+, 3,2,1=k (1)求53,a a (2)求}{n a 的通项公式. 二、累积法(逐商相乘法)1、n n qa a =+1(q 为常数),等比数列2、n n a n f a )(1=+,变形为)(1n f a a nn =+,前提)1()2()1(-⨯⨯⨯n f f f 可求 ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=-=-=---)1()2()1(12211f a a n f a a n f a a n n n n这1-n 个等式累乘得: )1()2()1(1-⨯⨯⨯=n f f f a a n例1:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
三、公式法1(2)n n n a S S n -=-≥,)1(11≥-=++n S S a n n n例1:已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N * 求{n a }的通项公式。
解:由11a S ==111(1)(2)6a a ++解得1a =1或1a =2,由已知11a S =>1,因此1a =2又由11n n n a S S ++=-=1111(1)(2)(1)(2)66n n n n a a a a ++++-++得11()(3)n n n n a a a a +-+--=0 ∵n a >0 ∴13n n a a --=从而{n a }是首项为2,公差为3的等差数列,故{n a }的通项为n a =2+3(n-1)=3n-1. 例2:已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 四、待定系数法1、q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
求数列极限的十五种解法
1
;
0
0 n1
n1
1 x
1 x (1 x)2
而 S(x) x f (x) x ;因此,原式= S(a1) a1 .
(1 x)2
(1 a1 )2
9.利用级数收敛性判断极限存在 由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此
数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.
求数列极限的十五种方法
求数列极限的十五种方法
1.定义法
N 定义:设{an} 为数列, a 为定数,若对任给的正数 ,总存在正数 N ,使得当 n N 时,
有
an
a
,则称数列
{an
பைடு நூலகம்
}
收敛于
a
;记作:
lim
n
an
a
,否则称{an} 为发散数列.
1
例 1.求证: lim an 1,其中 a 0 . n
列以外的数 a ,只需根据数列本身的特征就可鉴别其敛散性.
3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极限.
例 5.证明:数列 xn a a a ( n 个根式, a 0 , n 1, 2,
证:由假设知 xn a xn1 ;① 用数学归纳法可证: xn1 xn , k N ;② 此即证 {xn} 是单调递增的.
n0
n0
n
令 Sn
xk1 xk
xn1
x0
,∵
lim
n
Sn
存在,∴
lim
n
xn1
x0
lim
n
Sn
l
(存在);
k 0
对式子:
数列解题方法总结
数列解题方法总结数列是数学中一个重要的概念,它是由一组按照一定规律排列的数所组成的序列。
解决数列问题是数学学习中的一个重要内容,也是数学建模和应用问题中常常遇到的情况。
本文将总结一些常见的数列解题方法,并且展开讨论它们的应用。
一、等差数列的解题方法:等差数列是最常见的一类数列,它的特点是任意两个相邻的项之间的差值都相等。
解决等差数列问题的方法非常简单,可以利用等差数列的通项公式来求解。
通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
应用等差数列的解题方法可以解决一些简单的数学问题,如求和、确定项数等。
二、等比数列的解题方法:等比数列是一种特殊的数列,它的特点是任意两个相邻的项之间的比值都相等。
解决等比数列问题的方法也比较简单,可以利用等比数列的通项公式来求解。
通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
应用等比数列的解题方法可以解决一些和增长、衰减、利率等有关的问题。
三、斐波那契数列的解题方法:斐波那契数列是一种特殊的数列,它的特点是每一项都是前两项的和。
解决斐波那契数列问题的方法相对复杂一些,可以利用递推关系式来求解。
递推关系式为:an = an-1 + an-2,其中an表示第n项。
应用斐波那契数列的解题方法可以解决一些和排列组合、递归、动态规划等有关的问题。
四、其他数列的解题方法:除了上述三种常见的数列,还有一些其他类型的数列,如等差等差数列、等比等比数列、二次数列等等。
解决这些数列问题的方法也各不相同,需要根据具体情况来选择。
可以利用数列的性质、递推关系、通项公式等方法来解决问题。
总之,解决数列问题需要灵活运用数学知识和方法,理解数列的特点和规律,并且应用数列的解题方法来进行推理和计算。
通过不断的练习和探索,可以提高解决数列问题的能力,培养数学思维和解决实际问题的能力。
求数列通项公式的6种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的7种方法:累加法、 累乘法、 待定系数法、 倒数变换法、 由和求通项 定义法(根据各班情况适当讲)二。
基本数列:等差数列、等比数列。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。
例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。
例2已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
数列通项公式的求法大全
数列通项公式的求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈.本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项.二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
数列极限的解法(15种)
数列极限的解法(15种)1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a .记作:lim n n a a →∞=.否则称{}n a 为发散数列.例1.求证1lim 1,nn a →∞=其中0a >.证:当1a =时,结论显然成立.当1a >时,记11na α=-,则0α>,由()1111(1)nna n n ααα=+≥+=+-得111na a n --≤,任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11n a ε-<即1lim 1,nn a →∞=当1111101,1,lim 1,lim 1lim n n n n nn a b b b a ab→∞→∞→∞<<=>=∴==时,令则由上易知综上,1lim 1,nn a →∞=0a >例2.求7lim!nn n →∞解:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅≤=-7777717177100,,0!6!6!!6!n n N n N n n n n εε⎡⎤∴-≤∴∀>∃=>-≤⎢⎥⎣⎦则当时,有<ε 7lim 0!nn n →∞∴= 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0,ε∀>∃正整数N ,使得当,n m N>时,有n m a a ε-<. 例3.证明:数列1sin (1,2,3,)2nn kk kx n ===⋅⋅⋅∑为收敛数列.证11111sin(1)sin 111112()122222212n mn m m n m n m m m n x x m-+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件 11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1,2,)n =⋅⋅⋅ 则称{}n x 为有界变差数列,试证:有界变差数列一定收敛 证:令1112210,n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-那么{}n y 单调递增,由已知知{}n y 有界,故{}n y 收敛,从而0,ε∀>∃正整数N ,使得当n m N >>时,有 n m y y ε-<此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-< 由柯西收敛准则,数列{}n x 收敛.注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a 只需根据数列本身的特征就可鉴别其敛散性.3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极[]1限.例5.证明数列n x a a a =++⋅⋅⋅n 个根式,a>0,n=1,2,⋅⋅⋅)极限存在,并求lim n n x →∞.证:由假设知1n n x a x -=+ ⋅⋅⋅(1) 用数学归纳法易证:1,n n x x k N +>∈ ⋅⋅⋅ ()2 此即证{}n x 单调递增.意选取的点集{}i ξ,[]1,i i i x x ξ-∈只要T<δ,就有()1nii i f x J ξε=-<∑,则称函数()f x 在[],a b 上(黎曼)可积,数J 为()f x 在[],a b 上的定积分,记作()ba J f x dx =⎰.例7.()()11lim !2!n nn n n n --→∞⎡⎤⋅⋅⎣⎦解:原式=()()()()2!122!nn nnn n n n n n n n n ++⋅⋅⋅==11121lim 111exp lim ln 1nnn n i n i n n n n n →∞→∞=⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=+ ⎪⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭∑=()()()10expln 1exp 2ln 21x dx +=-⎰例8.求2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭ 解:因为222sin sin sin sin sin sin sin sin sin 111112n n n n n n n n n n n nn n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++又2sinsinsin 12limlim sin sin sin 11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤⎛⎫=⋅⋅++⋅⋅⋅+ ⎪⎢⎥++⎝⎭⎣⎦=02sinsinsin12lim sin 1n n n n n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰同理2sin sin sin 2lim 1n n n n n n n ππππ→∞++⋅⋅⋅+=+由迫敛性得2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭=2π. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义.部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论。
求数列通项公式的十一种方法
①若 f(n)是关于 n 的一次函数,累加后可转化为等差数列求和; ②若 f(n)是关于 n 的二次函数,累加后可分组求和; ③若 f(n)是关于 n 的指数函数,累加后可转化为等比数列求和; ④若 f(n)是关于 n 的分式函数,累加后可裂项求和。
例 3.已知数列{an }中,
an
0且 Sn
( 1 ) n1 2
1
2.形如: a n1 p an q n
(其中 q 是常数,且 n 0,1)
①若 p=1 时,即: a n1 an q n ,累加即可.
②若 p 1 时,即: a n1 p an q n ,
求通项方法有以下三种方向:i. 两边同除以 p n1 .目的是把所求数列构造成等差数列
)
(
an 3n
2 2
an 3n
3 3
)
(
a2 32
3a11)
a1 3
(
2 3
1 3n
)
(
2 3
1 3n 1
)
(
2 3
1 3n 2
)
(
2 3
1 32
)
3 3
2(n 1) 3
(31n
1 3n
1 3n 1
1 3n 2
1 32
)
1
因此 an 3n
求数列通项公式的十一种方法(方法全,例子全,归纳细)
总述:一.利用递推关系式求数列通项的 11 种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法、 不动点法(递推式是一个数列通项的分式表达式)、 特征根法
数列万能解法
数列的项na与前n项和nS的关系:11(1)(2)nn ns nas s n-=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。
2、错项相减法:适用于差比数列(如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列)即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和。
3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n na a+⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a等差)可裂项为:111111()n n n na a d a a++=-⋅1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值。
(ⅰ)若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列求和问题的常用解法
数列求和问题的常用解法数列求和问题是数学中常见的问题,解决这类问题的方法有很多,以下是常用的几种解法:1. 高斯求和法高斯求和法是一种快速求和方法,适用于求等差数列的和。
具体步骤如下:将数列首项和末项相加,得到和S1。
将数列第二项和倒数第二项相加,得到和S2。
将S1和S2相加,得到数列的总和。
例如,求1+2+3+4+5的和,按照高斯求和法的步骤,我们有:S1 = 1 + 5 = 6S2 = 2 + 4 = 61+2+3+4+5的和为6+6=12。
2. 套公式法套公式法适用于求一些特殊数列的和,例如等比数列和等于首项与公比的幂函数的差值除以公比减一。
具体步骤如下:确定数列类型,找到对应的求和公式。
确定数列的首项和末项。
将首项、末项以及对应的求和公式代入计算。
例如,求1+2+4+8+16的和,由于该数列为2的幂次方数列,因此我们可以使用求和公式:S = a(1-q^n)/(1-q)其中,a为首项,q为公比,n为项数。
代入计算可得,S = 1(1-2^5)/(1-2) = 1-32/-1 = 31。
3. 化简法化简法适用于一些特殊的数列求和问题,例如求等差数列前n项和的问题。
具体步骤如下:将数列相邻两项相减,得到数列的公差d。
将数列的每一项写成首项加公差的形式。
将每一项展开并合并同类项,得到一个关于n的代数式。
将代数式化简得到最终的结果。
例如,求1+2+3+...+100的和,按照化简法的步骤,我们有:d = 2-1 = 11+2+3+...+100 = (1+100)+(2+99)+...+(50+51)= 50(1+100) + (1+2+...+50) - (1+2+ (49)= 5050。
通过以上三种方法,我们可以解决数列求和问题。
需要注意的是,在使用求和公式或者化简法时,需要确保数列满足特定的条件,否则公式无法使用或者计算结果不正确。
求解数列技巧
求解数列技巧数列是数学中的重要概念,指的是按照一定的规律排列的一系列数。
求解数列的技巧也非常重要,可以帮助我们更好地理解数列的特点和性质。
下面将介绍一些常见的求解数列的技巧。
一、递推法:递推法是求解数列的常用方法,通过已知的数列的前几项推导出数列的通项表达式。
递推法适用于差数列、比数列和特殊数列等。
1.差数列:差数列指的是每一项与前一项之间的差等于常数的数列。
求解差数列的关键是找到差的规律。
例如,求解数列1, 4, 7, 10, 13的通项公式。
解:观察数列的差,可以发现每一项与前一项之间的差为3,因此可以得到通项公式为an = a1 + 3(n-1),其中a1为第一项,n为项数。
2.比数列:比数列指的是每一项与前一项之间的比等于常数的数列。
求解比数列的关键是找到比的规律。
例如,求解数列1, 2, 4, 8的通项公式。
解:观察数列的比,可以发现每一项与前一项之间的比为2,因此可以得到通项公式为an = a1 * 2^(n-1),其中a1为第一项,n为项数。
3.特殊数列:特殊数列指的是根据特定规律构成的数列,如斐波那契数列、几何数列等。
求解特殊数列的关键是找到数列的特定规律。
例如,求解斐波那契数列的通项公式。
解:斐波那契数列的特点是每一项等于前两项的和,可以得到通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 1为斐波那契数列的前两项。
二、数列之间的关系:数列之间可能存在一定的关系,通过找到数列之间的关系可以求解数列的通项公式。
1.数列和数列关系:数列之间的关系可以通过对前几项进行求和来确定。
例如,求解数列1, 3, 6, 10的通项公式。
解:首先求出数列的部分和序列,得到1, 4, 10, 20。
观察部分和序列,可以发现每一项与前一项之间的差为差数列,因此该数列的通项公式为d(n) = d(n-1) + n,其中d(n)表示数列的第n项。
2.数列的平方或立方关系:数列之间可能存在平方或立方的关系,通过找到数列的规律可以求解数列的通项公式。
数列题型及解题方法归纳总结
知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n+d及a n+1=qa n(d,q为常数)例1、 已知{a n}满足a n+1=a n+2,而且a1=1。
求a n。
例1、解 ∵a n+1-a n=2为常数 ∴{a n}是首项为1,公差为2的等差数列∴a n=1+2(n-1) 即a n=2n-1例2、已知满足,而,求=?(2)递推式为a n+1=a n+f(n)例3、已知中,,求.解: 由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★说明 只要和f(1)+f(2)+…+f(n-1)是可求的,就可以由a n+1=a n +f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q(p,q 为常数)例4、中,,对于n>1(n∈N)有,求.解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1)因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为an+1=p a n +q n(p,q 为常数)由上题的解法,得: ∴(5)递推式为思路:设,可以变形为:,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
求数列通项公式的八种方法
求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +===L L ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
数列解题方法大全
数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。
变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。
解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+∙=++引入辅助数列{}n b (其中nn n q a b =),得:qb q p b n n 11+=+再待定系数法解决。
高考数列万能解题方法
数列的项na与前n项和nS的关系:11(1)(2)nn ns nas s n-=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和;2、错项相减法:适用于差比数列如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和;3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和;适用于数列11n na a+⎧⎫⎨⎬⋅⎩⎭和⎧⎫其中{}n a等差可裂项为:111111()n n n na a d a a++=-⋅1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值;ⅰ若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;ⅱ若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值ⅰ若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;ⅱ若已知2nS pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式; ⑵已知n S 即12()n a a a f n +++=求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥;已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩;⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a ;⑷若1()n na a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥;⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥; ⑹已知递推关系求n a ,用构造法构造等差、等比数列;特别地,1形如1nn a ka b -=+、1n n n a ka b -=+,k b 为常数的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a ;2形如11n nn a a ka b--=+的递推数列都可以用倒数法求通项;3形如1k n n a a +=的递推数列都可以用对数法求通项;7理科数学归纳法; 8当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式; 数列求和的常用方法:1公式法:①等差数列求和公式;②等比数列求和公式;2分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和; 3倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和这也是等差数列前n 和公式的推导方法. 4错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法这也是等比数列前n 和公式的推导方法.5裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由 3、求差商法 解:n a a ==⨯+=1122151411时,,∴练习4、叠乘法 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 5、等差型递推公式 练习6、等比型递推公式 练习7、倒数法数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项; 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠练习3、错位相减法:4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加; 练习 深圳一模深圳二模 广州一模 广州二模 韶关调研。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的项n a 与前n 项和n S 的关系:11(1)(2)n n n sn a s s n -=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。
2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差) 可裂项为:111111()n n n n a a d a a ++=-⋅1d=等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。
(ⅰ)若已知通项n a ,则n S 最大⇔100n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔100n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。
已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a 。
(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。
(3)形如1k n n a a +=的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
(8)当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式。
数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++;⑤11(1)!!(1)!n n n n=-++;⑥=<<=二、解题方法:求数列通项公式的常用方法: 1、公式法2、n n a S 求由(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534(注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()()[练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n nn n 11122==++ 由已知得:1221211a a a a n n n n+=+=+ ∴11121a a n n +-= ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为()()∴=+-=+11112121a n n n · ∴a n n =+21数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
{}如:是公差为的等差数列,求a d a a n k k k n111+=∑解:()()由·11111011a a a a d d a a d k k k kk k ++=+=-⎛⎝ ⎫⎭⎪≠ ∴11111111a a d a a k k k nk k k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习]求和:…………111211231123+++++++++++n(…………,)a S n n n ===-+2113、错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n {}和,可由求,其中为的公比。
S qS S q b n n n n -如:……S x x x nx n n =+++++<>-12341231()x S x x x x n x nx n n n ·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x x nx n n n()()x S x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-…………[练习]已知,则f x x x f f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414(由f x f x x x x x x x x ()+⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=+++=1111111112222222 ∴原式=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥f f f f f f f ()()()()1212313414=+++=12111312)。