高考数列万能解题方法定稿版

合集下载

高中数学数列的万能解法归纳

高中数学数列的万能解法归纳

高中数学数列的万能解法归纳
数列作为历年的重点考查内容之一,估测试题会出现在数列的知识、函数知识、不等式的知识和解析几何知识等的交汇点处命题,从而使数列试题呈现综合性强、立意新、角度新、难度大的特点。

直白点说,高考的20多道题目中,无论是最基本的题型还是最后的解答压轴题,考到数列部分的几率是相当大的,毕竟数列作为每年高考热点元老的存在。

在复习数列单元时,一定要以等差、等比数列为载体,以通项公式、求和公式为主线,注重基础,联系实际.通过对试题的练习,提高其运算能力、思辨能力、解决实际问题的能力,才能以不变应万变,在高考中立于不败之地。

简单2个字来形容掌握数列的要诀那就是规律。

这里我们提供一份通过对历年来数列部分的解法归纳,希望能帮助冲刺阶段的同学更上一层楼。

▍ ▍ ▍▍。

高考数学数列题求解题技巧

高考数学数列题求解题技巧

高考数学数列题求解题技巧数学数列题是高考数学中常见的题型之一,也是考查学生对数列概念和性质的理解和运用能力的重要手段之一。

下面将给出一些解题技巧,帮助你在高考中更好地解答数列题。

1. 确定数列类型在解答数列题时,首先要明确数列的类型。

常见的数列类型包括等差数列、等比数列、斐波那契数列等。

通过观察数列的通项公式、公式中的递推关系或者数列中的规律,确定数列的类型,有助于我们更好地理解和解答问题。

2. 求解等差数列对于等差数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等差数列的前n项和Sn 时,我们可以使用以下公式求解等差数列的的首项a1和公差d:Sn = (n/2)(a1 + an)Sn = (n/2)(2a1 + (n-1)d)其中n为项数,a1为首项,an为第n项,d为公差。

(2)已知前n项和的两倍:如果我们知道等差数列的前n项和Sn的两倍为2Sn,则可以使用以下公式求解首项a1:2Sn = n(2a1 + (n-1)d)(3)已知前n项和的平方:如果我们知道等差数列的前n项和Sn的平方为Sn²,则可以使用以下公式求解公差d:Sn² = n(2a1 + (n-1)d)²/43. 求解等比数列对于等比数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等比数列的前n项和Sn 时,我们可以使用以下公式求解等比数列的的首项a1和公比q:Sn = a1(1 - qⁿ)/(1 - q)其中n为项数,a1为首项,q为公比。

(2)已知前n项积:若已知等比数列的前n项积为Pn,则可以使用以下公式求解首项a1和公比q: Sn = a1(1 - qⁿ)/(1 - q)4. 拆分序列有时,在解答数列题时,我们可以将给定的数列拆分为两个或多个较为简单的数列进行求解。

例如,当我们遇到递推关系较为复杂的数列时,可以考虑将数列拆分为两个或多个等差数列或等比数列,然后分别求解。

高考数学万能解题模板总结(高考必备)

高考数学万能解题模板总结(高考必备)

高考数学万能解题模板总结(高考必备)1、选择填空题1)易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2)答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

2、解答题答题技巧与模板1)三角变换与三角函数的性质问题一、解题路线图①不同角化同角①降幂扩角①化f(x)=Asin(ωx+φ)+h①结合性质求解。

二、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

①整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。

①求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

①反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

2)解三角形问题一、解题路线图①化简变形;①用余弦定理转化为边的关系;①变形证明。

①用余弦定理表示角;①用基本不等式求范围;①确定角的取值范围。

二、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

①定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

①求结果。

①再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

3)数列的通项、求和问题一、解题路线图①先求某一项,或者找到数列的关系式。

①求通项公式。

①求数列和通式。

二、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

高考数列万能解题方法

高考数列万能解题方法

数列的项na与前n项和nS的关系:11(1)(2)nn ns nas s n-=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和;2、错项相减法:适用于差比数列如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和;3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和;适用于数列11n na a+⎧⎫⎨⎬⋅⎩⎭和⎧⎫其中{}n a等差可裂项为:111111()n n n na a d a a++=-⋅1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值;ⅰ若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;ⅱ若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值ⅰ若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;ⅱ若已知2nS pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式; ⑵已知n S 即12()n a a a f n +++=求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥;已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩;⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a ;⑷若1()n na a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥;⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥; ⑹已知递推关系求n a ,用构造法构造等差、等比数列;特别地,1形如1nn a ka b -=+、1n n n a ka b -=+,k b 为常数的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a ;2形如11n nn a a ka b--=+的递推数列都可以用倒数法求通项;3形如1k n n a a +=的递推数列都可以用对数法求通项;7理科数学归纳法; 8当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式; 数列求和的常用方法:1公式法:①等差数列求和公式;②等比数列求和公式;2分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和; 3倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和这也是等差数列前n 和公式的推导方法. 4错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法这也是等比数列前n 和公式的推导方法.5裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由 3、求差商法 解:n a a ==⨯+=1122151411时,,∴练习4、叠乘法 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 5、等差型递推公式 练习6、等比型递推公式 练习7、倒数法数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项; 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠练习3、错位相减法:4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加; 练习 深圳一模深圳二模 广州一模 广州二模 韶关调研。

高考数学数列的万能解法全归纳

高考数学数列的万能解法全归纳

高考数学数列的万能解法全归纳!
数列作为历年的重点考查内容之一,估测试题会出现在数列的知识、函数知识、不等式的知识和解析几何知识等的交汇点处命题,从而使数列试题呈现综合性强、立意新、角度新、难度大的特点。

直白点说,高考的20多道题目中,无论是最基本的题型还是最后的解答压轴题,考到数列部分的几率是相当大的,毕竟数列作为每年高考热点元老的存在。

在复习数列单元时,一定要以等差、等比数列为载体,以通项公式、求和公式为主线,注重基础,联系实际.通过对试题的练习,提高其运算能力、思辨能力、解决实际问题的能力,才能以不变应万变,在高考中立于不败之地。

简单2个字来形容掌握数列的要诀那就是规律。

这里我提供一份通过对历年来数列部分的解法归纳,希望能帮助冲刺阶段的同学更上一层楼。

▍ ▍ ▍。

高中数学数列求解方法 (完整版)

高中数学数列求解方法 (完整版)

高中数学数列解题方法总结类型一:)(1n f a a n n +=+()(n f 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴=类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。

解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1Bt A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。

例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。

解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。

1231n n a -∴=⋅-类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A B C αββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n na a α++是以21a a α+为首项, A β为公比的等比数列,然后再结合其它方法,就可以求出n a 。

高考数学数列的万能解法全归纳

高考数学数列的万能解法全归纳

高考数学数列的万能解法全归纳
数列作为历年的重点考查内容之一,估测试题会出现在数列的知识、函数知识、不等式的知识和解析几何知识等的交汇点处命题,从而使数列试题呈现综合性强、立意新、角度新、难度大的特点。

直白点说,高考的20多道题目中,无论是最基本的题型还是最后的解答压轴题,考到数列部分的几率是相当大的,毕竟数列作为每年高考热点元老的存在。

在复习数列单元时,一定要以等差、等比数列为载体,以通项公式、求和公式为主线,注重基础,联系实际.通过对试题的练习,提高其运算能力、思辨能力、解决实际问题的能力,才能以不变应万变,在高考中立于不败之地。

简单2个字来形容掌握数列的要诀那就是规律。

这里我提供一份通过对历年来数列部分的解法归纳,希望能帮助冲刺阶段的同学更上一层楼。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)例1、? 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解? ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1例2、已知{}n a 满足112n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a .解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★ 说明 ?只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。

两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。

高中数学万能解题模板

高中数学万能解题模板

高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。

高考数学 专题24 数列求和方法黄金解题模板

高考数学 专题24 数列求和方法黄金解题模板

专题24 数列求和方法【高考地位】数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。

数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。

此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。

下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。

【方法点评】方法一 公式法解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{nS n的前n 项和,求n T .【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:等差数列前n 项和公式: 11()(1)22n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =⎧⎪=--⎨=≠⎪--⎩.自然数方幂和公式:1123(1)2n n n +++⋅⋅⋅+=+ 22221123(1)(21)6n n n n +++⋅⋅⋅+=++333321123[(1)]2n n n +++⋅⋅⋅+=+【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B考点:等差数列通项公式及求和方法二 分组法解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式;第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和;第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和.例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项S n .【变式演练2】在已知数列11a =, 22a =,且()2221nn n a a +-=--, *n N ∈,则2017S 的值为( ) A. 201610101⨯- B. 10092017⨯ C. 201710101⨯- D. 10092016⨯ 【来源】【全国百强校】河北省2017届衡水中学押题卷理数 II 卷 【答案】C【解析】由递推公式可得:当n 为奇数时, 24n n a a +-= ,数列{}21n a - 是首项为1,公差为4的等差数列, 当n 为偶数时, 20n n a a +-= ,数列{}21n a - 是首项为2,公差为0的等差数列,()()20171320172420161100910091008410082220171010 1.S a a a a a a =+++++++=+⨯⨯⨯+⨯=⨯-本题选择C 选项.【方法点睛】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.【变式演练3】已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.【答案】(1)21(1,2,3,)n a n n =-=;(2)2312n n -+.考点:1、等差数列;2、等比数列.方法三 裂项相消法解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式;第二步 巧裂项:即根据通项公式特征准确裂项,将其表示为两项之差的形式; 第三步 消项求和:即把握消项的规律,准确求和. 例 3. 已知数列{}n a :12,1233+,123444++,…, 123910101010+++,…,若11n n n b a a +=⋅,那么数列{}n b 的前n 项和n S 为( )A .1n n + B .41n n + C. 31n n + D .51nn +【答案】B【变式演练4】已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{11.n n a a +}的前100项和为( )A .100101 B .99101C .99100D .101100 【答案】A 【解析】试题分析:由a 5=5,S 5=15,可知11,1a d == ()1111111n n n a n a a n n n n +∴=∴==-++ 10011111110011223100101101101S ⎛⎫⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭考点:数列求和方法四 错位相减法解题模板:第一步 巧拆分:即根据通项公式分解为等差数列和等比数列乘积的形式; 第二步 确定等差、等比数列的通项公式;第三步 构差式:即写出n S 的表达式,然后两边同时乘以等比数列的公比得到另外一个式子,两式作差;第四步 求和:根据差式的特征准确求和.例 4. 已知数列{}n a 满足11a =, 122n n n a a a +=+.记2nn nC a =,则数列{}n C 的前n 项和12...n C C C +++=__________.【答案】2n n ⋅【变式演练5】已知数列{}n a 的前n 项和为n S ,且122n n S +=-(*n ∈N ). (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T . 【答案】(Ⅰ)2nn a =;(Ⅱ)1(1)22n n T n +=-+.(Ⅱ) 由(Ⅰ),2n n n b na n ==⨯. 则1212222n n T n =⨯+⨯++⨯,所以231212222n n T n +=⨯+⨯++⨯,则212222nn n T n +-=+++-⨯12(12)212n n n +-=-⨯-1(1)22n n +=--.所以1(1)22n n T n +=-+考点:1、数列的通项公式;2、数列求和.【方法点睛】对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差或等比数列问题,有时也用到一些特殊的转化方法与特殊数列,此法称为辅助数列法.常用转化方法:变换法、待定系数法、加减法、累加法、迭代法等.【变式演练6】已知等差数列{}n a 的前n 项和为n S ,且93=S ,731,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的公差不为0,数列{}n b 满足nn n a b 2)1(-=,求数列{}n b 的前n 项和n T .【答案】(1)1n a n =+;(2)22)1(1+⋅-=+n n n T .【解析】试题分析:(1)由题意可知,利用93=S ,731,,a a a 成等比数列,从而可求出数列{}n a 的通项公式,数列{}n b考点:1.等差数列的综合;2.等比数列的综合;3.错位相减法的运用.方法五 倒序相加法例5.函数()()()*112321,11,,1x n x e n f x g x f x a g g g g n N e n n n n --⎛⎫⎛⎫⎛⎫⎛⎫==-+=++++∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭,则数列{}n a 的通项公式为__________. 【答案】21n a n =-【解析】由()()1111x x x xe ef x f x e e -----===-++,函数()11x x e f x e -=+为奇函数, ()()()()()()211211112g x g x f x f x f x f x +-=-++--+=-+-+,由()11x x e f x e -=+为奇函数, ()()110f x f x ∴-+-=, ()()22g x g x ∴+-=,∵*12321,n n a g g g g n N n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=++++∈⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,①考点:倒序相加法求和.【变式演练7】已知函数321(),().212x F x x x -=≠- (1)求122009()()()201020102010F F F +++的值;(2)已知数列11{}2,()n n n a a a F a +==满足,求证数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;(3)已知nn n b 212-=,求数列{}n n a b 的前n 项和n S . 【答案】(1) S=60272. (2)见解析;(3)n S =1242n n-+-。

高考数学二轮复习专题32 数列大题解题模板(文)(解析版)

高考数学二轮复习专题32 数列大题解题模板(文)(解析版)

专题32 数列大题解题模板一、递推数列的类型以及求通项方法总结:1、定义法:等差数列的通项公式:d n a a n )1(1-+=或d m n a a m n )(-+=。

等比数列的通项公式:11-⋅=n n q a a (01≠⋅q a )或m n m n q a a -⋅=(m n >)2、做差法:由n a 与n S (即)(21n f a a a n =+⋅⋅⋅++)的关系求n a ,⎩⎨⎧≥-==-2,1,11n S S n S a n nn 。

3、累加法:由)(1n f a a n n =-+求n a ,112211)()()(a a a a a a a a n n n n n +-+⋅⋅⋅+-+-=---(2≥n )。

4、累乘法:已知)(1n f a a n n =+求通项n a ,112211a a aa a a a a n n n n n ⋅⋅⋅⋅⋅=---(2≥n )。

5、已知递推关系求n a ,用构造法(构造等差、等比数列):(1)形如)(1n f pa a n n +=+,只需构造数列}{n b ,消去)(n f 带来的差异,)(n f 的形式有: ①)(n f 为常数,即递推公式为q pa a n n +=+1(其中p 、q 均为常数且0)1(≠-p pq )。

解法:先设参转化为)(1λ+=λ++n n a p a ,其中1-=λp q,再利用换元法转化为等比数列求解。

②)(n f 为一次多项式,即递推公式为s n r a p a n n +⋅+⋅=+1。

③)(n f 为n 的二次式,则可设C Bn An a b n n +++=2。

(2)递推公式为n n n q a p a +⋅=+1(其中p 、q 为常数且0)1)(1(≠--q p pq )或n n n q r a p a ⋅+⋅=+1(其中p 、q 、r 为常数)。

解法:一般地要先在原递推公式两边同除以1+n q ,得:qq a q p q a n n n n 111+⋅=++,引入辅助数列}{n b (其中nn n qa b =),得:q b q p b n n 11+⋅=+,再应用类型(1)的方法解决。

高考数学数列题型解题方法范文

高考数学数列题型解题方法范文

高考数学数列题型解题方法范文:为了关心考生们了解高考信息,查字典数学网分享了高考数学数列题型解题方法,供您参考!高考数学之数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都可不能遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探干脆问题是高考的热点,常在数列解答题中显现。

本章中还包蕴着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等差不多数学方法。

近几年来,高考关于数列方面的命题要紧有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中要紧是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地点用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合1.在把握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统把握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。

我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观看过程中指导。

我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数列万能解题方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
数列的项n a 与前n 项和n S 的关系:1
1(1)(2)n n n s n a s s n -=⎧=⎨-≥⎩
数列求和的常用方法:
1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数
列)
即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)
可裂项为:
111111()n n n n a a d a a ++=-⋅
1
d
=
等差数列前n 项和的最值问题:
1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。

(ⅰ)若已知通项n a ,则n S 最大⇔10
n n a a +≥⎧⎨≤⎩;
(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q
p
-
的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值
(ⅰ)若已知通项n a ,则n S 最小⇔1
0n n a a +≤⎧⎨≥⎩;
(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q
p
-
的非零自然数时n S 最小; 数列通项的求法:
⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{
11,(1)
,(2)
n n n S n a S S n -==
-≥。

已知12
()n a a a f n =求n a ,用作商法:(1),(1)()
,(2)
(1)
n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-
1a +(2)n ≥。

⑸已知
1()n n a f n a +=求n a ,用累乘法:12
112
1
n n n n n a a
a a a a a a ---=⋅⋅⋅
⋅(2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a 。

(2)形如1
1n n n a a ka b
--=
+的递推数列都可以用倒数法求通项。

(3)形如1k n n a a +=的递推数列都可以用对数法求通项。

(7)(理科)数学归纳法。

(8)当遇到q a a d a a n n n n ==--+-+1
1
11或时,分奇数项偶数项讨论,结果可能是分段形式。

数列求和的常用方法:
(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①
111(1)1n n n n =-++; ②1111()()n n k k n n k
=-++; ③
2211111
()
1211
k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④
1111
[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!
n n n n =-++;

=
<<=
二、解题方法:
求数列通项公式的常用方法:
1、公式法
2、n n a S 求由
3、求差(商)法
解:n a a ==⨯+=11
2
2151411时,,∴
[练习]
4、叠乘法
解:
a a a a a a n n a a n
n n n 213211122311·……·……,∴-=-= 5、等差型递推公式
[练习]
6、等比型递推公式
[练习]
7、倒数法
数列前n 项和的常用方法:
1、公式法:等差、等比前n 项和公式
2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:()()由
·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫

⎪≠
[练习]
3、错位相减法:
4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]深圳一模深圳二模广州一模广州二模韶关调研。

相关文档
最新文档