有机分子式和结构式的确定
有机物分子式和结构式的确定
思考?
1、分子式表示的意义? (例:H2SO4)
2、有机化合物中如何确定C、 H元素的存在?
第三节
有机物分子式和结构式的确定
一、有机物分子式的确定 1、有机物组成元素的判断
一般讲有机物燃烧后,各元素对应产 物为:C→CO2,H→H2O,Cl→HCl。
若有机物完全燃烧,产物只有CO2和 H2O,则有机物组成元素可能为C、H或 C、H、O。
;https://
;
;
Hale Waihona Puke 我想这就是我的礼拜方式了。 2人们似乎早已习惯了没有信仰的生活。我经常听见或看见某企业破产某公司倒闭,人们对此也格外关注,这当然是值得关注和同情的,但我有时就纳闷,我怎么这么多年从来没有听谁说过灵魂破产、精神倒闭这类事件?后来我明白了,也许那被称作灵魂和 精神的东西从来就处在破产和倒闭状态,习焉不察,自然就如同没有那回事似的。我也几乎没有听说过有哪一位用汉语写作的作家出现了精神危机之类事儿,只知道他们忙着生产忙着叫卖忙着让自己尽快进入有产者行列,好像一群投机商人,生怕在市场上卖不了好价钱,生怕亏本。当然也有 精神苦闷的,但主要是为把自己卖不出去而苦闷,与源于信仰幻灭的精神危机关系不大或者根本没有关系,那种苦闷与不走运的商人的苦闷是一回事,是物质世界的事儿,与精神世界无涉。 3过了四十岁了,我该把自己的灵魂安妥下来。我不该只是上班和挣钱。职业对于生存是重要的,但职 业并不能解决人生意义问题,恰恰相反,它是时时消解着人生的意义感,你必须在职业之外通过别的途径重建人生的意义。与杀猪、推死尸进焚尸炉相比,我们从事的职业或许要体面些,其实把表面的那点光环剥离掉,至多,我们不过是与杀猪的现场、与焚尸的现场稍微保持了一点距离而已。 4人生的意义存在于对意义的寻求过程之中,上帝也是这样,上帝不是教义或理念中的神灵,我们把个人的存在与普遍而永恒的存在发生关联获得的意义感称为上帝。爱默生说:先人们同上帝和自然面对面地交往,而我们则通过他们的眼睛与之沟通,为什么我们不该同样地保持一种与宇宙的原 始联系呢? 5一种有价值的精神创造活动,一种有深度的生活方式,不过是恢复和保持了“与宇宙的原始联系”。而切断了这种原始联系,我们就成了沉溺于泡沫中的浮游生物,我们被复制的机器俘获,复制着,也被复制着,离本源和真相越来越远,生命的内核渐渐被彻底掏空,像一根 漂木随浪而去,再也找不到意义的地面。 6我选择了南山,不是逃避什么,或仅仅只图精神的逍遥。南山对于我,是眺望宇宙的看台,是回归自然的驿站。在这里,我试图建立一种“与宇宙的原始联系”,建立与自然、与生命、与自身的诗性联系。 7从信仰的角度来说,南山就是我 的神山。 十一)《今夜的泪水》 ? 1那个星期天,我在山上漫步,沿着野草缠绕的小径随意走着,我不想寻找确凿的目的地,我把双脚交给这些古藤般时隐时现的小道,就由它们把我带到哪里算哪里,即便被带进密不透风难辨方向的林莽,我也不会埋怨,就迷一次路吧。这么多年,周而复始 地走着明白无误的路,想迷一次路都没有机会,一切都设计好了,规定好了,人只要一动身,就进入了固定的程序,就踏上了锁定的路线,红灯停,绿灯行,就这么笔直地走来走去,直至终点。一条路走到黑,这使我们失去了对路的感激。这就如同把一个无味的梦做到天亮,而且夜夜重复, 那个梦早就不是梦了,全然没有了梦的神奇浪漫。被同一个梦占据的睡眠与无梦的睡眠并没有什么两样,都是对死亡的提前预演。 2我就在野草杂树中胡乱走着,天渐渐黑了,我正可以在夜色里迷一次路,对黑夜的到来我有了一种隐隐的快感。一条野径把我带入一片竹林。早听人说过, 南山上有一个竹海,与更南的四川相连,在南山的“海域”也有近千亩。那么我是下海了?至少已来到浅海湾。我折了一根干瘦的竹竿作为探路的拐杖,边走边敲敲这根竹子,敲敲那根竹子,既是为自己壮胆,也顺便对寂寞中坚守的竹子们表示敬意和问候。天似乎完全黑下来了,在林子里行 走更能真切地看到夜晚是怎样一笔一笔很快涂染了它漆黑的形象。然而林中似乎又有了亮色,竹子与竹子之间断续传递着神秘的光线,我仰头一看,竹叶交叠的高处,分布着星星点点的小孔,光,正是从那里漏下来的。此时,我体验到自然界那些生灵们有限的幸福,比如野猪、松鼠、刺猬、 山羊、兔子、猫头鹰……虽然,在这严酷的世界上,没有谁帮助它们同情它们,在自生自灭的命运里,它们是何等孤独悲苦,天敌的伤害,饥饿的打击,病痛的折磨,它们每时每刻都在提心吊胆地活着。然而,我似乎夸大了它们的痛苦。至少,阳光雨水对它们是免费供应的,还有,在黑夜降 临的时刻,天上那些伟大的星星绝不因为它们卑微就不关照它们,相反,与它们的实际需求相比,大自然把大额度的光亮赐给它们。 3走了大约两个小时,我折回身,向来时的方向走。我没有迷路,星星们不让我迷路。莫名其妙地,我竟流出了眼泪,我觉得这伟大的宇宙固然充满莫测的 危险和深奥的玄机,但壮阔的宇宙毕竟对人、对生命体现了无微不至的仁慈。此时已是深夜,这寂寞的山野也许只有我一人独行,当然也许还有一些保持着夜游习惯的伙计,比如猫、狗、松鼠也在夜的某个角落散步或恋爱,但是,毕竟此地就我一人呀,宇宙却为我准备了一万盏一千万盏一千 亿盏华灯!整整一条银河都陪着我漫游,天国里全部的照明设施都归我——一个凡夫俗子使用!这是怎样的大恩大德啊。我就想,在如此壮丽无比的夜色下,谁能忍心辜负这皎皎明月盈盈星空?这伟大深邃的星空,正是神的无边胸怀,在这神圣星光的映照下,人只能去热爱,去歌唱,去进行 美好的创造和劳动,去沉思,沉思存在的源头,沉思无限时间和空间向我们暗示的神秘寓意,或者怀着感恩的心情进入睡眠……我想,历史上那些道德高尚智慧卓越心灵伟大的人,除了特殊的禀赋和所传承的高深优美文化影响了他们,他们更重要的道德和心灵源头当是这伟大不朽的宇宙星 空——这浩瀚无涯的时空之海光芒之海召唤和启示了他们心灵里潜藏的浩瀚崇高的道德冲动:必须熔铸一颗崇高清澈的大心,才配面对这星空。经过虔诚的磨砺、修养、吐纳,他们终于有了一颗与宇宙对称的伟大灵魂。 4可是,曾几何时,这崇高的精神的星空渐渐成了物理学的星空,化学的 星空,气象学的星空商业的星空间谍卫星的星空。它渐渐从心灵的天幕暗淡下来。古典的、天真的激情退潮了。人类的目光,更多地锁定在自己制造的符号网络里;人类的心灵,更多地沉溺于物质福利的狭小池塘里。星空依旧如公元前一样浩瀚壮美,星空下,却少有与之对称的伟大激情和壮 美灵魂。星空,徒然地照着失去神性失去信仰的现代的荒滩。 5我在竹林里,借着朦胧而亲切的光线一边走着,一边想着,一次次流出了眼泪。 ?十二)《有地可耕是至乐》 ? 1我在南山西侧弄来一小块地,约有四分,一半坡地,一半平地。原来这里是一片杂草,得到附近农民的同意, 我就破土开荒。那位慈祥农家老伯说:原来我种这地,人老了,干不了重活,再说够吃了就行,东边的地我还种着,这点地就撂了,你种吧,反正你也拿不走它,它永远都在这儿,你种着觉得快乐你就种吧,我老汉还可以给你当当参谋。 2我终于有地可种了,有生以来,我第一次做了一 个小小地主,当然是临时的,老天爷才是永远的地主。 3临时就临时吧,在永恒的天空里,谁不是临时的云彩,在永恒的土地上,谁都是临时的庄稼。细想想,这也是奇迹呀,开天辟地以来,这片土地一直就守在这里,长过公元前的荒草,养过春秋时的蝈蝈;汉朝的马蹄从这里踏过去; 说不定,在唐朝,这里曾是一片桃树林,那灼灼桃花,曾把某一首诗照亮、打湿,使它染上了朴素的香气;而在宋朝,这里也许曾有过一个安宁的小山村,竹篱茅舍,鸡鸣狗叫,到夜晚,孩子们就在林子里捉迷藏,在这土地的五尺之下或三米纵深,或许就藏着那夜的月光和那夜孩子们追逐的 脚印、天真的笑声? 4我一镢头一镢头挖着地,竟觉得是在挖掘重要的遗址,顺着镢头刃子涌起的泥土,都是记忆的颗粒呀。其实,哪一寸土地不是时间和生命的遗址呢? 5我终于有地可耕了。瞧,此刻我把赤脚插进湿土,泥土的芳香和潮润的地气捧着我那被皮鞋、水泥娇惯得越来 越苍白纤弱的脚,亲吻着它拍打着它,我的麻木的脚竟有些害羞和颤抖了。 6我一边挖地,一边设想着我的农事:种一些高粱或玉米,它们那大气慷慨的样子、那火红金黄的披挂,是很有感染力的;或者种一些土豆红薯,它们是不怕埋没的,埋没了,正好安静专一地生长自己,我也正要 学一点植物的好脾气和大智慧;或者种几架葫芦,看它们怎么在月夜里悄悄把自己挂起来,与挂在天上的星星保持同一种垂直的姿势;要么,就种一些萝卜白菜韭菜,开春了,就送一些给那位老伯,剩下的就挑进城里的蔬菜市场,找一个摊位卖了;要么,就种一些大豆绿豆吧,立秋以后,就 会听见豆荚们噼噼叭叭,听见秋天美好的炸裂;干脆,就种一些茶最好,自己喝,也请朋友们上山品尝,就叫它南山碧吧。 7就这么一点地,种哪几样好呢?土地是绝不会伤害我嫉妒我抛弃我的,土地是上帝伸出的手掌,它的每一个纹路每一粒细胞都充满水分、营养和情感,都生长礼物 和奇迹。到底种什么呢?我得去请教我的农事参谋,上星期天他还来这地头转过。 十三)《一株野百合开了》 ? 1那天我在南山游荡,在一个长满艾蒿的坡地,我被一股浓郁的草木香气迷住了,我停下来,让脑子里什么念头也没有,只让鼻子和肺专心工作——其实是专心享用。这香气含 着苦味,就比芳香多了些深厚,有点像佛教,很智慧,似乎也有解脱的喜悦,但其底蕴却是苦的。我闭着眼睛深呼吸了一会儿,像做了一个梦似的睁开眼,竟看见一束雪白的光灼灼地、然而又很温柔地在面前闪着,是一株野百合开了。刚才我来到这艾蒿地的时候,只看见它还是含着苞的,我 被草木苦香所陶醉而忘情地闭目呼吸——就趁我走神的时候,它悄悄地完全地绽开了自己。这之前,我知道站在我面前、害羞地躲在艾草身旁的这株美好植物,是会开花的,如一个女孩儿出嫁是迟早的事情。但是我没有想到它这么快、这么奇妙地开了——趁我闭目呼吸的时候,它开放了自己。 我就想,我闭目的时候是否做梦了——这洁白的、鲜美的,就是我的梦啊。 ? 2你可想象我该是怎样地惊喜以至于狂喜,是那种透明的狂喜。心灵被纯粹的美、圣洁的事物打动,连心灵里那些皱褶的部位,藏着细小阴影的部位,都被这突然降临的神一样的光芒完全照亮了。我们这些成人,即 便是善良的人,也早已被社会学经济学伦理学们过于复杂地重塑,心,已经成为一团交叠的欲望或一种混浊的冲动的代称;而透明的心,更是我们日渐远离,终于不知为何物如上古神话一样陌生的东西了。我们似乎懂事了,
高考化学考点精讲——有机物分子式和结构式的确定
考点48有机物分子式和结构式的确定复习重点1.了解确定有机物实验式、分子式的方法,掌握有关有机物分子式确定的计算; 2.有机物分子式、结构式的确定方法 难点聚焦一、利用有机物燃烧反应的方程式进行计算 有关化学方程式由上可知,相同碳原子数的烯烃(环烷烃)与一元饱和醇完全燃烧时,耗氧量相同(把:相同碳原子数的炔烃(二烯烃)与醛(酮)及饱和二元醇完全燃烧时,耗氧量相同(醛:饱和二元醇:);相同碳原子数的羧酸(酯)与三元醇完全燃烧,耗氧量相烷烃+++烯烃或环烷烃+点燃点燃C H O nCO (n 1)H O C H +3n 2O CO nH On 2n+2222n 2n 222312n +−→−−−→−−炔烃或二烯烃++-点燃C H O nCO (n 1)H On 2n 2222--−→−−312n 苯及苯的同系物++-点燃C H O nCO (n 3)H On 2n 6222--−→−−332n 饱和一元醇++饱和一元醛或酮++点燃点燃C H O +3n 2nCO (n 1)H O C H O O nCO nH On 2n+222n 2n 222O n 2312−→−−-−→−−饱和一元羧酸或酯++点燃C H O O nCO nH On 2n 2222322n -−→−−饱和二元醇+++点燃C H O O nCO (n 1)H On 2n+22222312n -−→−−饱和三元醇+++点燃C H O O nCO (n 1)H On 2n+23222322n -−→−−C H O C H H O n 2n+2n 2n 2看成·C H O C H H O n 2n n 2n 22→·-C H O C H 2H O n 2n+22n 2n 22→·-同(羧酸:→饱和三元醇:) 二、通过实验确定乙醇的结构式由于有机化合物中存在着同分异构现象,因此一个分子式可能代表两种或两种以上具有不同结构的物质。
有机物分子式和结构式的确定
差 2. 为炔 烃 或 二烯 烃
差 6 为 苯 或 其 同 系 物 .
设 分 子 式 为 (, , 2×3 5n 8 ,= ,所 以 CH) ( 1 +)= 2n 2
其 中商 数 为烃中的碳 原子数. 此法运用 于具
5 o
化 学・
有确定通式的烃( 如烷 、 、 、 烯 炔 苯的同系物等 ) 。
然 后 去 一 个 C加 1 2个 H,即 得 CH ( 去 C加 H 。 再 就 不 可 能 了 ,因为 H 的 个 数 不 能 大 于 C的个 数 的 2
y 0 H2
AV
・ +
倍加 2 。另 由题设 A是 易升华 的片状晶体 , ) 为萘 的
20m L
4 mL 0
50m L
、
嬷橇贰 礁
1 通过定性 或定量实验确 定 : 质的结构决定 . 物
繁
子 式 一 求愚 、解 廉
( )由 分子 式 可 知 分 子 结 构 中有 2个 双 键或 一 2
CH3
1
个 叁键 , 从 加 成 产 物 c{ — c z H可 以看 出 但 } 一 H —c 3
CH3 CH3
确 定 途 径 可 用下 图表 示
和
I
原 不 饱 和 化 合 物 只能 是 C 3 — c c 。 H — — H
露 解 加 产 的 构 推 不 和 橇 由 成 物 结 反 原 饱
烃 的结 构 。
① 用烃的相对分子质量除 1 , 4 视商数和余数 。
余 2 为 烷 烃 .
除 尽 . 烯 烃 或 环 烷 烃 为
CH 1 一・ ) 4
( )求 分 子 式 : 1
M ̄ 1 2 8 ,() () = × : 2 nc:H : 4 n : : :。 35
有机物分子式和结构式的确定
有机物分子式和结构式的确定有机物是化学中的一个重要分支,它主要研究含碳元素的化合物。
有机物的分子式和结构式是用来描述有机物化学组成和空间构型的重要工具。
下面我将就有机物分子式和结构式的确定进行详细的介绍。
一、有机物分子式的确定:步骤一:根据元素的相对原子质量及元素在分子式中的相对数量,计算出每个元素的相对原子数目。
步骤二:将每个元素的原子数目按照化学符号的顺序写在元素符号的右下角。
步骤三:将写出的元素符号及其相对原子数目按照化学符号的习惯顺序排列,并在各元素符号之间加上符号连接符号。
举例来说,对于乙烯分子(C2H4),可以按照以上步骤确定其分子式。
乙烯分子中含有碳和氢两个元素,根据它们的相对原子质量,可以得到碳的相对原子质量为12,氢的相对原子质量为1、根据乙烯分子中碳和氢的相对原子数目,可以得到碳的相对原子数目为2,氢的相对原子数目为4、将这些数据按照步骤二和步骤三的要求排列,可以得到乙烯分子的分子式为C2H4二、有机物结构式的确定:有机物结构式是用来表示有机物分子中原子间连接关系的化学式。
步骤一:确定有机物分子中各原子的相对位置及连接关系。
步骤二:根据有机物分子的分子式和阴离子的电子离对数,确定有机物分子中各原子间的化学键的种类(如单键、双键、三键等)。
步骤三:根据有机物分子中原子间的连接关系,使用化学键的表示方法(如普通线条、斜线、双线等)来表示有机物分子的结构式。
举例来说,对于乙烯分子(C2H4),可以按照以上步骤确定其结构式。
根据乙烯分子的分子式C2H4,可以确定乙烯分子中含有两个碳原子和四个氢原子。
根据碳原子间的相对位置及连接关系,可以知道乙烯分子中两个碳原子之间存在一个双键,碳原子与氢原子之间存在单键。
根据这些信息,可以使用普通线条来表示乙烯分子的结构式,即H-C=C-H。
总结起来,有机物分子式和结构式的确定是通过确定有机物分子中各原子的种类、个数和原子间连接关系,从而准确描述有机物的化学组成和空间构型。
有机物分子式及结构式的确定方法
专题讲座(三) 有机物分子式及结构式的确定方法一、有机物分子式的确定1.最简式的确定。
(1)燃烧法。
则n (C)=m (CO 2)44 g·mol -1,n (H)=m (H 2O )18 g·mol -1×2,n (O)=m 有机物-n (C )×12 g·mol -1-n (H )×1 g·mol -116 g ·mol -1由它们的物质的量之比等于原子个数比可确定最简式。
(2)计算法。
根据有机物中C 和H 的质量分数来计算。
n (C)∶n (H)∶n (O)=w (C )12∶w (H )1∶1-w (C )-w (H )16。
2.相对分子质量的确定。
利用公式:a.M =m n ,b.ρ1ρ2=M 1M 2,c.M =ρ(标况)×22.4 L ·mol -1。
3.分子式的确定。
(1)由最简式和相对分子质量确定。
(2)根据计算确定1 mol 有机物中含有的各原子的数目。
(3)根据相对分子质量计算。
二、有机物结构式的确定1.根据价键规律确定:某些有机物根据价键规律只存在一种结构,则直接根据分子式确定其结构式。
例如C2H6,只能为CH3CH3。
2.通过定性实验确定。
实验→有机物表现的性质及相关结论→官能团→确定结构式。
如能使溴的四氯化碳溶液褪色的有机物分子中可能含有,不能使溴的四氯化碳溶液褪色却能使酸性高锰酸钾溶液褪色的可能是苯的同系物等。
3.通过定量实验确定。
(1)通过定量实验确定有机物的官能团,如乙醇结构式的确定;(2)通过定量实验确定官能团的数目,如1 mol某醇与足量钠反应可得到1 mol气体,则可说明该醇分子中含2个—OH。
4.根据实验测定的有机物的结构片段“组装”有机物。
实验测得的往往不是完整的有机物,这就需要我们根据有机物的结构规律,如价键规律、性质和量的规律等来对其进行“组装”和“拼凑”。
有机物分子式和结构式的确定
有机物分子式和结构式的确定
有机物分子式和结构式的确定有机物是由碳、氢和其他元素组成的化合物。
它们可以通过确定其分子式和结构式来进行鉴定和描述。
分子式是描述化合物中原子种类和数量的表示方式,而结构式则显示了原子之间的连接方式和化学键的类型。
确定有机物的分子式和结构式是有机化学中的重要任务之一,它们可以提供有关化合物性质和反应性的重要信息。
确定有机物的分子式和结构式通常通过实验技术和理论计算方法来完成。
下面将介绍一些常用方法和技术,以帮助确定有机物的分子式和结构式。
1.元素分析:元素分析是确定化合物中碳、氢、氧、氮等元素的相对含量的一种实验方法。
通过测定有机物中各元素的质量百分比,可以计算出简单的分子式,例如乙醇(C2H6O)和甲酸(HCOOH)。
2.红外光谱(IR):红外光谱是一种常用的实验方法,通过测量有机物与红外辐射的相互作用,可以确定有机物中的功能团和官能团。
例如,苯酚(C6H6O)和苯胺(C6H7N)可以通过其特征性的红外吸收峰进行鉴定。
3.质谱(MS):质谱是一种用于测定有机物中各个原子的相对质量的实验方法。
质谱图可以提供化合物的分子量和分子结构信息。
通过测量化合物中分子离子的质荷比,并进行分析和比较,可以确定有机物的分子式和结构式。
4.核磁共振(NMR):核磁共振是一种通过测量原子核的磁性行为来确定有机物分子结构的方法。
通过观察有机化合物中氢、碳、氧等原子核的化学位移和耦合常数,可以确定有机物的分子式和结构式。
5.X射线结构分析:X射线结构分析是一种用于确定有机物分子结构的高分辨率实验方法。
通过测定化合物晶体中X射线的衍射图样,可以确定有机物的原子排列方式和化学键长度。
除了上述实验方法外,理论计算方法如量子力学和分子力学也可以用于预测和确认有机物的分子式和结构式。
例如,计算化学方法可以用来优化化合物的几何构型,预测各个原子之间的键长和化学键角度。
综上所述,确定有机物的分子式和结构式是有机化学中的重要任务。
通过实验技术和理论计算方法,可以鉴定和描述有机物的化学结构,从而揭示其性质和反应性。
有机物分子式、结构式的确定
C4H10O3等有机物,其实验式即为分子式核磁共振谱(PMR): 化合物分子中 的氢原子核,所处的化学环境
(即其附近的基团)不同,表现出的核磁性就不 同,代表它的峰在共振谱图中的横坐标位置就 不同,峰的强度与结构中氢原子数成正比。
③ 此外还有质谱法和紫外光谱法等。
P149 典例3 P150 应用3
有机物分子式 结构式的确定
1.实验式(最简式)法
由元素的 种类和含 量
相对原子质量
相对分子质量
实验式
分子式
相对分子质量的基本求法:
a. 定义法:M= m n
b.标况下气体密度ρ:M=22.4*ρ
c.相对密度法(d):M=d*M
注意:
(1)某些特殊组成的最简式,在不知化合物的相对 分子质量时,也可根据组成特点确定其分子式。 例(C如H3:)n 最当简n=式2时为,C氢H原3的子烃已,达其饱分和子,故式其可分表子示式为为 C2H6。
例上观分察子到式氢为原C子3H峰6O的2强的度有为机3物:3,,则若结在构P简MR式谱可
能为?
CH3COOCH3
若给出峰的强度为3:2:1,则可能为?
CH3CH2COOH、 HCOOCH2CH3、 CH3COCH2OH
② 红外光谱(IR):确证两个化合物是 否相同,也可确定有机化合物中某 一特殊键或官能团是否存在。
有机物分子式和结构式的确定方法
有机物分子式和结构式的确定方法有机物分子式和结构式的确定方法是化学研究的重要内容之一,它对有机化学的发展和应用起着重要的推动作用。
有机物的分子式和结构式表示了有机物分子中原子的种类、数量以及它们之间的连接方式。
下面将介绍几种确定有机物分子式和结构式的常用方法。
一、元素分析元素分析是确定有机物分子式的最基本方法,其原理是分析有机物样品中的碳、氢、氧、氮、硫等元素的含量,并据此计算出分子中不同元素的比例,从而得到该有机物的分子式。
例如,对于一个有机物样品经元素分析得到的结果为:C62.14%、H10.43%、O27.43%,可以根据C:H:O的比例计算出其分子式为C4H8O。
二、质谱分析质谱分析是一种通过测定有机分子在高真空条件下,通过电子轰击产生的碎片离子的质荷比,以及测定碎片离子的相对丰度,从而确定有机物的分子式和结构的方法。
质谱仪测定到的质荷比,往往能反映出有机分子的相对分子量或碎片离子的相对原子量,通过测出的质谱图的特征峰的相对丰度,可以进一步得到有机物的分子式和一些结构信息。
三、红外光谱分析红外光谱是确定有机物结构的常用方法之一、有机分子在吸收红外辐射时,会引起分子内部化学键的振动、扭转和拉伸等。
每种具有特定化学键类型的振动都会对应产生一个特定的红外吸收峰,从而提供了有机物分子中特定键的信息。
根据吸收峰的位置和强度,可以初步推断有机物中存在的官能团,从而确定有机物的结构类型。
四、核磁共振(NMR)分析核磁共振是一种利用分子中的核自旋能级差异导致的能量吸收和释放现象以及核自旋与周围电子的相互作用来研究分子结构的分析方法。
核磁共振仪测定得到的谱图,包括质子谱、碳谱、氮谱等。
通过对NMR谱图的分析,可以确定有机物中原子的化学环境和化学位移,从而进一步获得有机物分子的结构信息。
五、X射线衍射分析X射线衍射是一种利用波长短于可见光的X射线对物质进行结构表征的方法。
通过对物质样品进行X射线的照射,观察并测定样品产生的衍射图样,然后运用数学方法对衍射峰的位置和强度进行分析,可以确定有机物的晶体结构和分子结构。
有机物分子式和结构式的确定
例1 某烃含氢元素的质量分数为 17.2%,求此烃的实验式。又测得该 烃的相对分子质量是58,求该烃的 分子式。
解答Байду номын сангаас由于该物质为烃,则它只含碳、氢 两种元素,则碳元素的质量分数为(100 -17.2)%=82.8%。则该烃中各元素原 子数(N)之比为:
C2H5是该烃的实验式,不是该烃的分子式
;
赴成吉思汗陵。第二天早上,成陵的主殿上野鸽子翻飞环绕,它们喜欢这里,老祖宗也喜欢它们。主殿穹隆高大,色调是蓝白这样的纯色,蒙古人喜欢的两种色彩。后来,我从远近很多角度看成陵的主殿,它安详,和山势草木土地天空和谐一体,肃穆,但没有凌驾天地的威势。从陵园往 下面看,河床边上有一排餐饮的蒙古包,门口拴马。天低荒漠,平林如织。此时心情如同唱歌的心情,不是唱“草原上升起不落的太阳”,而如“四季”—— 春天来了,风儿到处吹,土地苏醒过来。本想留在春营地,可是路途太远,我们催马投入故乡怀抱。 民歌有意思,留在春营地和 路途太远有什么关系呢?让不矛盾的矛盾,为归乡找了一个理由。 还有一首民歌《飞快的枣红马》,词曰:“骑上我飞快的枣红马,顺着山坡跑下去。可爱的姑娘索波达,挑着木桶走了上来。”这个词,你说说,不是电影的分镜头剧本吗?画面闪回。但人家是词,唱的就是这个。什么 爱呀之类在这里没有。不是说词越干净越好,是说“爱”这个东西要藏着。草芽藏在泥土里露头张望,是爱。把“爱”挂嘴边,大大咧咧走街串巷唱,已经不是“爱”,是吆喝。 有一次,内蒙广播合唱团在中山音乐堂演出。起初,他们不知观众是什么人,反正是人和在的人,唱。第一 首歌、第二首歌,观众还安静,响着高雅艺术场所应有的节制的掌声。从第三首歌开始,场上哗动,或说骚乱,人们站起来高喊点歌,有人拥到台前观看。艺术家有些慌乱,当他们听到众人齐声合唱,看到台下的人一边唱一边擦眼泪的时候,才明白: ——他们是到内蒙古插队的知青。 知青听到《孤独的白驼羔》,听到《陶爱格》和《达古拉》回到耳边,终于坐不住了。他们的嗓子不归自己管了,加入合唱。人审美,其实是回头看自己的命运。对他们来说,辽阔的草原、冬夜、茫茫雪地、马群、干牛粪炊烟的气味、蒙古语、房东妈妈,都在歌声中次第出现,没有一样 遗落。是什么让他们泪水难当?是他们的青春。青春贯穿其中,他们为自己偷洒一滴泪。 演出结束,知青们冲到后台,不让演员走,掣他们胳膊请吃饭。后来,大家到一处宽敞的饭店唱了一夜。 在成陵边上,我们喝完奶茶从屋里出来,同行的张新化请一位牵马的蒙古老太太唱歌。她不 唱,说“你们骑马吧。” 新化说,“我们不骑马,听你唱也给钱。” 她说:“不行。”不骑马,光唱歌就收人家钱,那不行。 我们说,你牵马走,我们在后边跟着你走,听你唱歌。老太太不同意,不骑马怎么收你钱?结果是,我们骑上马,白发苍苍的老太太牵马在前面走。年龄像我 母亲一样的老太太,在沙土地上牵马行走,唱:“西北方向升起黑云,是不是要下雨了?我心里像打鼓一样不安稳,是不是达古拉要和我离分?” 马走着,宽大的腹肋在我腿间挪移,不得劲儿。老太太边唱边议论“苦啊,真苦。”我以为她说嘴里味道,后知说歌词。她说:“亲人离开 亲人,多苦啊!” 苦啊。我们骑着马走了一大圈儿。老太太的歌声在沙土地上,在灌木和干涸的河道上面环绕。她声音不亮,岁数大,呼吸不行了,却是原汁原味。一只小狗在马前跑,离马蹄子不远停下,再跑,我担心马踩着它。它停下必抬头看我一眼,不知道在看什么。 财富离幸福 有多远? 贫穷离幸福很远,财富离幸福仍然很远。臻此,前者需要机遇及韧力,藉外力者多。后者则需要仰仗心灵的纯洁和情操的醇厚,靠内力实现。 ? (一) ? 赚钱以及把钱花出去所获得的,有时只是一种方便,而非幸福。 ? 譬如买车与备手机,好处是把一个人很快地从甲地运到 乙地及至庚地辛地,还能及时和很多人谈话。简言之,可以多办事,但不一定和幸福有关。坐车幸福吗?如果不论效率,与在家里坐沙发无甚差别。打手机更谈不上幸福,它不是抽烟与吃饺子。虽然有人站在马路上欣欣然以手机通话,仿佛幸福。 有人不想多办事,也不想到哪儿去 以及跟别人谈话,这样会妨碍他们宁静(实际是幸福)的生活,不如书与琴棋有用。毛主席做了许多事情,但必定不是拼命打手机及开车游走所成,乾坤在手岂不比爱立信在手更好?就是羊毫在手糖块在手及至小人书在手也比方向盘在手更愉快安全。因为前者是享受,后者是劳役或伪享 受,与幸福无关。 (二) 人有时不知道自己到底要什么。 如果把一个人的消费愿望摊开,广告引导占三成,如名牌之类;模仿他人占三成,譬如对中产阶级生活方式自觉不自觉的模仿;还有三成是实践童年以及青少年时期未遂之愿,在此,潜意识发生作用;人本能的满足只 占一成,饮食男女而已。 于是,日日杯觥交错并不幸福,因为广告引导与追随潮流所满足的只是转瞬即逝的虚荣心,明他已经成了某种人,譬如富人,明完了也就完了,无它。而满足童年的愿望属于今天多吃几个包子填充往年某日的饥饿,满足的只是一种幻像。而本能的满足,只 需一箪食、一瓢饮、一位贤惠的女人和一张竹榻。 但人们不甘心于简朴,虽然简朴离真理近而离虚荣远。人用力明自己是重要的,于是以十分的努力去满足一分的愿望,然而这与幸福无关。 (三) ? 如果有钱并有闲,想从食色层面提升并扩展自己的幸福,需要文化的介入。尼采 说:“我发现了一种幸福——歌剧!”对与古典音乐无缘的人,歌剧则不是幸福,你无法领受《图兰朵》中“今夜无人入睡”带来视听圣餐。明仁天皇迷恋海洋微生物,丘吉尔迷恋油画,爱因斯坦迷恋小提琴,是大幸福,也是文化上的幸福。他们也是有钱的人,但倘无文化也只能蹈入口 腹餍之途。 ? 一些有钱人易烦恼,因为他们的消费与性格有关,与文化无关;与面子有关,与愉快无关;与时尚有关,与需要无关。 (四) ? 不久前,我假道太行山区远游,见到那里的农人希望到年底能添一头驴或牛,以帮助运输或种地。到了县城,酒桌上争就当科长或两室一厅的 住房。在,听朋友交流打高尔夫球的体会。而到了深圳,几位巨富比较各自的健康状况,甘油三脂,高密度脂蛋白胆固醇(HDL),后者在每公升血液中多一毫克,心肌梗塞的发生率会下降3%。 ? 我想到,太行山农人的甘油三脂和HDL一定最让深圳的富豪倾心。这样,又想起海因里 希·伯尔那篇一个渔夫在海边晒太阳,有游客劝他工作等等的小说。人的努力常常会使目标回到原地,换句话说,人也许不知道自己的幸福在哪里。 有时,人只为温饱而工作,没有办法去为幸福而谋划,因为谋划的结果大多是财富或满足,离幸福仍然很远。 ? 其实幸福太简单,简 单到我们承担不了。 (五) ? 为什么穷人离幸福很近? ? 如同朴素离美很近那样,穷人的愿望低而单纯。人在风雪路上疾走,倘遇暖屋烤火,是一种幸福。把汗湿的鞋垫抻出来,手脚并感炉火的温暖,与封侯何异?这时,倘有一杯热茶与点心,更让人喜出望外。这样的例子太多,如 避雨之乐,推重载之车上坡幸无顶风之乐,在街头捡一张旧报纸读到精妙故事之乐,在快餐店吃饭忽闻老板宣布啤酒免费之乐,走夜路无狼狗尾随之乐。穷人太容易快乐了,因为愿望低,“望外”之喜于是多多。有钱人所以享受不到这些货真价实的幸福,是因为此类幸福需要风雪、推车、 捡报纸以及走夜路这些条件。 ? 穷人的幸福差不多是以温饱不逮为前提的,满足了温饱,幸福却变得悭吝,它的价值又升高了。 ? 除非你有意过一种简单的生活。 (六) 贫穷离幸福很远,财富离幸福仍然很远。臻此,前者需要机遇及韧力,藉外力者多。后者则需要仰仗心灵的纯 洁和情操的醇厚,靠内力实现。 蝴蝶一如梦游人 ? 会飞的生灵里,蝴蝶一如梦游人。它好像不知住哪儿飞,断断续续。鲍罗丁有一首曲子叫《我的生活》,什么样的生活,醉醺醺,有一点混乱,甜蜜忧伤各半,如蝴蝶。 ? 蝴蝶蹁跹,像找丢失的东西。仔细看,它啥东西都没丢,触须、 肚子和翅膀是它的全部家当。它飞,一跳一跳,像人跺脚。也许,它视陆地为海洋,怕浪花打湿衣袂。 ? 蝴蝶有大梦,伏落灌木的时候,其实在工作。梦里飞里,直至被露水凉醒。诺瓦利斯说:“如果在梦中梦见自己做梦,梦就快醒了。”它梦见城市的水泥地面长满卷心菜和十字花科 椰菜,楼顶冒出清泉,空气变好了。蝴蝶对空气很挑剔,它的肺太纤弱。蝴蝶梦到月亮跟太阳商量,替值一个白班。月色昼夜相连,雾一般的蝴蝶弥漫城市上空,如玉色的落叶,却无声息。 人愿把蝴蝶想象为女性,正如可以把鸟类想象为男性。鸟儿高飞,一如士兵。蝴蝶一生都在草地 灌木中。蝴蝶假如不怯生,从敞开的窗飞进人类的家里,那么—— 落在酣睡的孩子的额上,有如天使的祝福。 落书页上,好像字句开出素白的花。 落碗边,仿佛里面装满泉水。 ? ?落鞋上,这双鞋好像刚刚走过长满鲜花的草地。 ? 落于枕旁,人梦见青草像一片流水淹没大地。 ? 蝴蝶落在墙上的竹笛上,笛孔屏息,曲牌在一厢排起了队:平沙落雁、阳关三叠、大起板、鹧鸪飞。 蝴蝶飞过人的房间,看人的床辅、厨房、牙刷和眼镜,缓缓飞出窗外,接着梦游。 春天是做梦的季节,边飞边梦,蝴蝶就像年青人。 黄金不用是废铁 ? 讲个故事吧。 有一个老汉勤 劳致富。他种的粮食,自用之外卖钱,再把钱换成黄金。这些金子放丰一只瓦罐里,摆在屋檐下面。老汉累的时候,或者需要娱乐的时候,背着手看这些金锭,它们闪闪发光,像歌颂老汉的不凡。 当然,喜欢黄金的人并不只老汉一个人,别人也喜欢。别人不想经历种粮食、卖粮食、换 钱再买黄金这么复杂的历程,把老汉的偷走了。 黄金没了,老汉就哭。他没想到别人用偷的方法积累黄金。他觉得自己的粮食啊,汗水啊,青春啊,特别是黄金,都让这个人偷走了。悲声惊动了邻居,大伙儿围成一圈儿,听老汉哭。 ? 一位邻居说:这些黄金你用过吗?用的意思是打 个戒指,或者换一头小毛驴替代劳动,也包括送给别人施善。 老汉说:没有。 邻居说:没用过,你哭什么? ? 老汉说什么话?没用过就不疼吗?没用过就没有价值吗? ? ?邻居说:嗨,没用过的东西就跟没有东西是一样的。黄金对你来说,用处只在看。别哭啦,你可以看其他的东 西,比如花、比如天空的云彩。还有,你拿几块镀金的元宝放在罐子里,不也好看吗? 老汉止住了哭泣。他不赞成邻居的话,但这一番话让他无法反驳,只好认为自己不曾有过黄金,别人也未曾偷走它。 故事就是这样,不一定真正发生过,但有一点儿趣味。一个有才能的人不运用才 能,就贫穷如老汉,
有机物分子式和结构式的确定
CnH2n+1Br→AgBr 14n+81 2.18g 188 3.76g
(14n+81)×3.76= 2.18 × 188
∴n=2.
故该饱和一卤代烃的分子式为C2H5Br 答:该饱和一卤代烃的分子式为C2H5Br。
小结
①元素的质量 ②元素的质量比 ③元素的质量分数 ④产物的量
通式、关系式
①标况下密度
实 分 ②相对密度 验子 式 量 ③化学反应
分子式
; / 炒股配资
是最舒心の壹各地方,因此今天晚上就过来坐壹坐,散散心。结果却是大大出乎他の意料,怎么连塔娜这里都呆不得咯?万分失望の二十 三小格话不投机,转身就走。盼咯这么多天,好不容易把二十三小格盼来咯,结果才三两句话他就愤然离去,只留下塔娜壹各人睁着错愕 の大眼睛,继而流下咯委屈和痛苦の泪水。这壹次塞外之行,二十三小格根本就没有壹点儿犹豫,立即就决定咯由塔娜随行。这各考虑, 仍然还是因为他の孩子气。当初因为王爷摆出咯寻找入选秀女名单の迷魂阵,令他栽咯壹各大跟头,又娶回来壹各毫无用处の塔娜,虽然 人还是不错,但他真是咽不下这口恶气。特别是后来他四处打听来の消息让他知道,原来四哥对小四嫂居然是备加冷落!看来四哥娶她, 真の就是为咯她父兄の朝中势力!得知咯这各消息,二十三小格马上就产生咯严重の报复心理:您过得不如意,我就偏偏要过得比您好! 他要好好气气他の四哥:您不是抢吗?抢到手有啥啊用!别以为我娶咯塔娜就有多么亏空!因此他要在王爷の面前,极尽对塔娜の恩宠, 要让他の四哥后悔壹辈子去吧。可是,他万万没有料到,这壹次四哥带の随行女眷,居然是水清!这各小四嫂不是备受冷落吗?怎么可能 作为随行女眷伴驾?这又不是出来壹天两天,这可是要在塞外呆上五、六各月の时间呢!每次出行,只要看看是哪壹位女眷随行,就知道 哪各后院诸人是现在正得宠の主子。当然除咯八小格,那是壹各特例。在只能带壹各诸人の情况下,四哥带の竟然是最不得宠,甚至是备 受冷落の小四嫂,这各情况令二十三小格绞尽脑汁也想不明白究竟是为啥啊!难道说自己の情报有误,小四嫂现在得宠咯?壹想到这里, 二十三小格の脑海中立即幻想出壹幅四哥四嫂情投意合、举案齐眉の画面,继而心痛得如刀绞般地难受起来。此刻,王爷和水清,二十三 小格和塔娜,四各人正壹同从德妃娘娘の房里退咯出来,准备回到各自の驻地去歇息。面对水清,二十三小格早就忘记咯要在王爷面前表 现得与塔娜极为郎情妾意の样子,以期向王爷炫耀他娶到の塔娜有多么の值得。相反,此刻他の心中即刻局促不安起来,因为他生怕水清 误会他和塔娜有多么“恩爱”!虽然事实上,他与塔娜也没有多亲近,有时候甚至还不如他与穆哲の感情,虽然他和穆哲经常是吵吵闹闹, 但毕竟他们有十来年共同生活の感情基础,而且穆哲还为他生咯两各小小格。由于壹门心思地担心水清误会咯他和塔娜,因此壹出咯德妃 の房门,二十三小格壹反常态地追上咯王爷の脚步,将塔娜和水清两各人远远地甩在咯后面。王爷对于二十三弟の这番主动姿态颇为诧异, 刚刚进门の时候他可是敢装作没有看见,连理都没有理会他这各兄
有机物分子式和结构式的确定
第三节有机物分子式和结构式的确定教学目标使学生了解确定有机物实验式、分子式的方法,掌握有关有机物分子式确定的计算。
重点、难点烃的衍生物的分子式和结构式的确定。
教学过程:分子式可以表示什么意义?2、有机化学中如何确定碳氢元素的存在?一、最简式和分子量确定分子式。
通过测定有机物中各元素的质量分数,确定有机物的最简式,再依据有机物的分子量来确定分子式。
例1 :某有机物中含碳40%、氢6.7%、氧53.3%,且其分子量为90,求其分子式。
该有机物中C、H、O的原子个数比为N(C):N(H):N(O) = 1:2:1 。
因此,该有机物的最简式为CH2O。
设其分子式为(CH2O)n 。
又其分子量为90,故有:n=3 。
即其分子式为C3H6O3 。
例2:课本P156例1略。
注意:(1)某些特殊组成的最简式,在不知化合物相对分子质量时,也可根据组成特点确定其分子式。
例如最简式为CH3的在机物,其分子式可表示为(CH3)n ,仅当n=2时,氢原子已达饱和,故其分子式为C2H6 。
同理,最简式为CH3O的有机物,当n=2时,其分子式为C2H6O2(2)部分有机物的最简式中,氢原子已达饱和,则该有机物的最简式即为分子式。
例如最简式为CH4、CH3Cl、C2H6O、C4H10O3等有机物,其最简式即为分子式。
据各元素原子个数确定分子式。
通过测定有机物中各元素的质量分数,再结合分子量,可以确定有机物中各元素的原子个数,从而写出分子式。
例3:吗啡分子含C:71.58% H:6.67% N :4.91% , 其余为氧,其分子量不超过300。
试确定其分子式。
解:由已知条件可知含氧为16.84%,观察可知含N量最少,据原子量可知,含N原子的个数最少,可设含n个N原子,则吗啡的分子量为14n/4.91% = 285n<300,即吗啡含有1个N,分子量为285。
则吗啡分子中:N(C)=17 N (H)=19 N (O)=3 吗啡的分子式为C17H19NO3例4:P156例2据通式确定分子式烷烃通式为CnH2n+2,烯烃通式为CnH2n,炔烃通式为CnH2n-2,苯及同系物的通式为CnH2n-6,饱和一元醇的通式为CnH2n+2O等,可以根据已知条件,确定分子中的碳原子数(或分子量)再据通式写出分子式。
有机物分子式和结构式的确定方法
确定有机物分子式和结构式的分析思路和分析方法一、确定有机物分子式和结构式的分析思路1、有机物组成元素的定性分析通常通过充分燃烧有机物的方式来确定有机物的组成元素,即:2、有机物分子式和结构式的定量分析二、确定有机物分子式的分析方法1、通式法⑴常见有机物的分子通式分子通式⑵方法:相对分子质量n(碳原子数)分子式例题1:某烷烃的相对分子质量为44,则该烷烃的分子式为。
解析:烷烃的通式为C n H 2n+2 ,则其相对分子质量为:14n + 2 = 44 ,n = 3 ,故该烷烃的分子式为:C 3H 82、质量分数法 方法:相对分子质量C 、H 、O 等原子数分子式例题2:某有机物样品3g 充分燃烧后,得到4.4g CO 2 和1.8g H 2O ,实验测得其相对分子质量为60,求该有机物的分子式。
解析:根据题意可判断该有机物分子中一定含有C 和H 元素,可能含有氧元素。
样品 CO 2 H 2O 3g 4.4g 1.8g 则:m(C) = g g 2.144124.4=⨯m(H) = g g 2.01828.1=⨯根据质量守恒可判断该有机物分子中一定含有O 元素,则该有机物分子中C 、H 、O 元素的质量分数依次为:ω(C) =%40%10032.1=⨯ggω(H) =%67.6%10032.0=⨯ggω(O) = 1 - 40% - 6.67% = 53.33%则该有机物的一个分子中含有的C 、H 、O 原子数依次为:N(C) =212%4060=⨯N(H) = 41%67.660≈⨯N(O) =216%33.5360≈⨯ 故该有机物的分子式为C 2H 4O 2 。
3、最简式法方法:质量分数、质量比原子数之比 → 最简式分子式(最简式)n = 分子式有时可根据最简式和有机物的组成特点(H 原子饱和情况)直接确定分子式,如:例题:如例题2 ,该有机物分子中各元素原子的数目之比为: N(C) ∶N(H) ∶N(O) =12%40∶1%67.6∶16%33.53≈ 1∶2∶1故该有机物的最简式为:CH 2O ,则:(12 + 1×2 + 16)× n = 60 ,n = 2 则该有机物的分子式为:C 2H 4O 2 。
有机物分子式和结构式的确定方法
确定有机物分子式和结构式的分析思路和分析方法一、确定有机物分子式和结构式的分析思路1、有机物组成元素的定性分析通常通过充分燃烧有机物的方式来确定有机物的组成元素,即:2、有机物分子式和结构式的定量分析二、确定有机物分子式的分析方法1、通式法⑴常见有机物的分子通式分子通式⑵方法:相对分子质量n(碳原子数)分子式例题1:某烷烃的相对分子质量为44,则该烷烃的分子式为。
解析:烷烃的通式为C n H 2n+2 ,则其相对分子质量为:14n + 2 = 44 ,n = 3 ,故该烷烃的分子式为:C 3H 82、质量分数法 方法:相对分子质量C 、H 、O 等原子数分子式例题2:某有机物样品3g 充分燃烧后,得到4.4g CO 2 和1.8g H 2O ,实验测得其相对分子质量为60,求该有机物的分子式。
解析:根据题意可判断该有机物分子中一定含有C 和H 元素,可能含有氧元素。
样品 CO 2 H 2O 3g 4.4g 1.8g 则:m(C) = g g 2.144124.4=⨯m(H) = g g 2.01828.1=⨯根据质量守恒可判断该有机物分子中一定含有O 元素,则该有机物分子中C 、H 、O 元素的质量分数依次为:ω(C) =%40%10032.1=⨯ggω(H) =%67.6%10032.0=⨯ggω(O) = 1 - 40% - 6.67% = 53.33%则该有机物的一个分子中含有的C 、H 、O 原子数依次为:N(C) =212%4060=⨯N(H) = 41%67.660≈⨯N(O) =216%33.5360≈⨯ 故该有机物的分子式为C 2H 4O 2 。
3、最简式法方法:质量分数、质量比原子数之比 → 最简式分子式(最简式)n = 分子式有时可根据最简式和有机物的组成特点(H 原子饱和情况)直接确定分子式,如:例题:如例题2 ,该有机物分子中各元素原子的数目之比为: N(C) ∶N(H) ∶N(O) =12%40∶1%67.6∶16%33.53≈ 1∶2∶1故该有机物的最简式为:CH 2O ,则:(12 + 1×2 + 16)× n = 60 ,n = 2 则该有机物的分子式为:C 2H 4O 2 。
分子式与结构式的确定
分子式与结构式的确定分子式和结构式是一种表示化学物质组成的化学符号系统。
分子式是用元素符号和下标来表示化学物质中各种元素的种类和数量,而结构式是用线条和原子符号表示分子中原子的连接方式和相对位置。
确定分子式和结构式的主要方法有以下几种:1.实验分析:通过实验手段可以确定化合物的元素组成和相对原子比例。
例如,可以通过质量分析、熔点测定、溶解度测定等实验方法来确定化合物的元素比例。
根据实验结果,可以推测化合物的分子式和结构式。
2.元素分析:元素分析是一种确定化合物中元素的相对含量的实验方法。
通过对化合物进行燃烧或加热分解等实验操作,然后测定产生的气体或残留物的质量变化,可以计算出不同元素在化合物中的百分含量。
根据元素分析结果,可以推算出化合物的分子式。
3.光谱分析:光谱分析是一种通过测量化合物与电磁辐射(如紫外光、可见光、红外光等)之间的相互作用而确定其分子结构的方法。
通过测量化合物的吸收、发射或干涉光谱,可以得到分子结构和化合物的化学键信息。
4.分子质量计算:分子式中的元素符号后的小数字表示该元素的原子个数。
根据化合物的质量、元素的相对原子质量,可以使用化学计算方法推算出化合物的分子式。
5.化合物的性质:化合物的性质如熔点、沸点、溶解性等可以为确定分子式和结构式提供线索。
一些化合物的性质具有规律性,通过对化合物性质的系统研究可以推断分子与结构间的关系。
在实际工作中,通常会结合上述方法来确定化合物的分子式和结构式。
例如,先通过元素分析确定化学组成,然后通过光谱分析进一步确定化合物的结构信息。
此外,在化学反应、官能团检测等实验中也能帮助确定分子式和结构式。
总之,确定分子式和结构式是通过实验和计算方法来推算的。
在实际工作中,需要综合考虑多种方法和结果,以确保得到准确的分子式和结构式。
有机物分子式和结构式的确定
2.根据有机物各元素的质量分数直接求出 1mol有机物中各元素原子的物质的量。
例3 某0.16g饱和一元醇与足量的金属钠 充分反应,产生56mL氢气(标准)状况。 则该饱和一元醇的分子式为________。
二 通过实验确定乙醇的结构式
(1) (2)
根据实验测得:0.1mol乙醇与足量的金属 钠反应,收集到1.12L的氢气。根据上述实 验所得数据,怎样推断乙醇的结构究竟是 (1)还是(2)? 分析:
一 有机物分子式的确定
例1 某烃含氢元素的质量分数为 17.2%,求此烃的实验式。又测得该 烃的相对分子质量是58,求该烃的 分子式。
解答:由于该物质为烃,则它只含碳、氢 两种元素,则碳元素的质量分数为(100 -17.2)%=82.8%。则该烃中各元素原 子数(N)之比为:
C2H5是该烃的实验式,不是该烃的分子式
1.比较(1)和(2)式C2H6O中6个氢原 子的地位相同吗?
2.根据数据分析得出1 mol C2H6O转换 1mol氢原子,即一个C2H6O分子中只有一 个氢原子可被转换。C2H6O分子中只有一 个与众不同的氢原子。
结论: 有机物A(乙醇)的结构式是(2)
;/ 仓库管理软件 ;
设该烃有n个C2H5,则 n 58/ 29 2
因此,烃的分子式为 C4H10。
确定有机物的分子式的途径:
1.确定实验式
2.确定相对分子质量
例2 燃烧某有机物A 1.50g,生成 1.12L(标准状况)和0.05mol 。该 有机物的蒸气对空气的相对密度是 1.04,求该有机物已被猛然噙住.紧接着,柏少华那宽厚の身躯贴了上来,紧紧の.久久不见人上楼,他等得不耐烦便自己下来.几天不见没什么,一旦见面就忍不住要对她做些什么.身随心
有机物分子式和结构式的确定
有机物分子式和结构式的确定一、求解思路确定途径可用下图表示:有机物分子式和结构式的确定确定有机物分子式和结构式的基本思路:有机物分子式和结构式的确定二、分子式的确定1.直接法如果给出一定条件下的密度(或相对密度)及各元素的质量比(或百分比),可直接求算出1 mol气体中各元素原子的物质的量,推出分子式。
密度(或相对密度)——→摩尔质量——→1 mol气体中各元素原子各多少摩——→分子式.例1.某链烃含碳87.8%,该烃蒸气密度是相同条件下H2密度的41倍。
若该烃与H2加成产物是2,2—二甲基丁烷,写出该烃的结构简式。
解析:由加成产物的结构反推原不饱和烃的结构。
(1)求分子式:Mr=41×2=82 n(C)∶n(H)=有机物分子式和结构式的确定∶有机物分子式和结构式的确定=3∶5 设分子式为(C3H5)n (12×3+5)n=82 n=2,∴分子式为C6H10。
(2)由分子式可知分子结构中有2个双键或一个叁键,但从加成产物有机物分子式和结构式的确定可以看出原不饱和化合物只能是有机物分子式和结构式的确定2.最简式法根据分子式为最简式的整数倍,因此利用相对分子质量及求得的最简式可确定其分子式.如烃的最简式的求法为:C∶有机物分子式和结构式的确定最简式为CaHb,则分子式为(CaHb)n,n=M/(12a+b)(M为烃的相对分子质量,12a+ b为最简式的式量).例2.某含碳、氢、氧三种元素的有机物,其C、H、O的质量比为6︰1︰8,该有机物蒸气的密度是相同条件下氢气密度的30倍,求该有机物的分子式。
解析:该有机物中原子数N(C)︰N(H)︰N(O)=6/12︰1/1︰8/16=1︰2︰1,所以其实验式为CH2O,设该有机物的分子式为(CH2O)n。
根据题意得:M=30×2=60,n=60/12+1×2+16=2。
该有机物的分子式为C2H4O2。
3.商余法①用烃的相对分子质量除14,视商数和余数.有机物分子式和结构式的确定其中商数A为烃中的碳原子数.此法运用于具有确定通式的烃(如烷、烯、炔、苯的同系物等)。
有机物分子式结构式的确定
有机物分子式结构式的确定有机物是由碳元素与氢元素以及其他各种元素通过共价键结合而成的化合物。
由于碳元素具有四个价电子,能够与其他许多元素形成多种多样的化学键,因此在有机化学中,存在着大量种类繁多的有机化合物。
有机化合物的分子式和结构式是用来描述有机物分子化学组成和结构的标记。
有机物的分子式是由化学元素符号和表示原子数目的下标组成的标记,用来表示有机物分子中的原子元素组成和原子比例关系。
例如,甲烷的分子式为CH4,表示该化合物中含有1个碳原子和4个氢原子。
苯的分子式为C6H6,表示该分子中含有6个碳原子和6个氢原子。
有机物分子式的确定可以根据实验数据和化合物的基本性质进行推导。
例如,可以通过燃烧分析测定有机物中碳、氢和氧元素的质量百分比,从而推算出有机物的分子式。
此外,还可以通过光谱分析等方法确定有机物的分子式。
有机物的结构式是用来描述有机物分子中原子之间的连接方式和空间排列的标记。
它可以分为分子结构式和简化结构式两种形式。
分子结构式使用直线和点代表连接的键,用来表示原子之间的键合关系和空间位置。
简化结构式则更加简洁,只使用线段代表键,省略了一部分碳原子和氢原子的符号,仅保留了有机物分子中的功能团和主链。
对于比较简单的有机物,可以通过它们的分子式推导出结构式。
例如,对于乙醇(C2H5OH)来说,根据分子式可以知道它由两个碳原子和一个氧原子组成,其中一个碳原子上连接着一个甲基基团(CH3),另一个碳原子上连接着一个羟基团(OH)。
因此,乙醇的结构式可以表示为CH3CH2OH。
而对于较为复杂的有机物,如苯(C6H6),由于分子中存在环状结构,因此分子式无法直接推导出结构式。
在这种情况下,需要通过实验数据和化学性质等来确定有机物的结构式。
在苯的结构中,每个碳原子上连接着一个氢原子,而所有碳原子之间是通过共享电子形成π键的,因此苯的结构可以表示为一个六边形的环状结构。
总之,有机物分子式和结构式是用来描述有机化合物化学组成和结构的标记。
有机物分子式结构式的确定和单体的寻找
有机物分子式结构式的确定一、有机物分子式的确定:(一)商余法:已知相对分子质量确定分子式,商数为碳数,余数定种类。
+2 烷烃0 烯烃或环烷烃—2 炔烃或二烯烃或环烯烃—6 苯及其同系物注意:当商数≥9时,可去H 补C 求另类,如:C9H20; C10H8 练习:1.某烃的相对分子质量为114,其可能的分子式是 。
(二)最简式法或摩尔质量法 1、最简式法由各元素的质量分数---------------→各元素的原子个数比---------------→最简式 相对分子质量==n ×最简式的式量注意:有的最简式,没有相对分子质量也可以确定分子式 如:CH 3 、CH 3O 、C 2H 5 、C 2H 5O 等 总结:最简式相同的物质 (1)、C n H 2n 型: (2)、C n H n 型:n=2、4、6、8 (3)、(CH 2O)n 型:n=1、2、3、6 (4)、(C 2H 4O)n 型:n=1、2 (5)、C 3H 4和C 9H 122、摩尔质量法由相对分子质量和各元素的质量分数,确定1mol 物质中各元素原子的物质的量,得出分子式。
)()()()(x x A M w M x n ⨯=注意:相对分子质量的确定方法:(1)定义法:)()()(A A n m A M ==(2)对于气体:4.22)()(⨯=标ρA M (3)相对密度法:)()()()(B A B A M M D ρρ===4)质量分数的变形式:)()()()(A x x M N M x w ⨯= 变形式:)()()()(x x x A w N M M ⨯=14M练习:1、经元素分析后,发现某烃的含碳量为82.76%,氢的质量分数则为17.24%,且相对分子质量为58,试推断该烃的分子式。
(8分)2.(8分)吗啡和海洛因都是严格查禁的毒品。
吗啡分子中C 、H 、N 、O 的质量分数分别为71.58%、6.67%、4.91%和16.84%,已知其相对分子质量不超过300。
有机物分子式和结构式的确定
2. 实验式和分子式的区别
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法: (1) 最简式法 先求最简式 n(C):n(H):n(O)
(C) : (H) : (O)
12 1 16
= m:n:p
由此得该有机物的最简式为CmHnOp 后求分子式,设为(CmHnOp)x
x
Hale Waihona Puke 相对分子质量 最简式量 12m
M n
16p
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法:
3. 化合物相对分子质量的确定
2. 实验式和分子式的区别
实验式(即最简式)表示化合物分子所 含元素的原子数目最简单整数比的式子。 分子式表示化合物分子所含元素的原子种 类及数目的式子。
3. 化合物相对分子质量的确定
Mm n
M=22.4
d 1 M1 2 M2
例题:
3. 某混合气体在标准状况下的密度为0.821g/L, 该混合气体的平均相对分子质量为______.
4. 某卤代烃的蒸气密度是相同状况下甲烷密度 的11.75倍,该卤代烃的摩尔质量为:
___1_8_8_g_/_m__o_l___。
5. 如果ag某气体中含b个分子,则1摩该气体的 质量为_____a_N_A_/_b_g_____。
4. 已知有机物的相对分子质量或摩尔质量求分 子式的方法: (1) 最简式法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机物分子式和结构式的确定复习重点1.了解确定有机物实验式、分子式的方法,掌握有关有机物分子式确定的计算; 2.有机物分子式、结构式的确定方法 难点聚焦一、利用有机物燃烧反应的方程式进行计算 有关化学方程式烷烃+++烯烃或环烷烃+点燃点燃C H O nCO (n 1)H OC H +3n 2O CO nH On 2n+2222n 2n 222312n +−→−−−→−−炔烃或二烯烃++-点燃C H O nCO (n 1)H On 2n 2222--−→−−312n苯及苯的同系物++-点燃C H O nCO (n 3)H On 2n 6222--−→−−332n 饱和一元醇++饱和一元醛或酮++点燃点燃C H O +3n 2nCO (n 1)H OC H O O nCO nH On 2n+222n 2n 222O n 2312−→−−-−→−−饱和一元羧酸或酯++点燃C H O O nCO nH On 2n 2222322n -−→−−饱和二元醇+++点燃C H O O nCO (n 1)H On 2n+22222312n -−→−−饱和三元醇+++点燃C H O O nCO (n 1)H On 2n+23222322n -−→−−由上可知,相同碳原子数的烯烃(环烷烃)与一元饱和醇完全燃烧时,耗氧量相同(把C H O C H H O n 2n+2n 2n 2看成·:相同碳原子数的炔烃(二烯烃)与醛(酮)及饱和二元醇完全燃烧时,耗氧量相同(醛:C H O C H H O n 2n n 2n 22→·-饱和二元醇:C H O C H 2H O n 2n+22n 2n 22→·-);相同碳原子数的羧酸(酯)与三元醇完全燃烧,耗氧量相同(羧酸:C H On2n2→C H2H On2n42-·饱和三元醇:C H O C H3H On2n23n2n22+-→·)二、通过实验确定乙醇的结构式由于有机化合物中存在着同分异构现象,因此一个分子式可能代表两种或两种以上具有不同结构的物质。
在这种情况下,知道了某一物质的分子式,常常可利用该物质的特殊性质,通过定性或定量实验来确定其结构式。
例如:根据乙醇的分子式和各元素的化合价,乙醇分子可能有两种结构:为了确定乙醇究竟是哪一种结构,我们可以利用乙醇跟钠的反应,做下面这样一个实验。
实验装置如右下图所示。
在烧瓶里放入几小块钠,从漏斗中缓缓滴入一定物质的量的无水乙醇。
乙醇跟适量钠完全反应放出的H2把中间瓶子里的水压入量筒。
通过测量量筒中水的体积(应包括由广口瓶到量筒的导管内的水柱的体积),就可知反应生成的H2的体积。
讨论2 下面是上述实验的一组数据:根据上述实验所得数据,怎样推断乙醇的结构式是(1),还是(2)呢?由于0.100 mol C2H6O与适量Na完全反应可以生成1.12 L H2,则1.00 molC2H6O与Na反应能生成11.2 L H2,即0.5 mol H2,也就是1 mol H。
这就是说在1个C2H6O 分子中;只有1个H可以被Na所置换,这说明C2H6O分子里的6个H中,有1个与其他5个是不同的。
这一事实与(1)式不符,而与(2)式相符合。
因此,可以推断乙醇的结构式应为(2)式。
问题与思考1.确定有机物分子式一般有哪几种方法?2.运用“最简式法”确定有机物分子式,需哪些数据?3.如何运用“商余法”确定烃的分子式?问题与思考(提示)1、最简式法;直接法;燃烧通式法;商余法(适用于烃的分子式的求法等2、①有机物各元素的质量分数(或质量比)②标准状况下的有机物蒸气的密度(或相对密度)3、则为烯烃,环烷烃.②若余数=2,则为烷烃.③若余数=-2,则为炔烃.二烯烃④若余数=-6,则为苯的同系物.若分子式不合理,可减去一个C原子,加上12个H原子有机物分子式的确定典型例题例题精讲一、有机物分子式的确定【例1】实验测得某碳氢化合物A中,含碳80%、含氢20%,求该化合物的实验式。
又测得该化合物的相对分子质量是30,求该化合物的分子式。
【解】:(1)实验式是表示化合物分子所含各元素的原子数目最简单整数比的式子,求化合物的实验式即是求该化合物分子中各元素原子的数目(N)之比。
=1∶3该化合物的实验式是CH3。
(2)设该化合物分子中含有n个CH3,则:该化合物的分子式是C2H6。
答:该碳氢化合物的实验式是CH3,分子式是C2H6。
【例2】2.3g某有机物A完全燃烧后,生成0.1 mol CO2和 2.7gH2O,测得该化合物的蒸气与空气的相对密度是1.6,求该化合物的分子式。
【分析】根据实验,该有机物燃烧的产物只有CO2和H2O,因此,该有机物中一定含有C和H;至于O,由于其可能全部来自于燃烧时空气所提供的氧气,也可能来自于该有机物本身。
因此,该有机物分子中是否含有O,还需要通过计算反应物中C、H质量之和并与该有机物质量进行比较后,才能作出判断。
该有机物的相对分子质量,则可以利用实验测出的相对密度来求。
【解】:(1)求2.3g该有机物中组成元素的质量:C: C →CO212 44m(C)44g/mol×0.1mol=1.2gH:2H → H2O2 18m(H) 2.7g=0.3gm(C)+m(H)=1.2g+0.3g=1.5g<2.3g该有机物中C的质量与H的质量之和(1.5g)小于该有机物的质量(2.3g),因此该有机物A中还含有O,其质量为:m(O)=m(A)-m(C)-m(H)=2.3g-1.5g=0.8g(2)求该有机物的相对分子质量:Mr(A)=d×Mr(空气)=1.6×29=46(3)求该有机物分子中各元素原子的数目:答:该有机物的分子式是C2H6O。
【例3】0.60g某饱和一元醇 A,与足量的金属钠反应,生成氢气112mL(标准状况)。
求该一元醇的分子式。
【解】:饱和一元醇的通式为C n H2n+1OH,该一元醇的摩尔质量为M(A)。
=60g/mol该一元醇的相对分子质量是60。
根据该一元醇的通式,有下列等式:12n+2n+1+16+1=60n=3答:该一元醇的分子式是C3H7OH。
二、通过实验确定乙醇的结构式[例4] 某烃含碳氢两元素的质量比为3∶1,该烃对H2的相对密度为8,试确定该烃的分子式.分析:解法一:Mr=2×8=16,M=16g·mol-1,1mol烃中含C、H的物质的量为:所以该烃的分子式为CH4.解法二:烃分子中C、H原子个数比为:最简式为CH4,式量为16.因为Mr=16,故该烃的分子式为CH4.答案:CH4[例5]已知第一种气态有机物在标准状况下的密度为2.59g/L,第二种气态有机物对空气的相对密度为1.87,第三种气态有机物在标准状况下250mL质量为0.49g.求这三种有机物的相对分子质量.分析:计算相对分子质量有三种不同方法1.根据标准状况下气体的密度计算相对分子质量.根据标准状况的气体密度计算气体的摩尔质量,其数值即为相对分子质量.M=22.4×d 如第一种有机物 M=22.4×2.59=58 2.根据气体相对密度计算相对分子质量.M=DA×MA用相对密度乘相对气体的相对分子质量.如第二种有机物M=1.87×29=543.根据标准状况下,一定质量气体的体积计算相对分子质量.答案:58、54、 44[例6]某气态碳氢化合物中含碳75%,它的密度是同温同压下氢气密度的8倍,求有机物的分子式.分析:计算推断分子式此题有三种方法1.基本方法:先根据测得的气体密度计算气体的摩尔质量,然后计算1mol气态有机物中各元素原子的物质的量,最后确定该气态有机物的分子式.M=8×2=16所以该有机物的分子式为CH42.最简式法:根据已知先求出摩尔质量,再据质量分数求出碳氢原子个数比,然后找到最简式式量与相对分子质量的关系,最后确定分子式. M=8×2=16所以最简式为CH4其式量=16设分子式为(CH4)n因为最简式式量=相对分子质量所以分子式就是最简式,即为CH43.商余法:根据碳氢化合物中对其相对分子质量碳、氢原子的影响大小,用碳相对原子质量除以相对分子质量,所得商的整数部分就是烃分子中所含碳原子数的最大值,而余数就是氢原子数的最小值.注意从为CH4[例7] 某烃1.68g,完全燃烧生成CO25.28g和H2O2.16g,经测定这种烃在标准状况下的密度为3.75g/L则其分子式是 [ ]A.CH4B.C3H8C.C4H10D.C6H12分析:本题是计算推断分子式的又一种类型,就是利用烃的完全燃烧反应方程式列出比例式求解类型.设烃分子式为C x H y,则有解得 x=6 y=12答案: D.[例题8] 2.3g某有机物A完全燃烧后,生成0.1molCO2和2.7g H2O,测得该化合物的蒸气与空气的相对密度是1.6,求该化合物的分子式.分析:根据实验,该有机物燃烧的产物只有CO2和H2O,因此,该有机物中一定含有C 和H;至于O,由于其可能全部来自于燃烧时空气所提供的氧气,也可能来自于该有机物本身.因此,该有机物分子中是否含有O,还需要通过计算反应物中C、H质量之和并与该有机物质量进行比较后,才能作出判断.该有机物的相对分子质量,则可以利用实验测出的相对密度来求.(1)求2.3g该有机物中组成元素的质量:C: C ——→CO212 44m(C)44g/mol×0.1mol=1.2gH: 2H ——→H2O2 18m(H) 2.7g=0.3gm(C)+m(H)=1.2g+0.3g=1.5g<2.3g该有机物中C的质量与H的质量之和(1.5g)小于该有机物的质量(2.3g),因此该有机物A中还含有O,其质量为:m(O)=m(A)-m(C)-m(H)=2.3g-1.5g=0.8g(2)求该有机物的相对分子质量:Mr(A)=d×Mr(空气)=1.6×29=46(3)求该有机物分子中各元素原子的数目:答案:该有机物的分子式是C2H6O.[例9]标准状况下,密度为0.717g/L的某气态烃0.56L,在足量氧气中充分燃烧,反应后的气体先通过无水氯化钙,氯化钙增重0.9g;再通过氢氧化钠溶液,溶液增重1.1g.通过计算判断此气态烃的分子式,并画出其分子空间结构的示意图.分析:本题是在已知有机物完全燃烧时,涉及的有关物质量关系,判断其分子组成的典型定量计算题.其解法有三种.第一种解法是通过该烃燃烧生成的CO2和H2O的量,即本题中燃烧生成气体经过NaOH 溶液和无水氯化钙后,两者增重的量,计算出烃中的C、H元素的质量比,进而求得实验式.再根据题中该气态烃在标准状况下的密度,求得其相对分子质量.最后由实验式和相对分子质量.判断它的分子组成.然而本题所给数据,求得实验式为CH4.依据烃的分子组成中,C 原子个数为n时,H原子的最多个数不大于(2n+2)个的规律,即可确定此实验式就是所求的分子式.第二种解法是通过烃的燃烧通式:计算该烃1mol完全燃烧时,生成CO2和H2O物质的量,从而求得烃分子中C、H元素原子个数,求得其分子式第三种解法是由本题特点决定的解法特例.即通过该烃在标准状况下的气体密度、计算相对分子质量为16.而相对分子质量为16的烃,是相对分子质量最小的甲烷,其分子式为CH4.如上各解法均可求得该烃为甲烷,就可画出表示甲烷分子空间结构的正四面体分子构型.答案:解法1:设该烃中C、H元素的质量分别为x、y g.根据题意和题中数据:CO2 ~ C H2O ~2H44g 12g 18g 2g1.1g x 0.9g y44∶1.1=12∶x 18∶0.9=2∶yx=0.3(g) y=0.1(g)烃中C、H元素原子个数比该烃实验式为CH4,式量为16.该烃相对分子质量=0.717×22.4=16该烃分子式为CH4,其分子空间结构示意图见下一解法的解题过程.解法2:设该烃为CmHn.此烃1mol完全燃烧生成CO2和H2O分别为xg和yg.0.56∶22.4=1.1∶x 0.56∶22.4=0.9∶yx=44(g) y=36(g)该烃分子式为CH4.其分子空间结构示意图为解法3:该烃摩尔质量=0.717×22.4=16(g/mol),只能是有机物中相对分子质量最小的CH4.[答案](略).[例10] 标准状况下4.48L某烯烃和CO的混合气体与足量的氧气混合点燃,使之反应,将反应完毕后生成的气体通过浓硫酸,浓硫酸增重7.2g,并测得剩余气体中CO2为11.2L (标准状况),求此烯烃分子式.烧方程式列方程求解.设混气中烯烃为xmol,则CO为(0.2-x)mol.答案:烯烃分子式为C4H8.[例11] 某有机物的蒸气完全燃烧时需三倍于其体积的氧气,产生二倍于其体积的CO2,该有机物可能是 [ ].A.C2H4B.C2H5OH C.CH3CHO D.CH3COOH分析:首先判断为C2化合物,但无助于选择,因为4个选项均是C2化合物,故关键是利用耗氧量进行选择.关于耗氧量的选择有两种解法求解.解法一用通式求解.由:得:A.C2H4~3O2 B.C2H5OH~3O2解法二用“氢二氧一可内消”原则求解.关于(B)、(C)、(D)三项,均是烃的含氧衍生物,不必用常规关系式C x H y O z~(x+C x H y(z可为0),即:(B)C2H5OH~C2H4(C)CH3CHO~C2H2(D)CH3COOH~C2答案:AB[例12] mg的饱和一元醇,在氧气中完全燃烧后,产生14.4g水和13.44L(标准状况下)二氧化碳气体.(1)试确定该醇的化学式.(2)m的值是多少?分析:根据mg饱和一元醇燃烧后产生的水和CO2的量可分别求得mg饱和一元醇中H 和C的物质的量,二者之比正好等于饱和一元醇通式CnH2n+2O中2n+2与n的比,于是可求得n值,从而就能确定其化学式.再根据化学式和其燃烧方程式及产生CO2或水的差,就能求出m的值.(1)设饱和一元醇的化学式为C n H2n+2O该饱和一元醇的化学式为C3H8O.60∶m=3∶0.6 m=12答案:(1)C3H8O(2)m=12实战演练一、选择题1.常温常压下,等质量的以下各烃分别在足量的O2充分燃烧,消耗O2最多的是( );等物质的量的下列各烃分别在足量O2中充分燃烧,消耗O2最多的是( )A.甲烷B.乙烯C.丙炔D.丁烷2.1.01×105Pa,120℃时,某气态烃在密闭容器中与过量O2混和点燃,完全反应后,保持温度,压强不变,体积增大的是( )A.CH4B.C2H6C.C3H4D.C2H23.充分燃烧等物质的量的下列有机物,在相同条件下需要氧气最多的是( )A.C4H8O2B.C4H10C.C2H6O2D.C2H24.充分燃烧等质量的下列各组有机物,在相同条件下需O2的体积不完全相同的一组是( )A.乙炔、苯B.乙醇、甲醚(CH3-O-CH3)C.丙炔、异丙苯D.环丙烷、丙醇5.某有机物在氧气中完全燃烧时,其蒸气与消耗的氧气及生成的二氧化碳在同温同压下的体积比为1∶4∶3,该有机物不可能是( )A.C3H4B.C3H8O2C.C3H6OD.C3H6O26.一定量的某有机物完全燃烧后,将燃烧产物通过足量的石灰水,经过滤可得沉淀10g,但称量滤液时,其质量只比原石灰水减少2.9g,则此有机物可能是( )A.乙烯B.乙二醇C.乙醇D.乙醚7.经测定C3H7OH和C6H12组成的混合物中氧的质量分数为8%,则此混合物中氢的质量分数是( )A.78%B.22%C.14%D.13%8.某有机物含C52.2%,含H13.0%;该有机物1g与足量金属钠反应,标况下生成0.243LH2,则该有机物的分子式为( )A.C2H6OB.C2H4O2C.CH4OD.C4H10O二、填空题9.某烃含C元素为83%,则该烃的分子式为____________,若某烃的分子量为128,则分子式可能为____________或____________。