6.13 催化裂化装置富氧再生工艺1
催化裂化装置操作工(高级及技师)模拟考试题(附答案)
催化裂化装置操作工(高级及技师)模拟考试题(附答案)一、单选题(共50题,每题1分,共50分)1、催化剂发生炭堆积时,烟气氧含量()A、上升B、缓慢下降C、不变D、迅速下降或回零正确答案:D2、停工卸催化剂时,反应压力要高于再生压力,卸剂温度不大于()。
A、600B、500℃C、450℃D、550℃正确答案:C3、烟机运行时,应经常检查密封蒸汽差压控制在()MPa。
A、0.0007B、0.1C、0.07D、0.007正确答案:D4、以下哪项不是测定新鲜催化剂Al2O3含量的方法()。
A、滴定法B、溶解法C、原子吸收法D、等离子体发射光谱正确答案:B5、催化剂活性高,选择性()。
A、高B、不一定好C、低D、一定好正确答案:B6、国外催化裂化装置都采用()方法,作为减少烟气粉尘的最后一道措施。
A、二级旋风分离器B、高空排放C、高效三级旋风分离器D、电除尘器正确答案:D7、汽轮机带动的气压机组,其轴向力总是指向()。
A、气压机B、汽轮机C、压力低的一端D、压力高的一端正确答案:C8、停用热工系统汽包前,必须控制好其液位,防止(),造成设备损坏。
A、汽包干锅B、汽水共腾C、液面过低D、蒸汽带水正确答案:A9、DCS是以(控制,()监视、操作和管理达到控制全局的目的。
A、集中,分散B、集中,集中C、分散,分散D、分散,集中正确答案:D10、在装大盲板过程中,应注意防止空气窜入(),引起硫化铁自燃。
A、分馏塔B、再生器C、提升管D、沉降器正确答案:A11、同一种催化剂,使用直管法分析的磨损指数与使用鹅径管法分析得到的结果相比要()。
A、大B、一样C、不一定D、小正确答案:A12、相同反应条件下,催化剂平衡活性越高,汽油中烯烃含量()。
A、无法确定B、不变C、越高D、越低正确答案:D13、装置停非净化风时,对于使用非净化风的松动点,正确处理方法是()。
A、关正线,开副线B、正副线均关闭C、正副线都开D、改用备用介质松动正确答案:D14、装置开工前应检查调节阀的仪表输出风压与()是否一致。
催化裂化装置工艺流程及设备简图
“催化裂化”装置简单工艺流程“催化裂化”装置由原料预热、反应、再生、产品分馏等三部分组成,其工艺流程见下图,主要设备有:反应器、再生器、分馏塔等。
1、反应器(又称沉降器)的总进料由新鲜原料和回炼油两部分组成,新鲜原料先经换热器换热,再与回炼油一起分为两路进入加热炉加热,然后进入反应器底部原料集合管,分六个喷嘴喷入反映器提升管,并用蒸汽雾化,在提升管中与560~600℃的再生催化剂相遇,立即汽化,约有25~30%的原料在此进行反应。
汽油和蒸汽携带着催化剂进入反应器。
通过反应器,分布板到达密相段,反应器直径变大,流速降低,最后带着3~4㎏/㎡的催化剂进入旋风分离器,使其99%以上的催化剂分离,经料腿返回床层,油汽经集气室出沉降器,进入分馏塔。
2、油气进入分馏塔是处于过热状态,同时仍带有一些催化剂粉末,为了回收热量,并洗去油汽中的催化剂,分馏塔入口上部设有挡板,用泵将塔底油浆抽出经换热及冷却到200~3000C,通过三通阀,自上层挡板打回分馏塔。
挡板以上为分馏段,将反应物根据生产要求分出气体、汽油、轻柴油、重柴油及渣油。
气体及汽油再进行稳定吸收,重柴油可作为产品,也可回炼,渣油从分馏塔底直接抽出。
3、反应生焦后的待生催化剂沿密相段四壁向下流入汽提段。
此处用过热蒸汽提出催化剂,颗粒间及表面吸附着的可汽提烃类,沿再生管道通过单动滑阀到再生器提升管,最后随增压风进入再生器。
在再生器下部的辅助燃烧室吹入烧焦用的空气,以保证床层处于流化状态。
再生过程中,生成的烟通过汽密相段进入稀相段。
再生催化剂不断从再生器进入溢流管,沿再生管经另一单动滑阀到沉降器提升管与原料油汽汇合。
4、由分馏塔顶油气分离出来的富气,经气压机增压,冷却后用凝缩油泵打入吸收脱吸塔,用汽油进行吸收,塔顶的贫气进入二级吸收塔用轻柴油再次吸收,二级吸收塔顶干气到管网,塔底吸收油压回分馏塔。
5、吸收脱吸塔底的油用稳定进料泵压入稳定塔,塔顶液态烃一部分作吸收剂,另一部分作稳定汽油产品。
石油化工催化裂化装置工艺流程图.docx
炼油生产安全技术一催化裂化的装置简介类型及工艺流程催化裂化技术的发展密切依赖于催化剂的发展。
有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。
选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。
催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。
其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:㈠反应--再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。
积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。
待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。
再生器维持0.15MPa~0∙25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。
再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。
烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。
再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。
对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。
催化裂化装置再生器压力控制方案的改进
!!收稿日期!*&&’+&$+**作者简介!魏!莉"#($*e #$女$甘肃民勤人$#((<年毕业于大连理工大学自动控制专业$现工作于北京燕山石化公司炼油厂仪表车间$任工程师$研究向工业仪表自动化%催化裂化装置再生器压力控制方案的改进魏!莉$赵会青"北京燕山石化公司炼油厂仪表车间$北京!#&*)&&#!!摘要!催化裂化装置原采用了在烟机紧急停车时打开旁路阀到固定开度来控制再生器压力的控制方案%而在实际生产中$烟机发生紧急停车会造成再生器压力有较大波动$影响了装置的平稳运行%为保证生产的安全&稳定$对三催化机组的控制系统进行了改造$采用K !@手操面板和!!!控制器共同控制%主要介绍K !@和!!!控制器联合控制再生器压力的整体方案及实施效果%!!关键词!再生器压力控制’!!!控制器’组态控制!!中图分类号!B S *$%!!!文献标识码!=!!!文章编号!#&&$+$%*<"*&&’#&’+&&$)+&%!!催化裂化装置是炼油厂的重要装置$反应再生系统是催化的核心组成部分$再生器的压力控制对生产操作至关重要%烟机发电机组作为能量回收部分$是装置降低能耗&有效利用能源的重要组成部分%催化剂在再生器内烧焦时产生的高温烟气推动烟气轮机$从而带动发电机发电%如果高温烟气流量突变$就会破坏再生器的压力平衡$因此确保再生器压力的稳定是保证整个反应再生系统的压力平衡和生产平稳的关键%在实际生产中$烟机因电网波动出现的发电机解裂紧急停车和发生故障引起的停车都将直接影响整个反再生系统的压力平衡$处理不当还会给装置生产带来难以估量的严重后果%目前$国内许多催化裂化装置都采用了在烟机紧急停车时打开旁路阀到固定开度来控制再生器压力的方案%北京燕山石化公司炼油厂*套催化裂化装置也同样采用这种控制方案%但这种控制方案在实际生产中存在不足$每次烟机紧急停车都会造成再生器压力波动%虽然压力波动不大$但影响了装置的平稳运行$都需要几小时的操作调整%为确保装置生产的稳定$*&&)年<月该厂对三催化机组进行控制系统改造$采用K !@操作和!!!控制器共同控制$在烟机出现紧急停车时$降低了再生器压力波动幅度$确保了生产平稳运行%!!工艺流程简介该厂三催化装置分为反应再生$分馏$吸收稳定和四机组"烟机[+#&%&汽压机&主风机和增压机#$双脱及余热锅炉部分%反应再生是催化装置的核心组成部分$预先经过换热的原料油通过反应器变成反应产物$再送到分馏系统处理%反应过程中生成的焦炭沉积在催化剂上进入再生器$用空气烧去焦炭$一再生贫氧&二再生富氧燃烧%再生温度可由外取热器调节$再生后的催化剂把热量带入反应器供反应耗用%从再生器出来的高温烟气经高温取热炉发生蒸气后过三旋去烟机到余热锅炉再去烟囱%控制方案如图#所示%注!#k g *)D <33图#!三催化二再生压力控制方案$!再生器压力控制原方案的不足原有的压力控制方案是当烟机发生联锁停车时$烟机入口蝶阀"简称’&k 阀$#k g *)D <33$下同#全部关闭$不允许烟气进入烟气轮机$而三旋出口烟机两旁路蝶阀"以下简称**k 阀和<*k 阀#中的**k 阀迅速全部打开$<*k 阀约打开到$,j 的位置$防止再生器憋压和催化剂倒流%由于烟机每次发生紧急停车时$当时的烟机发电量不同$因此每次进入烟机的烟气量也不同%停机时二再生压力的压力值每次都不相同$需要的排放量也不同$而每创新与实践!!!!!!!!!!!!!!!!!!!!!!!石!油!化!工!自!动!化$*&&’$’f $)"H B G>"B ?G A?AS C B U G +!E C >?!"T?A K H @B U F次旁路阀都打开到固定位置!满足不了适时的烟气排放量!造成在烟机停机时再生器压力波动较大"同时原控制系统的反应速度不够快!造成了再生器压力无法控制!影响了催化的平稳操作!甚至造成催化装置事故停工"而且原烟机系统的硬件可靠性差!卡件更换频率明显超过了同类系统!导致控制系统的问题越来越严重"综上所述!由于原系统的不合理性!故在*&&)年机组改造中采用了!!!控制器和K !@操作共同控制二再生压力的方案!解决了系统的响应速度和两旁路阀的开度问题!将二再压力的波动减至最小"%!改造后的压力控制系统方案根据存在的问题!*&&)年改造了三催化二再生压力控制系统!将原有的控制方案改为!!!控制器和K !@远程手操面板共同控制"在!!!控制器中!使用速度控制器@?!+$$&#和再生器压力控制器Q ?!+#&*来实现"在K !@画面上做了远程手操面板!为了适应操作工的习惯!组态时使用S ?K 模板来做手操面板"操作人员通过手操面板观察二再生压力的测量值!进行#"H B G $>"A H +"T %切换等功能"烟机压力控制器输出数字量输出信号E F +#&*!给K !@!作为K !@方跟踪请求手自动的信号"从压力控制器送出数字量输出信号S F +#&*"作为它的手自动状态反馈信号"烟机停车信号送给速度控制器&压力控制器和K !@的输出做为紧急停车控制信号"现场二再生压力测量值给K !@及压力控制器作为操作显示和S ?K 运算"K !@手操面板的远程压力设定点EF +#&*=作为压力控制器的设定值!K !@手操面板的远程手动输出E F +#&*"作为压力控制器的手动输出值"烟机的功能控制图如图*所示"K !@与压力控制器的功能控制图如图%所示"图*!烟机的功能控制%D #!速度控制器@?!+$$&#控制烟机入口阀’’&k 阀(的开度!@?!+$$&#接受到烟机出口温度上升速度的控制开关量信号作为降速触点信号!当烟机进入发电状态!@?!+$$&#进入发电有差控制状态!通过改变转速设定值直接控制阀门开度!也可以通过手动输出直接控制阀门开度"图%!K !@与压力控制器的功能控制%D *!再生器压力控制器再生器压力控制器S ?!+#&*兼有S ?K 调节功能和分程控制功能"%D %!速度控制器与压力控制器的控制关系由于催化正常生产时,)j 烟气通过’&k 阀进入烟机膨胀做功发电!约%j 的烟气由三旋带出!约#*j 的烟气由烟机旁路阀排出!而烟机停车时!’&k 阀关闭!要求烟气全部由两旁路阀排出"因此**k 阀!<*k 阀与’&k 阀的阀门开度有一定比例关系!由阀门的流通能力决定"所以设计方案将速度控制器与压力控制器构成前馈控制!速度控制器将控制信号给压力控制器!超前控制旁路阀!克服扰动发生!加快系统的响应速度!使压力控制器调节及时"烟机正常时计算公式如式’#(所列"计算压力控制器输出值通过分程控制两旁路阀"压力控制器输出值g 压力控制器S ?K 输出值d %(i 速度控制器’前输出值e 后输出值(’#(式中!%()))烟机正常时的前馈系数"烟机停车时通过式’*(计算压力控制器输出值g 压力控制器S ?K 输出值d%&i 速度控制器’前输出值e &(’*(式中!%&)))停车时的前馈系统"烟机停车时!在):内强制K !@置于#"H +B G %!不允许K !@手操面板切手动!将算得的压力控制器输出值迅速分程控制两旁路阀的开度"%D <!压力控制器与K !@远程手操面板的控制关系当烟机正常运行时!如果K !@手操面板置于#>04X 0N %状态!压力控制器处于#U ;328;%#B M 0/9+P 47%状态!跟踪K !@面板的手动状态!压力控制器的输出值等于K !@手操面板的手动输出值直接分程控制旁路阀!压力控制器既不做S ?K 调节与速度控制器!也不构成前馈控制"如果K !@手操面板置于#"X 82%状态!压力控制器处于#U ;328;%’$石油化工自动化!!!!!!!!!!!!!!!!!!!!!!!*&&’年!"X 82"#跟踪K !@面板的自动状态#手操面板的远程压力设定点作为速度控制器的远程设定值#二再生压力测量值为控制器的(8值#进行S ?K 调节运算$同时与速度控制器构成前馈控制#通过式%#&计算输出值分程控制**k #<*k 阀$因此跟踪请求信号决定了压力控制器与K !@方手操面板的手’自动状态一致#手操面板接收的手’自动反馈信号也必须与压力控制器相一致$这里设置分程控制的主要目的是让**k 阀#<*k 阀根据工艺的要求满足开停车时大流量和正常生产时小流量的要求#满足正常生产和事故状态下的稳定性和安全性$根据**k 阀#<*k 阀和’&k 阀的流通能力大小#将**k 阀分程点设为&$*)j #<*k 阀分程点为*)j $#&&j #并且都为气关阀$烟机发生紧急停车时):内强制远程手操面板处于!"X 82"状态#压力控制器置于!"X 82"#其设定值取自K !@远程设定0(##做S ?K 调节#与速度控制器构成前馈#通过式%*&计算输出值控制旁路阀$):后K !@手操可进行!手’自动"切换#但要求K !@方手动切自动时设定值跟踪实时测量值#以达到无扰动切换#此项在K !@组态中实现$从K !@到烟机压力控制有一组模拟量输出信号#为远程输出信号#跟踪K !@手操面板的输出值#手操面板置!手动"时输出值可以根据工况调节#压力控制器的输出值等于远程手动输出值$在自动时面板输出值为式%%&计算的值手操面板的输出值g **k 阀阀位i *)jd<*k 阀阀位i $)j%%&由于烟机停车时手操面板必须处于!"X 82"位置#根据式%%&的计算保证了停车后K !@方手操面板的输出值和压力控制器的输出值相一致#实现了双方输出的无扰动切换$&!调试在控制系统正式投用之前#笔者在K !@与!!!控制器之间作了全面的仿真实验#对控制双方的手(自动切换(K !@手操面板测量值与设定值的无扰动切换及!!!控制器的S ?K 模块的参数整定(前馈控制系数等进行了反复实验整定#达到了工艺的要求#确保开车一次成功$图<为烟机停机时改造前后二再生压力的波动曲线图$图<!二再生压力改造前后的波动曲线"!改造后存在的不足由于蝶阀的流通能力与开度不成线性#在烟机出现紧急停车时为了保证**k 阀全关(<*k 阀成一定开度#应该在压力控制器内做线性补偿#这样就能更好地实现无扰动切换#进而更少地减小再生器压力波动$)!结束语*&&)年三催化再生器压力控制系统改造的成功应用#大大提高了工艺的自动控制水平和生产过程的管理水平#对反应再生系统乃至整个催化生产的平稳运行起到了重要的作用#从而取得了巨大的经济效益555555555555555555555555555555555555555555555555$!上接第<(页"图*!工作步序操作按钮U H A )执行程序*@B G S )中止程序*"!["+T "U >)事故确认$考虑到意外情况的发生#在操作画面上设计一个S "H @C ’!G A B ?按钮组合来执行例外块程序及继续独立块程序的运行$画面通过各步序指示框内的颜色变化告诉操作员目前正在执行的步序#同时提供各切换阀的开关状态指示框并通过其颜色变化显示切换阀的开关状态$为了便于操作#画面设计了<个计时器显示框#供操作员修改计时器设定时间及显示相应步序已经完成的时间$"!结束语?’"@;M P ;:根据顺序控制的特点#设计了特定的功能块来监控实施控制功能#使得顺控程序实现变得异常简单$程序中可以设置事故#结合根据工艺流程图制作的操作员画面#操作员可以非常直观地观察工序执行#快速断定故障点#便于操作#同时极大地方便了程序开发人员的程序设计$$$第’期!!!!!!!!!!!!!!!!!魏!莉等D 催化裂化装置再生器压力控制方案的改进。
第六节 催化裂化反应-再生系统概述
2018/11/5
21
催化裂化主要设备
1、预提升段 2、裂化反应段 3、汽提段
2018/11/5
22
催化裂化主要设备
预提升段:加速催化剂,使催化剂形成活塞流向
上流动,使催化剂上的重金属钝化,有利于油雾
的快速混合,一般为3-6m。
裂化反应段:提供裂化反应的场所。
中止反应技术(MTC)
2018/11/5 11
两段与单段实验室结果对比:
轻油收率可提高 2-3 个百分点 原料转化深度提高 5 个百分点
汽油烯烃含量下降12-13个百分点
液收率提高2.5个百分点以上 干气产率大幅度降低 可显著提高柴汽比
2018/11/5
12
两段与单段工业试验结果对比:
轻油收率提高4个百分点以上
第六节
催化裂化 反应-再生系统
2018/11/5
1
催化裂化装置一般有四部分构成:反应-再生系统,分
馏系统,吸收-稳定系统和能量回收系统
装置形式主要有高低并列式、同轴式等
2018/11/5
2
一:提升管反应器
提升管反应器主要有提升管、沉降器、汽提段、旋分 器、待生斜管等部分组成
2018/11/5
2018/11/5
6
两段提升管 FCC技术的思想及特点
两段FCC技术的基本思想:
★提高催化裂化催化剂的有效活性和选择性,从而改
善目的产品分布;
★分段反应,提高调整生产方案的灵活性
因此,两段提升管FCC技术打破原来的提升管反应器型 式和反-再系统流程: ★两段提升管反应器取代单一反应器 ★构成拥有两路循环的反应-再生系统
催化裂化的装置简介及工艺流程
催化裂化的拆置简介及工艺过程之阳早格格创做概括催化裂化技能的死长稀切依好于催化剂的死长.有了微球催化剂,才出现了流化床催化裂化拆置;分子筛催化剂的出现,才死长了提下管催化裂化.采用相宜的催化剂对付于催化裂化历程的产品产率、产品本量以及经济效率具备要害效率.催化裂化拆置常常由三大部分组成,即反应/复活系统、分馏系统战吸支宁静系统.其中反应––复活系统是齐拆置的核心,现以下矮并列式提下管催化裂化为例,对付几大系统分述如下:(一)反应––复活系统新陈本料(减压馏分油)通过一系列换热后与回炼油混同,加进加热炉预热到370℃安排,由本料油喷嘴以雾化状态喷进提下管反应器下部,油浆没有经加热曲交加进提下管,与去自复活器的下温(约650℃~700℃)催化剂交触并坐时汽化,油气与雾化蒸汽及预提下蒸汽所有携戴着催化剂以7米/秒~8米/秒的下线速通过提下管,经赶快分散器分散后,大部分催化剂被分出降进重降器下部,油气携戴少量催化剂经二级旋风分散器分出夹戴的催化剂后加进分馏系统.积有焦冰的待死催化剂由重降器加进其底下的汽提段,用过热蒸气举止汽提以脱除吸附正在催化剂表面上的少量油气.待死催化剂经待死斜管、待死单动滑阀加进复活器,与去自复活器底部的气氛(由主风机提供)交触产死流化床层,举止复活反应,共时搁出洪量焚烧热,以保护复活器脚够下的床层温度(稀相段温度约650℃~680℃).复活器保护0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒.复活后的催化剂经淹流管,复活斜管及复活单动滑阀返回提下管反应器循环使用.烧焦爆收的复活烟气,经复活器稀相段加进旋风分散器,经二级旋风分散器分出携戴的大部分催化剂,烟气经集气室战单动滑阀排进烟囱.复活烟气温度很下而且含有约5%~10%CO,为了利用其热量,很多拆置设有CO锅炉,利用复活烟气爆收火蒸汽.对付于支配压力较下的拆置,常设有烟气能量回支系统,利用复活烟气的热能战压力做功,启动主风机以俭朴电能.(二)分馏系统分馏系统的效率是将反应/复活系统的产品举止分散,得到部分产品战半兴品.由反应/复活系统去的下温油气加进催化分馏塔下部,经拆有挡板的脱过热段脱热后加进分馏段,经分馏后得到富气、细汽油、沉柴油、重柴油、回炼油战油浆.富气战细汽油去吸支宁静系统;沉、重柴油经汽提、换热或者热却后出拆置,回炼油返回反应––复活系统举止回炼.油浆的一部分支反应复活系统回炼,另一部分经换热后循环回分馏塔.为了与走分馏塔的过剩热量以使塔内气、液相背荷分集匀称,正在塔的分歧位子分别设有4个循环回流:顶循环回流,一中段回流、二中段回流战油浆循环回流.催化裂化分馏塔底部的脱过热段拆有约十块人字形挡板.由于进料是460℃以上的戴有催化剂粉终的过热油气,果此必须先把油气热却到鼓战状态并洗下夹戴的粉尘以便举止分馏战预防阻碍塔盘.果此由塔底抽出的油浆经热却后返回人字形挡板的上圆与由塔底上去的油气顺流交触,一圆里使油气热却至鼓战状态,另一圆里也洗下油气夹戴的粉尘.(三)吸支--宁静系统从分馏塔顶油气分散器出去的富气中戴有汽油组分,而细汽油中则溶解有C3、C4以至C2组分.吸支––宁静系统的效率便是利用吸支战细馏的要领将富气战细汽油分散成搞气(≤C2)、液化气(C3、C4)战蒸汽压合格的宁静汽油.拆置简介(一)拆置死长及其典型1.拆置死长催化裂化工艺爆收于20世纪40年代,是炼油厂普及本油加工深度的一种重油沉量化的工艺.20世纪50年代初由ESSO公司(好国)推出了Ⅳ型流出催化拆置,使用微球催化剂(仄稳粒径为60—70tan),进而使催化裂化工艺得到极大死长.1958年尔国第一套移动床催化裂化拆置正在兰州炼油厂投产.1965年尔国自己安排制制动工的Ⅳ型催化拆置正在抚顺石油二厂投产.通过近40年的死长,催化裂化已成为炼油厂最要害的加工拆置.停止1999年底,尔国催化裂化加工本领达8809.5×104t/a,占一次本油加工本领的33.5%,是加工比率最下的一种拆置,拆置规模由(34—60)×104t/a 死长到海内最大300×104t/a,海中为675×104t/a.随着催化剂战催化裂化工艺的死长,其加工本料由重量化、劣量化死长至暂时齐减压渣油催化裂化.根据脚法产品的分歧,有探供最大气体支率的催化裂解拆置(DCC),有探供最大液化气支率的最洪量下辛烷值汽油的MGG工艺等,为了符合以上的死长,相映推出了二段复活、富氧复活等工艺,进而使催化裂化拆置背着工艺技能进步、经济效率更佳的目标死长.2.拆置的主要典型催化裂化拆置的核心部分为反应—复活单元.反应部分有床层反应战提下管反应二种,随着催化剂的死长,暂时提下管反应已与代了床层反应.复活部分可分为真足复活战没有真足复活,一段复活战二段复活(真足复活即指复活烟气中CO含量为10—6级).从反应与复活设备的仄里安插去道又可分为下矮并列式战共轴式,典型的反应—复活单元睹图2—4、图2—5、图2—6、图2—7,其特性睹表2—11.(二)拆置单元组成与工艺过程催化裂化拆置的基础组成单元为:反应—复活单元,能量回支单元,分馏单元,吸支宁静单元.动做扩充部分有:搞气、液化气脱硫单元,汽油、液化气脱硫醇单元等.各单元效率介绍如下.(1)反应—复活单元重量本料正在提下管中与复活后的热催化剂交触反应后加进重降器(反应器),油气与催化剂经旋风分散器与催化剂分散,反应死成的气体、汽油、液化气、柴油等馏分与已反应的组分所有离启重降器加进分馏单元.反应后的附有焦冰的待死催化剂加进复活器用气氛烧焦,催化剂回复活性后再加进提下管介进反应,产死循环,复活器顶部烟气加进能量回支单元.(2)三机单元所谓三机系指主风机、气压机战删压机.如果将反一再单元动做拆置的核心部分,那么主风机便是催化裂化拆置的心净,其效率是将气氛支人复活器,使催化剂正在复活器中烧焦,将待死催化剂复活,回复活性以包管催化反应的继承举止.删压机是将主风机出心的气氛提压后动做催化剂输支的能源风、流化风、提下风,以脆持反—再系统催化剂的仄常循环.气压机的效率是将分馏单元的气体压缩降压后支人吸支宁静单元,共时通过安排气压机转数也可达到统制重降器顶部压力的脚法,那是包管反应复活系统压力仄稳的一个脚法.(3)能量回支单元利用复活器出心烟气的热能战压力使余热锅炉爆收蒸汽战烟气轮机做功、收电等,此举可大大降矮拆置能耗,暂时现有的重油催化裂化拆置有无此回支系统,其能耗可出进1/3安排.(4)分馏单元重降器出去的反应油气经换热后加进分馏塔,根据各物料的沸面好,从上至下分散为富气(至气压机)、细汽油、柴油、回炼油战油浆.该单元的支配对付齐拆置的仄安效率较大,一头一尾的支配尤为要害,即分馏塔顶压力、塔底液里的稳固是拆置仄安死产的有力包管,包管气压机人心搁火炬战油浆出拆置系统的通畅,是仄安死产的必备条件.(5)吸支宁静单元通过气压机压缩降压后的气体战去自分馏单元的细汽油,通过吸支宁静部分,分隔为搞气、液化气战宁静汽油.此单元是本拆置甲类伤害物量最集结的场合.(6)产品细制单元包罗搞气、液化气脱硫战汽油液化气脱硫醇单元该二部分,搞气、液化气正在胺液(乙醇胺、二乙醇胺、Ⅳ—甲基二乙醇胺等)效率下、吸支搞气、液化气中的H2S气体以达到脱除H2S的脚法.汽油战液化气正在碱液状态中正在磺化酞氰钴或者散酞氰钻效率下将硫醇氧化为二硫化物,以达到脱除硫醇的脚法.2.工艺过程工艺准则过程睹图2—8.本料油由罐区或者其余拆置(常减压、润滑油拆置)支去,加进本料油罐,由本料泵抽出,换热至200—300°C安排,分馏塔去的回炼油战油浆所有加进提下管的下部,与由复活器复活斜管去的650~700°C复活催化剂交触反应,而后经提下管上部加进分馏塔(下部);反应完的待死催化剂加进重降器下部汽提段.被汽提蒸汽与消油气的待死剂通过待死斜管加进复活器下部烧焦罐.由主风机去的气氛支人烧焦罐烧焦,并共待死剂一道加进复活器继承烧焦,烧焦复活后的复活催化剂由复活斜管进人提下管下部循环使用.烟气经一、二、三级旋分器分散出催化剂后,其温度正在650~700°C,压力0.2-0.3MPa(表),进人烟气轮机做功戴动主风机,其后温度为500—550°C,压力为0.01MPa(表)安排,再加进兴热锅炉爆收蒸汽,收汽后的烟气(温度约莫为200℃安排)通过烟囱排到大气.反应油气加进分馏塔后,最先脱过热,塔底油浆(油浆中含有2%安排催化剂)分二路,一路至反应器提下管,另一路经换热器热却后出拆置.脱过热后油气降下,正在分馏塔内自上而下分散出富气、细汽油、沉柴油、回炼油.回炼油去提下管再反应,沉柴油经换热器热却后出拆置,富气经气压机压缩后与细汽油共进吸支塔,吸支塔顶的贫气加进再吸支塔由沉柴油吸支其中的C4-C5,再吸支塔顶搞气加进搞气脱硫塔脱硫后动做产品出拆置,吸支塔底富吸支油加进脱吸塔以脱除其中的C2.塔底脱乙烷汽油加进宁静塔,宁静塔底油经碱洗后加进脱硫醇单元脱硫醇后出拆置,宁静塔顶液化气加进脱硫塔脱除H,S,再加进脱硫醇单元脱硫醇后出拆置.(脱硫脱硫醇已绘出)(三)化教反应历程1.催化裂化反应的特性催化裂化反应是正在催化剂表面上举止的,其反应历程的7个步调如下:①气态本料分子从合流扩集到催化剂表面;②本料分子沿催化剂中背内扩集;③本料分子被催化剂活性核心吸附;④本料分子爆收化教反应;⑤产品分子从催化剂内表面脱附;⑥产品分子由催化剂中背中扩集;⑦产品分子扩集到合流中.重量本料反应死成脚法产品可用下图表示:2.催化裂化反应种类石油馏分是由格中搀纯的烃类战非烃类组成,其反应历程格中搀纯,种类繁琐,大概分为几个典型.(1)裂化反应是主要的反应.即C—C键断裂,大分子形成小分子的反应.(2)同构化反应是要害的反应.即化合物的相对付分子量没有变,烃类分子结媾战空间位子变更,所以催化裂化产品中会有较多同构烃.(3)氢变化反应是一个烃分子上的氢脱下去加到另一个烯烃分子上,使其烯烃鼓战,该反应是催化裂化特有的反应.虽然氢变化反应会使产品安靖性变佳,然而是大分子的烃类反应脱氢将死成焦冰.(4)芳构化反应烷烃、烯烃环化死成环烷烃战环烯烃,而后进一步氢变化反应死成芳烃,由于芳构化反应使汽油、柴油中芳烃较多.除以上反应中,另有甲基变化反应、叠合反应战烷基化反应等.(四)主要支配条件及工艺技能特性1.主要支配条件果分歧的工艺支配条件没有尽相共,表2—12列出普遍一段复活催化裂化的主要支配条件.2.工艺技能特性(1)微球催化剂的气—固流态化催化裂化确切一面该当喊做流化催化裂化.微球催化剂(60—70/1m粒径)正在分歧气相线速下浮现分歧状态,可分为牢固床(即催化剂没有动)、流化床(即催化剂只正在一定的空间疏通)战输支床(即催化剂与气相介量一共疏通而离启本去的空间)三种.催化裂化的提下管反应是输支床,而复活器中待死催化剂的烧焦历程是流化床,所以微球催化剂的气—固流态化是催化裂化工艺得以死长的前提,进而使反应—复活能正在分歧的条件下得以真止.(2)催化裂化的化教反应最主要的反应是大分子烃类裂化为小分子烃类的化教反应,进而使本油中大于300℃馏分的烃类死成小分子烃类、气体、液化气、汽油、柴油等,极天里减少了炼油厂的沉量油支率,并能副产气体战液化气.(五)催化剂及帮剂1.催化剂烃类裂化反应,应用热裂化工艺也能完毕,然而是有了催化剂的介进,其化教反应办法分歧,所以引导二类工艺的产品本量战产品分集皆分歧.暂时催化裂化所使用的催化剂皆是分子筛微球催化剂,根据分歧产品央供可制制出百般型号的催化剂.然而其使用本能央供是共共的,即下活性战采用性,良佳的火热宁静性,抗硫、氮、重金属的中毒;佳的强度,易复活,流化本能佳等.暂时罕睹的有重油催化裂化催化剂、死产下辛烷值汽油催化剂、最大沉量油支率催化剂、减少液化气支率催化剂战催化裂解催化剂等.由于催化裂化本料的重量化,使重油催化剂死长格中赶快,暂时海内齐渣油型催化剂本能睹表2—13. 2.催化裂化帮剂为了补充催化剂的其余本能,连年去死长了多种起辅帮效率的帮催化剂,那些帮剂均以剂的办法,加到裂化催化剂中起到除催化裂化历程中的其余效率.如促进复活烟气中CO 变化为C02,普及汽油辛烷值,钝化本料中重金属对付催化剂活性毒性,降矮烟气中的SOx的含量等百般帮剂,它们绝大普遍也是制制成与裂化催化剂一般的微球分别加进复活器内,然而占总剂量很少,普遍正在1%—3%,所以每天增加量惟有10-1000kS/d安排.CO帮焚剂为SiO2—Al2O3细粉上载有活性金属铂制成.辛烷值帮剂大多是含有15%-20%ZSM—5分子筛的Si—Al 微球剂.而金属钝化剂为液态型含锑的化合物,将其注进本料油中,使其领会的金属锑重积正在催化剂上以钝化Ni的活性.(六)本料及产品本量1.催化裂化本资料百般催化裂化所使用的本资料没有尽相共,现将普遍所使用的本资料主要本量汇总,睹表2—14.2.产品本量产品本量睹表2-15。
催化裂化工艺流程及主要设备
➢分布器可分为板式(蝶形)和管式(平面树枝或环形)两种
重催再生器需设取热设备: a.内取热式 b.外取热式
主要要求有:
①再生剂的含炭量较低,一般要求低于0.2%,甚
至低于0.05%;
②有较高的烧碳强度,当以再生器内的有效藏量
为基准时,烧碳强度一般为100~250kg/(t.h);
③催化剂减活及磨损较少; ④易于操作,能耗及投资少; ⑤能满足环保要求
①对于全混床反应器,第一段出口的半再生剂的含碳量 高于再生剂的含碳量,从而提高了烧碳速率;
②在第二段再生时可以用新鲜空气和更高的温度,提高 了烧碳速率;
③第二段内的水气分压可以很低,减轻了催化剂的水热 老化;且第二段的催化剂藏量比单段再生器的催化剂藏量低, 停留时间较短。因此,第二段可采用较高的再生温度。
从流化域来看,单段再生和两
段再生都属于鼓泡床和湍流床 的范畴,传递阻力和返混对烧 碳速率都有重要的影响。
你知道吗?
如果把气速提高到1. 2m/s
以上,而且气体和催化剂向 上同向流动,就会过渡到快 速床区域。
烧焦罐再生(亦称高效再生)就是 循环流化床的一种方式
二密床高度4~6m. 烟气流速 0.1~0.25m/s
稀相管高度8~15m.
烧焦罐再生 烟气流速7~10m/s
循环管是烧焦罐再生器的独有设备, 它的作用是把热催化剂从二密相返回 烧焦罐,提高烧焦罐底部温度和烧焦 罐密度,以提高烧焦速度并增加烧焦 能力。早期的烧焦罐装置循环比为 I~I.5,循环管直径与再生剂管直径相 当;近年设计的烧焦罐装置循环比为 1.5~2,循环管直径明显大于再生管 直径。
100~125mm厚的隔热耐磨衬里。 ➢ 伸到汽提段、沉降器内的部分只设耐磨衬里。 ➢ 提升管的上端出口处设有气-固快速分离机构,用于使催化剂与油气
催化裂化
催化裂化装置工艺技术催化裂化装置年处理能力100万吨。
本装置由反应-再生、烟机组、富气压缩机组、分馏、吸收稳定、汽油精制、干气-液态脱硫等单元组成。
装置共分为两个系统操作:反应-再生系统:包括反应-再生、机组单元;分离系统:包括分馏、吸收稳定、汽油精制、干气液态烃脱硫单元。
一、催化裂化装置的工艺特点1.催化裂化装置对原料油性质的适应性能强,因而原料油来源广泛,不仅能处理直馏重质馏分油,还能处理二次加工馏分,如焦化蜡油、脱沥青油等,同时还可掺炼常压重油及减压渣油。
该装置具有原料油馏程宽,组成复杂的特点。
2. 采用新型的分子筛催化剂,催化剂的活性高,氢转移反应能力强,同时具有良好的稳定性和抗金属污染性能。
可以有效的降低汽油中的烯烃含量,保证汽油辛烷值和装置的目的产品收率。
3. 采用高效雾化喷嘴,操作弹性大、雾化效果好,蒸汽用量小,促进了油品与催化剂的良好接触与混合,降低了焦炭产率、改善了产品分布。
4. 采用高效再生技术,保证了再生烧焦效果,有利于提高再生催化剂活性。
5. 在能量回收利用上,采用烟机和余热锅炉充分回收装置余热。
分别驱动主风机供主风和发生3.9MPa高压蒸汽,充分合理利用能源,降低装置的能耗。
6. 产品的生产方案具有很大的灵活性,可实现多产汽油、多产柴油、多产液态性等不同的生产工艺方案。
二、催化裂化装置原料和产品(一)原料催化裂化装置原料主要是减三线、减四线蜡油和加氢蜡油HGO,一般来讲,衡量原料油性质指标有:馏份组成、烃类族组成、残碳、重金属、硫氮含量等五个方面。
(l) 馏份组成:馏份组成可以辨别原料的轻重和沸点范围的宽窄,在组成类型相近时,馏份越轻,越不易裂化,馏份越重,越容易裂化,因为轻组分多,不但裂化条件苛刻,而且减少了装置处理能力,同时降低汽油的辛烷值。
重组分多,使重金属含量增加及焦炭产率增加,轻质油收率下降,还会使催化剂中毒。
(2) 烃类族组成:原料油的烃类族组成说明了原料油被催化剂吸附反应的快慢。
石油化工催化裂化技术的工艺优化分析
石油化工催化裂化技术的工艺优化分析发布时间:2023-03-03T08:56:47.868Z 来源:《科技新时代》2022年第20期作者:王中亮杨立志[导读] “三油并轨”政策的实施和车用柴油标准的升级将进一步减少污染物的排放王中亮杨立志中国石油哈尔滨石化公司第二联合车间 150056摘要:“三油并轨”政策的实施和车用柴油标准的升级将进一步减少污染物的排放,保护环境,并推动发动机企业技术进步和炼油企业转型升级。
例如,车用柴油国Ⅵ质量标准要求大幅降低柴油的硫含量和多环芳烃含量,这将使催化裂化柴油(LCO)占比较高的炼油企业面临巨大技术经济挑战。
这是因为LCO的总芳烃质量分数为50%~70%,且双环芳烃占比很大,为总芳烃的40%~60%;同时LCO的硫、氮等杂质含量高、十六烷值低,难以直接作为柴油馏分,必须进一步深入加工才能满足国Ⅵ柴油质量标准的要求。
LCO深加工技术主要有加氢精制、加氢改质等技术。
通过加氢,可以脱除LCO中的硫和氮元素,但LCO加氢过程需要高苛刻度的工况条件,氢耗高、操作成本高、经济效益差。
同时,随着消费柴汽比的不断下降,炼油企业间的竞争不断加剧,为LCO加工路线的选择带来巨大挑战。
因此,探寻最优LCO加工路径,实现低成本提升LCO经济价值成为研究热点。
关键词:催化裂化;低辛烷值汽油;辛烷值引言我国FCC汽油为商品汽油的主要组分,其在商品汽油中的比例达70%以上,无论目前还是可预见的未来,FCC汽油在炼油厂中的重要地位不容置疑。
FCC汽油性质明显优于热裂化汽油,而且,稳定性要比热裂化汽油高得多,各种烃类在FCC汽油中大致分为正构烷烃约5%,异构烷烃在25%~33%之间,环烷烃在6%~12%之间,烯烃在33%~46之间,芳烃在16%~22%之间。
高辛烷值汽油能够提高发动机的功率和热效率,提高汽油辛烷值已经成为各汽油生产单位的主要努力方向。
粗汽油作为终止剂在催化裂化装置上进行工业应用已经取得了不错的效果,能够抑制氢转移二次反应和减少热裂化反应,提高重油催化裂化的轻质油和液化气收率,降低干气和焦炭产率。
催化裂化的装置简介及工艺流程
催化裂化(de)装置简介及工艺流程概述催化裂化技术(de)发展密切依赖于催化剂(de)发展.有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂(de)出现,才发展了提升管催化裂化.选用适宜(de)催化剂对于催化裂化过程(de)产品产率、产品质量以及经济效益具有重大影响.催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统.其中反应––再生系统是全装置(de)核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:(一)反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器(de)高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒(de)高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带(de)催化剂后进入分馏系统.积有焦炭(de)待生催化剂由沉降器进入其下面(de)汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上(de)少量油气.待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部(de)空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高(de)床层温度(密相段温度约650℃~680℃).再生器维持~(表)(de)顶部压力,床层线速约米/秒~米/秒.再生后(de)催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用.烧焦产生(de)再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带(de)大部分催化剂,烟气经集气室和双动滑阀排入烟囱.再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽.对于操作压力较高(de)装置,常设有烟气能量回收系统,利用再生烟气(de)热能和压力作功,驱动主风机以节约电能.(二)分馏系统分馏系统(de)作用是将反应/再生系统(de)产物进行分离,得到部分产品和半成品.由反应/再生系统来(de)高温油气进入催化分馏塔下部,经装有挡板(de)脱过热段脱热后进入分馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆.富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应––再生系统进行回炼.油浆(de)一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔.为了取走分馏塔(de)过剩热量以使塔内气、液相负荷分布均匀,在塔(de)不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流.催化裂化分馏塔底部(de)脱过热段装有约十块人字形挡板.由于进料是460℃以上(de)带有催化剂粉末(de)过热油气,因此必须先把油气冷却到饱和状态并洗下夹带(de)粉尘以便进行分馏和避免堵塞塔盘.因此由塔底抽出(de)油浆经冷却后返回人字形挡板(de)上方与由塔底上来(de)油气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带(de)粉尘.(三)吸收--稳定系统从分馏塔顶油气分离器出来(de)富气中带有汽油组分,而粗汽油中则溶解有C3、C4甚至C2组分.吸收––稳定系统(de)作用就是利用吸收和精馏(de)方法将富气和粗汽油分离成干气(≤C2)、液化气(C3、C4)和蒸汽压合格(de)稳定汽油.装置简介(一)装置发展及其类型1.装置发展催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度(de)一种重油轻质化(de)工艺.20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展.1958年我国第一套移动床催化裂化装置在兰州炼油厂投产.1965年我国自己设计制造施工(de)Ⅳ型催化装置在抚顺石油二厂投产.经过近40年(de)发展,催化裂化已成为炼油厂最重要(de)加工装置.截止1999年底,我国催化裂化加工能力达8809.5×104t/a,占一次原油加工能力(de)33.5%,是加工比例最高(de)一种装置,装置规模由(34—60)×104t /a发展到国内最大300×104t/a,国外为675×104t/a.随着催化剂和催化裂化工艺(de)发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化.根据目(de)产品(de)不同,有追求最大气体收率(de)催化裂解装置(DCC),有追求最大液化气收率(de)最大量高辛烷值汽油(de)MGG工艺等,为了适应以上(de)发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好(de)方向发展.2.装置(de)主要类型催化裂化装置(de)核心部分为反应—再生单元.反应部分有床层反应和提升管反应两种,随着催化剂(de)发展,目前提升管反应已取代了床层反应.再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级).从反应与再生设备(de)平面布置来讲又可分为高低并列式和同轴式,典型(de)反应—再生单元见图2—4、图2—5、图2—6、图2—7,其特点见表2—11.(二)装置单元组成与工艺流程1.组成单元催化裂化装置(de)基本组成单元为:反应—再生单元,能量回收单元,分馏单元,吸收稳定单元.作为扩充部分有:干气、液化气脱硫单元,汽油、液化气脱硫醇单元等.各单元作用介绍如下.(1)反应—再生单元重质原料在提升管中与再生后(de)热催化剂接触反应后进入沉降器(反应器),油气与催化剂经旋风分离器与催化剂分离,反应生成(de)气体、汽油、液化气、柴油等馏分与未反应(de)组分一起离开沉降器进入分馏单元.反应后(de)附有焦炭(de)待生催化剂进入再生器用空气烧焦,催化剂恢复活性后再进入提升管参加反应,形成循环,再生器顶部烟气进入能量回收单元.(2)三机单元所谓三机系指主风机、气压机和增压机.如果将反一再单元作为装置(de)核心部分,那么主风机就是催化裂化装置(de)心脏,其作用是将空气送人再生器,使催化剂在再生器中烧焦,将待生催化剂再生,恢复活性以保证催化反应(de)继续进行.增压机是将主风机出口(de)空气提压后作为催化剂输送(de)动力风、流化风、提升风,以保持反—再系统催化剂(de)正常循环.气压机(de)作用是将分馏单元(de)气体压缩升压后送人吸收稳定单元,同时通过调节气压机转数也可达到控制沉降器顶部压力(de)目(de),这是保证反应再生系统压力平衡(de)一个手段.(3)能量回收单元利用再生器出口烟气(de)热能和压力使余热锅炉产生蒸汽和烟气轮机作功、发电等,此举可大大降低装置能耗,目前现有(de)重油催化裂化装置有无此回收系统,其能耗可相差1/3左右.(4)分馏单元沉降器出来(de)反应油气经换热后进入分馏塔,根据各物料(de)沸点差,从上至下分离为富气(至气压机)、粗汽油、柴油、回炼油和油浆.该单元(de)操作对全装置(de)安全影响较大,一头一尾(de)操作尤为重要,即分馏塔顶压力、塔底液面(de)平稳是装置安全生产(de)有力保证,保证气压机人口放火炬和油浆出装置系统(de)通畅,是安全生产(de)必备条件. (5)吸收稳定单元经过气压机压缩升压后(de)气体和来自分馏单元(de)粗汽油,经过吸收稳定部分,分割为干气、液化气和稳定汽油.此单元是本装置甲类危险物质最集中(de)地方.(6)产品精制单元包括干气、液化气脱硫和汽油液化气脱硫醇单元该两部分,干气、液化气在胺液(乙醇胺、二乙醇胺、Ⅳ—甲基二乙醇胺等)作用下、吸收干气、液化气中(de)H2S气体以达到脱除H2S(de)目(de).汽油和液化气在碱液状态中在磺化酞氰钴或聚酞氰钻作用下将硫醇氧化为二硫化物,以达到脱除硫醇(de)目(de).2.工艺流程工艺原则流程见图2—8.原料油由罐区或其他装置(常减压、润滑油装置)送来,进入原料油罐,由原料泵抽出,换热至200—300°C左右,分馏塔来(de)回炼油和油浆一起进入提升管(de)下部,与由再生器再生斜管来(de)650~700°C再生催化剂接触反应,然后经提升管上部进入分馏塔(下部);反应完(de)待生催化剂进入沉降器下部汽提段.被汽提蒸汽除去油气(de)待生剂通过待生斜管进入再生器下部烧焦罐.由主风机来(de)空气送人烧焦罐烧焦,并同待生剂一道进入再生器继续烧焦,烧焦再生后(de)再生催化剂由再生斜管进人提升管下部循环使用.烟气经一、二、三级旋分器分离出催化剂后,其温度在650~700°C,压力0.2-0.3MPa(表),进人烟气轮机作功带动主风机,其后温度为500—550°C,压力为0.01MPa(表)左右,再进入废热锅炉发生蒸汽,发汽后(de)烟气(温度大约为200℃左右)通过烟囱排到大气.反应油气进入分馏塔后,首先脱过热,塔底油浆(油浆中含有2%左右催化剂)分两路,一路至反应器提升管,另一路经换热器冷却后出装置.脱过热后油气上升,在分馏塔内自上而下分离出富气、粗汽油、轻柴油、回炼油.回炼油去提升管再反应,轻柴油经换热器冷却后出装置,富气经气压机压缩后与粗汽油共进吸收塔,吸收塔顶(de)贫气进入再吸收塔由轻柴油吸收其中(de)C4-C5,再吸收塔顶干气进入干气脱硫塔脱硫后作为产品出装置,吸收塔底富吸收油进入脱吸塔以脱除其中(de)C2.塔底脱乙烷汽油进入稳定塔,稳定塔底油经碱洗后进入脱硫醇单元脱硫醇后出装置,稳定塔顶液化气进入脱硫塔脱除H,S,再进入脱硫醇单元脱硫醇后出装置.(脱硫脱硫醇未画出)(三)化学反应过程1.催化裂化反应(de)特点催化裂化反应是在催化剂表面上进行(de),其反应过程(de)7个步骤如下:①气态原料分子从主流扩散到催化剂表面;②原料分子沿催化剂外向内扩散;③原料分子被催化剂活性中心吸附;④原料分子发生化学反应;⑤产品分子从催化剂内表面脱附;⑥产品分子由催化剂外向外扩散;⑦产品分子扩散到主流中.重质原料反应生成目(de)产品可用下图表示:2.催化裂化反应种类石油馏分是由十分复杂(de)烃类和非烃类组成,其反应过程十分复杂,种类繁多,大致分为几个类型.(1)裂化反应是主要(de)反应.即C—C键断裂,大分子变为小分子(de)反应.(2)异构化反应是重要(de)反应.即化合物(de)相对分子量不变,烃类分子结构和空间位置变化,所以催化裂化产物中会有较多异构烃.(3)氢转移反应是一个烃分子上(de)氢脱下来加到另一个烯烃分子上,使其烯烃饱和,该反应是催化裂化特有(de)反应.虽然氢转移反应会使产品安定性变好,但是大分子(de)烃类反应脱氢将生成焦炭.(4)芳构化反应烷烃、烯烃环化生成环烷烃和环烯烃,然后进一步氢转移反应生成芳烃,由于芳构化反应使汽油、柴油中芳烃较多.除以上反应外,还有甲基转移反应、叠合反应和烷基化反应等.(四)主要操作条件及工艺技术特点1.主要操作条件因不同(de)工艺操作条件不尽相同,表2—12列出一般一段再生催化裂化(de)主要操作条件.2.工艺技术特点(1)微球催化剂(de)气—固流态化催化裂化确切一点应该叫作流化催化裂化.微球催化剂(60—70/1m 粒径)在不同气相线速下呈现不同状态,可分为固定床(即催化剂不动)、流化床(即催化剂只在一定(de)空间运动)和输送床(即催化剂与气相介质一同运动而离开原来(de)空间)三种.过程是流化床,所以微球催化剂(de)气—固流态化是催化裂化工艺得以发展(de)基础,从而使反应—再生能在不同(de)条件下得以实现.(2)催化裂化(de)化学反应最主要(de)反应是大分子烃类裂化为小分子烃类(de)化学反应,从而使原油中大于300℃馏分(de)烃类生成小分子烃类、气体、液化气、汽油、柴油等,极大地增加了炼油厂(de)轻质油收率,并能副产气体和液化气.(五)催化剂及助剂1.催化剂烃类裂化反应,应用热裂化工艺也能完成,但是有了催化剂(de)参加,其化学反应方式不同,所以导致二类工艺(de)产品性质和产品分布都不同.目前催化裂化所使用(de)催化剂都是分子筛微球催化剂,根据不同产品要求可制造出各种型号(de)催化剂.但其使用性能要求是共同(de),即高活性和选择性,良好(de)水热稳定性,抗硫、氮、重金属(de)中毒;好(de)强度,易再生,流化性能好等.目前常见(de)有重油催化裂化催化剂、生产高辛烷值汽油催化剂、最大轻质油收率催化剂、增加液化气收率催化剂和催化裂解催化剂等.由于催化裂化原料(de)重质化,使重油催化剂发展十分迅速,目前国内全渣油型催化剂性能见表2—13.2.催化裂化助剂为了补充催化剂(de)其他性能,近年来发展了多种起辅助作用(de)助催化剂,这些助剂均以剂(de)方式,加到裂化催化剂中起到除催化裂化过程外(de)其他作用.如促进再生烟气中CO转化为C02,提高汽油辛烷值,钝化原料中重金属对催化剂活性毒性,降低烟气中(de)SOx(de)含量等各类助剂,它们绝大多数也是制造成与裂化催化剂一样(de)微球分别加入再生器内,但占总剂量很少,一般在1%—3%,所以每天添加量只有10-1000kS/d左右.CO助燃剂为SiO2—Al2O3细粉上载有活性金属铂制成.辛烷值助剂大多是含有15%-20%ZSM—5分子筛(de)Si—Al微球剂.而金属钝化剂为液态型含锑(de)化合物,将其注入原料油中,使其分解(de)金属锑沉积在催化剂上以钝化Ni(de)活性.(六)原料及产品性质1.催化裂化原材料各类催化裂化所使用(de)原材料不尽相同,现将一般所使用(de)原材料主要性质汇总,见表2—14.2.产品性质产品性质见表2-15。
催化裂化反应再生系统流程
催化裂化反应再生系统流程
1. 新鲜原料油经换热后与回炼油浆混合,经加热炉加热至180-320℃后至催化裂化提升管反应器下部的喷嘴。
2. 原料油由蒸气雾化并喷入提升管内,在其中与来自再生器的高温催化剂(600-750℃)接触,随即汽化并进行反应。
3. 油气在提升管内的停留时间很短,一般只有几秒钟。
反应产物经旋风分离器分离出夹带的催化剂后离开沉降器去分馏塔。
4. 积有焦炭的催化剂(称待生催化剂)由沉降器落入下面的汽提段。
汽提段内装有多层人字形挡板并在底部通入过热水蒸气,待生催化剂上吸附的油气和颗粒之间的空间内的油气被水蒸气置换出而返回上部。
5. 经汽提后的待生催化剂通过待生斜管进人再生器。
再生器的主要作用是烧去催化剂上因反应而生成的积炭,使催化剂的活性得以恢复。
6. 再生后的催化剂(称再生催化剂)落人淹流管,经再生斜管送回反应器循环使用。
再生烟气经旋风分离器分离出夹带的催化剂后,经双动滑阀排人大气。
石油化工催化裂化装置工艺流程图
炼油生产安全技术—催化裂化的装置简介类型及工艺流程催化裂化技术的发展密切依赖于催化剂的发展。
有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。
选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。
催化裂化装置通常由三大部分组成,即反应¾再生系统、分馏系统和吸收稳定系统。
其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:㈠反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。
积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。
待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~68 0℃)。
再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。
再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。
烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。
再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。
对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。
催化裂化工艺流程及主要设备课件
加热炉通常采用燃油、燃气或电加热方式,根据不同的 工艺需求选择合适的加热方式。
加热炉的操作需根据工艺要求控制温度、压力和流量等 参数,以确保原料油和催化剂得到均匀加热。
分馏塔
分馏塔是催化裂化工艺流程中 用于分离不同沸点的烃类的设 备。
反应器内部通常装有高效催化剂,以 促进原料油裂化成小分子烃类,同时 降低生焦率。
反应器通常采用固定床、流化床或移 动床的情势,根据不同的原料和产品 需求选择合适的反应器类型。
反应器的设计需考虑温度、压力、原 料油性质和流量等工艺参数,以确保 较高的转化率和选择性。
再生器
再生器是催化裂化工艺流程中 用于烧焦和再生催化剂的设备
气体净化
分离出的气体中可能含有 硫化氢、一氧化碳等杂质 ,需要进行脱硫、脱碳等 处理,以满足环保要求。
液体产品精制
经过油气分离后的液体产 品需要进行精制,如加氢 处理、脱蜡等,以提高产 品的质量和稳定性。
03
主要设备介绍
反应器
反应器是催化裂化工艺流程中的核心 设备,用于实现原料油在催化剂的作 用下的裂化反应。
活性和寿命。
预热和注水
预处理过程中,原料油需要经过 加热和注水处理,以提高油品的 流动性和降低粘度,有利于油品
的快速加热和反应。
原料的雾化
为了使原料油与催化剂充分接触 和混合,需要对原料油进行雾化 处理,使其形成微小的液滴,增 加油滴在反应器内的停留时间。
反应过程
反应温度与压力
催化裂化反应需要在一定的温度和压力下进行,通常温度在450550℃之间,压力在0.5-1.0 MPa之间。
催化裂化工艺流程及主要设备课 件
催化裂化工艺流程
催化裂化工艺流程
《催化裂化工艺流程》
催化裂化是一种重要的炼油工艺,用于将重质石油馏分转化为高附加值的轻质产品,如汽油和柴油。
该工艺涉及物理和化学过程,需要严格控制各个步骤,以确保产品质量和安全生产。
催化裂化工艺流程主要包括原料预处理、催化裂化反应、分离和产品处理几个基本步骤。
首先是原料预处理,即对重质油品进行脱硫、脱氮、脱氢等处理,以保证后续催化裂化反应的顺利进行。
然后是催化裂化反应,将经过预处理的重质油品在催化剂的作用下进行裂化,产生轻质烃类产品。
分离环节将反应产物进行分离,得到所需的轻质产品。
最后是产品处理,通过脱硫、脱酸、脱氮等工艺对产品进行精制,以满足市场需求和环保要求。
在整个工艺流程中,催化剂的选择和运行条件的控制是非常关键的。
催化剂的种类和性能直接影响到反应的效率和产品质量,而运行条件的控制则涉及温度、压力、气体流速等参数的稳定和调节,以确保反应的稳定性和安全性。
而在实际操作中,催化裂化工艺还需要考虑能源消耗、环境保护、安全生产等方面的综合问题。
为了提高能源利用率和减少环境污染,工艺技术不断更新和改进,如引入先进的冷凝和蒸汽回收技术,采用高效的催化剂和反应器设计等,以降低生产成本并减少对环境的影响。
总而言之,催化裂化工艺流程是一个复杂而重要的炼油工艺,需要各个环节的精心设计和严格控制,以确保安全高效地生产出优质的轻质产品。
随着科技的不断发展和创新,相信催化裂化工艺将会不断完善,给石油化工产业带来更大的益处。
催化裂化装置反应再生系统设备工程技术条件
催化裂化装置反应再生系统设备工程技术条件下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着石油加工技术的不断发展,催化裂化装置在炼油行业中扮演着至关重要的角色。
催化裂化装置MIP工艺
催化裂化装置MIP工艺MIP工艺要求的主要设计参数MIP主要工艺计算汇总12压力平衡1234MIP工艺的原料以及产品质量(设计)123.汽油性质4.轻柴油性质催化剂和化学药剂消耗公用工程消耗MIP工艺技术简介该工艺技术设置两个反应区,采用串联式提升管反应器和适宜的工艺条件,在不同的反应区实现裂化、氢转移、异构化及芳构化反应以达到降低汽油烯烃含量的目的。
在降低催化汽油烯烃含量的同时,其研究法辛烷值(RON)及马达法辛烷值(MON)均略有提高,汽油的安定性得到改善,同时汽油中的硫含量有所下降。
产品分布中油浆产率有所降低,总液收略有提高。
若将整体反应苛刻度提高,可适当兼顾多产丙烯的要求。
MIP与常规催化裂化装置相比,操作难度基本相当,能耗较常规催化略有降低。
其原理可简化为下图所示:采用串联提升管反应器,优化催化裂化的一次反应和二次反应。
串联提升管反应器分为两个反应区,其中第一反应区的特点:高温(515℃)、接触时间较短(1.2~1.4s)、催化剂裂化能力强,以强化单分子裂化,生成较多的烯烃。
第二反应区通过扩径、补充待生催化剂等措施,降低油气和催化剂的流速满足低重时空速要求,以增加氢转移、异构化及芳构化反应,使汽油中的烯烃转化为丙烯和异构烷烃,大幅降低汽油中的烯烃,同时芳烃的增加使汽油的辛烷值略有增加。
其中第二反应区的特点:适宜的反应温度(505℃),适宜的反应时间(~5s)、催化剂具有较好的氢转移反应和裂化反应能力,以强化双分子裂化和氢转移反应,在双重作用下,汽油烯烃下降幅度更大,并且丙烯产率提高。
由于热平衡和第一反应区工艺条件的要求,本工艺需要适当的剂油比。
因此再生温度不宜高于700℃。
装置自产粗汽油可作为调节二反反应温度的冷却介质,一般情况下不需投用。
由于单程反应深度较深,回炼比较小,在0~0.15。
由于油浆氢含量较低且比重大,不宜回炼。
但设有油浆回炼线,可在必要时投用。
催化裂化装置反应再生单元开工操作法
催化裂化装置反应再生单元开工操作法一、准备工作1. 装置检修完毕,各系统检查完好,人孔封闭。
2. 水、电、气、风等公用工程系统进装置并正常投用。
3. 临时盲板均已拆除,正式盲板置于规定位置。
4. 仪表调校完毕,联锁动作检查确认无误,特阀调校完毕。
5. 大、小型加料线及大型卸料线畅通。
6. 各机泵、空冷却器处于良好备用状态。
7. V22101备新鲜剂300吨,V22103备平衡剂300吨,备CO助燃剂6吨,同时备好活化剂7吨、钝化剂6吨、磷酸三钠500kg、油浆阻垢剂2吨、消泡剂300kg、防胶剂5吨、新鲜碱液50吨、轻燃油800吨、船燃油3000吨、液化气500吨(满足15天开工过程的需要)。
8. 机组跑油分析合格,过滤总成、油冷器切换无误,滤芯清洗完毕。
9. 检查各反应喷嘴和燃料油喷嘴是否畅通。
10. 原料油调和均匀,加工方案确定。
11. 消防器材完好、劳动保护用品齐全、通讯器材完好。
二、两器吹扫气密1. 联系机组岗位启动备用主风机:打通主风补待生套筒流化风、外取热流化风流程。
全关烟机入口闸阀、蝶阀;全开外取热器中上部放空、底部排凝、烟机入口前排凝;烟机出口水封罐(V22106)上水。
2. 引主风进再生器系统:全开烟机旁路双动滑阀对再生器、烟机旁路、余热锅炉进行全面吹扫,保持风量在1500~1800Nm3/min,吹扫时间4h。
3. 引主风进反应器系统:全开重油再生滑阀、轻燃油再生滑阀、接力管滑阀、自循环滑阀;塞阀跟踪阀位稍开;全开各点放空(沉降器顶放空、重油反应油气管线顶放空、轻燃油反应油气管线顶放空、盲板SB22201前放空及排凝、盲板SB22205前放空及排凝、重油提升管底部放空、轻燃油提升管底部放空);适当关小烟机旁路双动滑阀维持系统微正压(0~20KPa)对反应器系统进行吹扫,吹扫时间4h。
4. 气密实验:两器吹扫完毕,关闭各点放空,利用烟机旁路双动滑阀控制系统压力升至0.22MPa,注意升压速度要缓慢,组织人员对两器(含三旋、烟闸前烟气管线)人孔、靠器壁法兰、油气管线法兰及各静密封面进行气密试验(用肥皂水检查)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.13 催化裂化装置富氧再生工艺
最早的流化催化裂化装置(FCCU)富氧再生工业实验是1958年由美国Linde公司在东芝加哥炼油厂的一套催化裂化装置上进行的。
据报道,试验中主风中的富氧浓度最高达到25.5w%,没有发现任何问题。
在上世纪60年代初期,有3 - 4套催化裂化装置采用了富氧再生技术。
随着掺炼渣油工艺的普遍发展,富氧再生应用更为普遍,著名的Shell和Amoco等公司的约20座炼油厂采用了此高新技术。
催化裂化作为石化行业最重要的二次加工手段,创造了巨人的经济效益和社会效益。
随着对轻质油品需求量的不断增加,重油催化裂化技术获得了长足发展,但同时也不可避免地带来了生焦量增加的问题,这就需要有更大的催化剂再生能力。
不过,在不追加新的投资的情况下,多数装置扩大再生能力是不容易的,主要是因为受到了主风机供风能力、再生器床层表观气体的线速和旋风分离器入口线速等因素的限制形成的“瓶颈”。
催化裂化装置富氧再生工艺通过向主风中掺入部分高浓度富氧以提高主风中的富氧浓度,在满足催化剂流化等正常操作所需主风量的前提下,从而提高装置处理能力或操作苛刻度。
该工艺还可优化产品结构、提高装置操作灵活性、降低能耗,经济效益显著。
6.13.1 催化裂化装置富氧再生工艺的主要优点
有关文献已阐述了炼油厂应用催化裂化装置富氧再生工艺的优点,综合起来主要有十二大优点:
1)提高装置的处理能力: 如美国东芝加哥炼油厂用25.5%的富氧,能提高装置的处理能力15%;
Pester炼油厂的催化裂化装置,在其它方面未做任何改动的情况下,采用富氧再生后,处理量由5Mt/a提高到6Mt/a;
2)提高转化率、改善装置收率:由于用富氧再生,烧焦强度提高,再生剂碳含量降低,催化剂平
衡活性和选择性上升,有利于降低焦炭和气体产率,提高高价值轻质油品的收率。
如用25.5%的富氧, 转化率能提高5%;
3)提高操作灵活性,适应季节性和原料的变化:如夏天,风机供风能力不足,用富氧可以灵活调节;
还可以灵活地调整装置加工量,以适应原油供应和成品油市场需求的变化;
4)可以提高装置操作苛刻度,进一步提高装置掺渣比,而不降低加工量。
如加工能力为474m3/d,
用富氧可提高到496m3/d,并掺炼15.3%的常压渣油, 年效益达100-300万美元;
5)在加工高硫含量原料油时,为了使氧化硫尽快转化,最好考虑应用富氧再生;
6)新建装置若考虑富氧再生,可节省再生系统、催化剂回收系统和能量回收系统的投资;
7)当再生器表观线速受限制时,用富氧再生在提高装置处理量或掺渣比的同时并不影响再生器床
层流化和催化剂损失,也不会增加对旋风分离器的磨损,同时也避免了CO锅炉中线速过高带来的问题;
8)可降低单位焦炭烧焦所需的耗氧量,如美国 Texas City 炼油厂,用普通空气耗氧为 3.12
Kg/Kg焦炭, 用富氧空气耗氧则降到3.02 Kg/Kg焦炭;
9)在提高再生器烧焦能力的同时,还可以控制再生器密相段烧焦更均匀;
10)使用富氧能减少NO X和SO X的产生;
11)有利于回收烟气能量,含氧量每增加1%,就意味着烟气量增加1.73%,这对烟气能量回收非常
有利;
12)工程上的收益:在较短的时间内便可实施;总投资少;停工短或不需停工;装置改动量极少。
6.13.2 催化裂化装置富氧再生工艺的应用效果
目前国内外已有几十套装置应用了富氧再生技术,一般富氧浓度为22-26%,综合效益均十分显著。
例如美国,催化裂化装置富氧再生工艺是富氧应用的第二大市场。
表6-13-1是美国Linde
表6-13-1 FCCU装置富氧再生各方案对比
注:数据来源于:侯言超. 催化裂化装置的富氧再生技术. 炼油设计. 1997, 27(5):10
公司的东芝加哥炼油厂采用富氧再生工艺的几种对比方案。
从该表可以看出:采用部分烧焦方式的方案5比较理想,其中主风中富氧的含量只提高1.15%百分点,而转化率却提高了4.5%百分点,每天净效益达9832美元。
表6-13-2则是国外另一催化裂化装置富氧再生工艺的具体实施例,从该表可以看出,每年综合效益高达二、三百万美元。
表6-13-2 国外一催化裂化装置富氧再生工艺的具体实施例
注:数据来源于:杨宝康, 吴秀章. 国外催化裂化装置富氢再生工艺. 燕山油化.1992,(4):246
如用膜法富氧代替上表中的制氧系统, 以主风机供风能力不足为例,所需富氧流量大约13600Nm3/h,当电费为0.5元/度时,氧气价格不到2000$/d, 不足制氧机的一半费用,说明膜法更经济,而且膜法操作更简单、更安全、更灵活、更方便等!
国内北京燕山石油化工(集团)有限公司的炼油事业部于1998年在Ⅱ套渣油催化裂化装置上亦已应用催化裂化装置富氧再生工艺:当富氧浓度为24.4%时,再生器的烧焦能力从8.95t/h提高到10.85t/h,提高了21.2%,进而使该FCCU掺炼减压渣油的比例从57.1%提高到85.1%,再生催化剂烧焦强度可提高32%,提高了装置的操作弹性和催化剂再生效果,装置最终生产能力可提高23%,特别适合于老装置的原料重质化或扩能改造,通过富氧再生技术,的改造,并连续运转17个月表明:原
表6-13-3
注:数据来源于:杨宝康. 富氧再生技术在VRFCC上的应用. 炼油设计. 2000, 30(3):30
料中减压渣油最高可达 85%以上,经对不同掺渣量工况进行标定,轻油收率在70%左右,液体收率在
80%左右,取得了较好的产品分布,每年总效益两千八百多万元人民币,表6-13-3是有关经济效益核算表,投资回收期不到2个月。
但要说明的是,北京燕山石油化工(集团)有限公司FCCU使用的富氧源为纯氧和空气混合物,由于制纯氧成本较高,还需特殊的安全设计,亦有可能混合不匀,造成局部氧浓度增高,而且施工、日常运行和管理等均必须非常严格,所以最好采用膜法富氧技术,因为它制得的富氧浓度较低,又非常均匀,不需安全设计,成本又低,操作也更简单、更安全等。
沈光林就北京燕山石油化工(集团)有限公司Ⅱ套渣油催化裂化装置上用的氧源和膜法富氧进行了技术经济评估,当电费为0.45元/度,膜法富氧装置按十年折旧时,膜法富氧每天的制氧费用大约24500元,而空分制氧费用为29481元,比膜法高20%多。
上面的评估是基于膜法采用的负压操作。
如果考虑到炼油厂有仪表风,采用正压法,这样仪表风的质量会更好:由于水蒸气的渗透系数比空气的大百倍以上,故仪表风的露点更低,含氧量亦少和更干净等,同时膜法制氧费用也更低,而且日常维护量也更少等。