奥数页码问题数论问题
三下奥数(页码中的数学)
例1:小明看《西游记》这本书,打开书后,左右两页的页码的和为137。
请问,小明打开的是书的哪两页?试一试:打开一本书,发现左右两页的页码的和为101,你知道打开的是哪一页吗?例2:一本书共150页,编排这本书的页码共用了多少个数字?试一试:一本书有420页,印刷厂的排版工人排这本书,共需多少个数码编页码?例3:一本故事书的页码,在排版时用了975个数字,这本书共多少页?试一试:印刷厂编印一本字典的页码,共用了2925个数字,这本字典有多少页?例4:一本书共100页,经计算所有的页码和为4971,有人说计算错误,为什么?后来经检查发现,有一张被人撕掉了,请问是哪一张??例5:编排一本400页的书的页码,共出现多少个数码“0”?试一试:一本175页的书中,数字1在页码中共出现过几次综合练习(1)小红随手打开一本书的中间两面,将这两面的页码加在一起是129。
小红翻开的是()和()这两页。
(2)一本书共110页,为了编排它的页码需要()个数字,数字“0”在页码中共出现过()次。
(3)一本童话故事书共320页,编排这本童话书共用()个数字,数字“2”在页码中共出现过()次。
(4)一本故事书的页码从第1页到最后一页一共用了1452个数码,这本书共有()页。
(5)7年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
(6)中午食堂有荤菜:猪肉、牛排、鱼;素菜:白菜、豆芽、花菜;一份盒饭含一个荤菜和一个素菜,食堂的菜可以配成()种不同的配菜方法。
(7)把一包糖分给小朋友们,如果每人分10粒,就多出15粒;如果每人分13粒,就多出3粒。
小朋友有()个,这包糖有( )粒。
(8)夏令营老师为小营员安排住宿。
如果每个房间住4人,则多出10个人;如果每个房间住6人,则有2个床位空着。
有()个房间,夏令营有小营员()人。
(9)路旁每隔10米有一棵树,晶晶从第一棵树数起,数到第15棵树为止,她一共行走了()米。
(10)有一个圆形小池塘,每隔10米种一棵树,一共种了10棵,这个小池塘的周长是()米。
小学奥数模块教程平均数问题和页码问题
平均数问题和页码问题发现不同知识框架一、平均数问题:平均数:总数量÷总份数=平均数(这个可以和行程问题里面的平均速度要区分并联系)二、页码问题:页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容.页码问题是现在的奥数竞赛中常见的、经常考试的知识点.页码问题实际上是数论的问题.为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码.例题精讲【例 1】用4个同样的杯子装水,水面高度分别是4厘米,5厘米,7厘米,8厘米,这4个杯子水面平均高度是多少厘米?【巩固】小叶子这学期前5次作业的得分分别是95,87,92,100,96.求小叶子这5次作业的平均成绩?【例 2】已知8个数的平均数是8,如果把其中一个数改为8后这8个数的平均数变为7,那么这个被改动的数原来是___________.【巩固】有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数是8,这个改动的数原来是多少?【例 3】果品店把3千克水果糖,9千克奶糖混合成什锦糖,已知水果糖每千克7元,奶糖每千克11元,那么什锦糖每千克多少元?【巩固】果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖已知.酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?【例 4】一辆摩托车从甲地开往乙地,前2小时每小时行驶60千米,后3小时每小时行驶70千米,平均每小时行驶多少千米?【巩固】小新算了一下今年自己的零花钱,他前三个月平均每个月的零花钱是88元,四、五月份两个月的零花钱平均是83元,那么小新前五个月的零花钱平均是多少元?【例 5】小华期末考试时,语文、数学和音乐三科成绩平均分是96分,英语成绩公布后,四科平均分下降了2分,小华英语成绩是多少分?【巩固】在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为分.【例 6】老师在黑板上写了十三个自然数,让同学们计算它们的平均数,要求保留两位小数,王林算得答案是12.43,老师说最后一个数字错了,那么正确的答案是多少?A. 12.42B. 12.44C. 12.46D. 12.47【巩固】从5开始的一串连续自然数5,6,7,8,……,17,拿走其中一个数,余下的数的平均数是10.75,那么拿走的数是.【例 7】人大附小有100名学生参加学而思杯数学竞赛,平均分是63分,其中参赛男同学平均分为60分,女同学平均分为70分,那么人大附小参赛男同学比女同学多几人?【巩固】六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,求后三个数的平均数?【例 8】小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93;如果不算英语,平均分是91.小永三门功课的平均成绩是分.【巩固】琪琪画了一幅画,请爷爷、奶奶、爸爸和妈妈评分.爷爷的平均分是94分,奶奶和爸爸评分的平均分是90分,爸爸和妈妈评分的平均分是92分,那么爷爷和妈妈评分的平均分是分?【例 9】某校男老师的平均年龄是27岁,女老师的平均年龄是32岁,全体老师的平均年龄是30岁.如果男老师比女老师少13名,那么该校共有_________名老师.【巩固】人大附小有100名学生参加学而思杯数学竞赛,平均分是63分,其中参赛男同学平均分为60分,女同学平均分为70分,那么人大附小参赛男同学比女同学多几人?【例 10】某班一次数学考试,所有成绩得优的同学的平均分是95分,没有得优的同学的平均分是80分,已知全班同学的平均成绩不少于90分,问得优的同学占全班同学的比例至少是多少?【巩固】一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排名第六的同学的得分是89分,每人得分是互不相同的整数,那么排名第三的同学至少得分.【例 11】蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?【巩固】小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93;如果不算英语,平均分是91.小永三门功课的平均成绩是分.页码问题【例 12】一本《数学漫画》共560页,则需要多少个数码编页码?【巩固】一本小说的页码,在印刷时必须用999个铅字,问这本书共有多少页?【例 13】爷爷在看一本旧书,正文有182页.由于年代久远,书的16页至27页,62页至83页都被虫蛀了.这本书正文中没被虫蛀的有多少页?【巩固】有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?【例 14】将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?【巩固】一本书共500页,编上页码:1,2,3,4……499,500.问:数字2在页码中一共出现了多少次?课堂检测【随练1】把自然数1、2、3…33分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的和是.【随练2】有七个不同的数,最大的数比最小的数多26,七个数的平均数是20.如果去掉最大的和最小的数,剩下的数的平均数是18.这七个数中最大的一个数是( ).A. 28B. 30C. 38D. 42E. 44【随练3】有六个数排成一列,这六个数的平均数是8,前四个数的平均数是9.后三个数的平均数是10,第四个数是.【随练4】有9个数,它们的平均数是72,去掉一个数后,余下的数的平均数是78,去掉的数是( )A. 20B. 21C. 22D. 23E. 24【随练5】四个数的平均数是整数,其中三个数是927、938、949,那么第四个数是( ).A. 995B.996C. 997D. 998E. 999【随练6】把写着1~1000的1000张不同数码的纸,依次按照李明1张,刘英2张,张华3张,王强4 张,陈红5张的顺序分发,发完一遍再一遍,……直到发完.最后1张发给( ).A.李明B.刘英C.张华D.王强E. 陈红家庭作业【作业1】一本书,已看了30页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的5/22,这本书共有多少页?【作业2】小林高136厘米,小强高132厘米,小刚比他们三人的平均身高要高2厘米.问小刚的身高是多少厘米?【作业3】在一次数学竞赛中,甲队的平均分为75分,乙队的平均分为73分,两队全体同学的平均分为73.5分,又知乙队比甲队多6人,那么乙队有多少人?【作业4】李明和张亮轮流打一份稿件,李明每天打15页,张亮每天打10页,他们一连打了25天,平均每天打12页,问李明、张亮各打了多少天?【作业5】暑假中,小明读一本长篇小说.如果第一天读40页,以后每天都比前一天多读5页,结果最后一天读35页可读完;如果第一天读50页,以后每天都比前一天多读5页,结果最后一天读45页可读完.试问这本小说共多少页?【作业6】某篮球运动员参加了l0场比赛,他在第6、7、8;9场比赛中分别得到了23、14、11和20分,他在前9场比赛的平均分比前5场比赛的平均分要高.如果他l0场比赛的平均分超过l8分,那么他在第l0场比赛至少得分.【作业7】已知八个连续奇数的和是144,求这八个连续奇数.【作业8】五次测验的平均成绩是90,中位数是91(居中的成绩),众数(出现次数最多的那个成绩)是94.则最低两次测验的成绩之和是____.【作业9】一本书共204页,需多少个数码编页码?【作业10】有一本96页的书,中间缺了一张.如果将残书的所有页码相加,那么可能得到偶数吗?【作业11】将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第1000位上的数字是多少?。
奥数页码问题数论问题
奥数:页码问题(数论问题)页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。
页码问题实际上是数论的问题。
为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码。
现在我们来看几道例题.例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码(204-100+1)×3=105×3=315(个).综上所述,这本书共需数码9+180+315=504(个).例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+(2211-189)÷3=773(页).答:这本书共有773页.例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的与数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之与为1+2+…+61+62=62×(62+1)÷2=31×63=1953.由于多加了一个页码之后,所得到的与数为2000,所以2000减去1953就是多加了一次的那个页码,是2000-1953=47.例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.教师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之与为1+2+…+48=48×(48+1)÷2=1176.按照小明的计算,中间缺的这一张上的两个页码之与为1176-1131=45.这两个页码应该是22页与23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页与23页,这是不可能的.例 5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.例6 排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400.在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”典型例题:例1、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?解答:这是一个关于循环小数的周期问题。
(完整word版)小学奥数-页码(word文档良心出品)
小学奥数-页码问题页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题实际上是数论的问题。
一、页码问题的几种题型:(1)已知页码数,要求考生求出书中一共含有多少个数码。
(2)已知页码数,要求考生求此书中某个数码出现的次数。
(3)已知书中包含的数码数,要求考生求出该书的页码数。
(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。
二、页码问题解题基本原理要想要想顺利解答页码问题,首先要弄明白“页码”与“组成它的数码个数”之间的关系。
1.一位数组成的页码共有9个(从1~9),组成所有的一位数需要:(9-1+1)×1=9×1=9(个)数码。
2.两位数共有90个(从10~99),组成所有的两位数需要:2×(99-10+1)=180(个)数码。
3.三位数共有900个(从100~999),组成所有的三位数需要:3×(999-100+1)=2700(个)数码。
4.四位数共有9000个(从1000~9999),组成所有四位数需要:4×(9999-1000+1)=36000(个)数码。
5.9页的书共有:9个数码组成。
6.99页的书共有:9+180=189个数码组成。
7.999页的书共有:2700+180+9=2889个数码组成。
8.9999页的书共有:36000+2700+180+9=38889个数码组成。
三.例题:例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码:(204-100+1)×3=105×3=315(个).综上所述,这本书共需数码:9+180+315=504(个).例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+(2211-189)÷3=773(页).答:这本书共有773页.例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+61+62=62×(62+1)÷2=31×63=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是2000-1953=47.例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之和为1+2+…+48=48×(48+1)÷2=1176.按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.例6 排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400.在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”例6、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?解答:这是一个关于循环小数的周期问题。
四年级奥数详解答案-第23讲-页码问题
四年级奥数详解答案第23讲第二十三讲页码问题一、知识概要页码是指书本每一页(面)上所标注的数目。
(这里的“页”不是指书中的一张纸,而是指一张纸的一面)。
页码问题主要是研究编一本书的页码,一共需要多少个数码,以及知道编一本书的页码所需的数码数量,求这本书页数。
典型的页码问题有如下三类(最基本的):(1)算页码中所用数字个数的和,或是根据已知的页码中所用数字个数的和来求页码。
(2)计算页码中某个数字出现的项数。
(3)计算页码中所有数字的和。
解决页码问题的基本方法是:分段(或分类或分组)计算。
页码个数与组成页码的数码个数之间的关系,如下表所示。
二、典型题目精讲1、一本故事书共180页,需多少个数码编页码?解:数码是指0,1,2,3,4,5,6,7,8,9这十个数字,页码就是由每页上由数码组成的数目。
所以,1~9页有9个数码;10—99页有180个数码;100~180页有81×3=243 (个)数码。
一共有9+180+243=432(个)2、有一本辞典,所编页码共用了3401个数码,这本辞典一共有________页。
解:①1~9页用9个数码;10—99页用了180个数码;100~999用了2700个数码;则1~999页共用数码9+180+2700=2889(个)。
②1000~?页共用数码(3401-2889)=512 (个);则512÷4=128(页)。
故这本辞典共有999+128=1127(页)3、一本漫画共121页,在这本书的页码中数字一共出现了_______次。
解:(分类计算)①在个位上,1出现13次(即1,11,21……101,111,121);②在十位上,1出现20次(即10,11,12……19;110,111,112……119);③在百位上,1出现22次(即100,101,102,……121)。
综合①②③可知,1在书的页码中共出现(13 +20+22)=55(次)。
4、一本书共200页,求页码中全部数字的和。
(完整word版)三年级奥数--页码问题.docx
点 20——例 1 一本《小学数学开放》有120 ,如果每上,共要多少个数字。
思路点: 1~9 共用 9 个数字; 10~99 每 2 个数字,共要用 2 ×90=180 个数字;100~120 共( 120-99= )21 ,每三个数字,共( 3×21=)63 个数字, 120 的上共要用( 9+180+63= )252 个数字。
合算式:9+2 ×90+3 ×(120-9-90 )=252 ()11、一本数学奥林匹克的,共150 ,共要多少个数字?~12、一本《科学奇》共188 ,共要多少个数字?3、《小学数学开天天》第四册共295 ,本的个数字?例 2 翻开《小学数学奥林匹克解典》,左右两的和是 185,左右两的各少?思路点:相两的和是185 ,两个之差是1,可按和差的解律解答:(和 +差)÷2= 大数,(和 -差)÷2= 小数,和 -大数 =小数或和-小数 =大数。
合算式:( 185+1 )÷2=93 ⋯⋯⋯右的数93-1=92 ⋯⋯⋯ . 左的数21、打开《小学数学奥解》,左右两和是497,左右两数各是多少?2、翻开《全国小学数学教分解》一,左右两的和是 513,左右两数各是多少?3、打开《少年数学邀集典》,左右两和是1449,两的各是多少?例 3 某出版社出版一本《知就是力量》,共用了 498 个数字,本共有多少 ?思路点: 1~9 共用 9 个数字, 10~99 用( 2×90= )180 个数字,从 100 开始到999 每用 3 个数字。
498-9-180=309 (个)数字,可( 309 ÷3=) 103 。
本共有9+90+103=202。
合算式:9+90+ (498-9-180 )÷3=202 ()31、一本《手册》,在共用了939 个数字,本共用多少?2、一本的依次是1,2,3,⋯ .一共由 2205 个数字成,本共用多少?3、一本《小学数学奥林匹克解典》共有1021 ,共用了多少个数字?例 4徐从开始写数:1,2,3,4,5,⋯⋯他一共写了726个数字,他写到了哪一个数?思路点:徐从 1 写到 9 用 9 个数字,从 10 写到 99 用(2×90=)180 个数字,从 100开始每写 1 个数要用 3 个数字。
奥数中的数码和页码题目
奥数中的数码和页码题目
数码和页码题目:
题目1:小明参加了一个奥数比赛,他打开试卷,发现每一页都有一个三位数的数码。
如果小明一共翻了100页试卷,每一页的数码都是顺序递增的,试问最后一页的数码是多少?
题目2:在一本奥数题集中,从第一页开始,每一页的页码都是一个四位数。
如果小红翻了20页,她发现每一页的页码的千位数字都是顺序递减的,百位数字都是顺序递增的,个位数字都是0,十位数字都是5,试问小红翻到的最后一页的页码是多少?
题目3:斐波那契数列是一个典型的数列,它的第一项和第二项均是1,之后的每一项是前两项的和。
小明翻开一本奥数题集,数码以斐波那契数列的方式排列在每一页的右下角,第一页的右下角是第三项,第二页是第四项,以此类推。
如果小明翻到第20页,试问右下角的数码是多少?
题目4:某本数学家的传记共有300页。
对于前100页,每一页的数码都是从1开始,顺序递增的。
对于接下来的100页,每一页的数码都是从101开始,顺序递增的。
对于最后100页,每一页的数码都是从201开始,顺序递增的。
试问第50页的数码是多少?
题目5:小华翻开一本奥数参考书,第一页的数码是1,第二页是2,以此类推。
当他翻开第N页时,所有页码的数码之和是675。
试问N是多少?
参考答案:
题目1:最后一页的数码是100。
题目2:小红翻到的最后一页的页码是6590。
题目3:右下角的数码是6765。
题目4:第50页的数码是150。
题目5:N是18。
小学奥数 页码问题
奥数:页码问题(数论问题)页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。
页码问题实际上是数论的问题。
为了顺利地解答页码问题,我们先看一下数”与组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2 >90=180(个)数码;三位数共有900个,组成所有的三位数需要3X900= 2700(个)数码。
为了清楚起见,我们将n位数的个数、组成所有n位数需要的数码个数、组成所有不大于n 位的数需要的数码个数之间的关系列表如下:由上表可以看出,如果一本书不足100页,那么排这本书的页码所需的数码个数不会超过189个;如果某本书排的页码用了10000个数码,因为2889V 10000< 38889,所以这本书肯定是上千页。
例1 一本书共204页,需多少个数码编页码?分析与解:1〜9页每页上的页码是一位数,共需数码1X9= 9(个);10〜99页每页上的页码是两位数,共需数码2X90= 180(个);100〜204页每页上的页码是三位数,共需数码(204- 100+ 1)>= 105X3= 315(个).综上所述,这本书共需数码9+ 180+ 315= 504(个).例2 一本小说的页码,在排版时必须用2211 个数码.问:这本书共有多少页?分析:因为189V2211< 2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211—189)个,所以三位数的页数有(2211—189)-3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+ (2211 —189) -3= 773(页).答:这本书共有773页.例3 一本书的页码从1 至62,即共有62 页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+ 61 + 62=3103=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1 953就是多加了一次的那个页码,是2000—1953= 47.例4 有一本48 页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48 页书的所有页码数之和为1+2+…+ 48= 1176.1 1 76 —1 1 3 1 = 4 5 .这两个页码应按照小明的计算,中间缺的这一张上的两个页码之和为该是22页和23页.但是按照印刷的规定,书的正文从第1 页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22 页和23 页,这是不可能的.例5将自然数按从小到大的顺序无间隔地排成一个大数: 123456789101112…问:左起第 2000 位上的数字是多少?分析与解:本题类似于 用2000个数码能排多少页的页码? ”因为(2000- 189)七=603……2,所以2000个数码排到第99 + 603+ 1 = 703(页)的第2个数码“ 0.”所以本题的第2000位数是 0.分析与解:将1〜400分为四组:1〜100, 101〜200, 201〜300, 在 1〜100中共出现 11 次 0,其余各组每组都比 1〜100多出现 9 次 0,即每组出现 20次0.所以共需要数码 “ 0”典型例题:例 1、13/1995 化成小数后是一个无限小数, 问在这个无限小数的小数点后面,从第一位 到 1 995位,在这 1995个数中,数字 6 共出现了多少次?解答:这是一个关于循环小数的周期问题。
页码问题
奥数:页码问题(数论问题)一、基本知识页码问题与图书的页码有密切联系。
事实上,页码问题就是根据书的页码而编制出来的一类应用题。
编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。
页码问题实际上是数论的问题。
页码问题涉及的应用题包含四个基本内容:(1)已知页码数,要求考生求出书中一共含有多少个数码;(2)已知页码数,要求考生求此书中某个数码出现的次数;(3)已知书中包含的数码数,要求考生求出该书的页码数;(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。
为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系:(1)一位数共有9个,1~9,组成所有的一位数需要9个数码;(2)两位数共有90个,10~99,组成所有的两位数需要2×90=180(个)数码;(3)三位数共有900个,100~999,组成所有的三位数需要3×900=2700(个)数码。
(4)四位数共有9000个,1000~9999,组成所有的三位数需要4×9000=36000(个)数码。
...................为了清楚起见,我们将n位数的个数、组成所有n位数需要的数码个数、组成所有不大于n位的数需要的数码个数之间的关系列表如下:由上表看出,如果一本书不足100页,那么排这本书的页码所需的数码个数不会超过189个;如果某本书排的页码用了10000个数码,因为2889<10000<38889,所以这本书肯定是上千页。
二、举例说明例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码(204-100+1)×3=105×3=315(个)。
小学奥数-页码
小学奥数-页码问题页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题实际上是数论的问题。
一、页码问题的几种题型:(1)已知页码数,要求考生求出书中一共含有多少个数码。
(2)已知页码数,要求考生求此书中某个数码出现的次数。
(3)已知书中包含的数码数,要求考生求出该书的页码数。
(4)已知书中某个数码出现的次数,要求考生求出该书的页码数。
二、页码问题解题基本原理要想要想顺利解答页码问题,首先要弄明白“页码”与“组成它的数码个数”之间的关系。
1.一位数组成的页码共有9个(从1~9),组成所有的一位数需要:(9-1+1)×1=9×1=9(个)数码。
2.两位数共有90个(从10~99),组成所有的两位数需要:2×(99-10+1)=180(个)数码。
3.三位数共有900个(从100~999),组成所有的三位数需要:3×(999-100+1)=2700(个)数码。
4.四位数共有9000个(从1000~9999),组成所有四位数需要:4×(9999-1000+1)=36000(个)数码。
5.9页的书共有:9个数码组成。
6.99页的书共有:9+180=189个数码组成。
7.999页的书共有:2700+180+9=2889个数码组成。
8.9999页的书共有:36000+2700+180+9=38889个数码组成。
三.例题:例1 一本书共204页,需多少个数码编页码?分析与解:1~9页每页上的页码是一位数,共需数码1×9=9(个);10~99页每页上的页码是两位数,共需数码2×90=180(个);100~204页每页上的页码是三位数,共需数码:(204-100+1)×3=105×3=315(个).综上所述,这本书共需数码:9+180+315=504(个).例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).解:99+(2211-189)÷3=773(页).答:这本书共有773页.例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为1+2+…+61+62=62×(62+1)÷2=31×63=1953.由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是2000-1953=47.例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?分析与解:48页书的所有页码数之和为1+2+…+48=48×(48+1)÷2=1176.按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.例6 排一本400页的书的页码,共需要多少个数码“0”?分析与解:将1~400分为四组:1~100,101~200,201~300,301~400.在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”例6、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?解答:这是一个关于循环小数的周期问题。
小学奥数页码问题精粹
知识要点基础知识【例 1】 (2007年第六届“小机灵杯”复赛C 卷)小刚从一本书的54页阅读到67页,苏明从95页阅读到135页,小强从180页阅读到237页,他们总共阅读了________页。
页码问题主要是指一本书的页数与所有的数字之间的关系的一类应用题。
数字又称数码,它的个数是有限的。
在十进制中,有0、1、2、3、4、5、6、7、8、9共十个数字(数码)。
页码又称页数,它是由数字(数码)组成的,一个数字(数码)组成一位数、两个数字(数码)组成两位数、三个数字(数码)组成三位数……,页码(页数)的个数是无限的。
在解决这类问题时,在审题、解题过程中要特别注意并加以区别。
一本书的页码有以下规律: 1、同一张纸的正反面页码是先奇后偶的两个相邻自然数。
2、任意翻开的两页页码是先偶后奇的两个相邻自然数。
3、任意翻开的两页的页码和除以4余1。
4、同一张纸的页码和除以4余3。
知道页码数求页数知道页数求页码数同一张纸的页码和除以4余3任意翻开的两页的页码和除以4余1任意翻开的两页页码是先偶后奇的两个相邻自然数同一张纸的正反面页码是先奇后偶的两个相邻自然数区分“数”和“数字(数码)”页码问题【例 2】柯南有一本旧书,正文182页。
由于年代久远,书的16页至27页,62页至83页都被虫蛀了。
这本书正文中没有被虫蛀的有多少页【例 3】图书馆中有一本破旧不堪的书,共208页。
书的4页至8页,111页至123页都因时间久远而被虫蛀掉了。
这本书一共被蛀了多少页纸典型题目【例 4】(第6届“小机灵杯”邀请赛第5题B卷)一本书有185页,编这本书的页码一共要用多少个数字【例 5】一本科幻小说共320页,请问编印这本科幻小说共用了多少个数字【例 6】(2004年“均瑶杯”初赛)给一本书编页码一共用了666个数字,这本书一共______页。
【例 7】给一本书编页码,在印刷时必须用到2010个铅字(一个铅字代表一个数字)。
奥数:页码问题(数论问题)
页码问题编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
我们先看一下“数”与“组成它的数码个数”之间的关系.1、一位数的页码有9页,共1×9=9个数字;组成所有的一位数需要9个数码;2、两位数的页码有90页,共90×2=180个数字;需要180个数码3、三位数有900个,全部编上共用900×3=2700个数字,需要3×900=2700(个)数码。
题目会出1、一本书有N页,求排版时用了多少个数字;或者反过来,一本书排版时用了N个数字,求这本书有多少页;2、已知一本N页的书中,求某个数字出现多少次;3、已知一本N页的书中,求含有某个数字的页码有多少页一本书排版时用了N个数字,求这本书有多少页,数字数<2889时,用公式:页码数=数字数/3+36;数字数>2889时,用添加0计算。
例1 一本书共204页,需多少个数码编页码?2.编一本书的书页,用了270个数字(重复的也算,如页码115 用了2个1 和1个5共3个数字),问这本书一共有多少页?N/3+36。
270/3 +36=126。
2.一本小说的页码,在排版时必须用2211 个数码。
问这本书共有多少页?A.773 B.774 C .775 D.7763 .王先生在编一本书,其页数需要用6869 个字,问这本书具体是多少页?A.1999B.9999C.1994D.1995方法一:假设这个页数是A页,则:A+(A-9)+(A-99)+(A-999)=6869 ,求出A=1994方法二:6869>2889,所以,把所有的数字看作是4位数字,不足4位的添O补足4位,l , 2 , 3 , …9 记为0001 , 0002 , 0003 , ..0009 这样增加了3 * 9 = 27 个010 , 11 , 12 , …99 记为0010 , 0011 , 0012 ,..0099 增加了180 个0100 , 101 ,…999 记为0100 , 0101 ,…0999 增加了900 个O(6869+27+180+900)/4 =1994关于含“1”出现过多少次的问题,总结出的公式就是:总页数的1/10 乘以(数字位-1 ),再加上10 的(数字位数-l)次方。
四年级奥数专题页码问题.docx
第三讲页码问题知识导航页码问题常见的主要有三种题型:一、一本书有 N 页,求排版时用了多少个数字;或者反过来,一本书排版时用了 N 个数字,求这本书有多少页;二、已知一本 N 页的书中,求某个数字出现多少次;三、已知一本 N 页的书中,求含有某个数字的页码有多少页。
为了清楚起见,我们将 n 位数的个数、组成所有 n 位数需要的数字个数。
组成所有不大于 n 位的数需要的数字个数之间的关系列表如下 :不大于该数位所需数字个数个数所需数字个数一位数999二位数90180189三位数90027002889四位数90003600038889五位数90000450000488889精典例题例1:一本书共204页,需多少个数字编页码?思路点拨1--9页每页上的页码是一位数,共需数字:1×9=9(个); 10--99页每页上的页码是两位数,共需数字: 2 × 90=180 (个); 100--204页每页上的页码是三位数,共需数字(204-100+1 )× 3=315(个)。
模仿练习一本《快数学》共250 ,需要多少个数字?例2:印刷厂印一本辞典的,共用了2211个数字。
:本共有多少?思路点拨因 189<2211<2889,所以本有几百。
由前面的分析知道,本在排三位数的用了数字( 2211-189 )个,所以三位数的数有( 2211-189 )÷ 3=674();因不到三位数的数有 99 ,所以本共有⋯⋯模仿练习用了 2925 个数字排出一本小的,本共有多少?例3:一本共有400,上:1,2,3,4,⋯,399,400,数字2在本的中一共出了多少次?思路点拨分理,个位上每十个数字出一次2,即共有 400÷ 10=40 次;十位上每十个数字出一次2,即共有400÷ 10=40 次;百位上出了100 次。
模仿练习一本书有 500 页,数字 0 在页码中共出现了多少次?例4:有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131。
第11讲页码与数字问题奥数,学而思,超常班
第11讲页码与数字问题奥数,学而思,超常班第十一讲页码与数字问题这一讲的标题是从形式上定义的,其实本讲侧重的是奥数中七大重点模块中计数问题,和数论模块中的位值原理。
一、枚举计数分类枚举一定要选恰当的顺序和分类的标准才能不重不漏。
本讲的例1侧重的是分类枚举,是对加法原理的渗透。
补充小题:一本书共250页,求编码时需要多少个数码?分析与答:由于本书的页码有一位数、两位数、三位数;而几位数就需要几个数码。
故须分类计数,再相加。
一位数:有9个,共需9×1=9个数码;两位数:有90个,共需90×2=180个数码;三位数:有250-99=151个,共需151×3=453个数码;共需9+180+453=642个数码。
【记住规律:一位数:1~9,有9个;两位数:10~99,有99-10+1=90个,或99-9=90;三位数:100~999,有999-100+1=900个,或999-99=900个;四位数:9000个;……】例1:给一本书编码,一共用了723个数字,这本书一共用多少页?分析与答:刚才例子是正着问,此题倒着问。
边尝试边计算:一位数:有9个,共计用去9个数码;两位数:有90个,共需90×2=180个数码;三位数:有900个,共需900×3=2700个数码;而此题只有723个数码,多于9+180,小于9+180+2700,说明数的页数是三位数。
一位数和两位数共计用去9+180=189个数码,还剩723-189=534个数码给三位数用,每个三位数用3个数码,则还有534÷3=178个三位数,第178个三位数是99+178=277,故本书有277页。
学案1:一本书的页码,在印刷时必须用198个铅字,自这一本书的页码中数字1出现多少次?分析与答:此题是在例1的基础上再加深一步。
要想求1出现的次数,必须知道本书有多少页,这就完全转化成利1。
一位数和两位数共计用去9+180=189个数码,还剩198-189=9个数码给三位数用,每个三位数用3个数码,则还有9÷3=3个三位数,第3个三位数是102,故本书有102页。
小学奥数训练题页码数串与周期
页码、数串与周期1、将自然数从小到大无间隔地排列起来,得到一串数码1 2 3 4 5 6 7 8 910 11 12 13 14 15…这串数码中从左起第1000个数码是几2、一本书的页码由7641个数码组成,这本书共有多少页3、排印一本200页的书的页码,共需要多少个数码4、一本书有 500页,问:数码 0在页码中出现多少次5、甲、乙两册书的页码共用了777个数码,且甲册比乙册多7页。
甲册书有多少页6、按自然数的顺序从1写到n,总共用了3193个数码。
问:n是什么数7、自然数的平方按从小到大排列成1 4 9 16 25 36 49 64…从左至右第100个数码是几8、在1~1000这1000个自然数中,总共有多少个数码“1”9、下面的一列数中,只有一个九位数,这个九位数是几1234, 5678, 9101112,,…10、有一串数字,任何相邻的 4个数码之和都是 20,从左边起第2,7,12个数码分别是2,6,8,求第1个数码。
11、有一串数字9286…从第 3个数码起,每一个数码都是它前面2个数码的积的个位数。
问:第100个数码是几前100个数码之和是多少12、有一串数字 9213…从第 3个数码起,每一个数码都是它前面2个数码的和的个位数。
问:第100个数码是几前100个数码之和是多少13、在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字。
那么在这串数中,能否出现相邻的四个数依次是2,0,0,01,9,9,9,8,5,1,3,7,6,7,3,3,9,2,7,1,9,9,6,…14、八个自然数排成一排,从第三个数开始,每个数都是它前面两个数之和,已知第五个数是7,求第八个数。
15、从1开始连续n个自然数的和的个位可以有多少种不同的数字16、 A,B,C,D,E五个盒子中依次放有9,5,3,2,1个小球。
第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也先找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子……当1000位小朋友放完后,A,B,C,D,E五个盒子中各放有几个球17、 A, B, C, D四个盒子中依次放有 8, 5, 3,2个小球。
小学奥数页码问题
小学奥数页码问题1.从“1”一直写到“701”:12345678910111213…699700701。
共有多少个阿拉伯数字?2.一本书共399页,编上页码:1、2、3、4、…、398、399。
数字“2”在页码中共有多少个?3.一本故事书,仅排版页码就用去1392个铅字(数字)。
这本书有多少页?4.自然数的平方按从小到大排成一行:14916253649…,那么第112个位置上的数字是多少?5.设小数A=0.123456789101213…998999,试问,小数点右边第1998位上的数字是几?6.有一本书中间被撕掉一张,余下各页的页码数之和正好是1145。
那么,被撕掉那一张的页码数是?例1一本书共204页,需多少个数码编页码?例2一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?例3一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?例4有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?例5将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?例6排一本400页的书的页码,共需要多少个数码“0”?例1求1~999的999个连续自然数的所有数字之和。
例2求1~xx连续自然数的全部数字之和。
例3求连续自然数2000~5000的全部数字之和. 例4求1~129的连续自然数全部数字之和。
练习:1.求1~899连续自然数所有数字之和。
2.求1~3000连续自然数所有数字之和。
3.求400~4000连续自然数所有数字之和。
4.求1~1500连续自然数所有数字之和。
5.求180~1800连续自然数所有数字之和。
奥数第六讲页码问题
1. 一本书共有112 页,请问页码中共有几个“ 1”?
2. 一本书共有500 页,1—500页的页码中,一共用了多少
个数字“ 1”?
3. 给一本书编码时,一共用了11 个数字“ 7”,请问这本书
共有几页?
4. 一本漫画书的页码共有16 个数字“ 0”,请问这本漫画书
有几页?
5. 编一本书的页码总共用了270 个数字,问这本书一共有几页?
6. 排一本学生字典用了2925 个数字,问这本字典共有多少页?
7. 一本书的页码为1至62,即共有62 页。
在把这本书的各
页的页码累加起来时,有一个页码漏加了,结果得到的和数为1939,问:这个被漏加的页码是几?
下面图范的井列有什么规律呢?问号处应该iB什么?诡逵择.
A B C I)
△ O △ △
E F G H
下ID各种各样的赠竝头好■网?找3WE们排刃的規悴吗?《tH规悴把嚴后f雉堆头as在横找上.
数一数,下国中共有多少个长方形?
数一数.下图中共有多少个三角形?。
小学奥数页码问题
页码问题的常见类型
页码中数字的总和
连Байду номын сангаас页码的数字和
添加标题
添加标题
特定数字的页码
添加标题
添加标题
页码中某一位数字的出现次数
小学奥数页码问题的解题思路
枚举法
定义:通过一一 列举所有可能的 情况来解决问题 的方法
适用范围:当问 题的答案数量有 限或者答案范围 较小时
解题步骤:逐一 列举所有可能的 情况,并分析每 种情况下的答案
规律
步骤:列举特 例,观察分析, 归纳总结,得
出结论
适用范围:适 用于解决一些 具有规律性、 重复性的问题
注意事项:在 归纳过程中要 确保特例的全 面性和代表性, 避免以偏概全
小学奥数页码问题的常见题型
求某一页码数字的和
求某一页码数字的和 判断某一页码是否存在 计算某一页码的数字个数 找出某一页码的数字规律
注意事项:列举 时要全面,不要 遗漏任何一种可 能的情况
数学推导法
定义:通过数 学公式和逻辑 推理来解决问
题的方法
适用范围:适 用于解决各种 数学问题,包 括小学奥数页
码问题
步骤:分析问 题、选择合适 的数学模型、 推导公式、解
决问题
优势:能够快 速准确地解决 问题,提高数
学思维能力
归纳法
定义:从个别 到一般的推理 方法,通过对 特例的分析来 推断出一般性
THANK YOU
汇报人:XX
汇报时间:20XX/XX/XX
YOUR LOGO
求某一页码数字的积
求某一页码数字的积:例如求1~100的所有页码数字之和。 页码数字的排列规律:例如找出1~100页码中数字“1”出现的次数。 页码数字的加减法:例如求两个连续页码数字之差。 页码数字的倍数关系:例如找出1~100页码中能被3整除的数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数:页码问题(数论问题)
页码问题与图书的页码有密切联系.事实上,页码问题就是根据书的页码而编制出来的一类应用题.编一本书的页码,一共需要多少个数码呢?反过来,知道编一本书的页码所需的数码数量,求这本书的页数.这是页码问题中的两个基本内容。
页码问题是现在的奥数竞赛以及公务员考试中常见的、经常考试的知识点。
页码问题实际上是数论的问题。
为了顺利地解答页码问题,我们先看一下“数”与“组成它的数码个数”之间的关系.一位数共有9个,组成所有的一位数需要9个数码;两位数共有90个,组成所有的两位数需要2×90=180(个)数码;三位数共有900个,组成所有的三位数需要3×900=2700(个)数码。
现在我们来看几道例题.
例1 一本书共204页,需多少个数码编页码?
分析与解:1~9页每页上的页码是一位数,共需数码
1×9=9(个);
10~99页每页上的页码是两位数,共需数码
2×90=180(个);
100~204页每页上的页码是三位数,共需数码
(204-100+1)×3=105×3=315(个).
综上所述,这本书共需数码
9+180+315=504(个).
例2 一本小说的页码,在排版时必须用2211个数码.问:这本书共有多少页?
分析:因为189<2211<2889,所以这本书有几百页.由前面的分析知道,这本书在排三位数的页码时用了数码(2211-189)个,所以三位数的页数有(2211-189)÷3=674(页).因为不到三位的页数有99页,所以这本书共有:99+674=773(页).
解:99+(2211-189)÷3=773(页).
答:这本书共有773页.
例3 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000.问:这个被多加了一次的页码是几?
分析与解:因为这本书的页码从1至62,所以这本书的全书页码之和为
1+2+…+61+62
=62×(62+1)÷2
=31×63
=1953.
由于多加了一个页码之后,所得到的和数为2000,所以2000减去1953就是多加了一次的那个页码,是
2000-1953=47.
例4 有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131.老师说小明计算错了,你知道为什么吗?
分析与解:48页书的所有页码数之和为
1+2+…+48
=48×(48+1)÷2
=1176.
按照小明的计算,中间缺的这一张上的两个页码之和为1176-1131=45.这两个页码应该是22页和23页.但是按照印刷的规定,书的正文从第1页起,即单数页印在正面,偶数页印在反面,所以任何一张上的两个页码,都是奇数在前,偶数在后,也就是说奇数小偶数大.小明计算出来的是缺22页和23页,这是不可能的.
例5 将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第2000位上的数字是多少?
分析与解:本题类似于“用2000个数码能排多少页的页码?”因为(2000-189)÷3=603……2,所以2000个数码排到第99+603+1=703(页)的第2个数码“0”.所以本题的第2000位数是0.
例6 排一本400页的书的页码,共需要多少个数码“0”?
分析与解:将1~400分为四组:
1~100,101~200,201~300,301~400.
在1~100中共出现11次0,其余各组每组都比1~100多出现9次0,即每组出现20次0.所以共需要数码“0”
典型例题:
例1、13/1995 化成小数后是一个无限小数,问在这个无限小数的小数点后面,从第一位到1995位,在这1995个数中,数字6共出现了多少次?
解答:这是一个关于循环小数的周期问题。
基本解答方法是先算出循环节,然后再统计每个周期的数字总数和每个周期中6的个数。
13/1995=0.0065162907268170426……,循环节是065162907268170426共18位,
每个循环节数字6出现4次,(1995-1)÷18=110……14,前14位6出现3次,
所以一共有110×4+3=443个。
例2、有一本96页的书,中间缺了一张。
如果将残书的所有页码相加,那么可能得到偶数吗?
解:假设可能得到偶数,那么计算如下:
如果这本书不缺页,则总96页的所有页码之和是:1+...+96=4656。
由于书中的每一页都包括连续的一个奇数和一个偶数,所以每一页上的页码之和必定是奇数。
那么:
残书页码和=4656(偶数)-奇数(一页上的两面页码之和)=奇数
综上所述:不可能得到偶数。
例3、将自然数按从小到大的顺序无间隔地排成一个大数:123456789101112…问:左起第1000位上的数字是多少?
解:1~9页每页上的页码是一位数,共需数码1×9=9(个);
10~99页每页上的页码是两位数,共需数码2×90=180(个);
因为(1000-189)÷3=270……1,所以1000个数码排到第:
99+270+1=370(个)数的第1个数码“3”.
所以本题的第1000位数是3。
例4、有一本科幻故事书,每四页中,有一页为文字,其余三页为图画。
如果第一页为图画,那么第二、三页也是图画,第四页为文字,第五、六、七页又为图画,依此类推。
如果第一页为文字,那么第二、三、四页为图画,第五页为文字,第六、七、八页又为图画,依此类推。
试问:
(1)假如这本书有96页,且第一页是图画,那么这本书多少页有图画?
(2)假如这本书有99页,那么多少页有图画?
解:(1)将每4页看作是一组,每一组中有3页是图画:96÷4=24
24×3=72(页)
这本书有72页是图画。
(2)99÷4=24 (3)
24×3+3=75(页)
这本书有75页是图画。