100测评网中考数学2009年贵州省贵阳市中考模拟试卷试题及答案

合集下载

DA贵州省贵阳市中考真题

DA贵州省贵阳市中考真题

(2)所有可能出现的结果列表为: 乙口袋 甲口袋 1 2 3 或列树状图为: 甲口袋 1 2 3
5 6 4 5 6 4 5 6 乙口袋 4 结果 (1,4)(1,5)(1,6) (2,4)(2,5)(2,6) (3,4)(3,5) (3,6) 列表或画树状图 ·····································(8 分) ··········· ·········· ··········· ····· ·········· ··········· ··········· ····
2 . ························ 分) ······················· (4 ·········· ··········· ·· x (2) x 1 . ···················· (8 分) ··········· ········· ·········· ·········· y
25. (本题满分 12 分) (1) y x(30 3x) 即 y 3x 30 x . ···· (3 分) ···· ····
2
10m A D x x C x B
(2)当 y 63 时, 3x 30 x 63 ,
2
解此方程得: x1 7 , x2 3 . ··········(5 分) ·········· ········· 当 x 7 时, 30 3x 9 10 ,符合题意, 当 x 3 时, 30 3x 21 10 (不合题意舍去) .
1 . ····························(4 分) ··········· ·········· ······· ·········· ··········· ······ 2

【最新】贵州省贵阳市中考数学模拟试卷(含答案解析)

【最新】贵州省贵阳市中考数学模拟试卷(含答案解析)

贵州省贵阳市中考数学模拟试卷(含答案)(时间120分钟满分:150分)一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9 4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1 B.:1 C.3:D.3:2 9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD =.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B 出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B 出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C 的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=.三、解答题(本大题共9小题,共90分)15.(6分)计算:(π﹣3.14)0+|1﹣2|﹣+()﹣116.(8分)先化简,再求值:﹣÷,其中x=2.17.(8分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.18.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)19.(10分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.20.(10分)如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.21.(12分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?22.(12分)如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点D.(1)求证:AB2=AD•AC;(2)当点D运动到半圆AB什么位置时,△ABC为等腰直角三角形,为什么?23.(14分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.答案一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A 或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1 B.:1 C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD =.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B 出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B 出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C 需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为y =(x+1)2.【分析】先确定抛物线y=x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y=(x+1)2.故答案为y=(x+1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是8﹣2π(结果保留π).【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C 的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为 4 .【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB 的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6 .【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.三、解答题(本大题共9小题,共90分)15.(6分)计算:(π﹣3.14)0+|1﹣2|﹣+()﹣1【解答】解:(π﹣3.14)0+|1﹣2|﹣+()﹣1,=1+2﹣1﹣2+2,=2.16.(8分)先化简,再求值:﹣÷,其中x=2.【解答】解:原式=﹣•(x+1)=﹣=,当x=2时,原式=2.17.(8分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.18.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米19.(10分)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,平均每个班=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为: =.20.(10分)如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.【解答】(1)证明:∵CF∥AB,∴∠DAE=∠CFE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴AD=CF,∵AD=DB,∴DB=CF;(2)四边形BDCF是矩形,证明:∵DB=CF,DB∥CF,∴四边形BDCF为平行四边形,∵AC=BC,AD=DB,∴CD⊥AB,∴平行四边形BDCF是矩形.21.(12分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?【解答】解:(1)设今年三月份甲种电脑每台售价m元.则:.解得:m=4000.经检验,m=4000是原方程的根且符合题意.所以甲种电脑今年每台售价4000元;(2)设购进甲种电脑x台.则:48000≤3500x+3000(15﹣x)≤50000.解得:6≤x≤10.因为x的正整数解为6,7,8,9,10,所以共有5种进货方案;(3)设总获利为W元.则:W=(4000﹣3500)x+(3800﹣3000﹣a)(15﹣x)=(a﹣300)x+12000﹣15a.当a=300时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利.22.(12分)如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点D.(1)求证:AB2=AD•AC;(2)当点D运动到半圆AB什么位置时,△ABC为等腰直角三角形,为什么?【解答】(1)证明:连接BD,如图所示.∵AB为⊙O的直径,BC切⊙O于点B,∴∠ADB=∠ABC=90°.又∵∠BAD=∠CAB,∴△ADB∽△ABC,∴=,即AB2=AD•AC;(2)解:当点D运动到半圆AB中点时,△ABC为等腰直角三角形,理由如下:∵△ADB∽△ABC,△ABC为等腰直角三角形,∴△ADB为等腰直角三角形,∴∠BAD=∠ABD=45°,∴=.∴当点D运动到半圆AB中点时,△ABC为等腰直角三角形.23.(14分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y 轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【解答】解:(1)∵OB=OC=6,∴B(6,0),C(0,﹣6),∴,解得,∴抛物线解析式为y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点D的坐标为(2,﹣8);(2)如图1,过F作FG⊥x轴于点G,设F(x, x2﹣2x﹣6),则FG=|x2﹣2x﹣6|,在y=x2﹣2x﹣6中,令y=0可得x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,∵B(6,0),D(2,﹣8),∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB时,且∠FGA=∠BED,∴△FAG∽△BDE,∴=,即==,当点F在x轴上方时,则有=,解得x=﹣2(舍去)或x=7,此进F点坐标为(7,);当点F在x轴下方时,则有=﹣,解得x=﹣2(舍去)或x=5,此进F点坐标为(5,﹣);综上可知F点的坐标为(7,)或(5,﹣);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=MN,∴MT=2PT,设PT=n,则MT=2n,∴M(2+2n,n),∵M在抛物线上,∴n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=(舍去),∴MN=2MT=4n=+1;当MN在x轴下方时,同理可设PT=n,则M(2+2n,﹣n),∴﹣n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=(舍去),∴MN=2MT=4n=﹣1;综上可知菱形对角线MN的长为+1或﹣1.。

100测评网2009年中考数学二轮复习题精选(第一辑参考答案)

100测评网2009年中考数学二轮复习题精选(第一辑参考答案)

初三数学二轮复习题精选(第一辑参考答案)1、C2、B3、A4、D5、B6、B7、18、9、8810、(4,-3) 11、144/5 12、7或25 13、13 14、 15、16、17、(1)由已知条件得:梯形周长为12,高4,面积为28。

过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K ,则可得:FG=12-x5 ×4∴S △BEF=12 BE ·FG=-25 x 2+245 x (7≤x ≤10) ………………3′(2)存在 ………………1′由(1)得:-25 x 2+245 x=14得x 1=7 x 2=5(不合舍去)∴存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE=7(3)不存在 ………………1′假设存在,显然是:S △BEF ∶S AFECD =1∶2,(BE+BF)∶(AF+AD+DC)=1∶2……1′ 则有-25 x 2+165 x=283 ,整理得:3x 2-24x+70=0,△=576-840<0∴不存在这样的实数x 。

即不存在线段EF 将等腰梯形ABCD 的周长和面积。

同时分成1∶2的两部分 ………………2′18、⑴圣诞帽的侧面展开图是一个扇形,则扇形的弧长是16π,扇形的圆心角是69. ⑵42633y x =-+ ,由y ≥0,得x 的最大值是132,最小值是0. 显然,x 、y 必须取整数,才不会浪费纸张.由x=1时,223y =; x=2时,y=6; x=3时,143y =; x=4时,103y = x=5时,y=2; x=6时,23y =故A 、B 两种规格的纸片各买6张、2张或2张、5张时,才不会浪费纸张.⑶裁剪草图,如图.设相邻两个扇形的圆弧相交于点P ,则PD=PC . 过点P 作DC 的垂线PM 交DC 于M ,则CM =12DC =12×79=39.5 又CP=42, 所以39.5cos 42CM MCP CP ∠==, 所以20MCP ∠=<(9069-),又42+19、⑴ 建立如图所示的直角坐标系,则(5)D t ⑵ ①先画一个正方形,再利用位似图形找出点D,具体作法阅图②利用正三角形与矩形是轴对称图形或利用相似三角形的性质求得DG=480-10t ,DE =.然后由480-10t=求出t≈25.7(毫米).所以当点D 与点B 的距离等于≈257毫米时,矩形是正方形.⑶ 当点F 在第一象限时,这个平行四边形是CBDF ; 当点F 在第二象限时,这个平行四边形是BCDF "; 当点F 在第三象限时,这个平行四边形是CDBF '. 但平行四边形BCDF "的面积、平行四边形CDBF '的面积 都与平行四边形CBDF 的面积相等(等底等高)平行四边形CBDF 的底BC=480,相应的高是,则面积是;三角形ADC 的底AD =480-10t ,相应的高是则面积是480-10t ).由=480-10t ),解得t =16所以当t =16秒时,由点C 、B 、D 、F 组成的平 行四边形的面积等于三角形ADC 的面积.此时,点F 的坐标是,F '(400,20、(略)21、(1)解方程x 2-12x+27=0,得x 1=3,x 2=9.(2分)∵PO<PC ,∴PO=3,∴P(0,-3).(3分)(2)∵PO=3,PC=9,∴OC=12.(4分)∴∠ABC=∠ACO. ∴.(5分)∴OA=9. ∴A(-9,0).(6分) ∴.(7分)(3)存在,直线PQ 的解析式为:或.(10分)22、23、()1y x =32()当时,;当时,2x y x y ====053413.()菱形3S =503 (4)5S24、(1)解法一:∵一次函数y kx k =-4的图象与x 轴交于点A∴点A 的坐标为(4,0) ∵抛物线y ax bx c =++2经过O 、A 两点 ∴=+=c a b 01640, ∴=-b a 4………………1分 解法二:∵一次函数y kx k =-4的图象与x 轴交于点A∴点A 的坐标为(4,0) ∵抛物线y ax bx c =++2经过O 、A 两点 ∴抛物线的对称轴为直线x =2 ∴=-=x ba22 ∴=-b a 4…………1分 (2)解:由抛物线的对称性可知,DO =DA ∴点O 在⊙D 上,且∠DOA =∠DAO 又由(1)知抛物线的解析式为y ax ax =-24 ∴点D 的坐标为(24,-a ) ①当a >0时,如图1,设⊙D 被x 轴分得的劣弧为OmA ⌒,它沿x 轴翻折后所得劣弧为OnA ⌒,显然OnA⌒所在的圆与⊙D 关于x 轴对称,设它的圆心为D' ∴点D'与点D 也关于x 轴对称∵点O 在⊙D'上,且⊙D 与⊙D'相切 ∴点O 为切点………………2分 ∴D'O ⊥OD∴∠DOA =∠D'OA =45° ∴△ADO 为等腰直角三角形 ∴=OD 22………………3分 ∴点D 的纵坐标为-2∴-=-∴==-=-421242a ab a , ∴抛物线的解析式为y x x =-1222………………4分 ②当a <0时, 同理可得:OD =22抛物线的解析式为y x x =-+1222………………5分 综上,⊙D 半径的长为22,抛物线的解析式为y x x =-1222或y x x =-+1222(3)解答:抛物线在x 轴上方的部分上存在点P ,使得∠∠POA OBA =43设点P 的坐标为(x ,y ),且y >0 ①当点P 在抛物线y x x =-1222上时(如图2)∵点B 是⊙D 的优弧上的一点∴==︒∠∠OBA ADO 1245 ∴==︒∠∠POA OBA 4360过点P 作PE ⊥x 轴于点E∴=∴=︒∴=tan tan ∠POE EP OEyxy x603由y x y x x ==-⎧⎨⎪⎩⎪31222解得:x y x y 112242364300=+=+⎧⎨⎪⎩⎪==⎧⎨⎩,(舍去) ∴点P 的坐标为()423643++,………………7分 ②当点P 在抛物线y x x =-+1222上时(如图3)同理可得,y x =3由y x y x x ==-+⎧⎨⎪⎩⎪31222解得:x y x y 112242364300=-=-+⎧⎨⎪⎩⎪==⎧⎨⎩,(舍去) ∴点P 的坐标为()423643--+,………………9分 综上,存在满足条件的点P ,点P 的坐标为 ()423643++,或()423643--+,===========================================================适用版本:人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:语文,数学,英语,科学,物理,化学,生物,政治,历史,地理 适用年级:一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初 适用领域及关键字:100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷=========================================================== 本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

2009年贵阳市中考数学试卷(含答案及考点解析)

2009年贵阳市中考数学试卷(含答案及考点解析)

2009年贵阳市初中毕业生学业考试数学试题卷一、选择题(每小题3分,共30分)1.(-2)÷(-1)的计算结果是( )A.2 B.-2 C.-3 D.3【解析】(-2)÷(-1)=2,本题属于基础题,考察了对有理数的除法运算法则掌握的程度,按照“两数相除,同号得正,并把绝对值相除”的法则直接接计算可知本题选A。

计算时学生往往忽略符号而错误的选B。

解答这类题明确法则是关键,注意先确定运算的符号。

答案:A2.下列调查中,适合进行普查的是( )A.《新闻联播》电视栏目的收视率B.我国中小学生喜欢上数学课的人数C.一批灯泡的使用寿命D.一个班级学生的体重【解析】选项A、B、C所示内容适合抽样调查,要调查一个班级的学生的体重应采取普查的方式,故选A。

本题属于基础题,考查了调查方式的选择能力,一些学生往往对这几种调查方式的适用情况不清楚而误选其它选项。

解答这类题须明确各种调查方式的意义、适用情况,再结合对具体问题的分析作出判断。

答案:D3.将整式9-x2分解因式的结果是( )A.(3-x)2B.(3+x)(3-x) C.(9-x)2D.(9+x)(9-x)【解析】9-x2=(3-x)(3+x),本题属于基础题,考查了对一个多项式因式分解的能力,这个多项式符合平方差公式的特点,宜采用平方差公式分解。

一些学生往往对一些乘法公式的特点记不准确而误选其它选项。

解答这类题须抓住题目的特点,合理的选择相应的方法,用公式法分解时注意公式中和字母的意义。

答案:B4.正常人行走时的步长大约是( )A.0.5cm B.5m C.50cm D.50m【解析】正常人的步长一般为50cm,故选C,本题属于基础题,考查了估计的知识,解答时可联系生活实际去解。

答案:C5.已知两个相似三角形的相似比为2∶3,则它们的面积比为( )A.2∶3 B.4∶9 C.3∶2 D.2∶ 3【解析】两个相似三角形的相似比为2:3,则其面积比为4:9,故选B,本题属于基础题,考察了相似三角形的性质,一些学生往往对其掌握不熟练而误选其它选项。

2009年贵州省贵阳市中考模拟试卷数学试题及答案

2009年贵州省贵阳市中考模拟试卷数学试题及答案

BCEDA2009年贵州省贵阳市中考模拟试卷数学试题一、认真选一选(本大题共10小题,每题3分,共30分,每题4个选项中,只有一项正确的)1.下列事件中,是必然事件的是( )A. 从一副扑克牌中任意抽取一张牌,花色是梅花B. 明天会下雨C. 月亮绕着地球转D. 打开电视,任选一个频道,正在播放午间新闻 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3.将不等式组( )4.如图中,在△ABC 中,D 、E 分别是AB 、AC 边上的点, DE ∥BC ,∠ADE=40°,∠C=80°,则∠A 为( ) A. 40° B. 60°C. 80°D. 120°5.已知有一根长为10m 的铁丝,折成了一个矩形框,则这个矩形框相邻边a 、b 之间的函数)6.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2-16x+60=0的 一个实数根,则该三角形的面积是( )55EDAE C1AB CDEDo xy13C1-a B C5mDEADBEFCEC B O AABCDEACDBEF112--x x CEC B BCDA. 24B. 24或8C. 48D. 87.如图:将矩形ABCD 沿对角线BD 折叠,使C 落在C ′处, BC ′交AD 于点E ,则下到结底不一定成立的是 ( )A. AD=BC ′B. ∠EBD=∠EDBC. △ABE ∽△CBDD. Sin ∠ABE=8.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示, 当y <0时,x 的取值范围是( )A. -1<x <3B. x >3C. x <-1D.x >3或x <-19.某商品原价100元,连续两次涨价x%后售价为120元,下面 所列方程正确的是( )A. 100(1-x%)2=120 B. 100(1+x%)2=120C. 100(1+2x%)2=120D. 100(1+x 2%)2=12010.已知R 、r 分别是两圆的半径,且R >r ,d 是两个圆心之间的距离,且满足R 2+d 2=2Rd+r 2,则这两圆的位置关系是( )A. 外切B. 相交C. 内切D. 内切或外切二、细心填一填(本大题共10题,每题4分,共40分)11.据媒体报道,我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为 元。

100测评网中考数学2009中考全真模拟试卷(二)及答案

100测评网中考数学2009中考全真模拟试卷(二)及答案

2009中考数学全真模拟试卷(二)及答案(测试时间:100分钟 满分:120分)一、选择题(每小题2分,共30分)1.2的相反数是 ( )A .-2B .2C .-12 D .122.2004年,我国财政总收入21700亿元,这个数用科学记数法可表示为 ( )A .2.17³103亿元B .21.7³103亿元C .2.17³104亿元D .2.17³10亿元3.下列计算正确的是 ( )A .a + 22a = 33a B .3a ²2a = 6a C .32()a =9a D .3a ÷4a =1a -(a ≠0) 4.若分式31xx -有意义,则x 应满足 ( ) A .x =0 B .x ≠0 C .x =1 D .x ≠15.下列根式中,属于最简二次根式的是 ( )A B C D 6.已知两圆的半径分别为3㎝和4㎝,两个圆的圆心距为10㎝,则两圆的位置关系是( )A .内切 B.相交 C.外切 D.外离7.不等式组112x x ≤⎧⎨+>-⎩的解集在数轴上可表示为 ( )8.已知k >0 ,那么函数y=kx的图象大致是 ( )9.在△ABC 中,∠C=90°,AC=BC=1,则sinA 的值是 ( )A .B.C. 1D .10.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有( )A .1个 B.2个C.3个D.4个11.在比例尺1:6000000的地图上,量得南京到北京的距离是15㎝,这两地的实际距离是 ( ) A .0.9㎞ B. 9㎞ C.90㎞ D.900㎞12.如果等边三角形的边长为6,那么它的内切圆的半径为 ( )A .3BC .D . 13.观察下列算式:21=2,2=4,23=8,24=16,2=32,26=64,27=128,28=256,……。

通过观察,用作所发现的规律确定212的个位数字是 ( ) A .2 B.4 C.6 D.814.花园内有一块边长为a 的正方形土地,园艺师设计了四种不同图案,其中的阴影部分用于种植花草,种植花草面积最大的是 ( )15.如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动的路程和时间,根据图象判断,甲的速度与乙的速度相比,下列说法中正确的是( )A .甲比乙快 B.甲比乙慢 C.甲与乙一样 D.无法判断二、填空题(每题2分,共12分)16.9的平方根是 。

2009年中考数学复习模拟测试试卷(共5套含答案)-3.doc

2009年中考数学复习模拟测试试卷(共5套含答案)-3.doc

2009年中考复习模拟测试试卷(一)试卷总分:150分 考试时间:120分钟班级 姓名 学号 得分一、填空题:本大题共14小题,每小题3分,共42分,不需要写出解答过程,请把最后结果填在题中横线上. 1= .2.已知一元二次方程230x px ++=的一个根为-3,则p = .3中,最简二次根式的是 .4.已知nn 的最小值是 .5.如图,用等腰直角三角板画45AOB ∠=︒,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22度,则三角板的斜边与射线OA 的夹角α为 .6.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率为 .7.如图,以O 为圆心的两个同心圆,大圆的弦AB 交小圆于C 、D ,若AB =3cm ,CD =2cm ,那么AC = cm . 8.过O 内点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为 cm . 9.抛物线2242y x x =---的顶点坐标是 .10.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?设每轮传染中平均一人传染了x 个人,根据题意,可列方程为 . 11.已知:2x =-,则代数式246x x --= . 12.如图,已知AB 是O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则O 的半径等于 cm . 13.已知扇形的圆心角为60度,面积为π,O 与扇形的弧经过这条弧的端点的两条半径都相切,则O 半径等于 cm .14.已知一个圆锥的高为10cm ,它的侧面展开图是半圆,则它的全面积为 .二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请你将正确的选项的代号填入题后的括号内. 22第5题 第7题 第12题CB第13题A .0.15B .πC .-4D .22716.已知如图1所示的四张牌,若将其中的一张牌旋转180度后得到图2,则旋转的牌是( )17.如图,函数2y ax a =-与函数ay x=在同一坐标系内的图象大致为( )A .B .C .D .18.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是( )① ② ③ ④ ⑤ A .①⑤ B .②④ C .③⑤ D .②⑤三、解答题:本大题共10小题,共92分.解答题应写出文字说明、证明过程或演算步骤. (19~20题,第19题10分,第20题10分,共20分) 19.计算:(1) (2)(a --20.解下列方程:(1)2410x x +-=; (2)2210x x --=(用配方法);图1图2A .B .C .D .(21~22题,第21题6分,第22题6分,共12分) 21.先化简,再求值:2211x x x -++-,其中1x =.22.如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥. (1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.(23~24题,第23题8分,第24题10分,共18分)23.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工...人.的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?24.如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地. (1)怎样围才能使矩形场地的面积为750m 2?(2)能否使所围矩形场地的面积为810m 2,为什么?(25~26题,第25题7分,第26题8分,共15分) 25.已知关于x 的不等式ax +3>0(其中a ≠0).(1)当a =-2时,求此不等式的解,并在数轴上表示此不等式的解集;(3分)(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a ,求使该不等式没有..正整数解的概率.(4分)第21题图26.如图,在平面直角坐标系中,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 在第象限,将△OAB 绕点O 按逆时针方向旋转至△OA ′B ′,使点B 的对应点B ′落在y 轴的正半轴上,已知OB=2,︒=∠30BOA (1)求点B 和点A ′的坐标;(2)求经过点B 和点B ′的直线所对应的一次函数解析式,并判断点A 是否在直线BB ′上。

2009年中考数学模拟试题二二模数学定

2009年中考数学模拟试题二二模数学定

2009年中考数学模拟试题(二)题号-一- -二二三四五六七八总分得分考生注意:本卷共八大题,计23小题,满分150分,考试时间120分钟、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内•每小题:选对得4分,不选、选错或选出的代号超过一个(不论是否写1、 ................................................ 比3的相反数大1的数是【】1 1A、一2B、一3C、D——2 32、下列各式计算正确的是 ............................................. 【】A、2a2+a3=3a5B、(3xy f 斗(xy )=3xyC、(2b2j =8b5D、2x,3x5= 6x°3、近期甲型H1N1流感在境外传播,该病是一种呼吸道传染病,病毒粒子多数呈球形,平均直径约为90 nm (1 nm=10-9m), 90 nm用科学计数法表示为..................... 【9 8 9 8A、9X 10 mB、9X 10 mC、9X 10-mD、9 x 10-ml5x「4 :3x ”4、不等式组的解集为........................................ 【】[~x<-1A、x v 2B、-1 < x v 2C、1< x v 2D、x > 15、在如下的图形中,既是轴对称图形又是中心对称图形的是................ 【】26、对于反比例函数y = —,下列说法不正确的是............................. 【】xA、点(-2, -1)在它的图象上B、它的图象在第一、三象限C、当x 0时,y随x的增大而增大D、当x 0时,y随x的增大而减小■题!i1;答>*;要不I>I:内I:线:封I在括号内)一律得0分.得分7、如图,AB// CD / 仁110°/ ECD=65,/ E的大小是......................... 【】A、40°B、45°C、50°D、60°8如图所示,在数学活动课上,几个同学用如下方法测量学校旗杆的高度:人站在距旗杆 AB底部40米的C 处望旗杆顶A ,水平移动标杆 EF ,使C F 、B 在同一直线上,D E A 也在同一 直线上,此时测得 CF 距离为2.5米,已知标杆EF 长2.5米,人的视线高度 CD 为1.5米.则旗 杆AB 高为 【....................................................................... 】 9、如图(1)放置的一个机器零件,若其主视图如图 (2),生800人•看了这两张统计图后,有这关三个年级的体育达标率的说法正确的是…212、方程x =4x 的解为 ________________________13、如图,已知 A 、B 、C 、D 、E 均在O O 上,AC 为直径,则/ A+ / B+ / C= ___________ 度。

2009年中考数学复习模拟测试试卷(共5套含答案)-2.doc

2009年中考数学复习模拟测试试卷(共5套含答案)-2.doc

A BCDEO(第5题图) 2121-2009年中考复习模拟测试试卷(二) 试卷总分:150分 考试时间:120分钟班级 姓名 学号 得分二、选择题(每题3分,27分) 1.2-的倒数是A . 2B .C . 2-D . 2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A . 1110437.0⨯ B . 10104.4⨯ C . 101037.4⨯ D . 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是A . 它的图象分布在第一、三象限B . 点(k,k )在它的图象上C . 它的图象是中心对称图形D . y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD的延长线于点E ,则下列式子不成立...的是 A . DE DA = B . CE BD = C . 90=∠EAC ° D . E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A . 0B . -1C . 1D . 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是正方体 长方体 圆柱 圆锥 A B C D ABDC(第7题图) A BC DE. F.P .·8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为A .3cmB .4cmC .21cmD .62cm9. 如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元B .若通话时间超过200分,则B 方案比A 方案便宜12元C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分一、填空题(每题4分,共40分)10.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 11.函数y =中,自变量x 的取值范围是 . 12.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).13.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .14.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.15.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .16.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则S =2cm.17.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .(图1) (图2)60%(第9题)5=RDOCB A 第12题图 O B A 第13题图 5cm A DC E F GB 第16题图 第15题图一共花了170元 第14题图18.下列各图中, 不是正方体的展开图(填序号).19.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322A D BC ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 . 三、解答题(共83分) 20.(5分)20)21(8)21(3--+-+-21.(951-调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤(如图所示): 第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过B 作EF AD ⊥交AD 的延长线于F , 请你根据以上作法,证明矩形DCEF 为黄金矩形,(可取2AB =)1D B 3第19题图A C 2B 2C 3D 3 B 1D 2C 1①② ③④ 第18题ABCDEFMN (第21题图)22.(本题满分8分)2008年北京奥运会吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”,现将5张分别写有这五个吉祥物名称的卡片(卡片的形状,大小一样,质地相同,如图所示)放入一个不透明的盒子内搅匀. (1)小虹从盒子中任取一张卡片,取到“欢欢”的概率是多少? (2)小虹从盒子中先随机取出一张卡片(不放回盒子),然后再从盒子中取出第二张卡片,请你用列表法或树形图法表示出小虹两次取到卡片的所有可能情况,并求出两次取到的卡片恰好是“贝贝”、“晶晶”(不考虑先后顺序)的概率. 23.(本题满分9分)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(4分)(2)当22120x x -=时,求m 的值.(6分) (友情提示:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠两根,则有12b x x a +=-,12c x x a=)(第22题图)24.(本题满分9分)如图,AB 为O 的直径,PQ 切O 于T ,AC PQ ⊥于C ,交O 于D .(1)求证:AT 平分BAC ∠;(5分)(2)若2AD =,TC =O 的半径.(5分)25.(9分)已知:如图,Rt △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m)-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长;(2)当m 、p 满足什么关系时,△AOB 的面积最大.(第23题图)26.(本题满分12分)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ;(3分)(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由.(3分) (3)当AB =5,BC =6时,求⊙O 的半径.(4分) 27.(本题满分14分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.EC A(第26题图)F EDCBA (第27题图)2009年中考复习模拟测试试卷(二)参考答案 一、选择题1—9 D C B D B A B C D 二、填空题 10.92.710⨯11.3x ≤且1x ≠12.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 13.414.14515.1216.1cm 或7cm 17.12 18.③19.1n -⎝⎭三、解答题20.原式=42213-++=2221.证明:在正方形ABCD 中,取2AB = N 为BC 的中点,112NC BC ∴== 在Rt DNC △中,2222125ND NC CD ++=又NE ND =,51CE NE NC ∴=-=,12CE CD ∴=. 故矩形DCEF 为黄金矩形. 22.解:(1)1()5P =取到欢欢; (2树形图如下:贝晶 欢 迎 妮晶 贝 欢 迎 妮 欢贝 晶 迎 妮迎贝 晶 欢 妮妮贝 晶 欢 迎由表(图)可知:21()2010P ==两次取到“贝贝”,“晶晶”. 说明:以上“贝、晶、欢、迎、妮”分别代表“贝贝、晶晶、欢欢、迎迎、妮妮”,用其它代号作答正确的相应给分,列表或画树形图两者取其一即可.23.解:(1)由题意有22(21)40m m ∆=--≥, 解得14m ≤. 即实数m 的取值范围是14m ≤. (2)由22120x x -=得1212()()0x x x x +-=.若120x x +=,即(21)0m --=,解得12m =. 1124>,12m ∴=不合题意,舍去. 若120x x -=,即12x x = 0∴∆=,由(1)知14m =. 故当22120x x -=时,14m =. 24.(1)证明:连接OT ,PQ 切O 于T ,OT PQ ∴⊥.又AC PQ ⊥,OT AC ∴∥TAC ATO ∴∠=∠又OT OA =ATO OAT ∴∠=∠.OAT TAC ∴∠=∠,即AT 平分BAC ∠.(2)解:过点O 作OM AC ⊥于M ,12ADAM MD ∴===.又90OTC ACT OMC ∠=∠=∠=∴四边形OTCM 为矩形. 3OM TC ∴==∴在Rt AOM △中,222AO OM AM +==.即O 的半径为2.26.(1)在△ABC 中,∵AB =AC ,∴∠ABC =∠C . ∵DE ∥BC ,∴∠ABC =∠E , ∴∠E =∠C . 又∵∠ADB =∠C , ∴∠ADB =∠E . (2)当点D 是弧BC 的中点时,DE 是⊙O 的切线.理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . 又∵DE ∥BC ,∴ AD ⊥ED . ∴ DE 是⊙O 的切线(3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3.又∵AB =5,∴AF =4. 设⊙O 的半径为r ,在Rt △OBF 中,OF =4-r ,OB =r ,BF =3,∴ r 2=32+(4-r )2解得r =825, ∴⊙O 的半径是825. 27.(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ① △CDA ≌△DCE 的理由是:∵AD ∥BC , ∴∠CDA =∠DCE . 又∵DA =CE ,CD =DC , ∴△CDA ≌△DCE . 或 ② △BAD ≌△DCE 的理由是:∵AD ∥BC ,∴∠CDA =∠DCE .又∵四边形ABCD 是等腰梯形,∴∠BAD=∠CDA,∴∠BAD =∠DCE.又∵AB=CD,AD=CE,∴△BAD≌△DCE.(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.理由是:设AC与BD的交点为点G,∵四边形ABCD是等腰梯形,∴AC=DB.又∵AD=CE,AD∥BC,∴四边形ACED是平行四边形,∴AC=DE,AC∥DE.∴DB=DE.则BF=FE,又∵BE=BC+CE=BC+AD=4+2=6,∴BF=FE=3.∵DF=3,∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,∴∠BDE=∠BDF+∠EDF=90°,又∵AC∥DE∴∠BGC=∠BDE=90°,即AC⊥BD.(说明:由DF=BF=FE得∠BDE=90°,同样给满分.)。

09年中考数学学业水平考试模拟试卷8

09年中考数学学业水平考试模拟试卷8

数 学 试 卷1、哈市某天的最高气温是-1℃,最低气温是-11℃,那么这天的最高气温与最低气温的差是( ) A 、-10℃ B 、10℃ C 、-12℃ D 、12℃2、下列运算正确的是( )A 、(a -b)2=(b -a)2B 、(a +b)2=a 2+b 2C 、a -1·a 3=a -2D 、a 12÷a 6=a 23、在平面直角坐标系中,下面坐标表示的点在第四象限的是( ) A 、(1,3) B 、(0,-3) C 、(-2,-3) D 、(π,-1)4、下列图形中,既是轴对称图形又是中心对称图形的是( )5、已知:⊙O 1与⊙O 2的半径分别为2cm 和3cm ,圆心距O 1O 2=6cm ,那么这两个圆的位置关系是( ) A 、外离 B 、外切 C 、内切 D 、相交6、二次函次y =x 2-2x +1的图象与坐标轴的交点个数是( ) A 、0 B 、1 C 、2 D 、37、右图是由一些相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是( ) A 、4 B 、5 C 、6 D 、78、某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为( )A 、41B 、43 C 、81 D 、83 9、某装修公司到建材市场买同样一种多边形的地砖密铺地面,在以下四种地砖中,该公司不能买( ) A 、正三角形地砖 B 、正方形地砖 C 、正五边形地砖 D 、正六边形地砖10、如图,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。

设正三角形的运动时间为t ,正三角形与正方形的重叠部分(图中阴影部分)面积为s ,则下面能反映正三角形运动的全过程中s 与t 的函数图象大致为( )二、填空题11、据《生活报》3月11日消息,公安部门权威公布:截至2008年年底哈尔滨市主城区人口为4750000人,主城区人口数用科学记数法可表示为 人。

贵州省贵阳市中考数学试卷及解析

贵州省贵阳市中考数学试卷及解析

2009年贵州省贵阳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2009•贵阳)(﹣2)÷(﹣1)的计算结果是()A.2 B.﹣2 C.﹣3 D.32.(3分)(2009•贵阳)下列调查中,适合进行普查的是()A.《新闻联播》电视栏目的收视率B.我国中小学生喜欢上数学课的人数C.一批灯泡的使用寿命D.一个班级学生的体重3.(3分)(2009•贵阳)将整式9﹣x2分解因式的结果是()A.(3﹣x)2B.(3+x)(3﹣x)C.(9﹣x)2D.(9+x)(9﹣x)4.(3分)(2009•贵阳)正常人行走时的步长大约是()A.0.5cm B.5m C.50cm D.50m5.(3分)(2009•贵阳)已知两个相似三角形的相似比为2:3,则它们的面积比为()A.2:3 B.4:9 C.3:2 D.:6.(3分)(2009•贵阳)如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子()A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短7.(3分)(2009•贵阳)某公司销售部有销售人员27人,销售部为了制定某种商品的销售定额,统计了这27人某月的销售情况如下表:则该公司销售人员这个月销售量的中位数是()销售量(单位:件)500 450 400 350 300 200人数(单位:人) 1 4 4 6 7 5A.400件B.375件C.350件D.300件8.(3分)(2009•贵阳)如图,PA是⊙O的切线,切点为A,∠APO=36°,则∠AOP=()A.54°B.64°C.44°D.36°9.(3分)(2009•贵阳)已知正比例函数y=2x与反比例函数y=的图象相交于A,B两点,若A点的坐标为(1,2),则B点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(2,1)10.(3分)(2009•贵阳)有一列数a1,a2,a3,a4,a5,…,a n,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,…,当a n=2009时,n的值等于()A.2010 B.2009 C.401 D.334二、填空题(共5小题,每小题4分,满分20分)11.(4分)(2009•贵阳)某水库的水位上升3m记作+3m,那么水位下降4m记作m.12.(4分)(2009•贵阳)九年级(5)班有男生27人,女生29人.班主任向全班发放准考证时,任意抽取一张准考证,恰好是女生准考证的概率是.13.(4分)(2009•贵阳)如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.14.(4分)(2009•贵阳)如图,二次函数的图象与x轴相交于点(﹣1,0)和(3,0),则它的对称轴是直线.15.(4分)(2009•贵阳)已知直角三角形的两条边长为3和4,则第三边的长为.三、解答题(共10小题,满分100分)16.(7分)(2009•贵阳)从不等式:2x﹣1<5,3x>0,x﹣1≥2x中任取两个不等式,组成一个一元一次不等式组,解你所得到的这个不等式组,并在数轴上表示其解集合.17.(8分)(2009•贵阳)如图,已知一次函数y=x+1与反比例函数y=的图象都经过点(1,m)(1)求反比例函数的关系式;(2)根据图象直接写出使这两个函数值都小于0时x的取值范围.18.(10分)(2009•贵阳)为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)统计结果如图1,图2所示,根据图提供的信息,回答下列问题:(1)本次抽查了多少名学生的体育成绩;(2)在图1中,将选项B的部分补充完整;(3)求图2中D部分所占的比例;(4)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数.19.(9分)(2009•贵阳)某马戏团有一架如图所示的滑梯,滑梯底端B到立柱AC的距离BC为8m,在点B处测得点D和滑梯顶端A处的仰角分别为26.57°和36.87°.(1)求点A到点D的距离(结果保留整数);(2)在一次表演时,有两只猴子在点D处听到驯兽员的召唤,甲猴由D顺着立柱下到底端C,再跑到B;乙猴由D爬到滑梯顶端A,再沿滑道AB滑至B.小明看完表演后,他认为甲、乙两只猴子所经过的路程大致相等,小明的判断正确吗?通过计算说明.20.(10分)(2009•贵阳)现有分别标有数字1,2,3,4,5,6的6个质地和大小完全相同的小球.(1)若6个小球都装在一个不透明的口袋中,从中随机摸出一个,其标号为偶数的概率为多少?(2)若将标有数字1,2,3的小球装在不透明的甲袋中,标有数字4,5,6的小球装在不透明的乙袋中,现从甲、乙两个口袋中各随机摸出一个球,用列表(或树状图)法,表示所有可能出现的结果,并求摸出的两个球上数字之和为6的概率.21.(12分)(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?22.(10分)(2009•贵阳)小颖准备到甲、乙两商场去应聘,图中的l1,l2分别表示了甲、乙两商场每月付给员工工资y1,y2(元)与销售商品的件数x(件)的关系.(1)根据图象分别求出y1,y2与x的函数关系式;(2)根据图象直接回答:如果小颖决定应聘,她可能选择甲商场还是乙商场?23.(10分)(2009•贵阳)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30°,CD=6cm.(1)求∠BCD的度数;(2)求⊙O的直径.24.(12分)(2009•贵阳)光明灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA、OC分别为36cm、12cm,∠AOB=135°(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),需要多长的花边?(2)求灯罩的侧面积(接缝不计).(以上计算结果保留π)25.(12分)(2009•贵阳)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.(1)求y与x的函数关系式;(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.2009年贵州省贵阳市中考数学试卷参考答案与试卷解读一、选择题(共10小题,每小题3分,满分30分)1.(3分)【考点】有理数的除法.【分析】根据“两数相除,同号得正,并把绝对值相除”的法则直接计算.【解答】解:(﹣2)÷(﹣1)=2.故选A.【点评】计算时学生往往忽略符号而错误地选择B.解答这类题明确法则是关键,注意先确定运算的符号.2.(3分)【考点】全面调查与抽样调查.【分析】适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.据此即可作出判断.【解答】解:A、B、C、《新闻联播》电视栏目的收视率、我国中小学生喜欢上数学课的人数,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可;了解一批灯泡的使用寿命,会给被调查对象带来损伤破坏,适用于采用抽样调查;D、了解一个班级学生的体重,要求精确、难度相对不大、实验无破坏性,应选择普查方式.故选D.【点评】本题属于基础题,考查了调查方式的选择能力,一些学生往往对这几种调查方式的适用情况不清楚而误选其它选项.解答这类题须明确各种调查方式的意义、适用情况,再结合对具体问题的分析作出判断.3.(3分)【考点】因式分解-运用公式法.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b)分解即可.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.【解答】解:9﹣x2=(3﹣x)(3+x).故选B.【点评】本题考查了利用平方差公式分解因式,这个多项式符合平方差公式的特点,宜采用平方差公式分解.用公式法分解时要注意公式的结构特点.4.(3分)【考点】数学常识.【分析】根据生活实际作答.【解答】解:正常人的步长一般为50cm.故选C.【点评】本题属于基础题,考查了估计的知识,解答时可联系生活实际去解.5.(3分)【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方看直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴面积比为=4:9.故选B.【点评】本题属于基础题,考查了相似三角形的性质.6.(3分)【考点】中心投影.【分析】由题意易得,小亮离光源是由远到近的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:小亮在路灯下由远及近向路灯靠近时,其影子应该逐渐变短,故选:A.【点评】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.7.(3分)【考点】中位数.【分析】根据中位数的定义求解.有27个数据,第14个数就是中位数.【解答】解:27个数据的中位数应是这组数据从小到大依次排列后的第14个数,应是350.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.(3分)【考点】切线的性质.【分析】利用切线的性质和三角形内角和可求得∠AOP=54°.【解答】解:因为PA和⊙O相切,切点为A,则由切线的性质可得OA⊥AP,又因∠APO=36°,则得∠AOP=54°.故选A.【点评】本题综合考查了切线的性质和三角形内角和定理,由切线的性质说明OA⊥AP是解题的关键.9.(3分)【考点】反比例函数图象的对称性.【分析】解答这类题一般解这两个函数的解读式组成的方程组即可.【解答】解:由已知可得,解这个方程组得,x1=1,x2=﹣1,则得y1=2,y2=﹣2,则这两个函数的交点为(1,2),(﹣1,﹣2),因为已知A点的坐标为(1,2),故B点的坐标为(﹣1,﹣2).故选C.【点评】正比例函数与反比例函数的交点关于原点对称,同学们要熟记才能灵活运用.10.(3分)【考点】规律型:数字的变化类.【分析】等号右边第一个数都是5,第二个数比相应的式序数大1,第三个数等于式子序数,据此可得第n个式子为a n=5×(n+1)+n.【解答】解:根据题意,则当a n=2009,即5×(n+1)+n=2009时,解得n=334.故选D.【点评】解答这类题需认真归纳所给式子的特点,得出其规律,再结合所得规律求解.二、填空题(共5小题,每小题4分,满分20分)11.(4分)【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵“正”和“负”相对,某水库的水位上升3m记作+3m,∴水位下降4m记作﹣4m.【点评】本题考查了正负数的意义,属于基础题,明确题目的规定是解答的关键.12.(4分)【考点】概率公式.【分析】让女生人数除以全班人数即为所求的概率.【解答】解:因为这个班上共有27+29=56名学生,女生29人,则班主任任意抽取一张准考证恰好是女生的准考证的概率是.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)【考点】正方形的性质.【分析】采取利用图形的全等的知识将分散的图形集中在一起,再结合图形的特征选择相应的公式求解.【解答】解:依据已知和正方形的性质及全等三角形的判定可知△AOE≌△COF,则得图中阴影部分的面积为正方形面积的,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为.故答案为【点评】本题综合考查了利用正方形的性质和全等三角形的判定的知识进行有关计算的能力,属于基础题.14.(4分)【考点】二次函数的性质.【分析】由已知和观察图象直接可得该抛物线的对称轴,也可以求两对称点横坐标的平均数.【解答】解:因为抛物线与x轴相交于点(﹣1,0)和(3,0),根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==1.【点评】本题考查了抛物线的对称性,属于基础题,也可借助观察直接得解.15.(4分)【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.三、解答题(共10小题,满分100分)16.(7分)【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先确定好不等式组.然后求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:本题答案不唯一.按要求选出两个不等式组成一个不等式组;求出不等式组的解集;在数轴上表示所求的解集.由2x﹣1<5得x<3,由3x>0得x>0,由x﹣1≥2x得x≤﹣1.如果选择2x﹣1<5,3x>0,则组成解集为0<x<3.在数轴上表示为.如果选择2x﹣1<5,x﹣1≥2x,则组成解集为x≤﹣1.在数轴上表示为.如果选择3x>0,x﹣1≥2x,则组成此不等式组无解.在数轴上表示为.【点评】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.17.(8分)【考点】反比例函数与一次函数的交点问题.【分析】(1)首先将此点坐标代入一次函数解读式,求得m;再进一步把该点坐标代入(k≠0),即可求得k的值,进一步写出反比例函数解读式;(2)结合图象,即可直接写出使这两个函数值都小于0时x的取值范围.【解答】解:(1)把x=1,y=m代入y=x+1,得m=2;把(1,2)代入y=,得∴k=1×2=2,则此反比例函数的关系式为y=;(2)根据图象,得:x<﹣1时,这两个函数值都小于0.【点评】用待定系数法确定反比例函数的比例系数k,求出函数解读式;这两个函数值都小于,即两个函数的图象都位于x轴的下方.18.(10分)【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)结合条形统计图和扇形统计图知:A的人数为80人,A占被调查人数的16%,用除法即可计算总人数;(2)根据(1)中计算的总人数以及B所占的百分比进行计算,然后正确补全统计图即可;(3)根据条形统计图中D的具体数据结合总人数计算D所占的比例即可;(4)根据题意,知达标的即是A类和B类,共占56%,再进一步结合总体人数计算即可.【解答】解:(1)根据统计图可知,A的人数为80人,A占被调查人数的16%,所以本次调查的人数为80÷16%=500(人);(2)由分数段百分比统计图知B的人数占被调查人数的40%,所以B的人数为500×40%=200(人)在分数段统计图中将B的部分补充如图所示.(3)在分数段百分比统计图中阴影部分学生所占的比例:60÷500=12%.(4)该校九年级学生体育成绩达到40分以上(含40分)的人数为900×56%=504(人)【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△ABC、Rt△DBC,应利用其公共边BC=8,构造等量关系,进而可求出答案.【解答】解:(1)在Rt△ABC中,BC=8,∠ABC=36.87°,∴AC=8•tan36.87°≈6(M),在Rt△DBC中,BC=8,∠DBC=26.57°,∴DC=8•tan26.57°≈4(M),∴AD=AC﹣DC=2(M).即从A点到D点的距离约是2M.(2)∵AB==10(M),【或在Rt△ABC中,BC=8,∠ABC=36.87°,∴AB=≈10(M)】,∴甲所走的路程为:10+2=12(M),乙所走的路程为:8+4=12(M).∴小明的判断是正确的.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.20.(10分)【考点】列表法与树状图法;概率公式.【分析】(1)列举出所有情况,看所求的情况占总情况的多少即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)∵6个数中有3个偶数,∴选中标号为偶数的概率是;(2)所有可能出现的结果列表为:4 5 6乙口袋甲口袋1 (1,4)(1,5)(1,6)2 (2,4)(2,5)(2,6)3 (3,4)(3,5)(3,6)或列树状图为P(两个球上数字之和为6)=.【点评】列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(12分)【考点】菱形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)可先证△BCE≌△DCE得到∠EBC=∠EDC,再根据AB∥DC即可得到结论.(2)当P点运动到AB边的中点时,S△ADP=S菱形ABCD,证明S△ADP=×AB•DP=S菱形ABCD即可.【解答】(1)证明:∵四边形ABCD是菱形∴BC=CD,AC平分∠BCD(2分)∵CE=CE∴△BCE≌△DCE(4分)∴∠EBC=∠EDC又∵AB∥DC∴∠APD=∠CDP(5分)∴∠EBC=∠APD(6分)(2)解:当P点运动到AB边的中点时,S△ADP=S菱形ABCD.(8分)理由:连接DB∵∠DAB=60°,AD=AB∴△ABD是等边三角形(9分)∵P是AB边的中点∴DP⊥AB(10分)∴S△ADP=AP•DP,S菱形ABCD=AB•DP(11分)∵AP=AB∴S△ADP=×AB•DP=S菱形ABCD即△ADP的面积等于菱形ABCD面积的.(12分)【点评】此题主要考查菱形的性质和等边三角形的判定,判断当P点运动到AB边的中点时,S△ADP=S菱形ABCD是难点.22.(10分)【考点】一次函数的应用.【分析】(1)根据图象,便可分别确定直线l1、l2上的两个点,进而分别求出两直线的解读式;(2)根据图象,可以清楚看到x在不同取值条件下y1、y2的大小关系进而得出答案.【解答】解:(1)设y1与x的函数关系式为:y1=kx,将(40,600)代入得,k=15,故y1与x的函数关系式为:y1=15x,设y2与x的函数关系式为:y2=kx+400,将(40,600)代入得,k=5,故y2与x的函数关系式为:y2=5x+400;(2)根据图象可知,当销售件数大于40件时,选择甲商场;当销售件数小于40件时,选择乙商场;当销售件数等于40件时,选择甲商场或乙商场都一样.【点评】本题考查的是用一次函数解决实际问题,解决此类题目应具备在直角坐标系中的读图能力.23.(10分)【考点】垂径定理;圆周角定理;解直角三角形.【分析】(1)由垂径定理知,,∴∠DCB=∠CAB=30°;(2)由垂径定理知,点E是CD的中点,有CE=CD=3,AB是直径,∴∠ACB=90°,再求出AC的长,利用∠A的余弦即可求解.【解答】解:(1)∵直径AB⊥CD,∴,∴∠DCB=∠CAB=30度;(2)∵直径AB⊥CD,CD=6cm,∴CE=3cm,在Rt△ACE中,∠A=30°,∴AC=6cm,∵AB是直径,∴∠ACB=90°,在Rt△ACB中,AB===4(cm).【点评】本题利用了垂径定理和圆周角定理及锐角三角函数的概念求解.24.(12分)【考点】圆锥的计算;弧长的计算.【分析】(1)主要是求阴影部分扇形环的外环和内环的弧长之和,即求优弧AB+优弧CD;直接利用弧长公式求解即可.(2)求扇环的面积,即S侧=S阴影=(π×362﹣S扇形OAB)﹣(π×122﹣S扇形OCD).【解答】解:(1)的长==27π,的长==9π,∴花边的总长度=(2π×36﹣27π)+(2π×12﹣9π)=60π(cm);(2)S扇形OAB==486π,S扇形OCD==54π,S侧=S阴影=(π×362﹣S扇形OAB)﹣(π×122﹣S扇形OCD)=720π(cm2).【点评】主要考查了利用弧长公式和扇形的面积公式,通过面积差求扇形的面积.25.(12分)【考点】二次函数的应用.【分析】本题利用矩形面积公式建立函数关系式,A:利用函数关系式在已知函数值的情况下,求自变量的值,由于是实际问题,自变量的值也要受到限制.B:利用函数关系式求函数最大值.【解答】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)能.y=﹣3x2+30x=﹣3(x﹣5)2+75而由题意:0<30﹣3x≤10,即≤x<10又当x>5时,y随x的增大而减小,∴当x=m时面积最大,最大面积为m2.【点评】根据题目的条件,合理地建立函数关系式,会判别函数关系式的类别,从而利用这种函数的性质解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BCEDA2009年贵州省贵阳市中考模拟试卷数学试题一、认真选一选(本大题共10小题,每题3分,共30分,每题4个选项中,只有一项正确的)1.下列事件中,是必然事件的是( )A. 从一副扑克牌中任意抽取一张牌,花色是梅花B. 明天会下雨C. 月亮绕着地球转D. 打开电视,任选一个频道,正在播放午间新闻 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3.将不等式组( )4.如图中,在△ABC 中,D 、E 分别是AB 、AC 边上的点, DE ∥BC ,∠ADE=40°,∠C=80°,则∠A 为( ) A. 40° B. 60°C. 80°D. 120°5.已知有一根长为10m 的铁丝,折成了一个矩形框,则这个矩形框相邻边a 、b 之间的函数)6.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2-16x+60=0的 一个实数根,则该三角形的面积是( )55EDAE C1AB CDEDo xy13C1-a B C5mDEADBEFCEC B O AABCDEACDBEF112--x x CEC B ABCDEADFA. 24B. 24或8C. 48D. 87.如图:将矩形ABCD 沿对角线BD 折叠,使C 落在C ′处, BC ′交AD 于点E ,则下到结底不一定成立的是 ( )A. AD=BC ′B. ∠EBD=∠EDBC. △ABE ∽△CBDD. Sin ∠ABE=8.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示, 当y <0时,x 的取值范围是( )A. -1<x <3B. x >3C. x <-1D.x >3或x <-19.某商品原价100元,连续两次涨价x%后售价为120元,下面 所列方程正确的是( )A. 100(1-x%)2=120 B. 100(1+x%)2=120C. 100(1+2x%)2=120D. 100(1+x 2%)2=12010.已知R 、r 分别是两圆的半径,且R >r ,d 是两个圆心之间的距离,且满足R 2+d 2=2Rd+r 2,则这两圆的位置关系是( )A. 外切B. 相交C. 内切D. 内切或外切二、细心填一填(本大题共10题,每题4分,共40分)11.据媒体报道,我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为 元。

12.因式分解:2x 2y-2y=13.已知: 和(b+1)2互为相反数,则2a+3b 14.△ABC 内接于⊙o ,EC 切⊙o 于点C ,若∠BOC=76°,则∠BCE 的度数是15.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是16.如图所示:身高1.6m 的小明站在距路灯杆5m 的C 点测得他在灯光下的影长,CD 为2.5m ,求路灯AB 的 高是 m 。

17.在函数 y= 中,自变量的取值范围是 。

18.如图菱形ABCD 中,CE ⊥AB ,垂足为E ,CE=6cm ,-xk215316311222-+-x x x 13+-x x C E CB OA 5mAB C D E ACDBEFSinD=,则S 菱形ABCD = cm 219.将一个底面半径为3cm ,高为4cm ,圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为 。

20.已知反比例函数 y= 的图象如图所示:则一次函数y=kx+k 的图象经过第 象限。

三、认真解一解,(本题共80分)21.(本题满分12分,第1题6分,第二2题6分)(1)计算:(-1)2008-( )-2+ -COS60°(2)课堂上,王老师出了一道题:已知:x=2008-5 ,求代数式 ÷(1+) 的值,小颖觉得直接代入计算太麻烦了,现在请你来帮助他解决,并写出具体过程。

22.(8分)如图:E 、F 是平行四边形ABCD 的对角线AC 上的点,CE=AF , 请你猜想:BE 与DF 有怎样的位置关系和数量关系?并对你的猜想加以说明。

2.5mCCDB 50%A 26%COBDE2.5mCOBDEA23.(本题满分12分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅分-74分;D级:60分以下)(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?24.(本题12分,每小题4分)如图:AB是⊙O的直径,BD的⊙O的弦,延长BD至点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为点E。

(1)试判断△的形状,并说明理由。

(2)试说明:DE为⊙O的切线。

(3)若⊙O的半径为5,∠BAC=60°求DE的长。

3225.(本题满12分)一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外都相同。

(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的。

你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,请通过列表或树装图球两个球都是白球的概率;(3)搅均后从中中任意摸出一个球,要使摸出红球的概率为 ,应如何添加红球?26.(本题满分12分)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

学校花去捐款96000元,正好可供2300人临时居住。

(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷。

(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。

如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?27.(12分)如图:抛物线经过A (-3,0)、B(0,4)、C (4,0)三点(1)求抛物线的解析式。

(2)求该抛物线的顶点坐标以及最值。

(3)已知AD=AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移2.5mCBEFCDB 50%A 26%COBDEA(-3,0)B(0,4)C(4,0)PQDyx动,线段PQ 被BD 垂直平分,求t 的值;答案一、认真选一选(本大题共10小题,每题3分,共30分,每题4个选项中,只有一项正确的)1、C2、C3、A4、B5、B6、B7、C8、A9、B 10、D 二、细心填一填(本大题共10题,每题4分,共40分) 11、6.8×108 12、2y(x+1)(x-1) 13、-1 14、380 15、5 16、4.8 17、X >1 18、60 19、15∏cm 2 20、一、二、三 三、认真解一解(本题共80分)21、本题满分12分,每1题6分,(1)解:原式(2)解:原式()()()211111222X X X X X -+=⨯=+--∴代数式的值与取值无关12=1=1-4+4-222、(8分)解:BE 与DF 平行且相等理由:∵四边形ABCD 是平行四边形 ∴AD//BC∵∠DAF=∴∠BCE 又∵AF=CE∴△ADF ≅△CBE∴DF=BE ,∠AFD=∠CEB ∴∠DFE=∠AEB ∴DF//BE ∴DF//BE23、(12分,每小题3分)(1)4% (2)720 (3)B (4)380人 24、(1)△ABC 是等腰△ 理由:连接ADAB 是直线,∴∠ADB=900∵BD=CD , AD 是BC 的垂直平分线 ∴AB=AC∴△ABC 是等腰△ (2)连接OD∵O 、D 分别是AB 、BC 的中点 ∴OD//AC∵DE ⊥AC ∴OD ⊥DE ∴DE 是⊙O 的切线(3)∵AB=AC ∠BAC=600 ∴△ABC 是等边△ ∵⊙O 的半径是5 ∴AB=AC=10 CD=5∴DE=CD×sin=60025、(12分,每小题4分) (1)不同意 P 白球=23 P 红球=13因此摸出白球摸出红球不是等可能的 (2)树状图列表略 P (两个球都是白球)=13(3)应添加X 个白球1233X X +=+ ∴X=3 26、(12分,第1小题5分,第2小题7分) (1)解设该采购了X 顶小帐篷,Y 顶大帐篷 由题得: 3X+10y=2300160X+400y=9600解得: X=100Y=200答:略(2)设甲型卡车安排了a 辆,则乙型安排了(20-a )辆 由题得: 4a+12(20-a)≥100 11a+7(20-a)≥200 解得:15≤a ≤17.5 ∴a=15或16或17 ∴20-a=5或4或3∴有3种方案,①甲型卡车15辆,乙型卡车5辆,②甲型卡车16辆,乙型卡车4辆,③甲型卡车17辆,乙型卡车3辆27、(12分,第1小题4分,第2小题3分,第3小题5分)(1)解:211433y X X =-++ (2)解:顶点(1,133)当X=1时y 最大值=133(3)t=257=========================================================== 适用版本:人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:语文,数学,英语,科学,物理,化学,生物,政治,历史,地理 适用年级:一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初 适用领域及关键字:100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷===========================================================本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

相关文档
最新文档